547 research outputs found

    CyberLiveApp: a secure sharing and migration approach for live virtual desktop applications in a cloud environment

    Get PDF
    In recent years we have witnessed the rapid advent of cloud computing, in which the remote software is delivered as a service and accessed by users using a thin client over the Internet. In particular, the traditional desktop application can execute in the remote virtual machines without re-architecture providing a personal desktop experience to users through remote display technologies. However, existing cloud desktop applications mainly achieve isolation environments using virtual machines (VMs), which cannot adequately support application-oriented collaborations between multiple users and VMs. In this paper, we propose a flexible collaboration approach, named CyberLiveApp, to enable live virtual desktop applications sharing based on a cloud and virtualization infrastructure. The CyberLiveApp supports secure application sharing and on-demand migration among multiple users or equipment. To support VM desktop sharing among multiple users, a secure access mechanism is developed to distinguish view privileges allowing window operation events to be tracked to compute hidden window areas in real time. A proxy-based window filtering mechanism is also proposed to deliver desktops to different users. To support application sharing and migration between VMs, we use the presentation streaming redirection mechanism and VM cloning service. These approaches have been preliminary evaluated on an extended MetaVNC. Results of evaluations have verified that these approaches are effective and useful

    CloudSkulk: Design of a Nested Virtual Machine Based Rootkit-in-the-Middle Attack

    Get PDF
    Virtualized cloud computing services are a crucial facet in the software industry today, with clear evidence of its usage quickly accelerating. Market research forecasts an increase in cloud workloads by more than triple, 3.3-fold, from 2014 to 2019 [33]. Integrating system security is then an intrinsic concern of cloud platform system administrators that with the growth of cloud usage, is becoming increasingly relevant. People working in the cloud demand security more than ever. In this paper, we take an offensive, malicious approach at targeting such cloud environments as we hope both cloud platform system administrators and software developers of these infrastructures can advance their system securities. A vulnerability could exist in any layer of a computer system. It is commonly believed in the security community that the battle between attackers and defenders is determined by which side can exploit these vulnerabilities and then gain control at the lower layer of a system [22]. Because of this perception, kernel level defense is proposed to defend against user-level malware [25], hypervisor-level defense is proposed to detect kernel-level malware or rootkits [36, 47, 41], hardware-level defense is proposed to defend or protect hypervisors [4, 51, 45]. Once attackers find a way to exploit a particular vulnerability and obtain a certain level of control over the victim system, retaining that control and avoiding detection becomes their top priority. To achieve this goal, various rootkits have been developed. However, existing rootkits have a common weakness: they are still detectable as long as defenders can gain control at a lower-level, such as the operating system level, the hypervisor level, or the hardware level. In this paper, we present a new type of rootkit called CloudSkulk, which is a nested virtual machine (VM) based rootkit. While nested virtualization has attracted sufficient attention from the security and cloud community, to the best of our knowledge, we are the first to reveal and demonstrate nested virtualization can be used by attackers for developing malicious rootkits. By impersonating the original hypervisor to communicate with the original guest operating system (OS) and impersonating the original guest OS to communicate with the hypervisor, CloudSkulk is hard to detect, regardless of whether defenders are at the lower-level (e.g., in the original hypervisor) or at the higher-level (e.g., in the original guest OS). We perform a variety of performance experiments to evaluate how stealthy the proposed rootkit is at remaining unnoticed as introducing one more layer of virtualization inevitably incurs extra overhead. Our performance characterization data shows that an installation of our novel rootkit on a targeted nested virtualization environment is likely to remain undetected unless the guest user performs IO intensive-type workloads

    Exploring live cloud migration on amazon EC2

    Get PDF
    Cloud users may decide to live migrate their virtual machines from a public cloud provider to another due to a lower cost or ceasing operations. Currently, it is not possible to install a second virtualization platform on public cloud infrastructure (IaaS) because nested virtualization and hardwareassisted virtualization are disabled by default. As a result, cloud users' VMs are tightly coupled to providers IaaS hindering live migration of VMs to different providers. This paper introduces LivCloud, a solution to live cloud migration. LivCloud is designed based on well-established criteria to live migrate VMs across various cloud IaaS with minimal interruption to the services hosted on these VMs. The paper discusses the basic design of LivCloud which consists of a Virtual Machine manager and IPsec VPN tunnel introduced for the first time within this environment. It is also the first time that the migrated VM architecture (64-bit & 32-bit) is taken into consideration. In this study, we evaluate the implementation of the basic design of LivCloud on Amazon EC2 C4 instance. This instance has a compute optimized instance and has high performance processors. In particular we explore three developed options. Theses options are being tested for the first time on EC2 to change the value of the EC2 instance's control registers. Changing the values of the registers will significantly help enable nested virtualization on Amazon EC2

    MobiThin management framework: design and evaluation

    Get PDF
    In thin client computing, applications are executed on centralized servers. User input (e.g. keystrokes) is sent to a remote server which processes the event and sends the audiovisual output back to the client. This enables execution of complex applications from thin devices. Adopting virtualization technologies on the thin client server brings several advantages, e.g. dedicated environments for each user and interesting facilities such as migration tools. In this paper, a mobile thin client service offered to a large number of mobile users is designed. Pervasive mobile thin client computing requires an intelligent service management to guarantee a high user experience. Due to the dynamic environment, the service management framework has to monitor the environment and intervene when necessary (e.g. adapt thin client protocol settings, move a session from one server to another). A detailed performance analysis of the implemented prototype is presented. It is shown that the prototype can handle up to 700 requests/s to start the mobile thin client service. The prototype can make a decision for up to 700 monitor reports per second

    Green Cloud - Load Balancing, Load Consolidation using VM Migration

    Get PDF
    Recently, cloud computing is a new trend emerging in computer technology with a massive demand from the clients. To meet all requirements, a lot of cloud data centers have been constructed since 2008 when Amazon published their cloud service. The rapidly growing data center leads to the consumption of a tremendous amount of energy even cloud computing has better improved in the performance and energy consumption, but cloud data centers still absorb an immense amount of energy. To raise company’s income annually, the cloud providers start considering green cloud concepts which gives an idea about how to optimize CPU’s usage while guaranteeing the quality of service. Many cloud providers are paying more attention to both load balancing and load consolidation which are two significant components of a cloud data center. Load balancing is taken into account as a vital part of managing income demand, improving the cloud system’s performance. Live virtual machine migration is a technique to perform the dynamic load balancing algorithm. To optimize the cloud data center, three issues are considered: First, how does the cloud cluster distribute the virtual machine (VM) requests from clients to all physical machine (PM) when each computer has a different capacity. Second, what is the solution to make CPU’s usage of all PMs to be nearly equal? Third, how to handle two extreme scenarios: rapidly rising CPU’s usage of a PM due to sudden massive workload requiring VM migration immediately and resources expansion to respond to substantial cloud cluster through VM requests. In this chapter, we provide an approach to work with those issues in the implementation and results. The results indicated that the performance of the cloud cluster was improved significantly. Load consolidation is the reverse process of load balancing which aims to provide sufficient cloud servers to handle the client requests. Based on the advance of live VM migration, cloud data center can consolidate itself without interrupting the cloud service, and superfluous PMs are turned to save mode to reduce the energy consumption. This chapter provides a solution to approach load consolidation including implementation and simulation of cloud servers

    An overview of virtual machine live migration techniques

    Get PDF
    In a cloud computing the live migration of virtual machines shows a process of moving a running virtual machine from source physical machine to the destination, considering the CPU, memory, network, and storage states. Various performance metrics are tackled such as, downtime, total migration time, performance degradation, and amount of migrated data, which are affected when a virtual machine is migrated. This paper presents an overview and understanding of virtual machine live migration techniques, of the different works in literature that consider this issue, which might impact the work of professionals and researchers to further explore the challenges and provide optimal solutions
    • …
    corecore