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ABSTRACT

Virtualized cloud computing services are a crucial facet in the software industry

today, with clear evidence of its usage quickly accelerating. Market research forecasts

an increase in cloud workloads by more than triple, 3.3-fold, from 2014 to 2019 [33].

Integrating system security is then an intrinsic concern of cloud platform system

administrators that with the growth of cloud usage, is becoming increasingly relevant.

People working in the cloud demand security more than ever. In this paper, we take

an offensive, malicious approach at targeting such cloud environments as we hope both

cloud platform system administrators and software developers of these infrastructures

can advance their system securities.

A vulnerability could exist in any layer of a computer system. It is commonly

believed in the security community that the battle between attackers and defenders is

determined by which side can exploit these vulnerabilities and then gain control at the

lower layer of a system [22]. Because of this perception, kernel level defense is proposed

to defend against user-level malware [25], hypervisor-level defense is proposed to

detect kernel-level malware or rootkits [36, 47, 41], hardware-level defense is proposed

to defend or protect hypervisors [4, 51, 45].

Once attackers find a way to exploit a particular vulnerability and obtain a

certain level of control over the victim system, retaining that control and avoiding

detection becomes their top priority. To achieve this goal, various rootkits have

been developed. However, existing rootkits have a common weakness: they are still
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detectable as long as defenders can gain control at a lower-level, such as the operating

system level, the hypervisor level, or the hardware level. In this paper, we present

a new type of rootkit called CloudSkulk, which is a nested virtual machine (VM)

based rootkit. While nested virtualization has attracted sufficient attention from

the security and cloud community, to the best of our knowledge, we are the first to

reveal and demonstrate nested virtualization can be used by attackers for developing

malicious rootkits. By impersonating the original hypervisor to communicate with

the original guest operating system (OS) and impersonating the original guest OS to

communicate with the hypervisor, CloudSkulk is hard to detect, regardless of whether

defenders are at the lower-level (e.g., in the original hypervisor) or at the higher-level

(e.g., in the original guest OS).

We perform a variety of performance experiments to evaluate how stealthy the

proposed rootkit is at remaining unnoticed as introducing one more layer of virtualiza-

tion inevitably incurs extra overhead. Our performance characterization data shows

that an installation of our novel rootkit on a targeted nested virtualization environ-

ment is likely to remain undetected unless the guest user performs IO intensive-type

workloads.

vi
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Chapter 1

INTRODUCTION

1.1 Problem Context

The benefits of cloud computing are well established for businesses, organizations, and

end-users. Despite the overwhelming advantages of cloud computing, one of the most

significant problems with this fast growing computing model is security. While both

researchers and cloud defenders continue to develop innovative advancements that

improve cloud security, these platforms remain vulnerable to inevitable, unidentified

weaknesses. It is the goal of our research to then help identify one such vulnerability

before malicious attackers can take advantage of these systems.

Cloud computing conveniently hides many complexities from its users, providing

all the benefits of a data center while circumventing nearly all its associated costs:

office space, power, cooling, networks, bandwidth, servers, storage, sophisticated

software, and highly skilled system administers who configure, install, update, and run

these systems. The computing resources provided by cloud platforms are available at

any time simply through a network connection. These resources are highly scalable,

highly configurable, and typically are costed as a metered pay-as-you-go or monthly

payment service. The cloud computing model is transforming the software industry.

In spite of cloud computing’s highly influential role over the software industry,

there are major barriers that prevent the model from a broader adoption. The
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software infrastructure and physical hardware responsible for hosting cloud services

are shared by all of its users; making user data isolation, loss, and integrity against

malicious entities difficult. According to a market survey in 2016, “general security

concerns” with cloud services were the number one barrier for cloud adoption by

businesses with 53% of these organizations sharing this concern [9]. Although difficult

to quantify, cloud security incidents are reported to government authorities and the

public every year, validating these concerns. Even the leading cloud computing

vendors in 2016 — Amazon holding 45% market share, Windows Azure with 39%, and

Google with 18% [9] — are subject to the fact that these platforms are not perfectly

secure.

Many applications that manage compellingly private and important user data exist

today on the Cloud despite the risk caused by these imperfect systems. For example,

Google’s cloud application Google Compute Engine provides Cloud Infrastructure as a

Service (IaaS) services for businesses across the world; customers like Spotify, Coca-

Cola, BestBuy, Motorola, HTC, and hundreds more. GCE serves many industries

ranging from Healthcare, to Technology, to our most notable: Financial Services.

Take for instance the online payment service mobile application for smartphones,

mCash. The application hosted on GCE, released in February 2014, available today

in the AppStore and Google Play, publically reported in September 2016 that it has

430,000 unique users [14]. This virtual bank allows users to send and receive money,

pay bills, and view transactions. Many real world cloud applications like mCash,

who demand security for their users, are potential targets for a new type of malicious

security attack which we call CloudSkulk.
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1.2 Thesis Statement

In this thesis we present a new type of software security attack methodology related

to the well-known Man-in-the-Middle (MITM) type attacks. Our methodology uses a

nested QEMU/KVM Virtual Machine (VM) based strategy we call CloudSkulk. Our

claim is that a VM, controlled by a malicious source, can represent a rootkit that can

unnoticeably eavesdrop on data communication between QEMU/KVM guest-host

pairs on a GNU/Linux cloud platform providing IaaS cloud services. Through our

attack, we can gain 100% visibility of the data and live interactions of a targeted

guest running in one of these virtualized environments. One of the defining features

of our new type of attack is that it can allow an attacker to remain undetected for

long periods of time. Our intention is not to increase cloud security concerns, but

rather to raise awareness and identification for cloud service vendors and developers

of their system’s vulnerabilities in the hopes that they strengthen their security.

1.3 Contributions

The major contributions of our work are summarized as following:

1. We present the design and implementation of a new type of rootkit, nested

virtualization based rootkits. To the best of our knowledge, we are the first to

demonstrate how nested virtualization can be used by attackers for developing

rootkits.

2. We characterize the incurred system performance degradation caused by our

unique type of rootkit in an effort to quantitatively express our rootkits’s ability

to remain unnoticed by target guest and host.
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3. We provide a sample demonstration of our rootkit installation on a GNU/Linux

based machine supporting the QEMU/KVM virtualization infrastructure.

1.4 Thesis Organization

The remainder of this paper is structured as follows. We describe the necessary

background information pertaining to virtualization and the cloud in Chapter 2. We

then discuss the related work that provided the foundation for our idea behind our

attack in Chapter 3. In great detail, we define the design and implementation of an

installation of our rootkit in Chapter 4. We present our characterization results in

Chapter 5 as well as a discussion about possibilities for defending against our type

of attack. And finally, we summarize the impact of our work as it applies to cloud

system security and the software security research community in Chapter 6.
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Chapter 2

BACKGROUND

2.1 Cloud Environments

Modern data centers are facilities containing tens of thousands of computers with

significant network bandwidth capabilities. They maintain large sets of Information

Technology (IT) equipment that is used for providing both hardware and software

services for third party users, connected through a telecommunication network [42].

Modern cloud computing differs from traditional data centers in that the services

provided by the cloud are given to the user through a virtualized environment called

a Virtual Machine (VM). We will use a standard terminology throughout this paper

to refer to a “host” as a physical cloud computing machine responsible for enabling

virtualization for its third party “guest” users.

Virtualization is the foundation of cloud computing. Virtualization refers to the

creation of a virtual version of some physical resources, such as an OS, a server, or a

device. Programs running from within a guest VM typically execute on a host with

the same level of control as other user applications in what is known as the “lowest

of privileges.”

Executing programs are permitted access to a machine’s resources based on an

execution privilege category system. In order to manage and control groups within

this categorical system, modern x86 CPU instruction sets call these different groups
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rings. The execution privileges range from the highest amount of control in the most

privileged ring 0, to the least control in the lowest privilege level rings 3. Figure 2.1

illustrates this privilege concept.

Figure 2.1: CPU Instruction Set Execution Privileges

Virtualized guest programs however may need to access host hardware or privi-

leged host resources requiring, ring 0, authority. To maintain the integrity of system

security while allowing the use of these resources, modern computers avoid granting

ring 0 level of access to user level (ring 3) VMs through a software work-around

accomplished by a Hypervisor, also referred to as a Virtual Machine Monitor (VMM).

Hypervisors provide virtualized guest processes host resources through the various
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types of virtualization they grant: partial, para-, and full-virtualization to name a

few. A hypervisor is essentially low-level, high privileged software that controls the

execution of one or more guest OSs on a single machine. Fundamentally, hypervisors

function by intercepting and emulating sensitive operations originating from within

the guest environment (such as changing page tables, which could give a guest access

to host memory it is not allowed to access) [2].

When a privileged command, OS instruction, or non-virtualizable instruction is

requested by a para-virtualized guest process, it is delivered to the hypervisor through

a HyperCall, similar to Linux system calls. The hypervisor receives these HyperCalls,

accesses the hardware, then returns the result. This type of virtualization however

requires that the guest OS be modified to properly use the HyperCall API.

A guest created through full-virtualization is provided a complete simulation of

the underlying hardware, allowing the execution of an unmodified guest OS to run

with privileged, ring 1, control on the host. Full-virtualization can be thought of as

using an entire computer, with complete control, encapsulated and running inside

a VM. Full-virtualization is slower than other types of virtualization [3] like para-,

because machine language code from the running guest OS must, at run-time, be

converted to the machine language of the host inside the host hypervisor. This can

be accomplished through a process called binary translation if the host CPU supports

Virtualization Technology (VT).

Binary translation translates a source binary program to a target binary before

execution, where the requested instruction set or binary refers to the source, and

the underlying host processor instruction set refers to the target. While sensitive

and non-virtualizable instructions of a full-virtualized guest OS (running with ring 1

privileges) are translated using binary translation in the host hypervisor, guest VM
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user level processes (running with ring 3 privileges), are directly executed on the

host CPU for high performance. Modern Intel and AMD CPUs provide this support

through assembly language set extensions known as Intel VT-x for the x86-based Intel

CPUs, and AMD-v for the AMD type of CPUs. These extended commands allow for

a CPU to provide hardware based virtualization. Figure 2.2 illustrates these main

functional differences between types of virtualization.

Figure 2.2: Para- vs. Full-Virtualization [18]

2.1.1 Cloud Services

As defined by the National Institute of Standards and Technology (NIST), cloud

computing is composed of three fundamental service models: Cloud Software as a

Service (SaaS), Cloud Infrastructure as a Service (IaaS), and Cloud Platform as a

Service (PaaS) [32].

SaaS cloud platforms provide guests with software. The focus of these cloud

platforms is on applications, rather than hardware. The provided software often
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requires strict and expensive software licenses which are conveniently bypassed by

guests who rent the software from the cloud as a SaaS service. As an example,

the Microsoft Azure cloud platform provides a popular office suite application called

Microsoft Office 365 to users as a SaaS service.

The process of connecting to, and using the services of the Azure cloud is nearly a

ubiquitous form of guest-host interaction for cloud platforms. Therefore, examining

this process illustrates how cloud services are typically provided to guests in nearly

any cloud environment today. An Azure guest first selects a price per hour plan on

the Microsoft website based on a set of desired configurations and requested services.

The guest then connects to Microsoft’s cloud through a local Azure portal application

on their local machine in which they can then use Microsoft Office 365, Dynamics

365, or any other requested application from within a VM environment. The Azure

guest VM environment is likely to be created and initially maintained within a single

process physically running on a cloud machine at Microsoft. The performance of the

running application in the cloud is then predominantly dependent upon the hardware

and software of the cloud machine. It is important to emphasize that this is one

such prevailing benefit of the cloud; that a rented application running on the cloud

is likely to run faster than if ran locally. If an expensive CAD application requiring

significant CPU processing power can experience performance increases while running

in the cloud, CAD users might be persuaded by this cloud attribute.

PaaS based cloud platforms provide a set of software and hardware components

that enable guests to build, manage, and run applications on the cloud through a

VM. The focus of these cloud platforms are frameworks offered as a service, rather

than single applications or individual hardware components like memory rented as a

service. A big difference between PaaS and SaaS services is that PaaS is intended
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more towards effectively and efficiently hosting customized applications for its guest

user who are typically themselves businesses or organizations. These businesses or

organizations using PaaS services on the cloud then typically deploy their application

for other end users of their product. In regards to SaaS cloud based platforms, their

guest users are generally just single end users.

The Google App Engine is a cloud platform that serves as a good example of a

cloud providing PaaS services. The Google App Engine provides its guests scalable

web application services and mobile backends with a framework that includes tools

such as: NoSQL datastores, memcache, and a user authentication API. A mobile

gaming application company, Pocket Gems, is one such guest using PaaS services

to create and deploy its games for other end users. The Google Cloud hosts these

services, runs Pocket Gem’s games, and provides the infrastructure for a dynamic

number of end users. In fact, one of the significant benefits of PaaS services is

that hosted applications can be automatically scaled in response to large demands of

computation and network traffic. Take another company Niantic, running on Google’s

cloud, released a mobile application in 2016 called PokemonGO. Google reports that,

“Within 15 minutes of launching in Australia and New Zealand, player traffic surged

well past Niantic’s expectations.” [28] A clear illustration of the unexpected levels of

PokemonGo player traffic and the dynamic power of the cloud computing model can

be seen in Figure 2.3.

While this scalability factor and dynamic quality of cloud computing, seen in

Figure 2.3, is true for SaaS services, large scale applications intended for an initially

unknown number of end users benefit most from PaaS services. These benefits are

one of the central motivations for businesses and organizations to move from local,

expense, and internally owned and operated server infrastructures to PaaS service
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Figure 2.3: Google Cloud Scalability Response to PokemonGO

based cloud platforms.

IaaS cloud platforms provide their guests a special kind of virtualized environment

known as a full-virtualization 1. IaaS based cloud service providers give users an entire

computer — user space applications, OS, and hardware — virtualized and accessed

through the cloud. Like guest users of PaaS services, guests of IaaS services are typ-

ically, although not strictly limited to, themselves being businesses or organizations.

As an example, Amazon Web Services (AWS) provides IaaS full-virtualization services

for a notable guest that is a world leader in providing online streaming media and

video-on-demand content, Netflix. Netflix is an entertainment business that uses IaaS

services on AWS to host online content to a reported 98.75 million end users as of April

of 2017 [46]. Figure 2.4 illustrates a guest user vs. cloud platform perspective [18] of

the services each control and manage with respect to the types of cloud computing

1A detailed explanation of full-virtualization is provided in Section 2.1



12

models described in this section.

Figure 2.4: User vs. Cloud Resource Responsibility in the Cloud

2.1.2 Nested Virtualization

Although virtualization began in the 1960s, it wasn’t until 2010 that researchers

from IBM presented the concept of nested virtualization, for the first time, on x86

architectures in their Turtles project [6]. They implemented nested virtualization in

the Linux KVM hypervisor 2. Later on, nested virtualization had been adopted and

implemented in Xen (starting from Xen 4.4).

The concept of nested virtualization is straightforward: running a hypervisor

inside a VM. Traditional virtualization involves multiple OSs are running on top of

the same hypervisor simultaneously. Nested virtualization differs from this model by

allowing multiple hypervisors to run on top of the same hypervisor simultaneously. In

2A detailed explanation of the Linux KVM hypervisor is provided in Section 2.2
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the Turtles project [6], the group of researchers introduced the virtualization concept

of Level0 (L0), Level1 (L1), and Level2 (L2) that we will be using in this paper. Level0

represents the hypervisor that runs on top of the real hardware, Level1 represents the

hypervisor that runs on top of Level0, as a guest, and Level2 represents the hypervisor

that runs on top of the Level1 as a nested guest. Figure 2.5 illustrates these levels of

hypervisor virtualization.

Figure 2.5: Hypervisor Levels of Virtualization

The Turtles project was developed without sufficient CPU architecture support

for nested virtualization. Since then, CPU vendors have developed various features

in their products to support nested virtualization in the hope of improving nested

virtualization performance. For example, Intel introduced the VM Control Structure
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Shadowing (VMCS Shadowing) feature in its Haswell processors. This feature extends

the capabilities of Intel-VT, with the particular emphasis of eliminating VM-Exits

caused by VMREAD and VMWRITE instructions executed by the Level1 hypervisor.

Because of these VMCS Shadowing improvements, the frequency of context switches

between Level1 and Level0 hypervisors can be considerably reduced, increasing the

performance of nested virtualization.

One of the two main design restrictions imposed on a CloudSkulk rootkit 3 is

that a guest VM environment is provided with nested virtualization capabilities. In

this paper, we target IaaS cloud based platforms as it is these types of cloud services

that conventionally offer guests full-virtualization, and therefore by virtue nested

virtualization services. It is this nested virtualization feature, as we will see in the

following sections, that we can exploit to use for a malicious attack against IaaS based

cloud platforms using our unique type of rootkit.

2.2 KVM/QEMU Virtualization

We target the widely adopted Linux hypervisor Kernel-based Virtual Machine (KVM)

and its user-space application Quick EMUlator (QEMU). Many leading businesses in

the IaaS cloud computing software industry currently employ KVM/QEMU to host

their cloud platform services. Google Compute Engine (GCE), Amazon Web Services

(AWS), and IBM SmartCloud Enterprise are a few such popular cloud platforms worth

identifying.

KVM is a mainstream Linux hypervisor that establishes the software foundational

support to enable user-space applications to utilize a computers physical hardware

3The entire set of restrictions that were discovered and design decisions that were made for a
successful installation of a CloudSkulk rootkit is detailed in Chapter 4.
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without allowing user-space applications the ability to interface directly with physical

devices. KVM is a type of hypervisor that is called a user-space device emulation

architecture [20], meaning it provides only the support for device emulation not

the actual creation and execution of such devices. KVM is installed in the Linux

operating system by default as a kernel module in versions 2.6.20 and greater.

QEMU is a user-space software application that is responsible for creating in-

stances of virtualized devices as well as the environment in which a guest OS runs on

top of. QEMU creates a Linux process for each VM instance, with each process encap-

sulating the entire VM environment. Virtualized environments using KVM/QEMU

can experience near-native performance for typical workloads as demonstrated by

Virtual Open Systems [43]. For brevity, we may refer to the KVM/QEMU paradigm

as only QEMU for the remainder of this paper. The list below details some the key

attributes of these two software tools that apply to our rootkit.

QEMU:

• Modifiable guest OS allowing for nested hypervisors

• Modifiable guest OS (full-virtualization) provides rich set of resources for an at-

tacker to decrease security signatures and anomalies that may lead to detection

• Guest OS is encapsulated from host machine in VM environment

• Nested Guest OS(s) are encapsulated from host machine in VM environment

• Guest VM is created and maintained within a single host Linux process

• Instances of virtualized hardware created for guest OS
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• Para-virtualized hardware can be created to increase performance of guest OS

• Supports user-space live migration utility 4

• Industry standard Virtualization software for IaaS based cloud platforms

KVM:

• Contains implementation of host hardware devices for full-virtualization

• Exposes device emulation to user-space programs through KVM API

• Industry standard hypervisor for IaaS based cloud platforms

2.2.1 Live Migration

In their pioneering work, Clark et al. [8] proposed and implemented VM live mi-

gration. They defined VM live migration as a procedure of migrating an entire

OS and all of its applications as one unit from one host machine to another host

machine. The benefits of VM live migration mainly lie in two aspects: (1) allowing a

clean separation between hardware and software and (2) facilitating fault tolerance,

workload balance, and low-level system maintenance. They implemented a pre-copy

live migration solution in a Xen based virtualization environment, and they argued

that the two most critical metrics are: total migration time and service downtime.

The former, also known as end-to-end time, refers to the total time taken between the

initiation and the completion of a migration, while the latter indicates the duration

4Live migration will be defined in length in the next section, Section 2.2.1
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when the VM is suspended and the service is not available. Figure 2.6 provides a

graphical representation of pre-copy VM live migration.

Figure 2.6: Pre-copy Live Migration Algorithm [40]

Since the introduction of VM live migration in 2005, migration has attracted

considerable interests from the virtualization and cloud computing communities, and

has become a critical feature in mainstream hypervisors, including Xen, Qemu/KVM,

VMware, and Hyper-V. Typically, a pre-copy based VM live migration involves four

steps, as detailed below.

STEP 1: PREPARATION. In this step, the two host machines, one serves as

the source and the other serves as the destination, should both enter into a ready-for

migration mode. In particular, the destination side should be listening on some

specified port, waiting for a migration request issued from the source side. Once a

migration request issued by the source is received by the destination, the two sides

will start establishing a TCP connection.
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STEP 2: ITERATIVE COPY. Once the TCP connection is established, the

memory (and/or disk) of the VM will be copied in an iterative fashion. In the first

iteration, all the pages will be transferred from the source side to the destination

side. After that, all the pages that get dirtied during the first iteration, will be then

copied to the destination, and such a procedure will be repeated iteratively. Such

an iterative copying may affect the system performance as it consumes CPU cycles,

memory, and network bandwidth.

STEP 3: STOP-AND-COPY If the guest’s interactions cause frequent and

intensive memory and disk image changes, the VM first needs to be stopped on the

source side, then the remaining dirty sections of memory and disk image can be fully

copied. This step is where the service downtime comes from. If this remaining part

is large enough, the service downtime might be significant.

STEP 4: ACTIVATION Once the copy operation is done, the VM on the

destination side will be activated. On the source side, the VM will be paused, and

the source host machine can discard the VM.

The above steps depict the basic procedure of the pre-copy live migration. In

the latest versions of hypervisors, a post-copy live migration approach has also been

implemented. Generally, post-copy incurs smaller downtime, but pre-copy is more

reliable. In this paper, we use pre-copy, but cloud vendors could use either pre-copy

or post-copy. The rootkit technique we present in this paper applies to both migration

approaches. Also, the migration technique detailed above is typically between two

physical machines, but this is not strictly the case. As an example, live migration can
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be used by a host to make dynamic adjustments to guest virtualized devices during

run-time. A guest VM with 4G of virtual DIMM memory can be live migrated to a

new guest VM with 8G of appended virtual DIMM memory. In this work, including

our design, implementation, and evaluation, we only need one physical machine to

launch a nested VM based rootkit. In other words, two physical machines are not

required in the development of CloudSkulk.

2.2.2 Software Security

On a typical Linux cloud computing machine hosting QEMU virtualized services,

KVM runs with privileged super-user permissions, and QEMU runs with less priv-

ileged user-space permissions. Guests inscribed within QEMU processes have no

permissions on, or access in the host machine unless explicitly initialized as such when

the QEMU process is created on the host. However, if a guest process identifies a bug

and can exploit it, such as the virtunoid: breaking out of KVM exploit in 2011 [13],

the guest can gain partial or even full control over the host machine. Although

difficult to quantify, cloud security incidents are reported to government authorities

or the public every year. In fact, publicly reported QEMU bugs are reported in

Common Vulnerability and Exposure (CVE) bug reports on CVEDetails.com [34].

VM and VMM software bugs vary in degree of severity and are expressed throughout

the software security research community [13, 11, 50, 23, 34, 49]. These independent

groups were each able to create what are known as Virtual Machine Escapes, allowing

full control of their target host OS.

Aside from this limited type of access control of a host machine, many books

have been written that discuss how to exploit security bugs and penetrate computer

systems and software [30, 24, 29]. It is also well-known for a given network that
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combinations of security conditions and low-level vulnerabilities can, and do, lead

to host control. The most common form of security attack that threatens possible

host control through network vulnerably is buffer overflows [10]. This can also be

illustrated by the array of ongoing research that seeks to detect and prevent these

types of network attacks [7, 37, 44, 35, 27]. Figure 2.7 and Figure 2.8 depict visual

representations of two typical types of attacks that gain host control, as described

above: Virtual Machine Escape attacks, and host network vulnerability type attacks.

In both figures, dotted black arrows represent normal communication paths - dotted

red lines represent an extension from this normal use, depicting a threat mode.

Figure 2.7: Host Intrusion Thread Mode 1 - Virtual Machine Escape

Our malicious attack is possible within the context of either of these types of

thread mode events. We will present our design and implementation (Chapter 4) in

the context of threat mode 1, making the strong assumption that we are a QEMU

guest process that has gained Virtual Machine Escape. It is important to note though
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Figure 2.8: Host Intrusion Thread Mode 2 - Network Vulnerability

that any valid attack that gains host control will allow our attack to be implemented.

A guest who has gained Virtual Machine Escape can not only invoke commands from

within the host, but also attempt to protect own internal VM data by attacking the

host hypervisor and/or host Intrusion Detection System (IDS) tools [15].

The characteristics of a compromised host machine provide a powerful software

infrastructure for implementing a well-known paradigm of isolated, hard to detect,

and potentially malicious programs known as Rootkits. Although not all rootkits are

malicious, they can be defined as a small set of programs that allow for a consistent,

prolonged, and undetectable privileged access on a computer. The common strategy

for maintaining privileged access is through stealth. Rootkits aim to hide code and/or

data on a computer system in attempt to remain undetected. It is this crucial

characteristic of stealth that we can then relate a virtual machine as conceptually

equivalent to a rootkit. This is a fundamental association that we use — that a VM

can act as a rootkit — and a key conceptual attribute of our unique type of rootkit.

The well-known and studied Man-in-the-Middle (MITM) type of software security

attacks can be classified into two distinct types: passive, and active. Passive MITM

attacks are defined by a malicious party, the “Man”, whom eavesdrops on messages

sent between one or more pairs of users. Active MITM attacks are similarly defined
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by a malicious party whom - in addition to eavesdropping - modifies messages sent

between one or more user pairs [21]. Figure 2.9 is a visual representation of an MITM

type of malicious attack, with dotted black arrows representing normal communica-

tion paths and dotted red lines representing an un-permitted path of communication

controlled either passively or actively by a third party “Man”.

Figure 2.9: MITM Software Security Attack Model

Using the association that a VM can act as a rootkit, we propose a novel as-

sociation: that a VM can act as the “Man” in a MITM type of attack between a

host and nested guest user. When relating MITM concepts to a VM it is useful to

illustrate that an inherent function of a virtual machine is to pass messages between a

guest-host pair. It then becomes clear that a VM representing a rootkit — the “Man”

— can easily, and consistently eavesdrop on communication between a host machine

and a nested guest user of a VM. It is also valuable to illustrate that a nested VM

based rootkit naturally achieves another main objective for a rootkit, being that it

can remain undetected for extended periods of time by simply emulating the virtual

environment for the nested guest. In this type of rootkit, a source side VM can also

seek to hide any behavior associated with its eavesdropping activities by modifying
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internal VM software and/or data. Figure 2.10 is an abstraction that depicts a typical

virtualization software/hardware set-up for network and virtualization communica-

tion flow between a guest-host QEMU/KVM pair. In the figure dotted black arrows

represent a guest user’s data communication flow of network packets.

Figure 2.10: KVM/QEMU Virtualization Architecture

Appending our two thread model associations: (1.) that a VM can act as a

rootkit, and (2.) a VM can act as a “Man” in a nested VM based MITM attack,

we can then create a visual representation of this conceptual model. Figure 2.11

contains a single host side VM (QEMU pidX) which contains in itself a nested guest

VM (QEMU pidY), therefore pidX can represent a rootkit. The rootkit is controlled

by Guest0, and the nested guest user is controlled by Guest1, both connected to the

host over an external network connection. If Guest0 were a malicious user, Guest0

could seek to passively or actively target two victims in a MITM type attack: the

host machine, and Guest1. Again, given this nested virtualization architecture setup,
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Guest0 can represent a malicious “Man” in the middle between the host and Guest1.

The full design and implementation details for this type of attack will be provided

in Chapter 4, as this is simply an introduction into the conceptual foundation of

CloudSkulk.

Figure 2.11: KVM/QEMU Nested Virtualization Architecture

2.2.3 Threat Model

Typically, once attackers take control of a computer system they will attempt to

either hide evidence of intrusion, and/or attempt to retain that control as long as

possible while carrying out some malicious service. In this work, we make a strong
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assumption that attackers have already compromised a victim cloud system and that

our rootkit provides a stealthy environment in which the attacker can retain control

of a victim guest VM owner, undetected, until the guest VM owner disconnects from

the cloud.

To be clear, although compromising a cloud system is pragmatically difficult to

achieve, it is possible. Gaining host privileges can be achieved by penetrating into

the cloud network and exploiting certain vulnerabilities of the host machine/OS,

or as we have previously provided evidence for in Section 2.2.2, VM breakout and

other techniques have been demonstrated in both real world attacks and throughout

the software security research community [13, 11, 50, 23, 34, 49]. The level of host

privileges required after compromising the cloud system will be defined in length

in Section 4.2. Under our strong assumption, attackers can create their own VMs,

initiate VM live migration, and thereafter create nested VMs inside their VMs.

If an attacker’s goal is to retain control of a compromised system for long periods

of time, the attacker needs to hide themselves and access the system resources in an

unnoticed manner. To this end, attackers usually install rootkits on the compromised

system. These rootkits can help attackers to hide their malicious processes, malicious

files, and malicious socket connections. Our unique type of rootkit does not seek to

control or maintain the system resources of the cloud platform, instead, our goal is

to gain control of the virtualized machine and services of its victim guest VM owner

running on the cloud.

Based on this threat model, we will describe how attackers can leverage VM live

migration and nested virtualization to create and install a CloudSkulk rootkit in

Chapter 4. Again, for clarification, our rootkit allows an attacker to either actively,

or passively intercept, eavesdrop, and control all QEMU/KVM data communication
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between a victim guest VM and its cloud platform. All live interactions of a victim

guest VM owner will be visible to an attacker that has installed a CloudSkulk rootkit

on some targeted IaaS based cloud environment.
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Chapter 3

RELATED WORK

The foundation of our new type of software security attack is in part due to the work

of many other groups of researchers. The two most influential and relevant works are

two projects from 2006: SubVirt [22], then followed later that year by BluePill [39, 38].

Both detail software security attacks against a target hypervisor using a rootkit, that

is represented by a VM, to maintain full control over the targeted machine. Our

idea borrows from this conceptual association of a rootkit represented by a VM,

but extends these concepts by adding an additional association: by exploiting live

migration and nested virtualization within a cloud environment, a VM can act as the

“Man” in the well known MITM type attack.

3.1 SubVirt

SubVirt was the first group to suggest this VM/rootkit association. They introduced

a new type of malware which they called a Virtual Machine based Rootkit (VMBR).

Their work was a proof-of-concept project in which they implemented two VMBRs to

subvert Windows XP and Linux systems in a controlled lab environment. Many of the

functional goals of a rootkit, that are naturally met if run as a VM, were discussed in

their work and further extended in our paper. To implement their attack, the group

showed that the VMBR must modify the system boot sequence of the targeted host
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kernel such that a VM is loaded before the target OS and applications. This was the

key component of their attack, as they then prove that such a VM could then “hoist”

the original OS into the VM - thus gaining full control over the target machine while

remaining hard to remove and hard to detect. After installation of a VMBR the target

system’s disk space was fully contained within a virtual disk. However, the VMM

could not translate the target’s virtual disk accesses to the corresponding location on

the physical disk without rebooting [22]. In other words, the target system had to

be rebooted at some point to successfully install their rootkit. Figure 3.1 provides a

visual representation of the SubVirt attack, showing how an original target system

can be moved to run inside a VM provided by a maliciously owned and controlled

VMM.

Figure 3.1: SubVirt VMBR Attack Methodology

SubVirt showed that VMBRs support general purpose malicious services. After

installing a VMBR on a target system, the VMBR uses a separate OS they referred

to as an “attack OS” to deploy malware. This malware was effectively invisible from
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the perspective of the target OS at the time because the attack OS’s complete set

of states and events were fully encapsulated within the attack OS and not visible

from the target OS. This provides malware deployed from within the attack OS an

abundant set of functionality and implementation flexibility from access to any code

library, framework, OS level resource, and programming language. One exception to

this was malware that executed with user-mode privileges could be detected by the

target OS.

Like SubVirt, a successful installation of a CloudSkulk rootkit provides malicious

attackers a powerful platform for malware. A CloudSkulk nested VM based RITM

provides a malicious guest cloud user an encapsulated VM environment with many

of the same benefits associated with SubVirt’s VMBRs. Malware developed and

deployed from within a CloudSkulk rootkit avoid detection by a host cloud platform

by hiding malicious processes, malicious files, and malicious socket connections by

invoking guest OS code to disallow external I/O, and protecting guest data from

external introspection or modifications by checkpointing internal VM data states

before and rolling the guest back later [22].

3.2 Blue Pill

The Blue Pill (BP) project, proposed and implemented by COSEINC Research and

Rutkowska, J., was a software security attack that threatened operating systems

without restarting the targeted system, and without any necessary modifications to

the BIOS, boot sector, or system files. The main concept of the attack was that

the Blue Pill represented a thin VMM that provided full control over a target OS

reallocated with a VM. “The idea behind Blue Pill is simple: your operating system
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swallows the Blue Pill and it awakes inside the Matrix controlled by the ultra thin

Blue Pill hypervisor.”, project lead Rutkowska, J. [38].

The BP attack exploited AMD64 Secure Virtual Machine (SVM) assembly lan-

guage extensions to move a target OS into a VM “on-the-fly”. Figure 3.2 provides a

visual representation of the SVM control flow for the VMRUN instruction.

Figure 3.2: Blue Pill, Heart of SVM: VMRUN Instruction [39]
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The SVM instruction set contained a MSR EFER register; bit 12 of this register,

the SVME bit, defined the instruction set SVM mode for the processor: 1 = enabled,

or 0 = disabled. The EFER.SVME bit was required to be set high before any SVM

instruction could be executed [2]. From within a host hypervisor, if the EFER.SVME

bit was set to high, the VMRUN instruction could begin instruction flow from within

the guest. The BP exploitation was then to modify the EFER.SVME bit during

native OS execution so that a failed VMCB.exitcode check prevented the host from

returning from guest mode. This SVM exploitation forced native OS execution to

continue inside a VM that was fully controlled by Blue Pill. A simplified control flow

diagram in Figure 3.3 depicts the Blue Pill attack.

Figure 3.3: Blue Pill Attack Methodology [39]
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SubVirt and BluePill are kernel-hypervisor level type of attacks that are hard to

implement with respect to a CloudSkulk rootkit. This is mainly because CloudSkulk

requires no modifications to any host kernel or user-space code base. Our attack

is also non-permanent, like Blue Pill, as we can maintain control over our nested

VM only until the guest user disconnects from the cloud service provider. The most

significant difference however is that SubVirt and Blue Pill were attacks against a

host kernel, whereas CloudSkulk is an attack against a virtualized guest users and

their host platform providing virtualization.
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Chapter 4

METHODOLOGY

4.1 Design

The design of CloudSkulk is based on the Linux kernel-based virtual machine (KVM)

hypervisor. In a Linux system, the KVM hypervisor is implemented as two kernel

modules: one architecture independent (i.e., kvm.ko), and one architecture dependent

(i.e., kvm-intel.ko or kvm-amd.ko). KVM uses hardware-level support found in

modern CPU virtualization extensions, Intel VT and AMD-v, to virtualize a guest

VM architecture. Each VM is then treated as a normal process, and is scheduled

by the default Linux process scheduler. To create and launch VMs, users most

typically employ a user-level tool called Quick Emulator (QEMU). QEMU software

utilizes KVM’s virtualization features to emulate an unmodified guest VM’s OS, its

para-virtualized and/or full-virtualized devices, and all its applications.

The rootkit we present was performed on a Linux platform that hosts the QEMU/KVM

VM software paradigm. There are two key attributes that restrict our design: the

virtualization software our rootkit targets must (1.) provide a utility for live migra-

tion, and (2.) enable nested hypervisors — QEMU/KVM meets these requirements.

Conceptually our proposed rootkit can be installed on other cloud platforms that

provide these same two attributes, but we chose QEMU/KVM specifically because of

its popularity and implementation flexibility (i.e., QEMU open source code).



34

A CloudSkulk rootkit must be implemented in a cloud environment that provides

live migration. Live migration is a common activity in the cloud; it is used to provide

nearly uninterrupted service to a user while the actual server hosting services for

that user can change. This activity is fundamental for cloud platforms to maintain

load balance between servers, or for instances when a server requires downtime for

updates or physical maintenance. Live migration does not always involve the transfer

of a guest user across independent machines though, it is also used to dynamically

adjust virtualized devices and VM configurations of a live user while transferring the

guest on top of the same hypervisor. Our rootkit is designed to invoke live migration

within a single hypervisor during its installation; we will refer to this as the VM live

migration technique.

A CloudSkulk rootkit must be implemented in a virtualized environment that

allows users to create nested VMs, each with their own hypervisor. This type of VM

is most commonly provided, but not limited to, IaaS based cloud platforms. IaaS

service providers offer users comprehensive computing resources, including user space

applications, hardware, and OS, virtualized and accessed through the cloud. The

design of our unique type of rootkit requires such a virtualized environment because

it allows us (a malicious guest user in the cloud) to impersonate the host by running

the same KVM hypervisor and QEMU VM emulator as the host. In this scenario

we can then appear to mimic the host to nested guest VMs of our own; we can

refer to this scenario as our nested virtualization technique. Our rootkit is called a

nested VM-based Rootkit-in-the-Middle (RITM) type of attack because we can relay

communication between the original host hypervisor and our nested guest hypervisor

in a Man-in-the-Middle (MITM) fashion.

An installation of our unique type of rootkit is based on a comprehensive set of
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procedures. The following procedures define the design our attack methodology:

• Step 1: Typically in a cloud environment, an attacker, just like normal cloud

customers, can rent a VM in the cloud environment. There could be many VMs

co-existing on the same host machine as the attacker’s VM, and one of them,

would be the target for attack. In Figure 4.1, we consider GuestM to be the

VM owned by the attacker, and Guest0 to be the target VM1.

Figure 4.1: Cloud Environment Guest-Host Pair Identification

A precise definition of this step is defined as follows: There exists a set S on

a GNU/Linux based host hypervisor of N number of QEMU/KVM guest-host

pairs, where |S| = N ≥ 2. In this scenario we will denote a single target of our

attack as Guest0 (t), where t ∈ S, and a single attacker as GuestM (m), where

m ∈ S.

1Figures 4.1, 4.2, 4.3, 4.4, 4.5 contain solid black arrows that denote multi-guest communication
flow and dotted black arrows to denote single guest communication flow.
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• Step 2: We assume that by taking advantage of existing vulnerabilities in the

hypervisor, the attacker is able to break out of its VM and gain some certain

control on the host 2. This is feasible in reality as demonstrated in previous

research [13, 23]. Note that the attacker does not necessarily need the system

administrator privilege on the host, as a QEMU process can be launched by

any normal user in a Linux system. Figure 4.2 displays a red dotted arrow that

is simply an abstract representation of gaining host privileges.

Figure 4.2: Abstraction of Virtual Machine Breakout

• Step 3: Once the attacker has some certain control on the host 2 the attacker

can launch a new VM, GuestX. For the host, this VM will appear as a live

migration destination of Guest0, as it will be created with all Guest0 original

QEMU configurations. GuestX will functionally represent our RITM.

2The level of control required for this step is defined in length in Section 4.2.
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Figure 4.3: Rootkit Creation on Host

A precise definition of this step is defined as follows: An attacker, GuestM, must

obtain sufficient host privileges such that the complete set of Guest0 QEMU

configurations C0 can be obtained3. The attacker then invokes commands on

the host to create a new guest-host pair GuestX (x ) with C1 configurations,

such that C0 ⊆ C1 and where x∪S, therefore |S| = N+1 ≥ 2 and x ∈ S are both

true after this event. If C0 was not initialized with an explicit port connection,

say parameter c’, during its original creation, then c’ ∪ C1 must occur during

this step for later live migration purposes. It is important to note that while the

minimum restriction C0 ⊆ C1 must be true, a CloudSkulk rootkit can maintain

its highest level of evasion from the host if C0 ⊆ C1 and C1− C0 = {c’}.

• Step 4: Utilizing the nested virtualization technique, the attacker can then

launch a VM inside GuestX. This nested VM will be created with all Guest0

original QEMU configurations.

3The details of how this can be accomplished by an attacker, including specific commands that
are most likely be used are detailed in Section 4.2.
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Figure 4.4: Nested VM Creation within Rootkit

A precise definition of this step is defined as follows: The attacker, GuestM,

invokes commands within GuestX to create a new QEMU process4, pidN, that

is initialized in a paused state so that it contains no active user. The complete

set of pidN’s QEMU configurations C2 must be intialized such that C0 ⊆ C2

and C2 − C0 = {c”}, where c” is an appended QEMU configuration that

enables pidN to continuingly listen for migration data via some specified QEMU

parameter5. The new process, pidN, is fully encapsulated within GuestX and

is not visible to the host; therefore |S| does not change after this event.

• Step 5: Utilizing the VM live migration technique, the attacker can migrate the

target VM (Guest0) to the nested VM.

4The details of how this can be accomplished by an attacker are detailed in Section 4.2.
5A complete list of possible live migration parameters will be detailed in Section 4.2.
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Figure 4.5: VM Live Migration to Nested VM

A precise definition of this step is defined as follows: The attacker, GuestM,

invokes QEMU Monitor Console commands on the host6 to begin live migration.

The attacker can choose to migrate Guest0’s active memory or disk, which when

chosen is port forwarded through GuestX-host active port connection c’. The

destination of this live migration data is then immediately sent to the nested

QEMU paused process, pidN. After this step the target VM, Guest0, will be

running inside GuestX as a nested VM. GuestX, our RITM, now serves as a

medium that can eavesdrop on Guest0 activity and communication between the

host hypervisor and Guest0 hypervisor. Figure 4.5 depicts this event, where the

bold red line represents live migration of Guest0 from host’s pid0 to GuestX’s

pidN.

6The exact commands required for this step are detailed in Section 4.2.
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At this moment, the process pid0 (the source side of the migration) will remain

on the host, but in a paused, post-migrated state with no active user. This is typical

with live migration within the Cloud as a final clean-up step is required to kill the

stale process. Therefore, the original condition |S| = N ≥ 2 will apply to the host after

this final event. For our installation, after an attacker has removed pid0, a nested

VM-based RITM called CloudSkulk will be installed on the host.

4.1.1 Advantage of CloudSkulk

The major advantage of a CloudSkulk rootkit lies in its stealth. It is hard for both

the VM owner (i.e., the victim) and the cloud system administrator to detect the

existence of such a rootkit.

From the VM owner’s perspective, nearly all behavioral and virtualized charac-

teristics from within guest environment remain the same. There are several reasons,

but let us first relate our rootkit installation to a typical live migration in the cloud

to understand the inherent level of stealth provided by CloudSkulk. If a normal VM

owner running in the cloud were to be live migrated, regardless of events independent

or dependent of the guest VM, the VM owner would likely be unaware of this activity

before, during, or after migration. This innate, evasive nature of live migration is by

design and allows for uninterrupted services to the VM owner - a key attribute of

the cloud. The guests VM machine, devices, OS, and applications are all virtualized

before and after migration so various techniques of detecting virtualization cannot be

applied in this scenario. For CloudSkulk, when launching Guest0 and GuestX, port

forwarding is used by the attacker, so that the victim will also continue to access its

VM using the same command as before. The VM owner does not observe any obvious

changes except for performance. The VM owner will experience a performance
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change due to the additional layer of virtualization. This performance change will be

characterized in Chapter 5.

From the system administrator’s perspective, GuestX will now be considered

as Guest0. The attacker can ensure that GuestX and Guest0 are using the same

virtualized devices, the same guest OS, and run the same programs; meanwhile, with

the complete control inside GuestX, the attacker has sufficient power to manipulate

various Virtual Machine Introspection (VMI) techniques. This has been well docu-

mented and studied before [5]. VMI tools commonly rely on some prior knowledge of

the target OS, in particular kernel-level knowledge, but when attackers are in control

of the guest kernel, by manipulating various kernel data structures, attackers are

able to subvert existing VMI tools. The consequence of subverting VMI tools is that

attackers will be able to hide their activities or any anomaly from within the guest

OS.

4.2 Implementation

Cloud environments are highly dynamic. The characteristics of a potential VM target

may be configured in an assortment of QEMU image and system emulation features.

In addition, specific VM parameters crucial to VM securities in cloud environments

are unknown to the public. For these reasons, an attacker installing a CloudSkulk

rootkit must leverage some system-level history utilities and/or VM inspection tools

to expose a targeted VM configurations.

We mentioned before that some “certain” control on the host is required by

the attacker who attempts to install a CloudSkulk rootkit. To clarify, the level of

required control is restricted by the highest level of privilege amongst: the inspection
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tools needed to obtain the target VM configuration parameters, live migration, and

initializing a destination VM with matching network configurations as the source VM.

The level of host control will then vary depending on these restrictions.

The most straightforward solution for finding a target VM’s configurations would

be to investigate the command line history ([host@cloud˜]$ history), or report running

process statuses ([host@cloud˜]$ ps -ef ) to determine the original QEMU command

used. If for whatever reason these system-level utilities are not available on the

host, one powerful user-space tool, the QEMU Monitor, can be used. The QEMU

Monitor is implemented alongside the QEMU source code, and is downloaded with

QEMU by default. Therefore, a weak assumption can be made that this user-space

utility is a common, viable solution for cloud platforms hosting QEMU/KVM. For

instance, an attacker can issue a QEMU Monitor command on a running target VM

to determine what block devices are emulated by QEMU ([qemu-monitor˜]$ info

qtree, [qemu-monitor˜]$ info blockstats), or determine the size and state of the active

VM memory ([qemu-monitor˜]$ info mtree, [qemu-monitor˜]$ info mem), or even

determine the network device type, model, and state from ([qemu-monitor˜]$ info

network). QEMU Monitor commands can also be used with other user-space utilities

like qemu-img to determine the disk size of a running VM ([qemu-monitor˜]$ info

block for the disk location, and [host@cloud˜]$ qemu-img info to obtain the size and

type of the image file).

As a normal process of live migration in the cloud, a cloud system administrator

traditionally is required to save the original configuration parameters for a user VM

when it is created, or invoke a combination of any tools above to obtain these pa-

rameters during run-time. Live migration requires that this event take place because

migration requires a destination VM to first be created with the same configurations
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as the source VM.

A CloudSkulk implementation then begins by first selecting a target VM running

on the host, and obtaining its QEMU configuration parameters. An example solution

to this first step is below:

[host@yellowstone ~]$ ps -eq | grep -i qemu

... ...

... qemu-system-x86_64 -machine type=pc-i440fx-2.3..

... ...

A rootkit can then be created on the host side. The rootkit is a QEMU process

that matches the target QEMU parameters. Note that during testing, a destination

VM could be virtualized with more devices and CPU flags than the source VM while

successfully retaining attack viability. If the target VM is not originally created with

a host port forwarding network configuration, we must either add this using a QEMU

Monitor command ([qemu-monitor˜]$ hostfwd add [tcp |udp]:[hostaddr]:hostport-

[guestaddr]:guestport), or we can make this during the creation of the rootkit. A

continued example solution to this step is described as follows, in which we append

the host port forwarding option in the creation of our rootkit:

qemu-system-x86_64 \

-machine type=pc-i440fx-2.3 \

-cpu Nehalem,+vmx \

-m size=512M,slots=1,maxmem=1024M \

-boot order=c \

-drive file=disk-RAW60G.img,media=disk,format=raw,

cache=writeback,aio=threads,if=virtio \
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-enable-kvm \

-vga std \

-show-cursor \

-device virtio-net-pci,netdev=net0 \

-netdev user,id=net0,hostfwd=tcp:0:4446-:5556 &

The guest VM environment within the rootkit is provided with its own hypervisor

and the ability to nest VMs/hypervisors. Therefore, the OS within the rootkit can

be modified, if needed, to enable the QEMU/KVM software infrastructure. The

following provides step-by-step details for this, but is not intended as an exhaustive

solution, rather a viable solution that we verify and used during implementation:

• (1.) Verify GNU/Linux x86 64 bit current OS and architecture.

(1a.) If not, download, install, and reboot into Fedora Live Workstation

x86 64 version 22.3. Then download and install the Linux Kernel version 4.4

with default configurations. Reboot and verify kvm module is enabled with new

installation ([host@cloud˜]$ lsmod |grep -i kvm).

• (2.) Verify QEMU x86 64 bit version 2.9 is available on current machine.

(2a.) If not, download QEMU x86 64 bit stable version 2.9, then configure

and install the build with the minimum following options: –target-list=x86 64-

softmmu, –enable-curses, –enable-kvm. Verify the correct version of qemu is

enabled ([host@cloud˜]$ qemu-system-x86 64 -version).

• (3.) Determine if kvm intel parameter is enabled ([host@cloud˜]$ modinfo

kvm intel |grep -i nested).
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(3a.) If not, temporarily unload the kvm intel module ([host@cloud˜]$

modprobe -r kvm intel). Then modify the kernel module nesting parameter for

kvm intel ([host@cloud˜]$ sudo vi /etc/modprobe.d/dist.conf, then uncomment

the line options kvm intel nested=y, save and exit config file). Reboot and verify

kernel changes are persistent ([host@cloud˜]$

cat /sys/module/kvm intel/parameters/nested).

• (4.) Verify CPU virtualization extensions, Intel VT |AMD-v, are enabled with

type = full ([host@cloud˜]$ lscpu |grep Virtualization).

(4a.) If not, make sure original QEMU command appends the guest’s CPU

extensions during creation ([host@cloud˜]$ qemu... -cpu model,+vmx |+amd)

After enabling the QEMU/KVM software infrastructure within the guest, the

next step in implementing a CloudSkulk rootkit is the creation of the nested VM. The

nested VM is the live migration destination VM with QEMU configuration parameters

that match the target VM on the host side. One requirement of live migration

is that the destination VM parameters be appended such that it is paused in an

incoming state, and therefore it will be listening for migration data via some specified

parameter. We mentioned before a complete list of possible live migration parameters

would be detailed in this section; the following is that complete list as restricted by

the QEMU PC system emulator options:

-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]

-incoming rdma:host:port[,ipv4][,ipv6]

Accept incoming migration using host tcp port.
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-incoming unix:socketpath

Accept migration using host unix socket.

-incoming fd:fd

Accept migration using host file descriptor.

-incoming exec:cmdline

Accept migration using output specified from external command.

-incoming defer

Accept migration using a later specified URI via QEMU monitor

command migration_incoming.

-device ivshmem-plan,memdev=mySharedMem

Accept migration using shared memory backend file on host.

The creation of the nested VM, using one of the viable QEMU live migration

parameters above, is then as follows:

qemu-system-x86_64 \

-machine type=pc-i440fx-2.3 \

-cpu Nehalem,+vmx \

-m size=512M,slots=1,maxmem=1024M \

-boot order=c \

-drive file=copy-RAW60G.img,media=disk,format=raw,

cache=writeback,aio=threads,if=virtio \

-enable-kvm \

-vga std \

-show-cursor \

-device virtio-net-pci,netdev=net0 \
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-netdev user,id=net0 \

-incoming tcp:0:5556 &

Except for a minor clean-up, the final step in implementing our rootkit is to

invoke the live migration utility via the QEMU Monitor. Depending on how the

target VM’s monitor is emulated on the host side, its QEMU Monitor can be opened

in several ways. For instance, if the target VM’s QEMU monitor is multiplexed onto

another serial port, such as a telnet server listening on port 5555 ([host@cloud˜]$

qemu-... -serial mon:telnet:0:5555,server,nowait), then telnet on the host side could

be invoked to open the VM’s QEMU Monitor ([host@cloud˜]$ telnet 0 5555 ). In

our continued example, since a virtualized VGA card for the VM has been created

(-vga std), we opened the QEMU Monitor for the target VM simply with the control

keystroke Ctrl+Alt+Shift+2 once the host cursor had selected the target VM. Once

the QEMU Monitor is opened, the following command can be issued inside the

monitor environment to invoke live migration:

migrate -d tcp:0:4446

The port numbers we chose in our example are random. However, the relationship

of the port numbers with respect to the rootkit, the nested VM, and the live migration

command are crucial to our implementation. The target VM begins the transaction

by sending its migration data to HOST PORT AAAA. The rootkit was created at the

host side such that it continues the transaction by forwarding HOST PORT AAAA to

its internal ROOTKIT PORT BBBB . Finally, the paused nested VM will conclude

the transaction as it will receive the migration data from ROOTKIT PORT BBBB .

This transaction is visually represented by Figure 4.6.
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Figure 4.6: Nested Virtualization Technique Port Transaction

A minor clean-up is required after the live migration has completed. This can

be accomplished by terminating the Linux process responsible for the post-migrated,

paused target VM on the host side, or simply through a QEMU Monitor command still

open on the post-migrated VM ([qemu-monitor˜]$ quit), or host-side ([host@cloud˜]$

kill -KILL 〈process id〉). This step completes the implementation of a CloudSkulk

rootkit.

4.2.1 Demonstration

To demonstrate a successful installation of CloudSkulk, we have taken a video and

publicly made it available via youtube: https://youtu.be/p4vUkADpSh4. In the

video, we assume that the attacker has already gained some control on the host

system. As shown in the video, the attacker does not need a system administrator’s

privilege, just a normal user’s privilege would suffice to perform the attack, including

launching VMs and initiating VM live migration. It can be seen from the video that

the time cost of the live migration is less than one minute.
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Chapter 5

EVALUATION

There is no fixed threshold that defines levels of remaining unnoticed, nor is there

a threshold that defines a maximum duration of installation time we are required

to achieve to remain unnoticed. So instead we focus on quantitatively expressing

our rootkit’s ability to remain unnoticed by a target guest VM user, and the host

cloud platform that our attack targets. We achieve this by characterizing both the

performance degradation caused by our unique type of RITM, and its installation

timing. Our goal is that this data can then be applied on a case-by-case basis to

specific virtualized environments to assess the validity of our rootkit.

5.1 Performance Characterization

All the experiments are performed on a testbed running Fedora 22 operating system

with GNU/Linux Kernel 4.4.14 (-200.fc22.x86 64) containing KVM. The guest Level1

and Level2 are also running the same Fedora 22 Workstation version, with Linux

Kernel 4.4.14. All execution environments: Level0, Level1, and Level2 are running

the latest stable version of QEMU 2.9.50 (v2.9.0-989-g43771d5) with the following

install config options: –enable-kvm, –enable-curses. Our testbed platform uses Dell

Precision T1700 with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz processors. The

host has 16GB memory, and we assign each VM 1GB memory.



50

Note that QEMU offers plenty of parameters for its virtualized machines, setting

different values of these parameters might affect workload performance in the VM

considerably. During our experiments, we followed the QEMU/KVM best practices

described by [17]. In particular, our setup has the following attributes:

• We used virtio drivers. Virtio was originally an I/O virtualization framework for

Linux, but now it has also been adopted in Windows. Basically, virtio embraces

the idea of para-virtualization. On the one hand, the guest OS is aware of

its virtualization environment, and includes drivers that act as the front-end

(these drivers need to be enabled when compiling the guest kernel); on the

other hand, the hypervisor implements the back-end drivers whose major tasks

are to emulate specific devices. In QEMU, when we start the VM, we need to

append “-drive if=virtio” and “-device virtio-net-pci” to the QEMU command

line, so as to enable the back-end disk driver and the network interface driver,

respectively.

• We used block devices for VM image storage. Typically, a VM image is stored

in a file on the host file system, however one can assign a device or a disk

partition to the VM. In our experiments, we noticed that a block device backed

VM image performs significantly better than a file backed VM. For example,

for kernel compilation, the difference was as large as between 20% and 30%.

In addition, we have also experimented with different QEMU configurations. Our

final results use the best case performance observed with the following parameters:

• Guest image format. The two most common image formats that are used in

QEMU are the raw image format and qcow2 image format. Our best case
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performance and final choice was the raw image format. Our observations

coincide with [17], in which raw image offers better performance than qcow2.

• Guest memory size. The start-up virtual RAM size for a guest is allocated

based on this parameter. Our observations for -m size=512M, 1G, 4G, 16G,

revealed 1G to be our best case performance setting.

• Guest cache mode. The three most common cache modes used in QEMU:

“cache=writeback”, “cache=writethrough”, and “cache=none”.

Figure 5.1: QEMU/KVM Host Cache Control Mode - “writeback”
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The first mode, seen in Figure 5.1 is the default, which enables both the host

OS page cache and the physical disk write cache. This caching policy will report

data writes as completed as soon as the data is present in the host page cache.

Figure 5.2: QEMU/KVM Host Cache Control Mode - “writethrough”

In the second mode, seen in Figure 5.2, the host page cache will be used to read

and write data, but the physical disk write cache is disabled. In this mode write

notifications will be sent to the guest only after QEMU has made sure to flush

each write to the disk. The write-through cache policy performed the worst in

our experiments as each write causes a heavy IO performance impact.
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The last mode, seen in Figure 5.3, disables the host OS page cache and enables

the physical disk write cache. In our experiments this caching policy performed

the best, slightly better than “writethrough”. Our choice was cache=none.

Figure 5.3: QEMU/KVM Host Cache Control Mode - “none”

• The I/O scheduler. Linux offers four different I/O schedulers: the noop sched-

uler, the deadline scheduler, the anticipatory scheduler, and the complete fair

queuing (CFQ) scheduler. In our experiments, our choice was the default I/O

scheduler, the CFQ scheduler. It was suggested [17] that using the deadline

scheduler on both the host and the guest OS for I/O bound workloads should
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offer better performance, but we did not notice a significant performance benefit

during our experiments when we switched from the CFQ scheduler to the

deadline scheduler.

5.1.1 Macro Benchmarks

The performance and live migration timing of a virtual machine running in the cloud

is affected by a diverse set of variables, some of which are interdependent. It is

then unreasonable to exhaustively characterize these, so we follow the QEMU/KVM

best practices described by [17]. For our testing strategy we choose to assume a

common cloud guest user, following these above best practices, with only a single set

of QEMU configuration parameters. We also know that a guest user’s workload within

their environment is one such variable that will play a significant role in performance

and migration timing. Therefore, using an assumed cloud guest user, with static

configuration parameters, we can characterize both the performance degradation and

live migration timing affected by three types of workloads that summarize the gener-

alized activity the user could be performing: IO intensive workloads, CPU/Memory

intensive workloads, and Network intensive workloads.

The assumed cloud guest user’s QEMU configuration parameters held constant

throughout all the tests are given as follows:

Level 1 VM:

sudo qemu-system-x86_64 \

-name level1 \

-m size=1G,slots=1,maxmem=2G \

-boot c \

-drive file=/dev/sda6,index=0,media=disk,format=raw,
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cache=none,if=virtio \

-drive file=/dev/sda7,index=1,media=disk,format=raw,

cache=none,if=virtio \

-cpu qemu64,+x2apic,+vmx \

-machine accel=kvm \

-smp 8 \

-curses \

-serial stdio \

-device virtio-net-pci,netdev=netLevel1 \

-netdev user,id=netLevel1,hostfwd=tcp::5022-:22

Level 2 VM:

sudo qemu-system-x86_64 \

-name level2 \

-m size=1G,slots=1,maxmem=2G \

-boot c \

-drive file=/dev/vdb,index=0,media=disk,format=raw,

cache=none,if=virtio \

-cpu qemu64,+x2apic,+vmx \

-machine accel=kvm \

-smp 8 \

-curses \

-serial stdio \

-device virtio-net-pci,netdev=netLevel2 \

-netdev user,id=netLevel2,hostfwd=tcp::5022-:22
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Again, as mentioned in the previous section, we used block devices for VM image

storage. For testing purposes this forced us to run QEMU with super-user privileges

so that we could access the host machine’s block device /dev/sda6.

To evaluate I/O intensive workloads, we chose a widely used, open source bench-

mark called Filebench [1]. Filebench is a file level application measurement frame-

work, written in C, which contains a set of pre-defined and configurable high-level

macros. We have chosen three types of macros that we believe are the most closely

associated with what I/O workloads a generalized guest user would perform: file

server workloads, web server workloads, and mail server workloads.

• The File Server macro: consists of a combination of createfile, writewholefile,

closefile, openfile, appendfilerand, readwholefile, deletefile, and statfile opera-

tions. Of all macros used, the File Server macro uniquely calls write operations.

• The Web Server macro: is uniquely dominated by read operations, with a

combination of openfile, readwholefile, closefile, and appendfilerand operations.

• The Mail Server macro: uniquely calls fsync operations; the macro consists

of a combination of deletefile, createfile, appendfilerand, fysnc, closefile, openfile,

and readwholefile operations.

Table 5.1: Filebench Macro Parameters

macro testdir filesize nfiles meandirwidth nthreads nfilereadinstances iosize meanappendsize

File Server /home 64k 50,000 20 50 1 1m 16k
Mail Server /home 2k 50,000 1,000,000 16 1 16k 8k
Web Server /home 16k 50,000 20 100 1 1m 16k
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These three macros were configured statically with the parameters found in Ta-

ble 5.1. A full code base of all custom .f files written for this testing can be found in

Appendix A.1, Appendix A.2, and Appendix A.3.

Figure 5.4: Filebench - I/O intensive workload latency analysis

The data for our Filebench tests, as shown in Figure 5.4 and Figure 5.5, were col-

lected using a Bash shell script, found in Appendix B.1, that executed each Filebench

macro five consecutive times in each execution environment and averaged the results.

The L0 data series represent a Filebench workload running on the test platform that

resembles our targeted cloud environment; L1 is the guest VM environment, and L2

is the nested VM environment. The x-axis in both figures displays the three L0:L2

execution environments, each against the three .f macros tested, for nine total data
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series. The y-axis in both figures displays the filebench results in log base 10 scale.

The data labels 1 in Figure 5.4 show the percentage increase in latency with respect

to the layer below it. The data labels in Figure 5.5 show the percentage decrease in

throughput with respect to the layer below it. Each data series displays its relative

standard deviation in a bar centered on the top of each column.

Figure 5.5: Filebench - I/O intensive workload throughput analysis

By evaluating the percent difference of the latency and throughput between L1

and L2 in Figure 5.4 and Figure 5.5 we can quantitatively express what a guest

user’s perspective is before and after the installation of a CloudSkulk rootkit for

IO intensive workloads. After our rootkit is installation, a targeted guest user will

1Figure 5.4 - Figure 5.8 display L1 data labels that are centered in each L1 data series bar. L2
data labels are at the inside base in each L2 data series bar.
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experience a 51.86% decrease in speed and 33.08% decrease in throughput for Mail

Server type workloads, ∼3.18x slower speeds and 99.67% decrease in throughput for

File Server type IO workloads, and ∼7.01x slower speeds and 78.21% decrease in

throughput for Web Server type IO workloads. Nested KVM results in literature

showed a ∼46% best case and ∼67% worst case throughput decrease for similar

Filebench IO intensive testing [26]. While our IO throughput decrease results coincide

with others, our results collectively are still poor. Most importantly, of all our test

data shared in this paper our poor IO latency results do not correlate with literature

results; whereas similar nested KVM literature data showed a best case of ∼10:30%

increase in IO latency [26], our results show that a CloudSkulk compromised guest

user of the cloud will almost certainly be aware of the heavy performance degradation

if they are actively performing IO intensive workloads. This drawback makes the

current version of our rootkit prone to cloud security detection systems.

To evaluate our second focus on CPU/Memory intensive workloads, we chose to

collect Linux Kernel decompression and compile times for the same three execution

environments as our previous benchmark: L0, L1, and L2. By nature, the kernel

compile process is CPU intensive and Memory intensive. Again, we wrote a Bash

shell script, found in Appendix B.2, sharing the exact same .config file created on

L0 for all tests, and decompressed, then compiled the Linux Kernel version 4.0 five

consecutive times and averaged the results. This characterization data can be seen in

Figure 5.6 and Figure 5.7. The x-axis in both figures displays three data series, one

for each L0:L2 execution environment. The y-axis in both figures displays the timing

results in log base 10 scale. The data labels in both figures show the percentage

increase in timing with respect to the layer below it. Each data series displays its

relative standard deviation in a bar centered on the top of each column.



60

Figure 5.6: Kernel Compile - CPU/Memory intensive workload analysis

As before, we can quantitatively express the performance degradation perceived by

a guest user for CPU/Memory intensive workloads before and after the installation

of a CloudSkulk rootkit by evaluating the percentage difference of Kernel Decom-

pression and compile time between L1 and L2 in Figure 5.6 and Figure 5.7. After

our rootkit is installed, a targeted guest user will experience a 25.7% decrease in

speed associated with the Kernel-compile type of CPU/Memory workloads. This

coincides with Intel performance evaluation results of KVM in 2014 [12] of ∼26.31%

decrease from L1 to L2 virtualization: L2 time = 14s, L1 time = 19s,∴ L2 impact =

100% ∗ (19s− 14s)/19s. This data was taken using the same number of vCPUS used

in our testing (“-smp 8”) for their Kernel Compilation testing. It is interesting to note

that that the relative standard deviation for L0 Kernel compile time was very high (a
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value of 92.388% not displayed in the figure). This was due to the first run being ∼3x

slower than its last 4 consecutive runs. This kernel compile data point was repeatable.

Figure 5.7: Kernel Decompression - CPU/Memory intensive workload analysis

For our third performance focus, we chose to use another well-known, widely used

open source benchmark, Netperf [19]. Netperf is a network performance benchmark,

written in C, which is used to measure networking performance based on bulk data

transfer and request/response performance using the TCP/UDP network protocols.

For our testing, we chose to measure the bulk data transfer performance, or uni-

directional stream performance of TCP. We wrote a Bash shell script, found in Ap-

pendix B.3, that executed the Netperf application five consecutive times and averaged

the results for the same L0:L2 execution environments. Our Netperf benchmark data
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can be seen in Figure 5.8. The data labels in this figure show the percentage decrease

in latency with respect to the layer below it. The x-axis in this figure displays three

data series, one for each L0:L2 execution environment. The y-axis in this figure

displays the throughput results in log base 10 scale. Each data series displays its

relative standard deviation in a bar centered on the top of each column.

Figure 5.8: Netperf - Network intensive workload throughput analysis

Again, the percentage difference of the throughput between L1 and L2 in Fig-

ure 5.8 quantitatively show the performance degradation perceived by a guest user for

network intensive workloads before and after the installation of a CloudSkulk rootkit.

As visually eluded to by the relative standard deviation bars, all three levels of the

execution environment performed nearly the same with overlapping data sets. The
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averages show a 8.95% increase in throughput for the TCP bulk data transfer type

of network workloads after our rootkit installation, with standard deviations (explicit

values not shown in figure) for L0:L2 being 1.11%, 10.32%, and 3.96%, respectively.

With standard deviations higher than the percentage differences in throughput, we

can conclude that this performance was nearly the same across all execution envi-

ronments. These results demonstrate that a CloudSkulk compromised guest user of

the cloud will be unable to detect a performance decrease while performing network

intensive workloads.

Figure 5.9: Live Migration - end-to-end timing analysis

For our last evaluation, we chose to characterize the live migration timing of a

guest user performing various types of workloads: idle, Kernel compile, and Filebench.
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An idle workload is represented by a guest user that is not executing any workload

- this can be thought of a user connected to the cloud, but away from their device

or inactive. For this testing, we chose two levels of live migrations to characterize:

L0-L0, and L0-L1. This live migration characterization data can be seen in Figure 5.9.

The L0-L0 data series in Figure 5.9 depict a typical invocation of live migration

in the cloud, except that there is no network traffic generated during the migration 2,

because both the source and destination VMs coexist on a single, commonly shared

environment. The L0-L1 data series in Figure 5.9 depict our unique nested VM-based

technique used to implement CloudSkulk. This type of migration involves a L1 VM

running on the host side to be live migrated into an L2 nested VM that is encapsulated

within our L1 rootkit VM (VM-based RITM). The common metric for live migration

is the total migration time (end-to-end time). Each data point in Figure 5.9 is

the average end-to-end time for 5 consecutive runs with their corresponding relative

standard deviation displayed in bars centered above each column.

One important note to make was that L1 and L2 VM configurations for live

migration testing was slightly different than the other characterization data discussed

above. For consistency, the following details the difference from previous parameters

to live migration parameters:

VM Live Migration Config. Differences:

from: -m size=1G,slots=1,maxmem=2G \

to: -m size=512M,slots=1,maxmem=1024M \

2This means in a real cloud environment, the live migration time could be considerably longer
than those appear in Figure 5.9, because of the large volume of network traffic, especially when disk
migration is involved.
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from: -drive file=/dev/<disk>,index=0,media=disk,

format=raw,cache=none,if=virtio \

to: -drive file=/tmp/guest-imgs/copyRAW60G.img,

media=disk,format=raw,cache=writeback,aio=threads,if=virtio \

from: -cpu qemu64,+x2apic,+vmx \

to: -cpu Nehalem \

from: -machine accel=kvm \

to: -enable-kvm \

new: -machine type=pc-i440fx-2.3 \

There are two sets of data labels in Figure 5.9. The bottom-most set of data

labels show the numerical values associated with each end-to-end time, and the

top-most set shows the percentage increase in end-to-end time from L0-L0 to L0-L1.

The bottom-most set of data labels are important and more directly relevant to our

evaluation process. These values allow us to determine our CloudSkulk installation

time based on what workload activities the user could be performing. Since a

CloudSkulk installation time is dominated almost entirely by the time based on the

nested live migration step, we will approximate the total installation time below

by referring to it as the integer ceiling of its nested live migration end-to-end time.

Therefore, the best case installation time of a CloudSkulk rootkit is∼26 seconds. This

occurs when the target guest workload is idle. The installation time of CloudSkulk

when a target guest user is performing I/O intensive workloads is ∼29 seconds; for
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CPU/Memory intensive workloads, the time is ∼820 seconds. The top-most set of

data in Figure 5.9 is less relevant, but still important to note. This data labels show

us how much extra time will be added to our live migration end-to-end time with

respect to the nominal L0-L0 type migrations.

A final important note to make is that the live migration downtime was recorded

for each data point. However, this data was not displayed for two main reasons:

across all execution environments, the standard deviation was high (∼50-60%), and

no single downtime was above 103ms, which would arguably be unnoticeable by a

guest user.

5.1.2 Micro Benchmarks

To more precisely measure the overheads, we performed a number of microbenchmark

tests. We chose lmbench version 3.0-a9 as our microbenchmark [31]. Our experimental

results are presented in Table 5.2, Table 5.3, Table 5.4, and Table 5.5.

Table 5.2: lmbench: Arithmetic operations - times in nanoseconds

Config integer bit integer add integer div integer mod float add float mul float div double add double mul double div

Level0 0.26 0.13 5.94 6.37 0.75 1.25 3.31 0.75 1.25 5.06
Level1 0.25 0.13 5.96 6.39 0.75 1.26 3.32 0.75 1.26 5.07
Level2 0.26 0.13 6.14 6.59 0.78 1.30 3.43 0.78 1.30 5.23

Table 5.3: lmbench: Processes - times in microseconds

Config
signal handler

installation
signal handler

overhead
protection

fault
pipe

latency
AF UNIX

sock stream latency
fork+exit fork+execve fork+/bin/sh -c

Level0 0.075 0.50 0.27 3.49 3.58 74.6 245.8 918.7
Level1 0.096 0.58 0.29 6.75 5.37 73.65 275.05 966.67
Level2 0.10 0.60 0.32 65.49 43.98 242.19 588.50 1826.00
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It can be seen from these four tables, virtualization (including nested virtualiza-

tion) has negligible effect on all arithmetic operations. Also, for file creation and

deletion operations, both Level 2 performance and Level 1 performance match the

baseline, i.e., the Level 0 performance. For context switches, Level 1 incurs a dra-

matic performance degradation, and Level 2 further incurs a even more performance

degradation. In addition, process fork generates big performance overhead in Level

2, likely because of the extra traps into the Level 0 hypervisor [48].

Table 5.4: lmbench: File system latency - files creations/deletions per second - times
in microseconds

aaaaaaaaa
Level

File Size
File Size 0K File Size 1K File Size 4K File Size 10K

File Creation File Deletion File Creation File Deletion File Creation File Deletion File Creation File Deletion

Level0 126,418 379,158 99,112 280,884 99,627 279,893 79,869 214,767
Level1 121,718 361,860 97,073 268,977 95,821 273,863 77,118 204,260
Level2 2,430 320,349 62,933 262,478 96,588 251,766 70,098 196,449

Table 5.5: lmbench: Context switch - times in microseconds

Config
2p
0K

2p
16K

2p
64K

4p
0K

4p
16K

4p
64K

8p
0K

8p
16K

8p
64K

16p
0K

16p
16K

16p
64K

Level0 1.43 1.71 1.91 1.67 1.84 1.90 1.84 1.94 2.06 1.88 2.03 2.34
Level1 3.09 3.10 3.52 1.78 3.43 2.84 2.73 3.24 1.96 3.72 5.35 4.21
Level2 19.02 28.21 28.39 10.28 34.70 53.94 5.99 32.42 24.49 6.42 39.53 4.41

5.2 Defending against CloudSkulk

Rootkits installed on a compromised system allow attackers the ability to hide them-

selves and access system resources in an unnoticed manner. Our rootkit, CloudSkulk,
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allows an attacker in a cloud environment to gain control of the virtualized machine

and services of a victim guest VM owner running in the cloud while remaining

undetected. Our unique type of rootkit is hard to detect because its installation

uses common tools and functions found in typical operating cloud environments, and

its system effect after installation is minimal. Nonetheless, a CloudSkulk rootkit does

leave signs of its presence that we will soon discuss. For cloud environments that do

not seek to monitor these signs, the impact of a CloudSkulk rootkit may be quite

high. However, as it is the goal of our research to advance cloud system securities

against such attacks, cloud environments that implement monitors to detect these

signs can mitigate the impact of nested VM based RITM rootkit attacks.

We can categorize various techniques that can be used to prevent and detect the

presence of a CloudSkulk rootkit by the following groups: (1.) Performance Detectors,

(2.) Restricting Commands, (3.) Memory Analysis Tools.

5.2.1 Performance Detectors

The installation of a nested VM based RITM rootkit intrinsically causes a perfor-

mance degradation on the victim guest VM owner running in the cloud. This is due

to guest running on top of an additional layer of virtualization after the attack, from

L1 to L2. This performance degradation can be slightly mitigated when the guest is

running para-virtualized devices, like the virtio drivers detailed in Section 5.1, but can

not be fully minimized. Therefore, a nested VM based RITM rootkit may be detected

by monitoring performance anomalies imposed on a guest VM after live migration.

Despite some of the high L2 IO performance impacts we presented in Section 5.1.1,

the performance anomalies caused by our rootkit should coincide with all other stan-

dard QEMU/KVM nested virtualization. Cloud security techniques attempting to
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detect our rootkit through the performance anomalies caused by nested virtualization

is however a weak strategy. This is two part: (1.) Each VM is highly dynamic, so

determining performance thresholds may be difficult and unreliable, (2.) Also, as

nested virtualization popularity continues to grow it is likely its performance impact

will continue to decrease.

5.2.2 Restricting Commands

Cloud security software may impose restrictions on host commands to prevent nested

VM based RITM attacks. By both monitoring and restricting live migration com-

mands, system tools that can be used to find targeted guest VM configurations, and

other system tools used during installation, a CloudSkulk rootkit may be blocked

entirely. This technique, although viable, is significantly weaker than the previously

discussed strategies because the set of commands and tools that an attacker can use

during rootkit installation is difficult to quantize 3.

For instance, Step 3 in the installation of a CloudSkulk rootkit 4, the attacker is

required to find the QEMU virtualization configurations of it’s target guest VM. The

number of ways an attacker can obtain this data is hard to approximate or define,

and therefore is a weak strategy towards preventing any such commands. Another

weakness to this strategy is that preventing commands like the QEMU Monitor set

significantly decreases the host’s functional ability to inspect, adjust, and control

various aspects of it’s guest virtual machines. Also, if cloud security software imposes

privilege restrictions on live migration commands, the level of control the attacker is

3Various system tools and other solutions for finding a target VM’s virtualized configurations, as
well as a complete set of live migration commands for QEMU are detailed in Section 4.2.

4The complete design and description of each step of a CloudSkulk rootkit installation is described
in Section 4.1.
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required to obtain is simply lower than the restriction - at lowest ring 0 privileges.

This may make the installation of a CloudSkulk rootkit more pragmatically difficult

for an attacker, but does not fully prevent the attack and is therefore also a weak

strategy.

5.2.3 Memory Analysis Tools

Of all techniques we have presented, memory analysis tools may provide the most

reliable and strongest way to detect the presence of a nested VM based RITM.

Regardless of the number of layers of virtualization within a targeted guest VM,

after installation of a CloudSkulk rootkit that number will increase by one. Unless

modifications (currently unknown) to the QEMU virtualization code base are im-

plemented within the L1 (rootkit) environment, a CloudSkulk rootkit currently can

not be created without imposing this memory anomaly on it’s targeted host cloud

platform.

The first design and implementation a memory forensic framework to analyze and

recognize hypervisors, nested or single, was developed by Graziano, M. and a team

of researchers at Eurecom, France in 2013 [16]. The team developed a hypervisor

memory forensics tool that analyzed hypervisor structures found in physical memory

dumps. Their tool successfully recognized several open source and commercial nested

hypervisors installed with various configurations. Memory forensics tools like the

one developed by Graziano, M. may be used by cloud security detection software

to detect nested VM based RITM attacks. Such detection software may be able

to use memory forensic tools to determine the layers of virtualization, specifically

the number of nested hypervisors, before and after any set of VM dependent live

migration commands are invoked on the host. The presence of a CloudSkulk rootkit
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can be detected if this number of virtualization layers increases. If a pre-copy based

VM live migration strategy is deployed by the cloud, as with QEMU/KVM, detecting

this hypervisor anomaly can be done by comparing the number of nested hypervisors

immediately before the Iterative Copy stage and immediate after Activation stage.

It is also important to note, although not investigated, that solutions for either the

attacker or defender many be implemented within the QEMU code base. Detecting

or preventing the detection of the number of layers of virtualization before and after

live migration may be appended within QEMU software to attempt to, again, either

detect or prevent this type of attack. Another possible QEMU software solution

could be to outright disallow the creation of additional layers of hypervisors, applied

immediately before, during, and immediately after live migration.



72

Chapter 6

CONCLUSIONS

Contemporary rootkits today share a common weakness, their presence is generally

detectable by software security defenders that run at a lower-level than the installed

rootkit. In this thesis, we have identified a solution to this weakness. To our

knowledge we are the first to reveal and demonstrate that nested virtualization can be

used by attackers for developing malicious rootkits that are hard to detect, regardless

of whether defenders are at a lower-level or at a higher-level than the installed rootkit.

With clear evidence of virtualized cloud computing services quickly accelerating –

market research forecasts an increase in cloud workloads by more than triple, 3.3-fold,

from 2014-2019 [33] – the security of those working in the cloud and of their data are

becoming increasingly relevant. In this thesis, we presented a unique type of nested

Virtual Machine (VM) based Rootkit-in-the-Middle (RITM), called CloudSkulk, that

can be used to help attackers seize and hide their control of a targeted guest VM owner

running in a cloud environment. We assume the role of an attacker; by taking an

offensive, malicious approach at targeting such cloud environments, it is the goal of

our research then to increase cloud security against such attacks by identifying and

providing possible solutions to this new type of invasive rootkit.

A CloudSkulk rootkit does not seek to access or control the cloud platform system

resources, instead it seeks to seize and maintain control of a single victim (a guest
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VM owner) by passively relaying all QEMU/KVM virutalization data between the

host cloud platform and the guest in a MITM fashion. Although our CloudSkulk

design, implementation, and demonstration is on the widely popular QEMU/KVM

virtualizaiton software, our new type of rootkit can be applied orthogonally to other

hypervisors supporting the two minimum implementation attributes: the virtualiza-

tion software must (1.) provide a utility for live migration, and (2.) enable nested

hypervisors.

Despite nested VM based RITMs providing more stealth for attackers on the

cloud than contemporary rootkits, our unique type of rootkit does leave signs of

its presence. For cloud environments that do not seek to monitor these signs, the

impact of a CloudSkulk rootkit may be quite high. However, we explored three

categories of possible techniques that can be used to prevent and detect the presence

of a CloudSkulk rootkit: (1.) performance detectors, (2.) restricting commands, and

(3.) memory analysis tools. Because CloudSkulk is a new type of attack and therefore

unlikely that these defense measures are currently implemented, the only noticeable

signs of our rootkit should be perspective differences in performance for the victim

guest user. This perspective difference is unavoidable by design of our rootkit and is

caused by the additional layer of virtualization imposed on the compromised guest.

We characterized this performance difference as to quantitatively express our

rootkit’s ability to remain unnoticed by cloud environments not actively monitoring

for other detection signs listed above. Our results showed that a guest VM owner

would be unlikely to notice our rootkit’s impact while performing network intensive

workloads, as their performance was nearly the same before and after being com-

promised. Our results for CPU/Memory intensive workloads show that a guest VM

owner will experience a 25.7% decrease in speed after an installation of our rootkit.
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These results also coincides with Intel performance evaluation results [12]. While our

IO throughput data also correlated with literature results [26], our results collectively

are poor. In fact, we showed that under our current implementation, a CloudSkulk

rootkit’s impact on performance would likely perceived by a compromised guest user

performing IO intensive workloads.

Despite these drawbacks, the best case installation time for our rootkit is ∼26

seconds. With fast installation times, relatively low implementation costs, and the

unique additional stealth provided for attackers, we believe that a nested VM based

RITM attack is a viable treat that is impactful for cloud environments who do not

seek to detect it’s unique presence.
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FILEBENCH MACROS

A.1 File Server macro: fileserver.f

set $myset=bigfileset

set $mylog=logfiles

set $dir=/home/jconnell/testing

set $filesize=64k

set $nfiles=50000

set $meandirwidth=20

set $nthreads=50

set $nprocesses=1

set $iosize=1m

set $meanappendsize=16k

define fileset name=$myset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=80

define process name=filereader,instances=$nprocesses

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop createfile name=createfile1,filesetname=$myset,fd=1

flowop writewholefile name=wrtfile1,srcfd=1,fd=1,iosize=$iosize

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile2,filesetname=$myset,fd=1

flowop appendfilerand name=appendfilerand1,iosize=$meanappendsize,fd=1

flowop readwholefile name=readfile1,fd=1,iosize=$iosize

flowop closefile name=closefile3,fd=1

flowop deletefile name=deletefile1,filesetname=$myset

flowop statfile name=statfile1,filesetname=$myset

}

}

echo "joeyconnelly File-server Version 3.0 personality loaded"

run 60
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A.2 Mail Server macro: varmail.f

set $myset=bigfileset

set $mylog=logfiles

set $dir=/home/jconnell/testing

set $filesize=2k

set $nfiles=50000

set $meandirwidth=1000000

set $nthreads=16

set $nprocesses=1

set $iosize=16k

set $meanappendsize=8k

define fileset name=$myset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=80

define process name=filereader,instances=$nprocesses

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop deletefile name=deletefile1,filesetname=$myset

flowop createfile name=createfile2,filesetname=$myset,fd=1

flowop appendfilerand name=appendfilerand2,iosize=$meanappendsize,fd=1

flowop fsync name=fsyncfile2,fd=1

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=$myset,fd=1

flowop readwholefile name=readfile3,fd=1,iosize=$iosize

flowop appendfilerand name=appendfilerand3,iosize=$meanappendsize,fd=1

flowop fsync name=fsyncfile3,fd=1

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=$myset,fd=1

flowop readwholefile name=readfile4,fd=1,iosize=$iosize

flowop closefile name=closefile4,fd=1

}

}

echo "joeyconnelly Varmail Version 3.0 personality loaded"

run 60
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A.3 Web Server macro: webserver.f

set $myset=bigfileset

set $mylog=logfiles

set $dir=/home/jconnell/testing

set $filesize=16k

set $nfiles=50000

set $meandirwidth=20

set $nthreads=100

set $nprocesses=1

set $iosize=1m

set $meanappendsize=16k

define fileset name=$myset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=100,readonly

define fileset name=$mylog,path=$dir,size=$filesize,entries=1,

dirwidth=$meandirwidth,prealloc

define process name=filereader,instances=$nprocesses

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop openfile name=openfile1,filesetname=$myset,fd=1

flowop readwholefile name=readfile1,fd=1,iosize=$iosize

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile2,filesetname=$myset,fd=1

flowop readwholefile name=readfile2,fd=1,iosize=$iosize

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=$myset,fd=1

flowop readwholefile name=readfile3,fd=1,iosize=$iosize

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=$myset,fd=1

flowop readwholefile name=readfile4,fd=1,iosize=$iosize

flowop closefile name=closefile4,fd=1

flowop openfile name=openfile5,filesetname=$myset,fd=1

flowop readwholefile name=readfile5,fd=1,iosize=$iosize

flowop closefile name=closefile5,fd=1

flowop openfile name=openfile6,filesetname=$myset,fd=1

flowop readwholefile name=readfile6,fd=1,iosize=$iosize

flowop closefile name=closefile6,fd=1

flowop openfile name=openfile7,filesetname=$myset,fd=1

flowop readwholefile name=readfile7,fd=1,iosize=$iosize
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flowop closefile name=closefile7,fd=1

flowop openfile name=openfile8,filesetname=$myset,fd=1

flowop readwholefile name=readfile8,fd=1,iosize=$iosize

flowop closefile name=closefile8,fd=1

flowop openfile name=openfile9,filesetname=$myset,fd=1

flowop readwholefile name=readfile9,fd=1,iosize=$iosize

flowop closefile name=closefile9,fd=1

flowop openfile name=openfile10,filesetname=$myset,fd=1

flowop readwholefile name=readfile10,fd=1,iosize=$iosize

flowop closefile name=closefile10,fd=1

flowop appendfilerand name=appendlog,filesetname=logfiles,

iosize=$meanappendsize,fd=2

}

}

echo "joeyconnelly Web-server Version 3.1 personality loaded"

run 60
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Appendix B
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BASH SHELL SCRIPTS

B.1 IO Testing - Filebench

#!/bin/bash

#

# Adjustable script parameters.

#

TAG=_L0

FILE_NAME=FILEBENCH_raw60G_1to2G_virtio-disk_cache-none_cpu8_virtio-net_cfq

NUM_RUNS=5

SHMOO_FILE_SIZE=false

MIN=1

MAX=128

BASE=2

EXE="/usr/local/bin/filebench -f"

declare -a TEST_FILES=(

"cloudskulk-fileserver.f"

"cloudskulk-webserver.f"

"cloudskulk-varmail.f"

)

TEST_DIR=filebench-tempfiles

COPY=temp

LOG=_errFile.log

#

# Non-adjustable parameters.

#

PATH_TXT=’set $dir=’

SIZE_TXT=’set $filesize=’

INPUT_TXT="bigfileset populated:"

OUTPUT_TXT="IO Summary:"

# IO testing file system on HOME path.

declare -a BENCH_FILES=(

"$HOME/$TEST_DIR/bigfileset"

"$HOME/$TEST_DIR/logfiles"

)

if [ $SHMOO_FILE_SIZE == false ];then
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MIN=1

MAX=2

fi

quickPrint(){

echo -e "$1"

echo -e "$1" >> $2

}

removeFiles(){

# Not removing these potentially large files from file system

# was found to cause performance degradation in subsequent tests.

rm -rf ${BENCH_FILES[0]} ${BENCH_FILES[1]}

}

#

# Create initial output data files/directories.

#

rm -rf $HOME/$TEST_DIR

mkdir $HOME/$TEST_DIR

tagTime=$(date +"%m-%d")

rawFile=$FILE_NAME$tagTime$TAG.raw

csvFile=$FILE_NAME$tagTime$TAG.csv

errFile=$tagTime$LOG

startTime=$(date +"%m-%d-%Y_%H-%M-%S")

title="Run[#],TestType[test.f],Files[#],TotalSize[MB],TotalOps[#],

Throughput[ops/s],Latency[ms/op]"

rm -f $errFile

quickPrint $startTime $csvFile

quickPrint $title $csvFile

#

# Loop on each filebench macro.

#

for currTest in "${TEST_FILES[@]}"

do

#

# Change home directory inside .f file.

#

newPathText="$PATH_TXT$HOME/$TEST_DIR"

sed --in-place "/$PATH_TXT/c$newPathText" $currTest

#

# Iterate each filebench test increasing file sizes by given base.
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#

for (( newSize=$MIN; newSize<=$MAX; newSize*=$BASE ))

do

#

# Change file size inside .f file.

#

if [ $SHMOO_FILE_SIZE == true ];then

newSizeText="$SIZE_TXT$newSize"

newSizeText+="k"

sed --in-place "/$SIZE_TXT/c$newSizeText" $currTest

else

let newSize=$MAX+1

fi

#

# Loop single macro, same parameters to collect average.

#

for (( testID=0; testID<$NUM_RUNS; testID++ ))

do

#

# Execute filebench benchmark.

#

removeFiles

currTime=$(date +"%H-%M-%S")

echo -e "testing convience, time before test: $currTime"

$EXE $currTest 1> $COPY 2>> $errFile

currTime=$(date +"%H-%M-%S")

echo -e "testing convience, time after test: $currTime"

removeFiles

### for memory info while testing issue: df -h

#

# Parse output result data for key results.

#

numFiles=$(sed "/$INPUT_TXT/!d" $COPY | awk -F ’ ’ ’{print $4}’)

totalSize=$(sed "/$INPUT_TXT/!d" $COPY | awk -F ’ ’ ’{print $18}’)

totalOps=$(sed "/$OUTPUT_TXT/!d" $COPY | awk -F ’ ’ ’{print $4}’)

throughPut=$(sed "/$OUTPUT_TXT/!d" $COPY | awk -F ’ ’ ’{print $6}’)

latency=$(sed "/$OUTPUT_TXT/!d" $COPY | awk -F ’ ’ ’{print $11}’ |

awk -F "ms/op" ’{print $1}’)
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#

# Output results to .raw + .csv + console.

#

line="$testID,$currTest,$numFiles,$totalSize,$totalOps,

$throughPut,$latency"

quickPrint $line $csvFile

cat $COPY >> $rawFile

done

done

done

#

# Clean unneeded files and save total script execution time for user convenience.

#

rm -f $COPY

endTime=$(date +"%m-%d-%Y_%H-%M-%S")

quickPrint $endTime $csvFile

B.2 CPU/Memory Testing - Kernel Compile

#!/bin/bash

#

# Adjustable script parameters.

#

TAG=_L0

FILE_NAME=KERNEL_raw60G_1to2G_virtio-disk_cache-none_cpu8_virtio-net_cfq

NUM_RUNS=3

FIRST_RUN=true

LINK="https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.0.tar.xz"

SUFFIX=".tar.xz"

TEST_DIR=$HOME

RESULTS_DIR=$(pwd)

CODE_BASE=$(echo $LINK | awk -F "/" ’{print $NF}’ | sed -e "s/$SUFFIX//")

DOWNLOAD=$CODE_BASE$SUFFIX

LOG=_errFile.log

quickPrint(){

echo -e "$1"

echo -e "$1" >> $2

}



90

#

# Create initial output data files.

#

tagTime=$(date +"%m-%d")

rawFile="$RESULTS_DIR/$FILE_NAME$tagTime$TAG.data"

errFile="$RESULTS_DIR/$tagTime$LOG"

startTime=$(date +"%m-%d-%Y_%H-%M-%S")

title="Run[#],startDecomp,endDecomp,totalDecomp,startComp,endComp,totalComp"

rm -f $errFile

quickPrint $startTime $rawFile

quickPrint $title $rawFile

#

# Download linux kernel in testing directory.

#

if [ ! -d $TEST_DIR ];then

mkdir $TEST_DIR

fi

cd $TEST_DIR

if [ ! -f $DOWNLOAD ];then

wget $LINK

fi

#

# Loop using same config file to collect average.

#

for (( i=0; i<$NUM_RUNS; i++ ))

do

#

# Exit early if initial data is bogus (for testing convenience).

#

if [ $i = 1 ];then

echo "Do you want to continue (y|n): "

read input_variable

if [ "$input_variable" == "n" ];then

rm -f $DOWNLOAD

rm -rf $CODE_BASE

exit 0

fi

fi

#
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# Make sure each run starts w/o decompressed or compiled kernel.

#

rm -rf $CODE_BASE

#

# Execute kernel decompression.

#

startDecompress=$(date +%s.%N)

tar -xvf $DOWNLOAD 2> $errFile

endDecompress=$(date +%s.%N)

totalDecompress=$(python -c "print(${endDecompress} - ${startDecompress})")

dconsole="\n\n\nDecompressRun[$i],$startDecompress,$endDecompress,

$totalDecompress\n\n\n"

quickPrint $dconsole /dev/null

#

# Create/use common config file for all tests.

#

cd $CODE_BASE

if [ $FIRST_RUN == true ] && [ $i -eq 0 ];then

make menuconfig

cp .config $RESULTS_DIR

else

cp -f $RESULTS_DIR/.config .

fi

#

# Execute kernel compile.

#

make clean

numCPUs="-j$(nproc)"

startCompile=$(date +%s.%N)

make $numCPUs 2> $errFile

endCompile=$(date +%s.%N)

totalCompile=$(python -c "print(${endCompile} - ${startCompile})")

cconsole="\n\n\nCompileRun[$i],$startCompile,$endCompile,$totalCompile\n\n\n"

quickPrint $cconsole /dev/null

#

# Print both decompression and compile results to file.

#

rtitle="Run[$i],$startDecompress,$endDecompress,$totalDecompress,

$startCompile,$endCompile,$totalCompile"
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quickPrint $rtitle $rawFile

cd $TEST_DIR

done

#

# Clean unneeded files and save total script execution time for user convenience.

#

rm -f $DOWNLOAD

rm -rf $CODE_BASE

endTime=$(date +"%m-%d-%Y_%H-%M-%S")

quickPrint $endTime $rawFile

B.3 Network Testing - Netperf

#!/bin/bash

#

# Adjustable script parameters.

#

TAG=_L0

FILE_NAME=NETPERF_raw60G_1to2G_virtio-disk_cache-none_cpu8_virtio-net_cfq

NUM_RUNS=1

LINK="ftp://ftp.netperf.org/netperf/netperf-2.7.0.tar.gz"

SUFFIX=".tar.gz"

TEST_DIR=$HOME

RESULTS_DIR=$(pwd)

CODE_BASE=$(echo $LINK | awk -F "/" ’{print $NF}’ | sed -e "s/$SUFFIX//")

DOWNLOAD=$CODE_BASE$SUFFIX

COPY=temp

LOG=_errFile.log

#

# Non-adjustable parameters.

#

OPTS="-l 60"

TEST_ADDR="-H 127.0.0.1"

quickPrint(){

echo -e "$1"

echo -e "$1" >> $2

}
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#

# Create initial output data files.

#

tagTime=$(date +"%m-%d")

rawFile="$RESULTS_DIR/$FILE_NAME$tagTime$TAG.data"

errFile="$RESULTS_DIR/$tagTime$LOG"

startTime=$(date +"%m-%d-%Y_%H-%M-%S")

title="Run[#],RecvSockSize[B],SendSockSize[B],SendMsgSize[B],Throughput[MB/sec]"

rm -f $errFile

quickPrint $startTime $rawFile

quickPrint $title $rawFile

#

# Download netperf source code in testing directory.

#

if [ ! -d $TEST_DIR ];then

mkdir $TEST_DIR

fi

cd $TEST_DIR

if [ ! -f $DOWNLOAD ];then

wget $LINK

if [ $? -ne 0 ];then

quickPrint "Error: Download issues..." $errFile

if [ ! -e "$RESULTS_DIR/$DOWNLOAD" ];then

quickPrint "Error: Backup download does not exist..." $errFile

exit -1

fi

cp -f $RESULTS_DIR/$DOWNLOAD $TEST_DIR

fi

#

# Unzip, configure, and compile source code.

#

tar -xvzf $DOWNLOAD

cd $CODE_BASE

./configure

make

sudo make install

cd $RESULTS_DIR

fi

#
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# Loop with same parameters to collect average.

#

netserver 2>/dev/null

for (( i=0; i<$NUM_RUNS; i++ ))

do

#

# Execute filebench benchmark.

#

netperf $TEST_ADDR $OPTS 1>$COPY 2>$errFile

#

# Parse output result data for key results.

#

recvSock=$(cat $COPY | tail -n 1 | awk ’{print $1}’)

sendSock=$(cat $COPY | tail -n 1 | awk ’{print $2}’)

sendMsg=$(cat $COPY | tail -n 1 | awk ’{print $3}’)

throughput=$(cat $COPY | tail -n 1 | awk ’{print $5}’)

#

# Output results to .data + console.

#

results="$i,$recvSock,$sendSock,$sendMsg,$throughput"

quickPrint $results $rawFile

done

#

# Remove unneccesary files.

#

contents=$(du $errFile | awk ’{print $1}’)

if [ $contents -eq 0 ];then

quickPrint "\n\n\nNo errors occured during testing.\n\n\n" /dev/null

rm -f $errFile

fi

rm -f $COPY




