806 research outputs found

    Lifenet: a flexible ad hoc networking solution for transient environments

    Get PDF
    In the wake of major disasters, the failure of existing communications infrastructure and the subsequent lack of an effective communication solution results in increased risks, inefficiencies, damage and casualties. Currently available options such as satellite communication are expensive and have limited functionality. A robust communication solution should be affordable, easy to deploy, require little infrastructure, consume little power and facilitate Internet access. Researchers have long proposed the use of ad hoc wireless networks for such scenarios. However such networks have so far failed to create any impact, primarily because they are unable to handle network transience and have usability constraints such as static topologies and dependence on specific platforms. LifeNet is a WiFi-based ad hoc data communication solution designed for use in highly transient environments. After presenting the motivation, design principles and key insights from prior literature, the dissertation introduces a new routing metric called Reachability and a new routing protocol based on it, called Flexible Routing. Roughly speaking, reachability measures the end-to-end multi-path probability that a packet transmitted by a source reaches its final destination. Using experimental results, it is shown that even with high transience, the reachability metric - (1) accurately captures the effects of transience (2) provides a compact and eventually consistent global network view at individual nodes, (3) is easy to calculate and maintain and (4) captures availability. Flexible Routing trades throughput for availability and fault-tolerance and ensures successful packet delivery under varying degrees of transience. With the intent of deploying LifeNet on field we have been continuously interacting with field partners, one of which is Tata Institute of Social Sciences India. We have refined LifeNet iteratively refined base on their feedback. I conclude the thesis with lessons learned from our field trips so far and deployment plans for the near future.MSCommittee Chair: Santosh Vempala; Committee Member: Ashok Jhunjhunwala; Committee Member: Michael Best; Committee Member: Nick Feamste

    Energy-efficient broadcast in mobile networks subject to channel randomness

    Full text link
    © 2002-2012 IEEE. Wireless communication in a network of mobile devices is a challenging and resource-demanding task, due to the highly dynamic network topology and the wireless channel randomness. This paper investigates information broadcast schemes in 2-D mobile ad hoc networks where nodes are initially randomly distributed and then move following a random direction mobility model. Based on an in-depth analysis of the popular susceptible-infectious-recovered epidemic broadcast scheme, this paper proposes a novel energy and bandwidth-efficient broadcast scheme, named the energy-efficient broadcast scheme, which is able to adapt to fast-changing network topology and channel randomness. Analytical results are provided to characterize the performance of the proposed scheme, including the fraction of nodes that can receive the information and the delay of the information dissemination process. The accuracy of analytical results is verified using simulations driven by both the random direction mobility model and a real-world trace

    Design and performance study of algorithms for consensus in sparse, mobile ad-hoc networks

    Get PDF
    PhD ThesisMobile Ad-hoc Networks (MANETs) are self-organizing wireless networks that consist of mobile wireless devices (nodes). These networks operate without the aid of any form of supporting infrastructure, and thus need the participating nodes to co-operate by forwarding each other’s messages. MANETs can be deployed when urgent temporary communications are required or when installing network infrastructure is considered too costly or too slow, for example in environments such as battlefields, crisis management or space exploration. Consensus is central to several applications including collaborative ones which a MANET can facilitate for mobile users. This thesis solves the consensus problem in a sparse MANET in which a node can at times have no other node in its wireless range and useful end-to-end connectivity between nodes can just be a temporary feature that emerges at arbitrary intervals of time for any given node pair. Efficient one-to-many dissemination, essential for consensus, now becomes a challenge: enough number of destinations cannot deliver a multicast unless nodes retain the multicast message for exercising opportunistic forwarding. Seeking to keep storage and bandwidth costs low, we propose two protocols. An eventually relinquishing (}RC) protocol that does not store messages for long is used for attempting at consensus, and an eventually quiescent (}QC) one that stops forwarding messages after a while is used for concluding consensus. Use of }RC protocol poses additional challenges for consensus, when the fraction, f n, of nodes that can crash is: 1 4 f n < 1 2 . Consensus latency and packet overhead are measured through simulation indicating that they are not too high to be feasible in MANETs. They both decrease considerably even for a modest increase in network density.Damascus University

    Wireless Sensor Networks for Building Robotic Paths - A Survey of Problems and Restrictions

    Get PDF
    The conjugation of small nodes with sensing, communication and processing capabilities allows for the creation of wireless sensor networks (WSNs). These networks can be deployed to measure a very wide range of environmental phenomena and send data from remote locations back to users. They offer new and exciting possibilities for applications and research. This paper presents the background of WSNs by firstly exploring the different fields applications, with examples for each of these fields, then the challenges faced by these networks in areas such as energy-efficiency, node localization, node deployment, limited storage and routing. It aims at explaining each issue and giving solutions that have been proposed in the research literature. Finally, the paper proposes a practical scenario of deploying a WSN by autonomous robot path construction. The requirements for such a scenario and the open issues that can be tackled by it are exposed, namely the issues of associated with measuring RSSI, the degree of autonomy of the robot and connectivity restoration.The authors would like to acknowledge the company Inspiring Sci, Lda for the interest and valuable contribution to the successful development of this work.info:eu-repo/semantics/publishedVersio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Aerial Network Assistance Systems for Post-Disaster Scenarios : Topology Monitoring and Communication Support in Infrastructure-Independent Networks

    Get PDF
    Communication anytime and anywhere is necessary for our modern society to function. However, the critical network infrastructure quickly fails in the face of a disaster and leaves the affected population without means of communication. This lack can be overcome by smartphone-based emergency communication systems, based on infrastructure-independent networks like Delay-Tolerant Networks (DTNs). DTNs, however, suffer from short device-to-device link distances and, thus, require multi-hop routing or data ferries between disjunct parts of the network. In disaster scenarios, this fragmentation is particularly severe because of the highly clustered human mobility behavior. Nevertheless, aerial communication support systems can connect local network clusters by utilizing Unmanned Aerial Vehicles (UAVs) as data ferries. To facilitate situation-aware and adaptive communication support, knowledge of the network topology, the identification of missing communication links, and the constant reassessment of dynamic disasters are required. These requirements are usually neglected, despite existing approaches to aerial monitoring systems capable of detecting devices and networks. In this dissertation, we, therefore, facilitate the coexistence of aerial topology monitoring and communications support mechanisms in an autonomous Aerial Network Assistance System for infrastructure-independent networks as our first contribution. To enable system adaptations to unknown and dynamic disaster situations, our second contribution addresses the collection, processing, and utilization of topology information. For one thing, we introduce cooperative monitoring approaches to include the DTN in the monitoring process. Furthermore, we apply novel approaches for data aggregation and network cluster estimation to facilitate the continuous assessment of topology information and an appropriate system adaptation. Based on this, we introduce an adaptive topology-aware routing approach to reroute UAVs and increase the coverage of disconnected nodes outside clusters. We generalize our contributions by integrating them into a simulation framework, creating an evaluation platform for autonomous aerial systems as our third contribution. We further increase the expressiveness of our aerial system evaluation, by adding movement models for multicopter aircraft combined with power consumption models based on real-world measurements. Additionally, we improve the disaster simulation by generalizing civilian disaster mobility based on a real-world field test. With a prototypical system implementation, we extensively evaluate our contributions and show the significant benefits of cooperative monitoring and topology-aware routing, respectively. We highlight the importance of continuous and integrated topology monitoring for aerial communications support and demonstrate its necessity for an adaptive and long-term disaster deployment. In conclusion, the contributions of this dissertation enable the usage of autonomous Aerial Network Assistance Systems and their adaptability in dynamic disaster scenarios

    Edge cloud architectures : a survey

    Get PDF
    Nowadays the number of connected devices is growing sharply. Mobile phones and other IoT devices are inherent parts of everyday life and used everywhere. The amount of data generated by IoT devices and mobile phones is enormous, which causes network congestions. In turn, the usage of centralized cloud architecture increases delay and cause jitter. To address those issues the research community discussed the new trend of decentralization – edge computing. There are different edge compute architectures suggested by various researchers. Some are more popular and supported by global companies. Most of those architectures have similarities. In this research, we reviewed seven edge compute architectures. This thesis is a comparative analysis carried out by using key attributes and presentation of the Venn diagram to select the right edge compute architecture

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces
    corecore