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1 Introduction

Trends in computing architectures are changing all the time. The huge mainframes were
replaced by personal computers. Limited performance power of PCs caused the develop-
ment of the opposite concept – cloud architecture. Companies such as Google, Amazon,
Rackspace, etc. support cloud servers, which are actually huge centralized data centers
facilities. Recent trend in scientific community is decentralization from clouds closer to
the source of the data – to edges, without transferring the whole data to the remote cloud
server. Multiple drivers push edge compute research. We can highlight key items that
accelerate the development of edge technology:

• growing number of IoT devices

• applications require low latency and jitter for smoother user experience

• necessity to make quick decisions without transmission delays (bandwidth issues)

• limited performance power of the IoT devices

• possible battery savings when uploading to the edge compared to the cloud

• privacy issues while sharing the information with centralized cloud servers

• development of 5g network.

Growing number of IoT devices. People nowadays are more and more using IoT devices,
such as mobile phones, smartwatches, medical sensors, multiple home sensors, kitchen
appliances, etc. With the development of 5G networks, the amount of data generated by
those devices and stored in the cloud is enormous. According to Cisco research [CIS18]
by 2023, the number of IoT devices connected to the Internet will reach 14.7 billion. The
figure below shows the predicted growth of IoT devices from 6.1 billion in 2018 to 14.7
in 2023. Moreover, data generated by all devices connected will increase significantly.
Authors in [SD16] show an exponential increase in data in the latest years.

Latency, jitter, and bandwidth issues. First, the increased number of devices and data gen-
erated can cause delays and jitter in data transmission from end-users to cloud facilities.
The delay could be critical for some applications such as augmented reality applications,
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Figure 1.1: Global IoT growth [CIS18])

autonomous vehicles, and real-time game streaming. Edge compute concept brings com-
putation closer to end-users, which allows saving the transmission time and saving the
network traffic. Placing edge servers closer to the users allows solving delays in reply and
getting smoother experience for the users. In the article [Tal+17a] authors presented two
scenarios when edge technologies helped users to improve the quality of services received
from IoT devices. The results of the implementation showed an improvement in quality
and reply. Secondly, such a huge amount of devices connected to the internet will generate
an enormous amount of data, which can cause network congestions.

Limited performance power of IoT and other mobile devices. The performance power of
IoT devices is limited, so to process the data the device needs to upload it to remote
facilities. Even though the performance power of edge servers by definition is lower than
the performance power of cloud servers, the edge solution can still improve the quality of
services provided to users.

Saving battery. Authors in [SD16] showed the device battery savings while using edge cloud
compared to the usage of the classic cloud paradigm. Moreover, authors in [Shi+15] re-
viewed the battery life and computation time for three augmented applications: SharpLens,
AReader, and Ubii. The computation time was at least 50 percent faster by using offload-
ing to the cloudlet. The battery capacity was twice better when using offloading for Google
Glass.

Privacy. Usage of the centralized cloud means sending and sharing all the data collected
on the mobile device. The data may include videos from cameras, geolocation, and other
private information. Users of mobile applications may prefer to process data closer on the
edge servers rather than uploading all personal information to a centralized cloud. Users
may prefer data processing locally due to privacy restrictions and laws.
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5g network. A high-speed 5g network will push the development of edge compute. The
speed over the 5g network will be faster, so it would justify sending data to nearby edge
servers rather than to remote cloud.

There are different edge-cloud paradigms or architectures currently presented. Examples
of edge compute architectures include but not limited to fog computing, mobile edge
computing, mobile cloud computing, superfluid cloud, edge-centric computing, etc. As
a basis of this work, we took the paper published by R. Rodrigo et al. [RLM18]. The
publication presents a very good overview of the different cloud architectures with the
explanation of key edge cloud architectural elements. In this survey, we present an overview
of edge cloud architectures, compare them, and highlight similarities and differences.

This work is organized in the following order: next chapter 2 depicts several scenarios
where edge compute can solve latency and jitter issues. Chapter 3 presents an edge
compute paradigm. We will introduce different architecture examples of edge compute.
In chapter 4 we will specify similarities and differences of different edge architectures.
And finally, chapter 5 is a conclusion where we summarise obtained results and overview
of possible future research in the field.



2 Edge Cloud Scenarios

In this part, we will present a few scenarios where edge compute can help to solve the
issues with latency, jitter, and transition delays.

Augmented reality (AR) applications give users the possibility to observe physical
reality with some augmented object placed in it. The usage of aforesaid technologies can
vary significantly. Imagine a furniture store. A user of said furniture AR application can
use the mobile phone and put a new piece of furniture right into the room. A customer of
the furniture store then can evaluate whether the selected piece of furniture fits the interior.
Another example of AR is recently launched by Google 3D animals [Goo]. People with
modern mobile devices can search for animals and put them into the room (see picture
2.1). Currently, people use 3D animals just for fun, however, this technology in the future
can allow users to study different things, such as animal behavior or human body anatomy.
Generally, AR technology allows interacting with augmented objects by chasing different
goals. As the device needs to analyze information from the camera, such as the location
of objects in the room the usage of edge compute is important to process data quickly and
closer to users.

Figure 2.1: 3D Google
Lion standing in a room

Another widely discussed edge solution is autonomous vehi-
cles. The autonomous vehicle concept is extensively studied by
researchers and companies all over the world [Bim15]. To recog-
nize objects and make a fast decision the vehicle computer needs
to process data provided by numerous sensors quickly. The au-
dio and video streams need to be processed and handled closer to
the vehicle. Due to bandwidth constraints and sensitivity to de-
lay, the audio and video streams cannot be fully uploaded to the
cloud and processed in the cloud. The concept of automated driv-
ing is depicted in the picture 2.2 below. Multiple vehicles send the
data about the traffic, obstacles, traffic jams, pedestrians, etc. to
the edge server. The edge server analysis incoming information
and send back the information to improve path planning. The
information can also be used to control traffic lights.

Recently cloud gaming or gaming-as-a-service become ex-
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Figure 2.2: edge compute for automated vehicles [Mao+17]

tremely popular. The game is running on a server. The server streams the video and
audio to mobile devices. Users control the gameplay. The user interaction is sent back
to the server, which synchronizes the game between multiple players. Such technology
removes mobile operating system (OS) constraints and allows users to play single-player
games together with friends. Naturally, cloud gaming requires a very good internet con-
nection that is why edge compute can be the best solution to solve issues with latency,
bandwidth, and jitter. The authors et al. [Cho+12] stated that mobile players start to
notice the delay when the overall latency exceeds 100 ms.

T = tclient +
tnetwork︷ ︸︸ ︷

taccess + tisp + ttransit + tdatacenter +tserver (2.1)

See the formula 2.1 for better understanding the statement above. The definition of tclient

is a time spent by the client device to send interaction, get and run the video. On the right
side of the formula, tserver is the time spent by the server to handle the request coming
from the player, create the video stream, and send the outgoing stream back to the client.
For simplicity tclient + tserver is estimated to be 20 ms. In such a situation the rest of the
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formula depicted as tnetwork should be less than 80 ms to allow users to play cloud games
without interruption. Thus, the network delay should be less than 80 ms. The measures
taken in the research showed that implementation using Amazon Cloud (EC2) gives the
delay over 80 ms by more than one-quarter of the research population. The servers placed
on the network edge can improve the situation. The same article displayed user coverage
increased for more than 28 percent by using servers placed on the network edges.

Another production use-case scenario is an automated loading machine in a warehouse.
This example is similar to the autonomous vehicle above. Additionally, the machine can
update stock counts according to goods received, or goods consumed. Also, such a machine
can help to save labor costs for making inventorization.

In the energy sector, we presume edge compute can be useful in wind plants. Already
multiple sensors send information about the wind, monitor the rotation of the blade, the air
pressure, and other indicators. According to the article [PJ09] the typical wind turbine has
rotor speed sensors, anemometers, wind vane, power measurement device, strain gauges
on the tower and blades, accelerometers, position encoders, and torque transducers. The
amount of information is huge and decisions should be made quickly. Moreover, such
information might be sensitive from a security point of view, that is why edge compute
could be an excellent solution for the developers of wind plants. Especially, when we
consider offshore wind platforms. Due to the remote location of the offshore facility, the
delay transmitting the data to the centralized cloud could be numerous, which make edge
technology more suitable for offshore wind farm control system.

Edge compute is also important when we talk about places of natural disasters or places
with bad connections to the cloud such as ships at the sea or offshore platforms.
There is a stream of data and metrics that need to be collected and stored. In such cases
putting the edge-server can help to collect and process metrics, aggregate them, and send
them to the cloud for further analysis after the connection is restored and available again.



3 Related Work

Lately, we see a sharp increase in the number of IoT devices connected to the web. IoT
devices connected generates an enormous amount of data, which in turn raise the network
traffic. Unfortunately, classic cloud computing or client-server architecture cannot handle
the workload. Moreover, some applications require fast response, should be free of delays
and jitter. Besides, there is a necessity to pre-process the data closer to the end-user.
Thus edge compute is a shift from classic cloud computing toward end-users. Scientific
community understand different things under the definition of edge compute: cloudlets
[Sat+09], edge-centric computing [Gar+15], mobile edge computing [Ins14], [Mao+17], fog
computing [Bon+12], edge-fog clouds [MK16] etc. In this chapter, we will look closer to
the definitions of different edge compute architectures.

3.1 Cloudlets

M. Satyanarayanan and his colleagues defined the cloudlet as a trusted, resource-rich
computer or cluster of computers that are well-connected to the Internet and available
for use by nearby mobile devices [Sat+09]. The cloudlet network should be available
and connected with the high-speed wireless network within one-hop. The proximity of the
cloudlet network is particularly important. Physically the cloudlet is a box that represents
a cluster of internally connected multicore computers - “data center in a box”. To be widely
used such cloudlet boxes should be easily managed, with little or no effort from the host.
That is why the cooperation between cloudlet developers and service providers is especially
critical. The cloudlet can be considered as a tier between mobile devices and real cloud,
such as Amazon cloud. The concept of cloudlet is vital when access to the cloud is slow.
On the other hand, if the cloudlet is not available the mobile device should have the
possibility to roll back and use a traditional cloud connection until the nearest cloudlet
will not be discovered and used.

Figure 3.1 below displays the definition of cloudlets as a network of self-managed devices
or “data center in a box” which can be placed at a network edges and in a physical places
such as coffee shops [Sat+09].

M. Satyanarayanan used the Virtual Machine (VM) technology to implement the cloudlet
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Figure 3.1: What is cloudlet? [Sat+09]

concept. The VM in the initial state was deployed in the cloudlet box. When mobile users
need resources they can request the cloudlet (VM) to process the data. When resources of
VM are no longer required the VM is returned to the initial state. The proof of concept
was implemented and the working code was published by M. Satyanarayanan later [Sat].

The initial ideas of M. Satyanarayanan were developed further. The key drawback of the
“data center in a box” approach is the dependency on the service providers, who imple-
ment the infrastructure. However, T. Verbelen et al. [Ver+12] expanded the definition of
cloudlet to all devices in the LAN network. At the same time, the implementation of the
cloudlet is not dependant on the manufacturer of the box, but all the devices can be con-
nected forming peer-to-peer communication models to the cloudlet and potentially share
available resources to solve high computational tasks. The picture 3.2 below illustrates
the view.

Fesehaye et al. [Fes+12] showed that the delay of data transfer is longer in the cloudlet
network with the number of hops more than two. Thereby, the key requirement of physical
proximity and availability is still valid and cloudlets usually are one-hop networks. In
such peer-to-peer cloudlets, the device which requests the network resources is called the
initiator. Other devices that share computational power are called cloudlet nodes. Figure
3.3 illustrates one hop (a) and multi-hop (b) mobile cloudlets.
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Figure 3.2: Extended definition of the cloudlet network [Ver+12]

Figure 3.3: One hop and multi-hop mobile cloudlet [LW14]

Due to nodes mobility, devices can join and leave the network. Thus the lifetime and
reachable time of nodes, as well as the size of the cloudlet, is essential and defined in
the article [LW14]. Li Y. et al. [LW13] reviewed the impact of the user mobility and
calculated access probability between the user device and the cloudlet. The picture 3.4
below shows that mobile user Bob is using the nearest cloudlet. During time [t1, t2] Bob
is near Cloudlet 1. Bob is moving in the area and at time [t3, t4] he is near Cloudlet
2, thus Bob is using Cloudlet’s 2 resources to offload mobile tasks. At the time [t5, t6]
Bob moved from Cloudlet 2 and is using Cloudlet 3 instead. Authors defined the cloudlet
access probability as the probability that the mobile user can find and connect to at least
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one cloudlet in the network at any given time [LW13]. Moreover, Li Y. proved that access
probability is equal to µTC/(µTI + µTC). Where µTC is the chance of connection time
TC when the device is connected to the cloudlet. And respectively, µTI is a chance of
interconnection time TI when the device is not connected to the cloudlet.

Figure 3.4: User mobility in the cloudlet [LW13]

3.2 Edge-Centric Computing

The concept of edge-centric computing (ECC) was first presented by Garcia Lopez P. et
al. [Gar+15]. The work was driven by the same trend from central cloud-centric models
to edge-centric models. P. Garcia Lopez brought attention to key elements of ECC which
are: proximity, intelligence, trust, control, and human-centric design. The ECC intends to
merge heterogeneous devices such as smartphones, nano data centers, routers, and media
centers to the edge-centric ecosystem. Garcia Lopez P. emphasized that humans are the
source of the data, and the data need to be analyzed close to humans rather than sent to
centralized cloud services. Humans should carry a key role in the data control loop. See
figure 3.5 that depicts how ECC (on the right) differs from cloud approach (on the left).

The concept was further developed and Li H. et al.[LOD18] proposed edge content-centric
networking (ECCN). ECCN architecture is based on the ECC framework with the imple-
mentation of content-centric networking (CCN).
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Figure 3.5: Cloud computing (on the left) versus edge-centric computing (on the right) [Gar+15]

3.3 Mobile Edge Computing

European Telecommunications Standard Institute (ETSI) started the work to standardize
mobile edge computing (MEC) concept in 2014. The main goal of the standardization
process is to create an open environment over heterogeneous platforms on the network
edges. The standardization process promotes advantages of mobile edge computing and
gives different parties such as developers, mobile network operators, and other service
providers the possibility to access the MEC framework. According to ETSI “Mobile-edge
compute provides IT and cloud-computing capabilities within the Radio Access Network
(RAN) in close proximity to mobile subscribers” [Ins14]. Components of MEC architecture
are mobile or IoT devices and mobile edge servers or small data centers placed by telecom
operators on base stations. MEC servers are, in turn, connected to the Internet and
the cloud. The mobile devices are connected to MEC servers through WAN networks.
Furthermore, devices form a Device-to-Device (D2D) connection. See picture 3.6 that
depicts MEC architecture components.

Following MEC characteristics presented by Ahmed A. and Ahmed E. in [AA16]: prox-
imity, geographical distribution, low latency, location awareness, and network context
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Figure 3.6: MEC architecture [AA16]

information. We will describe each characteristic in the upcoming paragraphs.

Proximity. By definition, mobile devices access MEC servers using RAN connection.
Additionally, devices in the MEC network create a D2D connection. Due to the high
geographical distribution of servers and speed of RAN connection the proximity of the
MEC network is high. Without losing generality we can assume that devices are in one-
hop distance to the MEC server.

Geagraphical Distribution. MEC servers are widely geographically distributed. This is
caused by the ETSI effort to standardize the MEC concept. The availability of pro-
gramming platform and high promise of the concept, make the whole idea of developing
applications for MEC very encouraging.
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Low Latency. Compared to the classic cloud paradigm the latency in MEC architecture is
low by definition. The low latency figures are achieved due to the close placement of the
MEC servers.

Location Awareness. As MEC servers are usually placed on the base station MEC ap-
plication developers can use the user location information to promote better algorithms
for resource offloading and mobility management. The MEC server can trace and create
future mobility patterns to predict future movements of mobile users.

Network Context Information. MEC servers have network context information. The MEC
servers have information about network bandwidth and congestions.

The logical structure of the MEC framework is as follows: mobile edge system level, mobile
edge host level, and networks level. See figure 3.7. The main level of the MEC framework
is the mobile edge host level. The level contains a mobile edge host, which supports
mobile edge platform, mobile edge applications, and virtualization infrastructure. The
mobile edge platform facilitates edge service discovery and allows the consumption of the
edges service. The platform forms virtualization infrastructure. Additionally, the level
has a mobile edge host level management agent. The top level is a mobile edge system
level. This level contains user equipment and third-party devices. Additionally, the level
includes system level management. The lower level is a network level. The network level
supports the whole MEC framework.

The following models of MEC were presented in different research papers: computational
task models, communication models, computation models of mobile devices, computation
models of MEC servers [Mao+17]. From the resource management point of view, MEC
architecture can be divided into single-user MEC systems, multiuser MEC systems, and
MEC systems with a heterogeneous server. Each model tries to solve the problem of how
to offload tasks to the MEC server and minimize the usage of mobile resources, such as
battery usage.

The below applications can be implemented on the MEC platform: computation offload-
ing, distributed content delivery and caching, web performance enhancement, IoT, and
Big Data applications [Tal+17b].

Computation offloading is an approach when the end-user mobile device offloads the com-
putation to the MEC server. Program developers use this technique to speed up the time
spent to complete the task when the end-user device does not have sufficient processing
power. The technique is used to save battery lifetime, save energy, and other limited



14

Figure 3.7: MEC framework [Ins16]

resources of the mobile device. Different research papers investigate and suggest com-
putation offloading applications. As an example, CloneCloud et al. [Chu+11] converts
single-machine execution into distributed execution over the MEC platform. Another
system – Cuckoo et al. [Kem+12] is a system or a programming platform to write and
manage applications that can offload tasks. Cuckoo system targets the Android platform.
Developers of the Cuckoo platform implemented component-level partitioning.

Distributed content delivery and caching. The video streaming is extremely heavy. Mobile
operators store the data in the database, which is usually centralized and sometimes
located far away from the end-users. Delivering video streaming to a user can cause
delays and jitter due to network congestions. Several research papers investigate caching
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on network edges as a type of extension of the content delivery network. For example, the
Media Cloud framework [JWW15] introduces precaching on network edges.

Web performance enhancement makes the web surfing faster, loads the web pages by
optimizing the network. The proposed systems can use cookies and web browser history
to preload web content [SAD11].

IoT and Big Data applications. With a growing amount of connected IoT devices, MEC
infrastructure can preprocess data requests, etc. IoT devices can be grouped to lower the
amount of signaling as it is shown in [CZ16].

ETSI MEC Industry Specification Group (ISG) launched 13 Proof of Concepts topics. By
the time when this thesis was done all 13 PoCs were completed [ISG].

1. Video User Experience Optimization via MEC - A Service Aware RAN PoC. The
PoC team included Intel, China Mobile, and iQiYi. The idea of the case is to identify
paid video streams and prioritize those paid video streams to give subscribers better
experience watching videos.

2. Edge Video Orchestration and Video Clip Replay via MEC. Researched by Nokia,
EE, Smart Mobile Labs. Through MEC servers users can watch video streams
from professional cameras, moreover, users can switch from one camera to another,
changing the angle of the video.

3. Radio aware video optimization in a fully virtualized network. Such companies as
Telecom Italia, Intel UK Corporation, Eurecom, and Politecnico di Torino partici-
pated in the PoC. The information about radio conditions helps the content provider
to change the video stream and improve user experience.

4. FLIPS – Flexible IP-based Services. Such companies as InterDigital, Bristol is Open,
Intracom, CVTC, and Essex University participated in the research. The PoC is
designed to advance the IP-based content.

5. Enterprise Services. Such companies as Saguna, Adva Optical Networking, and
Bezeq International are among the PoC team. The MEC servers are used in the
Enterprise networks to improve the quality of services for enterprise users.

6. Healthcare – Dynamic Hospital User, IoT, and Alert Status management. The team
includes Quortus Ltd, Argela, and Turk Telecom. The research shows the use-case
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for a hospital when the network is sliced to open access to different systems based
on access rights.

7. Multi-Service MEC Platform for Advanced Service Delivery. Participants are Bro-
cade, Gigaspaces, Advantech, Saguna, Vasona, and Vodafone. This PoC demon-
strates the MEC ecosystem which contains not only one MEC platform but com-
bines multiple MEC platforms sitting on common computing infrastructure. The
ecosystem provides a cloud orchestration system to switch between MEC servers.

8. Video Analytics. The team of this PoC includes Nokia, Vodafone Hutchison Aus-
tralia, and SeeTec. The system is analyzing raw video data from cameras in a City,
catches predefined relevant incidents, and provides reports to the control center.

9. MEC platform to enable low-latency Industrial IoT. The research team is Vasona
Networks, RIFT.io, Xaptum, Oberthur Technologies, Intel Corporation, and Voda-
fone. The PoC simulates the Industry. The idea is to speed up data transfer and
real-time analytics for IoT devices and cloud-based industrial applications.

10. Service-Aware MEC Platform to Enable Bandwidth Management of RAN. The team
consists of Industry Technology Research Institute, Linker Network, FarEasTone,
and Advantech. The idea of the PoC is to demonstrate the current features of the
ETSI MEC framework. For demonstration purposes, two applications were selected
Enterprise Video Call/VoIP and Tele-Drone.

11. Communication Traffic Management for V2X. The team comprises KDDI Corpo-
ration, Saguna Networks Ltd., and Hewlett Packard Enterprise. The idea of the
research is to use data generated by connected vehicles and manage road traffic
congestions.

12. MEC enabled Over-The-Top (OTT) business. The researchers are China Unicom,
ZTE, Intel, Tencent, Wo video, and UnitedStack. The goal is to distribute OTT
content among China Unicom subscribers.

13. MEC infotainment for smart roads and city hot spots. Participants include TIM,
Intel, Vivida, ISMB, and City of Turin. The idea is to show 4G/5G services for
pedestrians and car drivers.
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3.4 Fog Computing

The initial definition of fog computing was presented by Bonomi et al [Bon+12]. Fog
computing is a virtualized platform that is located between end-devices and cloud com-
puting data centers. Physically fog computing consists of heterogeneous fog nodes which
can be anything: routers, switches, gateways, etc. End-users see the uniform abstract
platform. The fog platform hides the heterogeneity of the fog nodes and provides a set of
characteristics such as low latency, geographical distribution, support for a large number
of nodes, mobility maintenance, real-time interactions, a preponderance of wireless access,
interoperability and federation, online analytic support. Fog platform support non-IP com-
munications to connect the end-devices. Functions of the fog platform are managed by
Service Orchestration Layer which receives user requests and gives distributed resources.
The picture 3.8 below depicts fog computing architectures.

Figure 3.8: Fog architecture [Yi+15]

The idea of fog computing becomes so popular that Cisco presented Cisco Fog Computing
solution [CIS15] as a realization of fog computing idea. Hong, K. et al [Hon+13] suggested
a programming model for application development in the fog. Hong K. showed that the
fog-based approach outperforms a cloud-based approach for applications such as vehicle
tracking systems and traffic monitoring with a relatively short distance between devices.
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3.5 Edge-Fog Cloud

Edge-fog cloud defined in [MK16]. Edge-fog cloud is a hybrid of edge-centric cloud and fog
cloud models. Figure 3.9 shows the edge-fog cloud. The edge-fog cloud model consists of
three different layers: edge layer, fog layer, and data store. Below we will briefly describe
each layer of the edge-fog architectural model.

Figure 3.9: Edge-Fog Cloud Architecture [MK16]

Edge Layer. This layer consists of nano data centers, desktops, laptops, etc. IoT devices
can connect the edge and create a one or two hops network. This condition guarantees
the proximity of edge resources to the devices. The devices in the edge layer have device-
to-device connectivity.

Fog Layer. The layer placed on top of the edge layer is a fog layer. The layer is physically
represented by routers, switches, and other high computing resources. As the fog layer is
placed closer than the central cloud, the edge layer can offload high computational tasks
to the fog layer. The fog layer plays the role of middleware or backbone in the edge-fog
cloud model.

Data Store. The data store layer stores the data in the cloud. Both the edge layer and
fog layer can access the data store layer to read or write the data. The data store layer
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acts as a repository for the data.

3.6 Mobile Cloud Computing

Mobile cloud computing (MCC) was defined as “an infrastructure where both the data
storage and data processing happen outside of the mobile device” [Din+13]. Figure 3.10
demonstrates the concept in detail. The lowest layer is mobile user layer. The layer
consists of heterogeneous mobile devices (smartphones). The mobile user layer is connected
to the next layer – mobile network layer.

Figure 3.10: Mobile Cloud Computing Architecture [Noo+18]

Mobile network layer consists of mobile operators or base stations. Mobile operators
provide Authentication, Authorization, and Accounting (AAA) services to mobile users
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and handle mobile user requests. The service is administered by the Home Agent (HA).
Mobile operators can pass mobile users’ requests to the cloud. So that cloud services can
be accessed by mobile users.

The upper layer is the cloud service provider layer. This layer represents cloud providers
that grant access to cloud services including Infrastructure as a Service (IaaS), Software
as a Service (SaaS), and Platform as a Service (PaaS).

Thus, mobile cloud computing is a paradigm similar to a cloud, however, MCC servers are
placed closer to the user, for example on the base station. Such a closer distance allows
mobile devices to offload part of the computation to the server. The main advantages of
MCC development are listed in [Din+13]: extending the battery life of the mobile devices,
improving data storage capacity and processing power, improving reliability, dynamic
provisioning, scalability, multitenancy, and ease of integration.

However, there are several research areas which are investigated in MCC. Such issues like
mobile offloading, cost-benefit analysis, mobility management, security, privacy and trust,
and data management are still open for thorough research.

Offloading is not a simple task. Several research papers investigate which tasks should be
offloaded to minimize battery usage. In the article [R K+14] authors described the simple
process of computational offloading (see figure 3.11 below). When the application starts it
checks whether the offloading is enabled on the mobile device. If enabled the application
checks the availability of MCC resources. The next decision point is to check whether the
offloading is favorable or not. This depends on user preferences. If yes, the application is
executed in MCC. On any step, the application may instead use local mobile resources.
As offloading is not so transparent, here are several entities such as user, connection,
smartphone, application nature, etc. that can affect the offloading decision.

Figure 3.11: Process of computational offloading [R K+14]
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It is important to analyze costs and expected benefits when deciding to use mobile cloud re-
sources. Such approaches as cost models using resource monitoring and profiling (history-
based), cost models using a stochastic method, cost models using parametric analysis were
suggested in [FLR13].

MCC should support the mobility of devices. The mobile cloud should be able to determine
if mobile devices are willing to join the network in a particular area. Or if the device left
the location of the mobile cloud. To provide mobility management the useful information
is the user current location. Location can be determined using such technologies as GPS,
RFID, and IR. However, GPS is not working in buildings, and the usage of GPS requires
high battery utilization, which is unacceptable for mobile devices. That is why peer-
based location techniques are used to identify the location of the device relative to other
devices. Another method to solve mobility issues is fault tolerance and component and
proxy migration [FLR13].

Security, privacy, and trust concerns that apply to the cloud environment are also crucial
for the mobile cloud. Such issues as protecting the sensitive data offloaded to the cloud,
backup and recovery, regulatory compliance, etc. need to be considered in the mobile
cloud computing environment as well.

Data management in mobile cloud computing is a hard task. As data from mobile devices
is potentially shared with other devices, and cloud service providers, this may increase
privacy concerns. Additionally, the mobile cloud consists of heterogeneous devices, which
are using different operating systems. This may raise compatibility and interoperability
issues.

3.7 Superfluid Cloud

The concept of the superfluid cloud was defined in [Man+15] as a model where multi-
tenant, virtualized software-based services run on common, shared commodity hardware
infrastructure deployed throughout the network.[Man+15] The main idea is to create a vir-
tualized cheap platform to give third parties, such as end-user and network operators the
access to cloud services which are placed not on the centralized platform, but in micro
data centers deployed by telecommunication operators. The architecture of the superfluid
cloud is depicted in the figure 3.12. The superfluid cloud is deployed on diverse hardware
such as base stations, multi-cell aggregation sites, point-of-presence sites, and even in the
big data centers. Each of these nodes can provide services on-the-fly and only when those
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services are requested and needed. The end-user or other third parties who are using the
superfluid cloud can use either low delay, but low compute/storage capacity (on the left)
or high delay, but high compute/storage capacity of the cloud servers (on the right).

Figure 3.12: Superfluid Cloud Architecture [Man+15]



4 Comparison of Edge Architectures

Nowadays the interest in edge compute is tremendous. The advantages are clear for users
and service providers. However, the availability of different edge compute architectures
introduces complications by selection of the proper one. In this chapter, we will compare
different edge architectures presented in the chapter 3. In the first section 4.1 we have
selected the first set of criteria. Based on the next set of criteria we built a Venn diagram
to select the appropriate edge compute architecture 4.2. In the last section 4.3 we will go
through application scenarios presented in the chapter 2 and map application scenarios to
the criteria selected.

4.1 First set of criteria selected for comparison

We have selected key properties below to compare different edge solutions. Those prop-
erties are broadly reviewed in the observed research papers. However, it is possible that
some criteria are not explicitly defined in the papers, but there is a technical possibility
to implement the feature in the edge architecture.

• latency

• architecture

• mobility support

• availability

• scalability

• ownership

• hardware

• security

• privacy

• distance to users.
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Similarities

Latency. We define latency as a roundtrip time spent by the packet to travel from the
destination to the server. Latency is a key property that drives the development of edge
architecture solutions. Latency is low for all observed edge compute architectures if we
compare them with the classic cloud computing. Low values of latency dictated by the
shorter distance from the end-devices to the cloud.

Architecture. All proposed edge architectures are n-tier decentralized and distributed.
This is due to the distributed nature of IoT devices and willingness to place servers or
edge nodes as close to end-users as possible.

Mobility support. The mobile devices forming edge cloud are continuously connecting
and leaving the network. That is why mobility support is embedded in all proposed
architectures and is high for all of the edge paradigms.

Availability is a probability that the system is up and running at any selected time. Avail-
ability is integrated in all reviewed edge compute solutions as the architecture is distributed
and have algorithms to ensure high availability of distributed architecture.

Scalability is a possibility to extend the operation by adding additional resources if it is
required. The system is considered to be scalable if resources can be added to meet growing
demand without the loss of availability. Scalability is another default characteristic of edge
cloud. Scalability is high for all observed edge compute technologies.

Differences

Ownership is the rights and control over the deployed edge compute equipment. It defines
which entity is deploying the solution and will be maintaining the software and hardware.
Because of the nature of devices forming the edge cloud the ownership can belong to
private entities and individuals as for cloudlets and reside with telco companies as it is for
mobile edge computing.

Hardware represents the actual difference between the presented architectures. Such edge
architectures as edge cloud computing, the superfluid cloud consists of mobile or IoT
devices connected together to share the resources. Cloudlet hardware is a resource-rich
computer or data center in a box. The fog cloud hardware is routers, switches, access
points and gateways, while the mobile edge computing is servers usually co-located on the
base stations. The mobile cloud computing concept is very similar to a centralized cloud,
where the hardware is represented by big servers.

Security. A centralized cloud storage facility may be more secured, because centralized
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cloud facilities are maintained by high skilled information security employees, have a bigger
budget for security measures, more rigorous prevention, and more thorough detection
of the security threats. At the same time, a centralized cloud is more attractive for
intruders as it stores a bigger amount of data. Edge architectures as cloudlets, edge-centric
computing, and other edge architectures owned by small private entities and individuals are
more susceptible to security attacks due to human factors. However, we have to emphasize,
that edge architectures managed by telecommunication operators as, for example, MCC
are more secure.

Privacy. IoT sensors and mobile devices can collect private data such as personal informa-
tion, location, track user movements, information about the house, vehicle, etc. Sending
private information over the network to a centralized cloud can be undesirable. In such
cases, the user and edge cloud architects may prefer to keep the data on the network edges
and not share the private information with the centralized cloud service providers. An
alternative solution could be sharing anonymized or partial data.

Table 4.1 summarises the criteria described above for different edge compute architectures.

Table 4.1: Summary of first set of criteria

Cloudlets ECC MEC Fog Edge-Fog MCC Superfluid
Latency Low
Architecture Decentralized and distributed
Mobility
support

Yes

Availability High
Scalability High
Ownership Private en-

tities, indi-
viduals

Individuals Telco com-
panies

Private en-
tities, indi-
viduals

Private en-
tities, indi-
viduals

Telco com-
panies

Individuals

Hardware Data center
in a box

Connected
mobile
devices

Servers
running
on base
stations

Routers,
Switches,
Access
Points,
Gateways

Hetergeneous
servers

Servers and
user devices

Connected
mobile de-
vices or
connected
servers

Security Less secure More secure Less secure More secure Less secure
Privacy The data is stored closer to user Shares the

data with
centralized
cloud

Users may
share the
data with
centralized
cloud

We reviewed the distance to the user as other characteristic that differentiate edge archi-
tectures presented in this work. The picture 4.1 depicts the placement of different cloud
architectures from the closest to the user (on the left) to the furthest (on the right). The
ECC is closest to end-user architecture as it consists of connected user devices to form
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the edge cloud. On the other hand, MCC is the farthest architecture because it consists
of heterogeneous network servers. The distance between end-devices and edge network
nodes can be called physical proximity. We will use this term in the next section 4.2 to
introduce the diagram for edge architecture selection.

Figure 4.1: Distance to different edge compute architectures: from closest to farest

4.2 Second set of criteria: Venn diagram

Dolui K. et al. [DD17] presented a decision tree and compared three edge solutions:
cloudlets, fog computing, and mobile edge computing. The authors took the following
parameters to create a multi-entry decision tree: proximity, the power consumed, context
awareness, and computational time. We took a similar approach and created a diagram
for seven edge architectures presented in the chapter 3 above (see figure 4.2).

Table 4.2 summarises the second set of criteria for the edge compute architectures. We
will describe each of the selected parameters below.

Physical proximity is an actual distance from the end-devices to the edge node. Whereas,
the logical proximity is a number of hops from the device to the nearest edge node. Both
definitions have a significant impact on latency as many hopes and higher distances can
cause congestions. Physical proximity is high for cloudlets, edge-centric computing, and
fog computing. For mobile-edge computing, edge-fog cloud, mobile cloud computing, and
superfluid cloud physical proximity is low. Logical proximity is ensured for cloudlets. We
can also mention that in other edge compute architectures logical proximity is possible,
but not always ensured.



27

Table 4.2: Summary of the second set of criteria

Cloudlets ECC MEC Fog Edge-Fog MCC Superfluid
Physical
proximity

High High Low High Low Low Low

Logical
proximity

Ensured Maybe Maybe Maybe Maybe Maybe Maybe

Power con-
sumed

Low High High Low Low High High

Computation
time

High High Low High High Low High

Context
awareness

Low Low High Low Low High Low

Non-IP sup-
port

No No No Yes Yes No No

The power consumption is how quickly the device is using the battery. When an IoT
device is searching for a network or tries to establish a geolocation position the power
consumption is higher. Thus, power consumption depends on the network technology
used to establish a connection between a user device and an edge node. For example, fog
computing and edge fog cloud support such technologies as WiFi, LTE, ZigBee, Bluetooth
Smart, etc. In the cloudlet, architecture devices are connected through WiFi technology.
Authors in [Hua+12] showed that devices consume more energy when using LTE networks.
Based on this we conclude that power consumption is lower for architecture decisions that
are connected through WiFi networks.

We define computation time as time spent to complete the task requested by the end-
device. Computation time is another important feature. The parameter is lower for
mobile-edge computing, and mobile cloud computing architectures due to highly virtual-
ized resources. On the other hand, computation time is higher for cloudlets, edge cloud
computing, fog computing, edge-fog cloud, and superfluid cloud due to the limited power
of the devices forming the cloud.

Context awareness is knowledge about the surrounding environment. The knowledge al-
lows edge compute servers to adapt accordingly and improve the quality of services. For
example, the MEC server uses a radio access network and can re-route traffic to avoid con-
gestions. The same applies to mobile cloud computing. Cloudlets, fog compute, edge-fog
cloud, and edge-centric computing do not have context-awareness property.

Non-IP support. This characteristic describes the ability of the network to support the
HTTP stack. Due to the heterogeneity of fog devices and virtualized platform, the fog
cloud supports non-IP protocols. The same is applicable for edge-fog cloud as the edge-
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fog cloud is built on the fog cloud architecture. For other presented architectures non-IP
support is not explicitly defined in the reviewed papers.

Based on the results summarised in the table 4.2 we decided to present more visualised
diagram to show parameters above. See the picture 4.2 for more details.

Figure 4.2: Selection of edge architecture: venn diagram

4.3 Mapping of application scenarios to the criteria
reviewed

For the research purposes we will re-visit application scenarios listed in the chapter 2. We
will compare each application using the criteria defined in sections 4.1 and 4.2. We have
selected grading scale from below to measure the importance of each criteria:

1. not important

2. slightly important

3. moderately important

4. important

5. critical
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Summary of the application scenario evaluation presented in the table 4.3 below. Latency
is critical for application scenarios where decisions should be made quickly otherwise the
delay will be dangerous for human life: AR, autonomous vehicles, gaming-as-a-service,
automated loading machines. Latency is also important for wind plants. Such application
scenarios as a place of natural disaster, ship at the sea or offshore platform are more
tolerant to delay. We have evaluated them as important, moderately important, and
slightly important respectively.

In terms of architecture, we assessed application scenarios as NOT important when the
application can use a centralized cloud architecture without losing the key functionality.
For example for such application scenarios as augmented reality, gaming-as-a-service, wind
plants the decentralized architecture is moderately important. The decentralized archi-
tecture is important for automated loading machines, ships at the sea/offshore platform
scenarios. Whereas, for AR, and place of natural disaster, the existence of a decentralized
edge node is critical.

Mobility support is not important for wind plants, because wind plants are static and
do not need to move from one edge network to another. Similarly, mobility support is
slightly important for a ship at the sea/offshore platform scenario. At the same time
mobility support is critical for autonomous vehicles, automated loading machines, and the
place of a natural disaster. This is due to the moving nature of devices forming edge cloud.

Network availability is critical for autonomous vehicles, automated loading machines, wind
plants, and the place of a natural disaster. The loss of the network can cause a risk to
human life.

The scalability criterion is critical for autonomous vehicles, and gaming-as-a-service. Po-
tentially such applications should support a fast-growing number of end-devices connected
to the edge cloud. As an example, the number of users come and go following the daily
routine patterns the applications should be scalable and provide resources on a need basis.
In addition, during the morning commute increase load would be applied to autonomous
vehicle edge services. During the evening leisure period, people tend to play games more
often, hence the increased load on gaming-as-a-service services. To reduce the overall usage
bill and be more efficient, having a highly scalable system is a must in those scenarios.

In terms of ownership of the edge network, we think it is important for the government to
control automated vehicles, in other cases, the control can be given to telecom operators
or even to private entities.
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We believe that due to the heavy impact on human lives for autonomous vehicles, au-
tomated loading machines, and places of natural disaster hardware is critical. Hardware
should be highly redundant, compact, and placed on the device that forms the edge node.
In other cases, the hardware is not so important.

We divided security and privacy to two different criteria. That is why from the security
point of view the implementation of AR is less critical. Whereas for such scenarios as
autonomous vehicles, automated loading machines, wind plants, place of natural disaster
security issues are critical as it can impact human lives.

In terms of privacy, such applications as autonomous vehicles have previously visited
addresses, home addresses, and other critical personal data. AR applications can have
personal data of users, credit cards, etc. The same applies to gaming-as-a-service. That
is why we have evaluated those application scenarios as critical.

Distance to user, logical, and physical proximity are closely connected to latency. That is
why we have evaluated presented application scenarios in the same way.

Consumed power is less important for AR applications because end-users usually can
connect AR devices such as AR helmet to an electrical socket. On the other hand in place
of natural disasters, it is critical to save the battery of the device and keep the device
working, as electricity may not be available.

Computation time is critical for application scenarios not tolerant of the delays. Also, we
evaluate computation time as critical in the place of a natural disaster.

Context-awareness is critical for autonomous vehicles, gaming-as-a-service, automated
loading machines, and a place of the natural disaster. As it is very important to have
information about other devices in the network to predict the movement and create pat-
terns if necessary.

The support of non-IP protocols is critical for autonomous vehicles, automated loading
machines, and places of the natural disaster. As it allows to create device-to-device con-
nections and separate protocols to support edge networks.

We used the grading scale presented in the table 4.3 to assess which application is win-
ning for each scenario (column weigth). Additionally, we assigned 1 for each criterion if
criteria are presented in the edge architecture and 0 otherwise. To get the winning edge
architecture we multiplied scale to the criteria. total weight = weight ∗ criteria.

See tables 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 below which summarize approach for each
application scenario.
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Table 4.3: Table: evaluation of application scenarios

Augmented
Reality

Autonomous
vehicles

Gaming as
a service

Automated
loading
machine

Wind
Plants

Place of
natural
disaster

Ship at
the sea or
offshore
platform

Latency Critical Critical Critical Critical Important Moderately
Important

Slightly Im-
portant

Architecture Moderately
Important

Critical Moderately
Important

Important Moderately
Important

Critical Important

Mobility
support

Important Critical Moderately
Important

Critical Not Impor-
tant

Critical Slightly Im-
portant

Availability Not Impor-
tant

Critical Not Impor-
tant

Critical Critical Critical Moderately
Important

Scalability Important Critical Critical Moderately
Important

Not Impor-
tant

Moderately
Important

Not Impor-
tant

Ownership Private en-
tities

Government Private en-
tities

Private en-
tities

Telecom.
Operators

Telecom.
Operators

Telecom.
Operators

Hardware Slightly Im-
portant

Critical Slightly Im-
portant

Critical Slightly Im-
portant

Critical Important

Security Slightly Im-
portant

Critical Moderately
Important

Critical Critical Important Important

Privacy Critical Critical Critical Moderately
Important

Slightly Im-
portant

Moderately
Important

Moderately
Important

Distance
to user

Important Critical Critical Critical Slightly Im-
portant

Moderately
Important

Moderately
Important

Physical
proximity

Critical Critical Critical Critical Important Moderately
Important

Slightly Im-
portant

Logical
proximity

Critical Critical Critical Critical Important Moderately
Important

Slightly Im-
portant

Power
consumed

Slightly Im-
portant

Important Important Important Not Impor-
tant

Critical Moderately
Important

Comp.
time

Important Critical Critical Critical Slightly Im-
portant

Critical Slightly Im-
portant

Context
awareness

Slightly Im-
portant

Critical Critical Critical Slightly Im-
portant

Critical Not Impor-
tant

Non-IP
support

Not Impor-
tant

Critical Not Impor-
tant

Critical Not Impor-
tant

Critical Slightly Im-
portant
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Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Archi-
tecture

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Mobility
sup-
port

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

Availa-
bility

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Scala-
bility

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

Owner-
ship

1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

Hardware 2 1 2 1 2 0 0 1 2 0 2 0 0 0 0
Security 2 0 0 0 0 1 2 1 2 0 0 1 2 0 0
Privacy 5 1 5 1 5 1 5 1 5 1 5 0 0 0 0
Distance
to users

4 1 4 1 4 1 4 1 4 1 4 0 0 0 0

Physical
Prox-
imity

5 1 5 1 5 0 0 1 5 0 0 0 0 0 0

Logical
Prox-
imity

5 1 5 0 0 0 0 0 0 0 0 0 0 0 0

Power
Con-
sumed

2 1 2 0 0 0 0 1 2 1 2 0 0 0 0

Comp.
Time

4 0 0 0 0 1 4 0 0 0 0 1 4 0 0

Context
Aware-
ness

2 0 0 0 0 1 2 0 0 0 0 1 2 0 0

Non-IP
sup-
port

1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

total: 12 41 10 34 10 34 13 44 10 30 8 25 6 18



33

Table 4.5: Autonomous vehicles: edge solutions

Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Architecture5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Mobility
sup-
port

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Availability5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Scalability 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Ownership 5 0 0 0 0 1 5 0 0 0 0 1 5 0 0
Hardware 5 1 5 1 5 0 0 0 0 0 0 0 0 0 0
Security 5 0 0 0 0 1 5 0 0 0 0 1 5 0 0
Privacy 5 1 5 1 5 1 5 1 5 1 5 0 0 0 0
Distance
to user

5 1 5 1 5 1 5 0 0 1 5 0 0 0 0

Physical
prox-
imity

5 1 5 1 5 0 0 1 5 0 0 0 0 0 0

Logical
prox-
imity

5 1 5 0 0 0 0 0 0 0 0 0 0 0 0

Power
con-
sumed

4 1 4 0 0 0 0 1 4 1 4 0 0 0 0

Comp.
time

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Context
aware-
ness

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Non-IP
sup-
port

5 0 0 0 0 0 0 1 5 1 5 0 0 0 0

total: 11 54 9 45 11 55 9 44 9 44 9 45 5 25
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Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Archi-
tecture

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Mobility
sup-
port

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Availa-
bility

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Scala-
bility

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Owner-
ship

1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

Hardware 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0
Security 3 0 0 0 0 1 3 0 0 0 0 1 3 0 0
Privacy 5 1 5 1 5 1 5 1 5 1 5 0 0 0 0
Distance
to user

5 1 5 1 5 1 5 0 0 1 5 0 0 0 0

Physical
prox-
imity

5 1 5 1 5 0 0 1 5 0 0 0 0 0 0

Logical
prox-
imity

5 1 5 0 0 0 0 0 0 0 0 0 0 0 0

Power
con-
sumed

4 1 4 0 0 0 0 1 4 1 4 0 0 0 0

Comp.
time

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Context
aware-
ness

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Non-IP
sup-
port

1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

total: 12 44 10 35 10 40 10 33 10 33 8 30 6 18
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Table 4.7: Automated loading machine: edge solutions

Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Archi-
tecture

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

Mobility
sup-
port

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Availa-
bility

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Scala-
bility

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Owner-
ship

1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

Hardware 5 1 5 1 5 0 0 0 0 1 5 0 0 0 0
Security 5 0 0 0 0 1 5 0 0 1 5 1 5 0 0
Privacy 3 1 3 1 3 1 3 1 3 1 3 0 0 0 0
Distance
to user

5 1 5 1 5 1 5 0 0 1 5 0 0 0 0

Physical
prox-
imity

5 1 5 1 5 0 0 1 5 0 0 0 0 0 0

Logical
prox-
imity

5 1 5 0 0 0 0 0 0 0 0 0 0 0 0

Power
con-
sumed

4 1 4 0 0 0 0 1 4 1 4 0 0 0 0

Comp.
time

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Context
aware-
ness

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Non-IP
sup-
port

5 0 0 0 0 0 0 1 5 1 5 0 0 0 0

total: 12 50 10 41 10 45 10 40 12 50 8 37 6 23
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Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
Archi-
tecture

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Mobility
sup-
port

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Availa-
bility

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Scala-
bility

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Owner-
ship

3 0 0 0 0 1 3 0 0 0 0 1 3 0 0

Hardware 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0
Security 5 0 0 0 0 1 5 0 0 0 0 1 5 0 0
Privacy 2 1 2 1 2 1 2 1 2 1 2 0 0 0 0
Distance
to user

2 1 2 1 2 1 2 0 0 1 2 0 0 0 0

Physical
prox-
imity

4 1 4 1 4 0 0 1 4 0 0 0 0 0 0

Logical
prox-
imity

4 1 4 0 0 0 0 0 0 0 0 0 0 0 0

Power
con-
sumed

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

Comp.
time

2 0 0 0 0 1 2 0 0 0 0 1 2 0 0

Context
aware-
ness

2 0 0 0 0 1 2 0 0 0 0 1 2 0 0

Non-IP
sup-
port

1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

total: 11 29 9 24 11 30 9 22 9 20 9 26 5 14
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Table 4.9: Place of natural disaster: edge solutions

Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
Archi-
tecture

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Mobility
sup-
port

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Availa-
bility

5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Scala-
bility

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Owner-
ship

3 0 0 0 0 1 3 0 0 0 0 1 3 0 0

Hardware 5 1 5 1 5 0 0 0 0 0 0 0 0 0 0
Security 4 0 0 0 0 1 4 0 0 0 0 1 4 0 0
Privacy 3 1 3 1 3 1 3 1 3 1 3 0 0 0 0
Distance
to user

3 1 3 1 3 1 3 0 0 1 3 0 0 0 0

Physical
prox-
imity

3 1 3 1 3 0 0 1 3 0 0 0 0 0 0

Logical
prox-
imity

3 1 3 0 0 0 0 0 0 0 0 0 0 0 0

Power
con-
sumed

5 1 5 0 0 0 0 1 5 1 5 0 0 0 0

Comp.
time

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Context
aware-
ness

5 0 0 0 0 1 5 0 0 0 0 1 5 0 0

Non-IP
sup-
port

5 0 0 0 0 0 0 1 5 1 5 0 0 0 0

total: 11 43 9 35 11 44 9 37 9 37 9 38 5 21
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Weight Cloud-
let

Weight* ECC Weight* MEC Weight* FOG Weight* EFC Weight* MCC Weight* Super-
fluid

Weight*

Cloud-
let

ECC MEC FOG EFC MCC Super-
fluid

Latency 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Archi-
tecture

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

Mobility
sup-
port

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Availa-
bility

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Scala-
bility

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Owner-
ship

3 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Hardware 4 1 4 1 4 0 0 0 0 0 0 0 z 0 0
Security 4 0 0 0 0 1 4 0 0 0 0 1 4 0 0
Privacy 3 1 3 1 3 1 3 1 3 1 3 0 0 0 0
Distance
to user

3 1 3 1 3 1 3 0 0 1 3 0 0 0 0

Physical
prox-
imity

2 1 2 1 2 0 0 1 2 0 0 0 0 0 0

Logical
prox-
imity

2 1 2 0 0 0 0 0 0 0 0 0 0 0 0

Power
con-
sumed

3 1 3 0 0 0 0 1 3 1 3 0 0 0 0

Comp.
time

2 0 0 0 0 1 2 0 0 0 0 1 2 0 0

Context
aware-
ness

1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Non-IP
sup-
port

2 0 0 0 0 0 0 1 2 1 2 0 0 0 0

total: 11 29 9 24 11 26 9 22 9 23 9 20 5 12
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Based on the anlysis above we created a summary table with the winning edge architectures
(see table 4.11).

Table 4.11: Table: winning edge architectures for each scenario

Augmented
Reality

Autonomous
vehicles

Gaming as
a service

Automated
loading
machine

Wind
Plants

Place of
natural
disaster

Ship at
the sea or
offshore
platform

Rank 1 Cloudlet Mobile
Edge Com-
puting

Cloudlet Cloudlet Mobile
Edge Com-
puting

Mobile
Edge Com-
puting

Cloudlet

Rank 2 Fog Cloud Cloudlet Mobile
Edge Com-
puting

Edge-Fog
Cloud

Cloudlet Cloudlet Mobile
Edge Com-
puting

Rank 3 Edge-
Centric
Computing

Edge-
Centric
Computing

Edge-
Centric
Computing

Mobile
Edge Com-
puting

Mobile
Cloud
Computing

Mobile
Cloud
Computing

Mobile
Cloud
Computing

Based on the results from comparison above, we can conclude that the cloudlet is a winning
technology for most of the application scenarios. The idea of putting edge nodes within one
hop reach sounds extremely promising. However, the implementation of such technology
depends on the hardware manufacturers and telecom operators, which could be expensive
to operate cost wise. Thus real world implementation could be problematic.

The other winning technology is MEC. The implementation of MEC is highly supported
by the telco companies. With the overall development of high speed networks the speed
from end-device to the nearest MEC server can be fast.



5 Summary and Conclusion

The aim of this thesis was to formulate an overview of current state-of-the-art in edge
compute paradigms. We introduce, describe and compare the most popular edge com-
pute architectures. This research highlights seven most popular architectures: cloudlets
proposed by Satyanarayanan M., Edge-Centric computing introduced by Garcia Lopez P.,
Mobile Edge Computing led by European Telecommunications Standard Institute (ETSI),
Fog computing presented by Bonomi F., Edge-Fog cloud researched by Mohan N., Mobile
Cloud computing and Superfluid cloud by Manco F.

In the chapter 1 we explore the reasons behind the recent trend in edge compute research
in scientific community. We have defined seven key drivers that push the development
of edge research. Additionally, we have presented several scenarios to show how edge
technology can be used in everyday life and in the production environment. In following
chapter 3, we have reviewed existing edge compute publications and research articles.

Based on the key drivers from chapter 1, chapter 4 shows two sets of criteria to compare
the described architectures. First, based on the criteria selected we noted similarities and
differences of proposed architectures to solve latency and jitter issues. Second, we have
introduced the Venn diagram that can help to select appropriate edge architecture based on
such parameters as proximity, the power consumed, context awareness, and computational
time. Finally, the chapter is concluded with mapping of application scenarios to both
sets of criteria and evaluated which architectures are winning based on the application
scenarios.

As edge computing paradigm is still under heavy development, what could be ahead of
us? What kind of architecture might be suitable for end-users?

We could envision that the line between cloud and edge would slowly disappear. The
architecture will move towards a set of well defined APIs and parameters by which ap-
plications, devices, or end-users could request relevant server deployment locations. For
example, the API would accept criteria we have defined in chapter 4 as an input and
provide end-users with a relevant resource.

We believe that this research will help to understand the edge approach better and gives
an overview of different edge cloud paradigms.
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