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Abstract

The vision for smart sustainable cities is one whereby urban sensing is core to optimising city

operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned

to become pervasive form of data collection and analysis for smart cities but deployment of

millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and

ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile

Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future

smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the

data using cellular communication or short range opportunistic communication. The largest

challenge here is the efficient transmission of potentially huge volumes of sensor data over

sometimes meagre or faulty communications networks in a cost-effective way.

This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN

with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing

Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed

algorithms are developed for efficient network performance including data routing and forward-

ing, sensing rate control and and pricing. This thesis also considered realistic urban sensing

issues such as economic incentivisation and demonstrates how social network and mobility

awareness improves data transmission. Through simulations and real testbed experiments, it

is shown that proposed algorithms perform better than state-of-the-art schemes.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) [204] have gained an increasing importance over the last

number of years due to their suitability for monitoring complex physical world phenomena

at levels of detail that was previously impossible. Wireless Sensor Networks (WSNs) are dis-

tributed systems composed of low cost sensor devices monitoring an aspect of interest such as

temperature, humidity, light, acoustics, vibration, and pressure. Sensor networks are rapidly

growing due to their large potential in various application areas including ecosystem manage-

ment, smart homes and buildings, natural hazard monitoring, intelligent transportation, and

human behaviour sensing. Current approaches are mainly application-specific, where numbers

of static wirelessly-connected sensor nodes are deployed at a place of interest. The sensed in-

formation is sent to sink(s) over wireless links through single-hop or multi-hop communication.

Research into WSNs has also motivated emerging research areas for general purpose WSNs,

such as the Internet of Things (IoTs) [22], Cyber-Physical Systems (CPSs) [154], and smart

sustainable cities [148, 161].

1.1 Motivation

Statistics show that the numbers of people living in urban areas is dramatically increasing

(http://world.bymap.org/). Like with any overloaded system, when a city is close to capacity,

1
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Figure 1.1: Design considerations for WSNs with Mobile Phones (WSN-MP.

services and resources begin to fail. Therefore, to make more efficient use of such resources,

it becoming necessary to better understand the state of urban capital and its usage. Key to

this knowledge is the ability to instrument the city with mechanisms that monitor it, and

react to the data gathered from the physical environment autonomously. Therefore, urban

sensing is beginning to become more prolific [148]; from light and temperature sensors in a

smart building, water leak detection in the sewer, smarter cars, smart power grids, to noise and

air-quality monitoring in the streets.

With the evolution of such smart cities and the IoTs, WSNs will become an increasingly per-

vasive form of instrumentation for the gathering and analysis of data of all kinds. For these

approaches to be effective, autonomic sensor networks require large number of specially de-

signed hardware and a communication infrastructure which makes it expensive. Moreover,

fixed infrastructures for such large scale WSN have limitations regarding sensor maintenance,

deployment and connectivity.

Therefore, Ubiquitous sensor-rich smartphones are beginning to play an increasingly important
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role in the evolution of the IoTs, which bridge the digital space to the physical world at a

societal scale. Their powerful computing and communication capacities as well as huge market

proliferation, and inherent mobility makes WSNs with Mobile Phones (WSN-MP) [63, 109]

a much more flexible and cost-effective sensing and communication solution compared with

traditional static WSNs.

In a WSN-MP, a mobile phone can act as a sink or relay to collect the data from statically-

depolyed sensor nodes; or produce sensor data by sampling its embedded sensors. The main

advantages of WSN-MP are.

1. Powerful sensing and communication platform. The sensors available on smart

phones can monitor a diverse range of human activities and commonly encountered con-

texts. Apart from that mobile phones can also communicate with each other using widely

available interfaces (e.g., wifi-direct, bluetooth, 3G/4G).

2. Increased coverage. Due to increasing number of smart phones, WSN-MP can collect

data with much higher granularity. Mobility of the humans also enable more penetration

and coverage than previously possible.

3. Cost-effective. Smart phones enable sensing, collection and communication of data

without need of any pre-installed infrastructure. Mobile phones are carried by humans

as part of their daily life therefore, mobility of mobile phones can be utilized at no extra

cost.

Different to existing sensor networks, WSN-MP bring people in the loop because people are no

longer just consumers of sensed data; but also are the source of sensed data and responsible for

its communication. Furthermore, the mobility of phone users plays an important role in WSN-

MP by improving the performance of networks [52] and serving as core requirement of many

applications [89]. Due to this human involvement, their social and economic behaviours (e.g.

social networks, selfishness etc) have a significant impact on the sensing and communication

performance of the WSN-MP. Such behaviors can be exploited in the design of communication

schemes due to the close coupling between modern sensor networks and the physical world
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in which they reside. Evolution of smart sustainable cities and CPS lead to many research

issues based on the close relationships of human behaviours to design effective approaches for

WSN-MP as shown in Figure 1.1. This thesis investigates how to design, analyse, and evaluate

cost-effective sensing and wireless networking schemes for WSN-MP in this big picture.

Figure 1.2: Example of WSN-MP to highlight the challanges.

1.2 Challenges

Here I use a simple example to illustrate challenges of WSN-MP shown in Figure 1.2. Imagine

a small-scale static sensor network deployed at the surface of Hyde park lake in London. The

sensors monitor water quality and detect if some one falls into the lake (e.g.using sonar sen-

sors). There are many people in the park carrying mobile phones, which sense light conditions

at different areas of the park. Free Wifi Access-Points (APs) are located at the corners of Hyde

Park. Sensors in the lake cannot send data directly to APs due to their short communication

range but they can send the data to other nodes or any mobile phone in their communication

range using Wifi-Direct. Mobile phones can also communicate with APs and each other using

Wifi-Direct. In addition, mobiles phone can also send data directly through cellular communi-

cation (i.e 3G/4G). In this example, we focus on John and William, who are two users carrying

a mobile phone. Now we discuss the key issues that can arise in this WSN-MP scenario.
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1. Data forwarding to mobile nodes.

A sensor node in the middle of the lake gathered some sensor data. It cannot send the data

directly to any mobile phone due to its short communication range. However, it can send to

another relay sensor node using multi-hop communication. How can it find a relay node, who

has the best chance to forward its data to mobile phone? (e.g, A node near the road)

Current scheme for data collection using mobile sinks can be divided into two categories, those

that assume controllable sink mobility and uncontrollable sink mobility [51]. WSN-MP falls

into the second category of WSN-MSs where the sink mobility is uncontrollable (it is unlikely

that a mobile phone user is willing to move according to a planned trajectory). There are

several data collection protocols for WSN-MSs [105,108,115,123,193]. Lee et al. [108] propose

a routing protocol based on information potentials [124] and a constructed mobility graph.

However, this scheme requires mobility prediction and may suffer from heavy communication

overheads when there are a large number of mobile sinks. WARP [117] and the routing pro-

tocol developed by Li et al. [123] are based on fast and efficient routing structure repairs, but

are still limited to single mobile sink settings. Data Stashing [115] supports multiple mobile

sinks but requires mobility prediction, network-wide flooding, and linear programming solving

on each node, leading to large communication and computational overheads. In chapter 3, we

propose a novel routing metric Contact-Aware ETX (CA-ETX) to determine the ability of a

static node to forward sensor data to mobile nodes. Using CA-ETX, we developed opportunis-

tic data forwarding scheme to reduce end-to-end delay with out any mobility prediction and

communication overhead.

2. Support heterogeneous applications with different delay requirements.

John received critical data from a sensor about falling some one in the lake while has to be sent

urgently. He also has periodic light quality data sensed by his phone. Should John send all data

using faster and reliable cellular connection?

Most current mobile sensing applications transmit mobile sensor data to the server through

cellular networks. With the increasing popularity of mobile sensing applications, this simple
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solution will suffer from not only significant battery [167, 190] and 3G/4G financial costs [128]

to the phone users, but also will produce heavy traffic load on the underlying bandwidth-limited

cellular networks, especially for the applications that require continuous sensing with fine gran-

ularity (e.g. [155]). Besides expensive cellular communication, current smart phones are being

equipped with more and more short-range wireless technologies such as WiFi, WiFi direct, and

Bluetooth 4.0, which enable opportunistic phone-to-phone and phone-to-sink communications

(e.g. through WiFi routers). Due to their low energy and financial cost, it is promising to ex-

ploit the potential of short-range communications, especially for delay-tolerant mobile sensing.

In recent years, many research efforts such as [153] and Delay-Tolerant Networks (DTN) [93]

aim at exploring communications among mobile devices through short-range communication,

where a continuous end-to-end connectivity may not be possible. Current opportunistic data

forwarding approaches either suffer from high cost due to the replication of messages or high

storage and maintenance cost to store and update history information and routing paths. Back-

pressure routing [56] is a promising approach due to low overhead and optimal throughput. The

main disadvantage of opportunistic schemes is high delay, which make them unsuitable to for-

ward critical sensor data. To address this problem, there is a need for hybrid architecture

to support both real-time and delay-tolerant urban sensing applications via the seamless inte-

gration of inexpensive short-range opportunistic transmissions and reliable long-range cellular

radios. Forwarding scheme to support heterogeneous applications is developed in chapter 4

where cost-benefit analysis is used to decide to forward data through cellular communication

or short-range communication.

3. How to exploit mobility patterns and social behaviours for efficient data trans-

mission.

Lets consider a scenario, where John and William approach a sensor near the lake. Should

sensor send the data to John or send it to William? William works at the cafe near the lake

while John’s friends are currently sitting close to the Hyde Park corner. Can this information

help to determine better relay for the data?

Social network theory [162] is studied as a useful tool to model the structure, properties and
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relationships among people. For example, community is a property of social networks that

groups people with similar interests, who meet frequently, spend time together and they are

more willing to share information and resources. The knowledge of underlying social structures

and ties among the users, understanding the mobility patterns and predicting contact opportu-

nities is the key to design the effective opportunistic network services; such as data forwarding,

resource allocation and resource utilization. The networks consisting of mobile phones are

human-centric. Understanding social characteristic of humans depends on many factors, such

as personal preferences, relationships, interests and popularity. These characteristics define

social properties that include community, centrality, similarity and mobility patterns. These

social properties can be used to design efficient networking solutions. In this context, social-

aware forwarding protocols and dissemination strategies are the most important components.

Social network metrics such as centrality and community structure have been used for many

opportunistic routing schemes [45, 66, 67] in Delay Tolerant Networks (DTN) [60]. However,

all of them focus on packet routing (i.e. unicasting or multicasting a single packet or multiple

packets) rather than the flow routing. Flow routing is required by many sensing applications,

who send packets to the sink continuously. Chapter 5 proposes a sensing paradigm for WSN-

MP, where mobile phones are used to relay the sensor data from sensor nodes to sinks. A data

forwarding metric, Sink-Aware (SA) centrality, is proposed to measure the potential sensor

data forwarding ability of human with mobile phones. This scheme determines better relays

for the data.

4. Incentivize mobile devices to sense and forward sensor data.

Let go back to our example. A sensor wants to send data to John. Why would John carry and

forward the data for the network, which will cost him in terms of battery and computation?

Similarly, he is not willing to use his mobile phone for sensing light readings. Can network

provide him any incentives to encourage user participation?

Multi-hop data forwarding in communication networks depends on the cooperation from the

participant nodes (i.e. willingness to help forward messages for other nodes). This coopera-

tion is achievable in infrastructure based networks where all nodes belong to a single user or
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organization. In WSN-MP, many nodes such as human with mobile phones are not willing to

forward messages to conserve their limited resources (e.g. battery power and buffer) and in-

crease their own benefits (e.g. reducing communication cost). The non-cooperative behaviour

of nodes can have negative impact on the performance of data forwarding algorithms in a

multi-hop network [88]. Moreover, user participation is the most important element in mobile

sensing applications to achieve good service quality. Most of the existing mobile sensing appli-

cations are based on voluntary participation of users to sense the data. In reality, a user may

not be interested in participating in mobile phone sensing due to its potential cost (in terms

of battery usage and communication cost) and privacy considerations. Traditional economic

models generally model these non-cooperative nodes or users as rationally-selfish actors [135]

, who always act for their own interest to maximize its profits. Economic considerations such

as incentives are central to the design of any useful data dissemination schemes and, maxi-

mizing user participation in mobile sensing applications. This is a challenging problem that

has attracted attention from many researchers. Many incentive-aware schemes [192] [168] [33]

have been proposed to for data forwarding in mobile networks with selfish nodes but they do

not consider pricing user’s effort to encourage participation in mobile sensing applications. To

stimulate the participation of mobile users to sense data and forward data generated by others,

we developed fully distributed, joint routing and pricing schemes to incentivize phone owners

in chapter 4, 5 and 6.

5. Reward or punish mobile devices based on their effect on the performance of

the network.

Imagine John is willing to participate in collection and forwarding of the data in order to earn

credits. He is subscribed to a cheap cellular data package. He found out that he can earn more

profit if he sends only his own sensed data through cellular connection than forwarding data

from others. So he informs the network that he don’t have any Wifi-direct to maximize his

profits. This reduces the performance of the network but key question is that will he be able to

get more profit?

Strategic self-interest users are those individuals who try to maximize their profits through
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their strategic actions learned from participation in a system. Strategic self-interest users can

subvert the network behaviour to increase their own profits. Mechanism design [91,146,169] is

concerned with how to make a global decision with desirable properties in systems consisting

of strategic self-interest individuals with private information where misreporting of private

information can effect the functioning of the system. Recent theoretical work [152, 179] on

distributed Vickrey-Clarke-Groves (VCG) mechanisms enables the faithful implementation of

algorithms producing desired outcomes in a distributed way. VCG discourages manipulation of

the system by charging each individual the harm they cause. However, these approaches focus

on deterministic rather than stochastic systems, therefore cannot be applied in highly dynamic

WSN-MP scenario. We used mechanism design to develop a fully distributed taxation scheme,

which can provide subsidy or impose tax on mobile users based on their positive role. Our

scheme discourage mobile users, who can subvert the network behaviour to increase their own

profits in chapter 6.

1.3 Our Approach

Although few existing work for Mobile WSNs can be applied to WSN with Mobile Phones

(WSN-MP), but most of them are either practical work based on heuristic approaches with-

out performance guarantees, or theoretical approaches with unrealistic assumptions and high

complexity. This thesis aims to bridge the gap between theory and practice for data forward-

ing in WSN-MP and to develop fully distributed algorithms and protocols, guided by both

quantitative insights gained from mathematical theories and the practical principles of real

WSN-MP.

Also, from recent research, it is apparent that the design of a generic adaptive scheme for sensing

and data forwarding leveraging the ubiquity of mobile devices can be challenging. Therefore,

many individual application oriented or characteristic oriented design solutions exist. With the

popularity of mobile phone sensing applications and initiatives like smart cities, cyber-physical

systems, it is envisioned that many sensing applications (e.g, environmental monitoring [7,156],
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smart transportation [184], social sensing [35]) will use mobile phones to sense or transmit data

simultaneously. Therefore, we aim to design comprehensive solutions to support multi-users

and multiple applications in a WSN-MP. Another key challenge is to design network algorithms

that are adaptive to various WSN-MP dynamics. In this thesis, we focussed on distributed

approaches, which are more scalable and adaptive to the network dynamics compared with

centralised schemes.

We addressed the challenges and the limitations of the existing work discussed in previous

sections to develop fully distributed sensing and networking algorithms for WSN-MP based on

the application of coupled communication networks and socio-economic behaviours of people.

1.4 Contributions of This Thesis

The broad aims of this thesis are to develop efficient distributed algorithms for network problems

in WSN-MP. Specifically, we addressed three kinds of WSN-MP.

1. WSN-MP with mobile phones to collect data from static WSN in chapter 3 reffered to as

WSN with Mobile Sink (WSN-MS).

2. WSN-MP with mobile phones to relay data from static sensors to sinks in chapter 5

reffered to as WSN with Human Relay (WSN-HR).

3. WSN-MP with mobile phones to sense and relay the data to the sinks in chapter 4 and

6 reffered to as Mobile Phone Sensing System (MPSS).

This thesis makes the following contributions to the state-of-the-art:

• Chapter 3 studies ubiquitous sensor data collection in large-scale WSNs with mobile sinks.

Based on queuing analysis theory, a novel routing metric, called CA-ETX, is proposed to

estimate the packet transmission delay caused by both link unreliability and intermediate

connectivity. By integrating CA-ETX into Lyapunov optimisation theory, a throughput-

optimal data collection algorithm is then developed. Testbed experiments and extensive
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simulations show that the proposed algorithm can achieve much better performance than

current state-of-the-art approaches, in terms of energy consumption, end-to-end delay,

scalability, and sensitivity to sink movement speeds. In addition, CA-ETX can work

seamlessly and synchronously with the well-known routing metric, ETX [49], illustrating

that existing ETX-based routing protocols, such as the de-facto TinyOS routing standard

CTP [72] and IETF IPv6 Routing Protocol RPL [11], can be easily applied to WSN-MSs,

using the CA-ETX.

• Chapter 4 develops a network architecture to provide a cost-effective networking service

for ubiquitous mobile phone sensing, where mobile phones are used to sense and relay the

sensor data to the sink. A joint pricing and routing scheme is proposed to support both

real-time and delay-tolerant mobile sensing applications through the seamless integration

of cellular and short-range communications of mobile phones. By trading mobile sensor

data in a virtual free market, this scheme provides an incentive system for phone owners,

while achieving network throughput optimality and minimizing phone users total costs

in terms of their 3G budget and battery levels.

• Chapter 5 proposes a sensing paradigm for ubiquitous sensing, where mobile phones are

used to relay the sensor data from sensor nodes to sinks. By exploiting underlying social

and economic networks in context of human relays, a socio-economic aware data forward-

ing scheme is designed. A novel data forwarding metric, Sink-Aware (SA) centrality, is

proposed to measure the potential sensor data forwarding ability of mobile relays. By

combining complex network theory and wireless sensing, a distributed algorithm is devel-

oped for joint rate control, opportunistic routing, and resource pricing. This algorithm

not only maximises global social profits, but also manages to incentivize selfish phone

users to participate.

• Chapter 6 develops a cost-effective data collection solution and faithful market design

for MPSS. It considers mobile phones to sense data and also relay sensed data, using

hybrid cellular and opportunistic short-range wireless communications. An adaptive and

distributed algorithm OptMPSS is developed to maximize phone user financial rewards ac-
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counting for their costs across the MPSS. Based on distributed mechanism design theories,

BMT scheme is proposed to incentivize phone users to faithfully implement OptMPSS,

by imposing taxes or providing subsidies for each phone user. Experiments with Android

phones and trace-driven simulations demonstrate that this approach manages to improve

the system performance significantly while confirming that our system encourage the

faithful implementation of BMT.
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Chapter 2

Background

Network technologies in the last decade have revolutionized the ways in which persons and

large organizations communicate and exchange information among themselves and organize

their activities. In the near future, we will observe another revolution that includes surveillance

and control of the physical world.

Wireless Sensor Networks (WSNs) are a new class of distributed system, that are an integral

part of the physical space they inhabit. Unlike most systems, which work primarily with data

created by humans, sensor networks capture the state of the environment around them. This

bridge to the physical world has captured the attention and imagination of many researchers,

leading to a broad spectrum of ideas, from environmental protection to military applications.

Future wireless sensor networks are envisioned to consist of hundreds or thousands of sensor

nodes communicating over a wireless channel, performing distributed sensing and collaborative

data processing tasks for a variety of vital applications. Such sensor networks will improve the

safety of our buildings and highways, enhance the viability of wildlife habitats, shorten disaster

response times, and contribute in many other vital functions. We can imagine ad hoc sensor

networks deployed for various kinds of applications, providing continuous and spatially dense

observation of biological, environmental and artificial systems.

Traditional WSNs consisted of large number of nodes sprinkled over an area of interest. They

14
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were initially also termed as Smart Dust [100] due to their small size and high density . The

nodes are equipped with limited battery, which makes energy a scarce resource in these net-

works. All the nodes in WSNs collect data from the surroundings and send it to base-station

node typically through multi-hop routing algorithms. High density of the nodes in the network

area is necessary for multi-hop forwarding as the transmission range of the low powered nodes

is not enough to communicate with the other nodes at long distance.

Urban Sensing Systems come to complement previous efforts to deploy wireless sensor networks

to sense our environment, providing a vision for smart sustainable cities. To this end, there have

been many initiatives that involve wireless sensing, cyber-physical systems and the Internet of

Things (IOTs).

The work in this thesis deviates from this traditional WSNs in the sense that it focuses on

sensor networks with mobile nodes. Specifically, we investigate WSNs with Mobile Phones

(WSN-MP) in this thesis. A similar direction has been already taken by other researchers.

This chapter briefly introduces the necessary background related to the main work presented

in this thesis. In this chapter we discuss the general motivation of mobile WSNs in section

2.1, we analyze the characteristics of WSN-MP in section2.3. Opportunistic data forwarding

approaches related to our work are presented in section 2.4. We defer the analysis of the state-

of-art topics particularly related to our contribution to the corresponding chapters, as well as

clear definitions of the terms and symbols used.

2.1 Mobility in WSNs

In many application scenarios of Wireless Sensor Networks, the deployment of some or all

mobile nodes is possible and it can greatly enhance the utility and functionality of network.

There are many ways mobility can benefit the system.

• The mobility of nodes is the functional requirement of various WSN applications, for

instance in exploration or monitoring of moving entities. In many systems, mobile sensors
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are attached to animals, humans and moving assets. Similarly, autonomous robots could

be of great use in search and rescue missions. ZebraNet project [98] is one of the examples,

where sensors were mounted on zebras to understand the migration pattern of Zebras.

CargoNet [134] is another platform designed to monitor goods and freight activities.

Environmental monitoring using unmanned aerial vehicles (UAV’s) [14] and vehicles [89]

is another representative example of mobile WSN’s.

• The mobility of nodes can also help to improve the performance and overcome the short-

comings of static sensor networks. Mobile nodes can be deployed to reduce infrastructure

costs such as installation costs and maintenance costs. Mobile nodes can respond to

dynamic conditions and requirements by rearranging themselves to optimize the perfor-

mance goals of the network such as connectivity, coverage etc. [17,70] address the solutions

to the coverage problem using mobile nodes.

• The mobility of nodes can also optimize utilization in resource constrained systems. In

sparse or disconnected networks, mobile nodes can visit static nodes and collect data

using one-hop transmissions. Data mule approach presented in [94] focuses on ensuring

the connectivity in the sparse networks by providing another layer of mobile nodes for data

retrieval from the disconnected sub networks or different clouds of nodes. For underwater

WSNs, [25] determines an optimal collection path for autonomous underwater vehicles

(AUVs) to collect maximum information from sparse nodes and deliver it to sink.

• Mobile nodes or sinks can be relocated to balance energy consumption in the network.

Relocation also reduces the funnelling effect for the nodes near the sink [16]. Studies have

shown that the mobile nodes significantly reduce energy consumption and increase the

lifetime of the network [131, 191, 196]. [26] used a distributed approach to maximize the

lifetime of WSNs through controlling and coordinating mobility of multiple sinks.

Furthermore, mobility can be used to increase the overall throughput of a network at the

expense of the delivery delay [52].

The mobility of wireless sensor networks not only provide solution to meet the requirements

of certain applications but also improves the performance of networks. In our work, we have
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focused on using mobility to collect and relay data in sensor networks. The deployment of mobile

nodes is feasible and useful in many application scenarios in urban environment, ranging from

the environmental monitoring and public safety applications, to the industry, healthcare and

vehicular applications.

In chapter 3 we study how to improve the delay and throughput performance for delay-tolerant

data collection applications in Wireless Sensor Networks with Mobile Sinks (WSN-MSs) whereas

chapter 4, 5 and chapter 6 focus on leveraging human mobility for sensing and data forwarding.

In the next sections, we focus on WSNs with mobile nodes and Mobile Phones. We also present

various challenges brought about as a result of introducing mobile nodes in the network.

2.2 Data Collection in WSNs with Mobile Nodes

In WSNs with mobile nodes, mobile nodes are used to collect data from static sensor nodes. A

sensor node can either send data directly to a mobile node as it passes by or it can send data

vial local multi-hop routing to other static sensor nodes who currently have contact with, or

who have better chance to be in contact with mobile node in the future.

Data Collection in WSNs with mobile nodes can be divided into these sub-problems.

1. Mobile Node Discovery

2. Data Transfer to Mobile Node

3. Local Multi-hop Routing

2.2.1 Mobile Node Discovery

A sensor node is required to detect the presence of mobile node in its communication range in

order to transfer data. The discovery protocols aim to detect mobile nodes in less time while

consuming less amount of energy.
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The existing approaches for detection of mobile nodes in WSNs [94] [160] are based upon peri-

odic listening. In these approaches, mobile node sends periodic beacons to notify its presence.

Sensor nodes in the communication range of the mobile node receive the beacon and start

transferring the data. If a sensor node do not receive any beacon message, it goes to sleep.

Discovery parameters and duty-cycle needs are defined [18] to ensure the discovery of the mo-

bile node is independent of the duty-cycle scheduling of the sensor node. These approaches

are not optimal as they do not define the solution for timely detection of the mobile node in

duty-cycled networks.

The information about the mobility of the mobile nodes can be taken into the account for

timely discovery of the mobile nodes.

Mobile node discovery becomes more challenging, when mobility is unpredictable or network is

duty cycled. In [99] a framework for energy-conservation is presented which uses the mobility

pattern of the mobile nodes for discovery in opportunistic networks. In [101] simple periodic

wake up and sleep scheme is used for discovery and stop-and-wait protocols are used for data

collection. Another scheme use controlled mobility in [170] and strict mobility patterns for

mobile node discovery.

The architecture presented in [94] considers the Mules, which are not controlled and move

randomly in the area. It addressed both discovery and data transfer phase and evaluates

different mobility pattens. This approach considers duty-cycle operation of the nodes but it

does not present any specific MAC protocol for data transfer.

A window based ARQ transmission scheme is studied in [20] and [19] which shows better

results than stop-and-wait protocols but it does not considers the effect of discovery phase

on subsequent data-transfer phase. In [114], the model is presented to derive overall energy

efficiency considering the combined effect of discovery and data transfer phase which considers

simple asynchronous scheme for discovery and ARQ based protocol for data transfer.
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Prediction of Mobile Node

The prediction of the time of arrival of the mobile node is relatively an unexplored area. To

discover the mobile node immediately when it enters in the communication range can be done

by predicting the time of arrival of the Mule. If the prediction is absolutely correct, data

transfer phase can start immediately after the arrival of mobile node in the communication

range.

The prediction of arrival time is simple if mobile node is travelling along a pre-defined trajectory

with fixed speed. The nodes can calculate the arrival time from the speed of mobile node and

length of the path (distance). The predictable mobility of mobile node is used to reduce

energy consumption in [28] and [99], where sensor nodes sleep until next expected arrival of

the mobile node. The scheduled wake up of the nodes is possible because the sensor nodes

have correct information about the time of arrival of mobile nodes. These approaches assume

strict synchronization of the nodes and a strict scheduling of the mobile nodes which is usually

difficult to hold unless we assume controlled mobility.

The approach of using multiple radios can be used to find accurate information about the time

of arrival of mobile nodes in duty-cycle WSNs. One low-power radio stays awake to detect

the mobile node and another high-power radio operates on its duty-cycle to transfer the data.

When the low power radio receives the beacon from the mobile node, it wakes up the sensor

node and the node transfers the data using high-power radio. Another approach is to use wake

up messages sent by mobile nodes which have enough power to generate an interrupt at the

sensor node. The interrupt can wake up the sensor node and start sending the data. These

approaches require special hardware which is not generally available for commercial solutions

for WSNs.

Mobility Models

The analysis of different mobility models plays important role in the study of mobile networks.

In opportunistic networks, mobility models are very important, because mobility is an integral
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part of the network to deliver the messages. Contact time (The time spent by mobile node in

the communication range of a node) and inter-connect time (time in which no mobile node is

in the communication range of the node) can be calculated by using mobility models which can

be helpful for the efficient design of routing techniques.

The mobility of the mobile node can be controlled or uncontrolled depending upon design of

the network. In controlled mobility, the motion of mobile node can be used to design efficient

data transfer protocols because the trajectory and speed of the mobile node can be controlled.

This reduces the complexity of mobile node discovery because mobile nodes can be scheduled

to visit certain nodes at specific times. Furthermore, mobile nodes can stop to collect data

until a node empties its buffer. The different approaches for optimal scheduling of the mobile

nodes under controlled mobility are studied in [174] and [175].

Uncontrolled mobility can be divided in to deterministic and random mobility. In the determin-

istic mobility, mobile nodes enter in the communication range of a particular node at specific

or periodic times. The Buses or trains acting as mobile nodes usually represent deterministic

uncontrolled mobility pattern. Study the traffic pattens of Bus-based networks is presented

in [194] and [208] and they used the information about mobility for efficient communication

between the nodes mounted on the Buses.

In random mobility pattern, the contacts of mobile nodes with sensor nodes do not take place

regularly but with some distribution probability. [12] provides a close approximation for Ran-

dom Waypoint (RWP) and Random Direction (RD) mobility models under typical opportunis-

tic network settings. They calculated the contact time Tc for the RWP and RD model as

Tc =
πr

2v

These results assume that speed of the mobile node v does not change and the radio range of the

sensor node r << a where a is the width or diameter of network area. Similarly inter-connect

times are approximated using exponential distribution in these models. The study of mobility

models can be used for the efficient discovery of the mobile nodes by increasing the duty-cycle
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of the nodes in the communication range of mobile node to 100 % before expected arrival of a

mobile node.

MACs

The optimization of MAC protocols remain a very important area in wireless sensor networks.

Researchers have proposed many MAC protocols for wireless sensor networks depending upon

the nature of the network and applications. MACs can be broadly categorized into synchronous

and asynchronous. Synchronous protocols assume that nodes in the network are synchronized.

Basic protocols like S-Mac [201] periodically listen and sleep at its scheduled time. Some

improvements are made in [178] [202] [176] . Asynchronous MAC’s do not require nodes to be

synchronized and more flexible towards traffic patterns and duty cycles. In Preamble based

asynchronous MAC’s [30] [187], sender sends a preamble message to the intended receiver and

starts sending the data after recieving acknowledgement from the receiver. The other type of

Asynchronous MAC’s is receiver initiated. In receiver initiated MAC’s such as RI-MAC [177]

and O-MAC [37], the receiver node informs the sender when it is ready to receive data and

sender start sending the data.

The existing approaches [18] uses the basic asynchronous protocol to discover the arrival of mo-

bile node. The mobile node sends periodic beacons continuously and sensor nodes periodically

wake up to listen to the beacon.

2.2.2 Data Transfer

Once the mobile node is discovered by the sensor node, data transfer phase starts immediately.

The amount of data that can be transferred to the mobile node after the discovery phase is a

random variable and it depends upon factors such as communication range of the node, speed

of the mobile node and data communication rate. Data transfer protocols aim for efficient uti-

lization of the remaining contact time by maximizing the total number of messages transferred

and minimizing the energy consumption during data transfer phase.
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Efficient utilization of contact time

In the model presented in [94] the amount of data K which can be transferred can be given by

K = CT ∗ B

where CT is contact time in which mobile node is in the communication range of a node and

B is radio transfer rate. Average contact time CT can be computed as

CT = (
π

2

r

v
)

where r is the radio range of the sensor node and v is velocity of the Mule.

There requirement of efficient data transfer protocol to transmit data from the nodes to the

mobile node has been discussed in many approaches . Opportunistic Aloha MAC [188] is a

protocol specifically designed for wireless sensor networks with flying vehicles as mobile data

collectors. Simple ARQ-based data transfer protocol is analysed in [20] and Adaptive Data

Transfer (ADT) protocol is proposed which adjusts communication parameters based upon

previous history.

Multiple Mobile Nodes

The approach of using multiple mobile nodes in WSN is studied in [95]. The use of multiple

mobile nodes can be due to the the high density of the nodes in an area where buffer size of the

relay node is filled before a mobile node arrives again to collect the data. The total number of

mobile nodes required can be given as [95]

Required number of mobile nodes

= BufferFillTime/RTT
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where RTT is round trip time of the mobile node.

Also, the QoS requirements of the application such as latency can lead to deploy more mobile

nodes in the network. If there are multiple mobile nodes in the transmission range of a sensor

node at the same time, the sensor node can choose the mobile node depending upon their

direction, expected contact time or signal strength. Data-delivery to more than one mobile

nodes simultaneously is discussed in [21] , where sparsely deployed nodes transfer the blocks

of data to multiple mobile nodes. Hybrid Interleaved data transfer protocol (HI) is presented,

which uses encoding techniques to improve data transfer by adding redundant information in

the source data.

Speed of the Mobile Nodes

The speed of the mobile node plays an important role in the data transfer phase. If the the

speed of the mobile node is fast then the contact time will be less and it may not be possible

for a sensor node to transfer its data. On the other hand slow moving mobile nodes can cause

the overflow of the buffers of the sensor nodes because its round trip time (RTT) increases

and RTT must be less than time taken by node to fill the buffer. The objective is to find the

optimal speed such that contact time is enough to transfer the data and RTT is minimum. This

problem has been studied in [174] and [175] through controlled mobility. They have formulated

the data collection in wireless sensor networks as a scheduling problem with location and time

constraints.

Overhead of Control messages

The contact time in which a mobile node is in the communication range of the sensor node is not

fixed. Therefore, a sensor node has to constantly monitor if the Mule is still in communication

range. In most of the approaches like [114] [21] , which use the ARQ based protocol for data

transfer, Acks received from the mobile nodes confirm the presence of the mobile node in the

communication range of sensor node. Sensor node assumes that the mobile node is no longer



24 Chapter 2. Background

in the communication range if some pre-defined number of Acks are not received. Sensor node

then switches to normal duty-cycle and waits for the discovery of mobile node.

The RTS/CTS (CSMA/CA )packets are used to avoid collisions in the dense networks. The

sparse networks, in which we can assume only one node in the communication range of the

mobile node and vice versa at a given time, the RTS/CTS messages can be avoided. In the

dense networks, RTS/CTS messages can decrease the efficiency of data collection by mobile

node since the size of these control packets is significant. The other protocols e.g., receiver

initiated can decrease the control message overhead.

2.2.3 Local Multi-hop Routing

Depending upon the nature of applications and the terrain, it may not be feasible for mobile

node to reach in the communication range of each sensor node in the network. The sensor

nodes which are deployed near to the trajectory of mobile node can sent the data directly to

the mobile node when it passes nearby. These sensor nodes which are in the communication

range of mobile node act as relay nodes. The nodes which are far from the trajectory of the

mobile node send the data to the relay nodes, which buffer the data collected from the neighbour

nodes and forward it to mobile node, when it passes by.

Traditional multi-hop approaches in wireless sensor networks try to find the best path between

source and destinations. The best path can be based on simply the number of hops to the

destination or combined with other factors which can contribute in energy consumption of the

network such as ETX (expected transmission count) [47] and RSSI (Received Signal Strength

Indicator) [9]. This best path reduces the consumption of the energy and increases the life

time of the network. WSNs with mobile nodes can use these approaches to build local trees

in the network with each Relay node acting as local sink for the nearby nodes. Simple routing

approaches e.g., Directed diffusion [90] or tree based approaches e.g., CTP [73] can be used to

forward data from the sensor nodes to the Relay nodes via best path.

In WSNs with mobile nodes, the shortest path to the mobile node can change with the time
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because the movement of mobile node changes the destination of the data constantly. When

there are more than one mobile nodes in the network, this problem becomes more challenging.

If the trajectory of the mobile node can be predicted than We can compute the time of arrival

of mobile node at certain point based upon its speed. This can lead to optimal design for

multi-hop routing of the data to the mobile node with shortest path routing.

Path discovery

In WSNs with mobile nodes, mobile nodes can either follow a pre-determined route or they

can move randomly in the network. Some approaches like [101] [170] assume that mobile node

is moving along a predefined path. Similarly, [170] and [95] assumes that the motion of the

mobile node can be controlled. When the movement of the mobile node is pre-determined or

controlled, the base station can broadcast this information to all the nodes. If another mobile

node is added to the network, updated path information can be sent again by the base station.

If the base station do not have the path information, mobile node traverses the path in the

start-up phase of the network. During this traversal, mobile nodes do not collect any data

from the sensor nodes. The sensor nodes, who detect the mobile node, become relay nodes and

announce it to the neighbour sensor nodes. The relay nodes act as the mini-sinks for the sensor

nodes which are far from the trajectory of the mobile node. Many approaches are present in

the literature which address the routing from the nodes to relay nodes [65] [189].

The approach of Data-stashing [115] is proposed for energy-efficient data delivery to mobile

nodes through trajectory prediction . Data is stashed along the predicted trajectory of the

mobile node instead of routing directly to the mobile node at its current position. Using

previous history of trajectory, cluster matching and alignment is applied to predict the future

trajectory and optimal relay node is found by linear programming.
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Load Balancing

Traditional wireless sensor networks suffer the problem of unbalanced load on the network. The

nodes near to the sink die quickly because they all the data from the network passes through

them. Many approaches consider the use of multiple sinks to balance the load on the network.

Similarly data aggregation is used in few approaches to reduce the data to be sent to the upper

levels of the hierarchy.

This problem also exists in WSNs with mobile nodes, which uses local multi-hop routing to

send data to the relay nodes. The relay nodes become the hotspot and the consumption of the

energy of the relay node is higher than the other nodes.

An approach for the collection of the data is discussed in [95] which uses multiple mobile nodes

to balance the load on the relay nodes. The sensor nodes which are part of the tree of two

or more relay nodes can decide to choose the path based upon the number of children of each

relay node.

Data balancing is also important due to the limitation of the buffer size of relay nodes. If a

relay node receives data from a large number of sensor nodes, its buffer will be filled in small

time. if the Round Trip Time (RTT) of the mobile node is greater than BufferFillTime then

the data will be lost. In controlled mobility, RTT is give by

(
l

s

)
+ (NumNodes ∗ ServiceTime) +

(
l

s

)

where area of the networks is l*l and s is the speed of the mobile node. ServiceTime can be

computed by

BufferSize/CommunicationDataRate

Multiple mobile nodes can be deployed to avoid overflow of the relay buffers. The optimal

number of mobile nodes is given by RTT/BufferFillTime. Similarly, data can be forwarded to
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the other relay nodes if the buffer becomes full to avoid data loss.

2.3 WSNs with Mobile Phones (WSN-MP)

Sensing is a crucial component for smart infrastructures, which can monitor themselves au-

tonomously and make intelligent decisions to operate effectively. Traditional sensor networks

consisted of ubiquitous placement static nodes to capture and report the state of the environ-

ment around them. For these approaches to be effective, autonomic sensor networks require

large number of specially designed hardware and a communication infrastructure which makes

it expensive and inflexible for future smart cities.

Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, such as smart

phones and tablets, WSN-MP can be seen as the backbone for future urban sensing in smart

cities. As mobile devices can communicate with each other using widely available interfaces,

wifi-direct or cellular communication; therefore, millions of smart phones and devices can be

leveraged to sense, collect and communicate data without the need to deploy and maintain

thousands of static sensors.

The integration of sensing, computing and communication capabilities in mobile devices has

turned them into a cost effective computing and sensing platform. These devices can serve as a

bridge to other devices or generate information about themselves and the environment. These

mobile devices can play different roles in WSN-MP such as

• Sinks to collect data from static networks.

• Data Mules to relay data from sensors to the sinks.

• Sensors to sense data from the environment.

Proliferation of these sensor-rich mobile devices along with collection of ubiquitous sensor nodes

are envisioned to constitute a powerful WSN-MP which can be used to understand and analyse

many interesting phenomena of the physical world as shown in Figure 2.1.
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Figure 2.1: Conceptual illustration of the WSNs with Mobile Phones.

2.3.1 WSN-MP Characteristics

Compared with local-area wireless sensor networks (WSNs) [205] such as smart homes or build-

ings, WSN-MP has the following distinguished characteristics:

• Large-scale and diverse sensing. Different from local-area WSNs that consist of tens

or hundreds of sensors, billions of low-powered and low-cost sensors could be implemented

and connected to the Internet to monitor every interested element in a city. Therefore,

in the future smart sustainable cities, the population of smart sensors is expected to be

larger than that of citizens.

• Heterogeneous data types. Due to the diversity of sustainable city applications and

their potential to require large sensing coverage, sensor data will be of many different

formats; ranging from simple data structures for physical readings (e.g. temperature) to

complex video frames. In turn this data would differ in lifetime, monetary value, QoS

requirements and privacy levels, etc. Such heterogeneity results in much more complex

data processing, storage and networking.

• Huge volumes of sensor data. WSNs are expected to cover small geographic regions

such as smart buildings, and typically consist of tens or hundreds of sensors. In contrast,

WSN-MPs have the potential to monitor every interesting element in a city, and then

relay sensed data to the Internet. As a result, the WSN-MP is predicted to be one of
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the major sources of big data. For instance, the real-time global positioning system data

(GPS) for all the taxis in London would amount to several Giga- or Terabytes of data per

second. Transmitting large volumes and high frequency data from sensors to the Internet

poses great challenges to the current communication infrastructures.

• Challenging wireless networking. Current wireless technologies especially WiFi and

3G/4G cellular have successfully provided wireless data traffic. However, will with fun-

damental information-theoretic limitations (e.g. [77] ), it is still questionable whether

the future wireless technologies will be able to support cost-effective networking service

for transmitting huge volume of sensor data resulting from the proliferation of sensing

systems.

• Social and economic awareness. In a WSN-MP, sensors can belong to different or-

ganizations (e.g. logistics companies, context aware services etc), public bodies (e.g. the

meteorological office, city council, utilities companies etc.) or individuals (e.g. mobile

users, asthma sufferers concerned about pollutants etc.). There will not be a one size

fits all approach to the design and deployment and moreover integration of future sens-

ing systems. Therefore a system is required that adapts, taking account of the different

social and economic motivations of customers and service providers. There is a need to

better understand what incentives, data and resource pricing schemes are required, as

well as comprehending market design issues. This knowledge can be used to maximise

the performance of the system and at the same time optimize its quality of service to all

its customers.

In this thesis, we focus on how to design networking services for WSN-MP considering the fore

mentioned features.

2.3.2 Mobile Phone Sensing in WSN-MP

In this section, we present a brief review of current mobile sensing research. For recent com-

prehensive surveys, we refer the reader to [64, 104, 110].
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Mobile Phone Sensing at Different Scales

According to different sensing scales, mobile phone sensing applications can be categorized into

personal sensing, community sensing, and public sensing, where:

• Personal Sensing applications focus on monitoring different aspects of the personal

life of individuals and collects information about their activities. The sensor data for

such application is private, or may be shared only with highly trustworthy entities. For

instance, healthcare applications share data with medical professionals to provide nec-

essary support in case of emergency. SPA [165] is an example of personal sensing

application, which is smart phone assisted health care self management system. SPA

consist of body area sensor network that collects biomedical and environmental data and

send it to remote server for analysis and feedback from healthcare professionals. Nike+

(http://nikeplus.nike.com/plus/) is another example of personal sensing which tracks dis-

tance, pace, time and calories burned by the user during a run or walk.

• Community Sensing makes use of collaborative sharing within a group of phone users

who are interested in common goals or a purpose. In community sensing, systems collect

and share information between phone users, their friends and social groups, which can

promote interaction among people and improve the efficiency of organizing social activi-

ties. For instance, CenceMe [136] allows members of social networks to share data such

as current activities or location within a group to allow implicit communication between

friends.

• Public Sensing applications collect rich and heterogeneous data from a large number

of people, which can be mined for a variety of purposes to aid decision processes. Phone

user’s participation is the heart of all public mobile sensing applications where data can be

shared, and can return collective benefits. CarTel [89] is such a public sensing application

which collects data from users for traffic mitigation, road surface monitoring and hazard

detection.
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User’s Participation in Mobile Phone Sensing

The participation of the general population in data collection and analysis has led to a com-

putational paradigm shift known as crowdsourcing. Mobile crowdsourcing can be seen as a

distributed approach to solve a complex problem leveraging the participation of a large group

of individuals with mobile devices. Defined by awareness of phone users, mobile phone sensing

can be classified into two different sensing paradigms: participatory sensing and opportunistic

sensing.

• Participatory Sensing. requires active participation from the phone users in terms of

collecting and sampling the data. (e.g. manual entry of lowest prices or deals for goods or

taking a picture). In participatory sensing, the phone user has complete control regarding

the contribution of the sensed data which makes it more meaningful and less personal

but places a considerable burden on the phone users. MobiShop [164] is a people-centric

participatory sensing application, which shares prices of products amongst users. The

users use mobile phone camera to capture digital image of store receipts.

• Opportunistic Sensing. shifts the burden of tasks from the phone users to the back-

ground sensing system and applications can sense and collect data without active partic-

ipation of the user (e.g. periodic collection of light readings, location information etc),

which makes it more suitable for community/public sensing. Along with the benefits

of opportunistic sensing, the opportunistic model introduce many challenges. As users

do not directly control the data sharing, privacy of the users remains a major concern.

Another challenge is design of incentive schemes, which can persuade users to contribute

data in sensing system. Nericell [138] is an example of opportunistic sensing, which use

GPS and accelerometer sensors of the phones to detect and locate road bumps.

In our work, we consider multiple kind applications at different scales co-existing in WSN-MP.

Such applications are envisioned to play a more important role in urban sensing, where one

wishes to better understand large-scale phenomena through each citizen’s collaboration. These

mobile sensing applications will require the communication of a huge amount of data but traffic



32 Chapter 2. Background

in the cellular network is already congested and it is predicted to grow at a very fast rate. For

example, Cisco predicted that globally, Compound Annual Growth Rate (CAGR) of mobile

data traffic will be 66 percent between 2012 and 2017, reaching 11.2 exabytes per month by

2017 [44]. Similarly, Ericsson [71] have predicted that mobile data traffic will grow 15 times

by 2017. Off-loading delay-tolerant data to low(or free) cost, short range communication can

release the burden on cellular networks. In chapter 4 , we have proposed a cost-effective solution

which can meet the demands of heterogeneous mobile sensing applications while reducing the

cellular traffic.

2.3.3 Communication Paradigms for WSN-MP

In a WSN-MP, sensors or mobile devices can transmit its sensor data to the Internet by using the

following three communication paradigms: one-hop E2E (end-to-end) communications, multi-

hop E2E communications, and opportunistic communications [45,151] . This section discusses

the advantages and disadvantages of using above three communication paradigms in WSN-MP,

in terms of cost and performance. A brief comparison of the three communication paradigms

are summarized in Table 2.1.

Paradigms QoS sup-
port

capacity delay privacy monetary
cost

energy
efficiency

One-hop E2E good low low good high high
Multi-hop E2E moderate moderate moderate moderate high low
Opportunistic poor high high poor low low

Table 2.1: Comparison of one-hop E2E multi-hop E2E, and Opportunistic communication
paradigms.

One-hop E2E Communications

One-hop E2E (End-to-End) communication means that a sensor node can send its sensor data

over a one-hop wireless link to a sink. Sinks are generally equipped with wired Internet access

capacity, such as the commonly-used WiFi router and cellular base-stations. Due to the one-

hop wireless communication and the mature WiFi and cellular technologies, this communication
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paradigm performs well in QoS guarantees, low E2E delay, and high reliability. However, using

one-hop wireless connections for billions of sensors in the future WSN-MP suffers from many

critical problems, which can be categorized as follows:

• Long-range one-hop E2E Communications.

Todays cellular networks nearly cover every corner of cities. However, although the wire-

less spectrum efficiency is continuously improving, the wireless bit rate (or channel ca-

pacity) is bounded by the Shannon limit and wireless interference among long-range

transmissions [77]. As a result, the wireless bandwidth will still be a scarce and expensive

resource in cities consisting of huge number of wireless devices in the future. Emerging

technologies (e.g 5G) will further increase the traffic for this limited bandwidth. Due to

the explosion of sensor data in the future cities, transmitting sensor data may be more

expensive than the worth of sensor data to the WSN-MP. In addition, long-range trans-

mission requires high transmission power, which aggravates the energy scarcity of the

low-cost sensor node. For longer deployment lifetime, the more expensive sensor nodes

would be required, which have larger-capacity battery or more complex embedded system

for energy harvesting [163].

• Short-range one-hop E2E Communications.

To overcome the high power consumption required by long-range communication, short-

range E2E communication is used to send data directly to the sinks ( WiFi router or

IEEE 802.15.4 gateway) through single-hop transmission. Due to the short communica-

tion range, a large number of sinks are required to guarantee the large sensing coverage

requirement, resulting in high cost of deployment.

Multi-hop E2E Communications

In multi-hop E2E communication, a sensor node can transmit its sensor data to the sink

along a wireless path consisting of other sensors or wireless devices. In the past decades,

WSNs with tree-based and mesh-based multi-hop topologies have attracted the most attention
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of both researchers and engineers. Numerous protocols, algorithms, and applications have

been developed to improve the sensing efficiency and network lifetime for multi-hop connected

networks with IEEE 802.11 and 802.15.4 wireless radios. Today, during the evolution from

WSNs to IoT, many efforts are still focusing on supporting this paradigm such as the IETF

IPv6 Routing Protocol for Low-power and Lossy Networks (RPL [182] ) and applying IPv6

over IEEE 802.15.4 standard (e.g. packet head reduction) by the IETF IPv6 over Low-power

WPAN (6LowPAN) working group.

The increasing number of real-world WSN implementations has shown the advantages of the

multi-hop E2E communication paradigm in local-area networks. However, for WSNs that

requires large-sensing coverage, this paradigm would suffer from the following scalability issues:

• Poor performance and limited lifetime:

Due to the small transmission range of the low-power wireless radios, sensors far away

from the sinks have to transmit its sensor data over many faulty and lossy wireless links

to the sinks resulting in large delay. In addition, the nodes close to the sink would

run out of their batteries fast and become congested as they have to forward the data

traffic produced by every sensor node in the network to the base station. As a result, it

is very difficult to provide sustainable and reliable networking services to real-time and

bandwidth-consuming applications.

• Flexibility and deployment cost.

The deployment topology of an E2E multi-hop sensor network should take both sensing

and communication in to account.For example, more important monitoring area should

deploy large number of sensors and bottleneck should be avoided for load balancing. For

large networks, it would be even prohibiting to make the tradeoff between sensing and

communication efficiencies, resulting in additional cost caused by redundant sensors.
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The Emerging Opportunistic Communication

Opportunistic communication [45, 151] is an interesting evolution from Mobile Ad hoc Net-

works (MANETs) and from Delay Tolerant Networks (DTNs). Opportunistic communication

enables communication in intermittently connected mobile networks, where the instantaneous

E2E(end-to-end) path between a node pair may be absent due to the sparsity of the network

or disconnection between connected sub-networks. In city scenarios, WSN-MP can use Op-

portunistic communication to leverage the prevalence of mobile nodes (e.g. public transport,

cars, and individuals) and short-range wireless communication of sensors and mobile devices

(e.g. the WiFi Direct radio on smart phones). Sensor data produced by either static sensors or

mobile devices can be sent to a static sink (e.g. WiFi router) through other mobile relay nodes

in a carry-and-forward pattern.

In comparison with E2E (End-to-End)communications, the major advantage of exploiting op-

portunistic communication paradigm is its flexibility (consider sensing efficiency for deploy-

ment topology), low cost (sparse sensor deployment and ubiquitous smart phone sensors), and

network throughput [76] (suitable for huge volume of urban sensor data). However, this com-

munication paradigm suffers from large delay as well as poor reliability.

In our work, we have exploited opportunistic communication to leverage the prevalence of mo-

bile nodes (e.g. public transport, cars, and individuals) and short-range wireless communication

capabilities of sensors and mobile devices (e.g. the WiFi Direct radio on smart phones). In

chapter 5 we study to exploit human mobility in a hybrid sensor and mobile phone network,

where we used opportunistic short-range wireless communications between mobile devices to

collect and forward data from static sensor nodes to the sink.

2.4 Opportunistic Data Forwarding

Direct Delivery (DD) [76] is the most naive approach for opportunistic forwarding, where a

message is delivered only when a source node meets the destination. A message is dropped if
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its Time To Live (TTL) expires before encounter with destination. Direct delivery is low-cost

but it represents the worst case in terms of delivery ratio and delay.

In flooding based algorithms, multiple copies of each message are replicated in the network.

In Epidemic forwarding [186], each node sends a copy of the messages in its buffer to every

encountered node. Epidemic forwarding guarantees the maximum delivery ratio and finds the

delay-optimal path; but it is considered worst in terms of communication costs and storage

overheads due to multiple message copies being injected into the network. In Two-Hop-Relay

[76], source node sends a message either to the destination or replicates the message to one

randomly selected encountered node. Therefore, message forwarding is limited to two hops to

reduce message copies on the expense of delay. Spray-and-Wait [171] allows several replicas per

message by allowing source and intermediate nodes to replicate (spray) messages to a set of

random encountered nodes. In WSN-MP with a huge volume of data, flooding based algorithms

suffer from high cost due to the replication of messages.

Knowledge based schemes exchange the information among nodes to make intelligent forward-

ing decisions. In Seek-and-Focus [171], a node randomly forwards a message to an encountering

node in seek phase. When a node encounters another node with a more recent encounter time

to destination, it shifts to focus phase and the message is forwarded to a better candidate node.

In PROPHET [125], each node maintains a delivery probability vector based on previous en-

counters with other nodes . When two nodes encounter each other, they exchange their delivery

probability vector. Direct encounter probability vector determines the delivery probabilities of

nodes which have never directly encountered each other. MOVE [113] calculates the moving

direction based on the Global Positioning System (GPS) to predict the destination of the en-

countered node. Knowledge based solutions require each node to maintain information about

other nodes, which is not feasible in large-scale WSN-MP, which can envisioned to consist of

millions of nodes.

Few shortest path routing schemes maintain end to end time varying paths for data forwarding.

[50] builds a time varying end-to-end path by estimating the delay between nodes from the

information of past contacts. Another approach [127] focuses on hierarchical routing among
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stationary nodes and other mobile nodes with periodic movement. However, the highly dynamic

nature of WSN-MP make it difficult for shortest path approaches to maintain end-to-end paths.

None of above mentioned schemes consider throughput of the network, which is highly impor-

tant due to huge volume of data in WSN-MP. Backpressure routing [56] is a promising approach

because of it achieves optimal throughput and it is highly resilient to the disruption caused

by dynamic network. Moreover, backpressure does not require to store any information and it

does not compute explicit end-to-end paths. Instead, the routing decision is made based on the

difference of queue sizes between two encountered nodes and their link state information.

Due to fully distributed nature of backpressure algorithms, we focus on developing backpressure

based forwarding schemes for highly dynamic mobile sensing networks. Some previous works

[158,159] use backpressure flow control and routing in disconnected static wireless networks, but

they considered fixed gateways with mobile nodes. In contrast, we focus on networks where

each sensor node could dynamically serve as a gateway at every opportunistic contact with

another node. In addition, Backpressure algorithms suffer from poor delay performance. Several

techniques have been developed recently to improve the delay performance of backpressure

algorithms [82, 83, 197, 206] but they focus on networks with static topologies only, while our

work focus in reducing the delay for mobile networks.

2.4.1 Social-aware Data Forwarding

WSN-MP mainly focuses on utilizing mobile devices for opportunistic data collection in smart

cities. Real time data is sent directly to the sink (cellular base station), whereas human mobility

is leveraged to forward delay-tolerant data through opportunistic forwarding.

Mobile devices are carried by users, therefore social relationships and behaviours of users have

a strong impact on the mobility patterns of the mobile devices. Understanding human mobility

is crucial to design efficient schemes for data forwarding for WSN-MP. By exploring social

relationships, there are many works that exploited mobility regularities of mobile devices, as

well as prediction of contact opportunities for opportunistic data forwarding.
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Recent works about social-aware data dissemination in mobile sensor networks can be divided

into following categories.

Network structure based Forwarding

Community and centrality are popular properties of social network structures which can be

exploited by researchers for opportunistic forwarding in WSN-MP. Human social networks

consist of communities (groups) of nodes (people) based on their social relationships. The

nodes in a community are connected to each other with strong links and communities are

connected to each other via weak links. In addition, some nodes are more central or popular in

a community than other nodes. Communities can be seen as the gateway to the destination of

relevant data and can assist forwarding approaches to locate destinations. Similarly, a central

node can assist the efficient data forwarding inside a community. The movement of the nodes

is driven by the strength of the social links between them. A distributed community detection

method for opportunistic networking applications is presented in [86]. Another framework [180]

is proposed for identification of communities that change with time. In our work, we do not

consider the detection of communities but we exploited characteristics of community-based

social networks for data forwarding.

Node centrality is used as a metric to forward data in SimBet [48]. [61]] used a semi-Markov

analytical model for routing decisions to disseminate data among several communities. Bubble

Rap [85] is another social-aware approach which ranks the nodes within their communities and

in the network for forwarding decisions. These existing social-aware approaches require high

storage and processing capability at a node to handle large amounts of state information by

nodes or processing of complex metrics. In chapter 5, we build on these studies and propose a

social-aware forwarding scheme for opportunistic mobile social networks.
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Mobility Profile based Forwarding

Mobility profile based forwarding avoid the detection of communities and leverage mobility

profiles ( such as mobility models, mobility-patterns, and mobility-prediction techniques) to

decide the best neighbour node for data forwarding.

In earlier work on humans as mobile data collectors, random walk [59] or random waypoint

model [96] were used to describe human mobility. Although these mobility models are often

used in simulations and analytical models of opportunistic networks for their simplicity but in

reality, human mobility is not random and much more complex. Therefore, many recent studies

used the human mobility traces and other relevant information (e.g., personal preferences, social

information) to understand human mobility and to build realistic models. Periodic patterns

of human mobility are identified by many researchers [58, 185]. It was observed that most of

the time, humans visit a few well defined geographic locations (such as homes, office, bus-stop)

within the network and that the popularity distribution of geographic locations follows a power-

law [185]. Many mobility models [207] [106] were derived from these observations to provide

more realistic simulations.

Another approach to build mobility profile is by measuring and modelling pair-wise oppor-

tunistic contacts between mobile devices [87] [102] [34]. Contact time (contact duration) and

inter-contact times (duration between two consecutive contacts) are two important parame-

ters to be considered in order to maximize transfer opportunities using wireless devices car-

ried by humans. Study of pair-wise contacts between wireless devices [87] found heavy-tailed

inter-meeting times and contact and inter-contact times followed power-law. Based on this

analysis, [38] recommended opportunistic forwarding algorithms between mobile nodes.

In chapter 3, we exploit mobility pattern of mobile sinks using contact and inter-contact times

to reduce delays for opportunistic data forwarding.
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Trajectory Prediction based Forwarding

Another approach for data forwarding in mobile networks is based on the trajectory prediction

of mobile nodes. This prediction relies on historical mobility, where nodes store (and update)

information on their identity and meeting history, and use it in a routing metric. Data can be

forwarded along the predicted trajectory of the mobile node instead of routing data directly

to the mobile node at its current position. [108, 115, 193] address trajectory prediction of mo-

bile nodes but incur considerable overhead in computation, storage and initial training time.

Furthermore, prediction schemes suffer from a high error rate.

2.4.2 Economic-aware Data Forwarding

In sensor networks, the routing task is distributed among the participating nodes. Current

routing protocols assume that all the nodes are cooperative and each individual node is ready

to forward packets for others. However, the nodes (e.g. a phone) in an WSNs with Mobile

Phones (WSN-MP) may belong to different users; therefore they may abstain from cooperation

in order to save their own resources (such as battery power which is scarce). Furthermore,

mobile device users in WSN-MP are reluctant to act as packet relays due to privacy concerns,

battery power consumption and potential costs of data communication (3G/4G cost). Such non-

cooperative behaviour by selfish nodes results in the sharp degradation of network performance

in opportunistic systems. Incentive schemes are necessary to promote cooperation among selfish

nodes which can stimulate cooperation, check misbehaviours, and punish selfish nodes.

Recent work on the incentive schemes for WSNs fall into three categories: barter-based ap-

proaches, reputation-based, and credit-based categories.

Barter-based Incentive Schemes

Barter-based schemes or Tit-For-Tat (TFT) strategies are based on the realization of mutual

benefits, where two encountering nodes exchange the same amount of messages.
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Buttyn et al. [32] proposed a mechanism based on the principle of a barter. It allows a node to

download a limited volume of messages from another node if it can provide the same volume of

messages in return. Two neighbour nodes exchange the list of the messages in their possession

and each node decides to trade messages based on its interest. Pair-wise Tit-for-Tat (TFT)

is proposed in [168] to maximize the throughput of nodes. However, the requirement for

exchanging the same amount of messages is can degrade the routing performance dramatically

when there is significant difference between volume of messages of two nodes involved in trading.

In such scenarios, the number of messages exchanged is much lower than messages available in

the network, which results in low network throughput.

Furthermore, a reliable third party is important to monitor the behaviour of nodes in barter-

based approaches. Third party nodes inform the other nodes in the network of their selfish

neighbours. However, due to large covered area, availability of such reliable third party nodes

at all time is not feasible for opportunistic WSN-MP.

Reputation-based Incentive Schemes

In Reputation-based schemes, nodes collectively detect misbehaving nodes and exclude them

from the network by spreading their bad reputation. Each node is assigned a reputation score

that reflects its degree of cooperation. By forwarding packets for others, nodes can earn their

good reputation scores. High scores help nodes to achieve priorities to deliver their packets

across the network.The misbehaviour of a node results in a decrease in its reputation score;

and the node is isolated from the network if its reputation score falls below a threshold [120].

Many different approaches for reputation-based schemes are proposed by authors. In [192] ,

each intermediate node receives a receipt as a proof of cooperation after forwarding a message

to another node. The behaviour of intermediary nodes is communicated by the receiver to

the network through flooding. In RADON [120], forwarding ability of a node is assessed by

integrating the reputation of forwarding data with the possibility of meeting a destination.

Similarly, in IRONMAN [27], each node keeps the record of intermediate nodes and forwarding

records for each message to detect cooperative and selfish nodes.
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Reputation-based incentive schemes work well in WSNs with static and few mobile nodes, where

each node has to manage reputation of few neighbours. However, Reputation-based incentive

schemes are not easy to implement in infrastructure-less and intermittent connection scenarios

due to frequent partitioning and lack of an end-to-end path. It is not feasible for a node to

manage reputation of all possible neighbours in large scale WSN-MP.

Credit-based Incentive Schemes

Credit-based incentive schemes introduce some form of credits or virtual currency to discour-

age selfish behaviour among nodes in multi-user systems. The credit-based scheme was first

introduced in [33] where a node earns credits, by forwarding packets for others. These credits

can then be used to obtain forwarding service from other nodes in the system. The source node

of a packet pays credits to the intermediate nodes which participate in relaying the packet to

the destination.

The concept of credit is the motivation behind several forwarding schemes; that are proposed

to stimulate cooperation among nodes for packet forwarding. In [33], source node awards

credits to intermediate forwarding nodes as an incentive for packet forwarding. However, in

mobile opportunistic networks, it is difficult to estimate the number of intermediate nodes that

would participate in relaying packet to the destination. Therefore, setting an initial credit for

the packet is a challenging problem in these networks. [210] is another credit-based scheme

addressed node selfishness through a centralized credit distribution by the server. Close to our

work is the message trade model [149], where the receiver pays credits to the sender in exchange

of a message in each intermediate transmission. The destination node finally pays for message

forwarding when it receives the message.

Regard-less of the performance of these schemes, none of them are designed for social-aware mo-

bile networks and do not provide any performance guarantees. In our work, we have developed

a distributed credit-based incentive scheme base on free market with performance guarantees

and also exploit social structure and mobility patterns.
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2.4.3 Economic behaviour of users in WSN-MP

In a WSN-MP, mobile phones will belong to individuals with different personal preferences.

Mobile phone users may not be willing to fulfil a WSN-MP task, due to privacy concerns and the

potential costs that would be incurred; impacting battery usage and 3/4G budgets. Therefore,

taking account of the social and economic behaviours of phone users, though frequently ignored,

is central to the success of WSN-MP.

Social Selfishness

Social Selfishness defines the behaviour of users to cooperate only with the selected trusted

users. These trusted users can be friends or peers in a social network. Users may not be willing

to cooperate to the strangers due to their privacy concerns. Routing schemes [56, 122] consider

the concept of Social Selfishness, which describes the willingness of an individual to provide

better service to those with strong social ties than those with weaker social ties.

Rational Selfishness

Rational Selfishness considered in our work means that each phone owner is willing to cooperate

with other users regardless of social ties as long as it can earn profit as a result. Here phone

users relay sensor data as long as he or she can get benefits, which is different form the concept

of social selfishness.

Individual Rationality

To incentivise the users to participate in the network, the property of Individual Rationality

must hold to guarantee profits for each participating user. Individual Rationality ensures that

each phone user should obtain a non-negative net profit as a reward of its participation in the

network.
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Server Profitability

Server Profitability defines the feasibility of the deployment of WSN-MP. It ensures that the

server should not incur a deficit, which means server always earns a non-negative server profit.

Incentive Compatibility

Due to Rational Selfishness, phone user attempt to increase their own profits misreporting their

current state. These actions such as wrong reporting of their costs (i.e., 3G cost) or hiding their

resources (i.e., no Wifi radio) in attempt to earn more profits are considered as cheating. Users

may adopt cheating behaviour to avoid relaying data from others or increasing its own data

rate, that may result in higher individual profit but it leads to inefficient performance of the

network.

Incentive Compatibility ensures that adopting the action suggested by the proposed algorithm

should be the best strategy for each phone user, regardless the action of other users. Therefore,

a user cannot earn more profit through cheating actions, which ensures the optimal performance

of the network.



Chapter 3

Mobility-aware Backpressure

Collection in WSN with Mobile Sinks

(WSN-MS)

In Wireless Sensor Network community, there is currently a movement away from dense and

reliable sensing, toward the implementation of larger numbers of low-powered, low-cost, reduced

precision sensing technologies. The topologies of such networks are variable and pertain to

their application or environment. Some are able to connect to the Internet but this may be

prohibitive in some instances due to high communication costs (e.g. 3G cellular costs) or

poor connectivity. The mobile wireless devices carried by vehicles or individuals in WSN with

Mobile Phones (WSN-MP) provide an attractive alternative and could be used as mobile sinks

to collect sensor data in an opportunistic way. We refer such sensor networks to as Wireless

Sensor Networks with Mobile Sinks (WSN-MSs) in this chapter.

Due to the requirement of mobility prediction and the lack of focus on delay and through-

put performance, state-of-the-art mechanisms for WSN-MS perform poorly in practice. Many

state-of-the-art approches use Expected Transmission Count (ETX) as a measure to find high-

throughput routes in multi-hop wireless networks but ETX cannot be directly applied to WSN-

MSs due to the mobility of the nodes. In this chapter, we propose a novel routing metric,

45
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Contact-Aware ETX (CA-ETX), to estimate the packet transmission delays that result from

both link unreliability and intermediate connectivity. Using CA-ETX, we develop a throughput-

optimal scheme Opportunistic Backpressure Collection (OBC). Both CA-ETX and OBC are

lightweight, easy to implement, and require no mobility prediction. Through testbed experi-

ments and extensive simulations, we show that the proposed schemes significantly outperform

state-of-the-art approaches. We also show that existing ETX-based routing protocols such as

CTP [72] and IETF RPL [11] can be applied to WSN-MSs with minimal modification using

CA-ETX.
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N s The set of all sensor nodes.
Nm The set of all mobile sinks.
N The set of all nodes.
L The set of all wireless links between each pair of nodes in N .
PRRx,y(t) Packet Reception Probability (PRR) of wireless link (x, y) ∈ L at slot t.
ETXx,y(t) Expected Transmission Count (ETX) of wireless link (x, y) ∈ L at slot t.
cx,y(t) Channel capacity of link (x, y) ∈ L at slot t.
c(t) Channel capacity vector for all wireless links at slot t.
G(N,L, c(t)) The time-varying weighted graph of the WSN-MSs.
S The discrete state space of all possible channel capacities.
πc The stationary distribution probability for channel capacity c.
Ls The set of all wireless links between each pair of sensor nodes.
Gs(N s, Ls) The graph of the subnetwork consisting of all sensor nodes.
No The set of all sensor node and the virtual sink V S, i.e. No = N s ∪ {V S}.
Lo The set of all opportunistic contact links, i.e. Lo = Ls ∪ {(x, V S), x ∈ N s}.
Go(No, Lo) The opportunistic contact graph.
No

x The opportunistic contact neighbour of sensor node x.
CA−ETXx The Contact Aware ETX (CA-ETX) value of node x ∈ No.
CA−ETXx,y) CA-ETX value over opportunistic contact link (x, y) ∈ Lo.
OSFP (x) The shortest path from a sensor node x to the virtual sink VS over Go(No, Lo).
OP (x) The opportunistic parent of sensor node x, i.e. the next-hop node in OSFP (x).
µx,y, σs

x,y the mean and variance of service time over link (x, y) ∈ Lo respectively.
rx(t) The sensing rate of sensor node x ∈ N s at slot t.
r The |N s|-dimensional vector of all sensing rates.
Nx(t) The set of node x’s instantaneous neighbours at slot t.
fx,y(t) The amount of data transmitted over wireless link (x, y) ∈ L at slot t.
Qx(t) The queue backlog of node x ∈ N at slot t.
f in
x (t) The amount of total incoming data of node x at slot t.
f out
x (t) The amount of total outgoing data of node x at slot t.
µ(c) A contention-free link rate vector for channel state c.
Γ(c) The link rate region for channel state c.
ϕx The gateway quality of a sensor node x.
wx,y(t) The routing weight of wireless link (x, y) at slot t.
rmax, cmax The finite upper bounds of sensing rate and channel capacity respectively.

Table 3.1: Summary of symbols used in Chapter 3.
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WSN-MSs Wireless Sensor Network with Mobile Sinks
ETX Expected Transmission Count
OBC Opportunistic Backpressure Collection
CTP Collection Tree Protocol [72]
RPL The IP routing protocol designed for low power and lossy networks [11].
CA-ETX Contact Aware ETX
DTN Delay Tolerant Networks
PRR Packet Reception Ratio
GQ Gateway Quality
LQF Longest Queue First
CSMA Carrier Sense Multiple Access
E2E End-to-End
BCP Backpressure Collection Protocol [137]
BP Backpressure
MG-IP A routing protocol based on Mobility Graph and Information Potentials [108]

Table 3.2: Summary of abbreviations used in Chapter 3.

3.1 Introduction

Future smart sustainable city environments are predicted to have a huge amount of sensing

devices deployed to monitor environmental conditions such as noise level, air pollution, and

water pipe leakages [148,151,195]. Many urban sensing applications such as traffic monitoring

and urban noise data gathering are delay-tolerant, which do not require to deliver sensed data

in real-time [115, 151, 193]. In these cases, traditional Wireless Sensor Networks (WSNs) with

static sinks may not be a feasible solution for large-scale urban sensing application due to

the large sensing coverage requirement and infrastructure costs. Alternatively, wireless devices

carried by vehicles or individuals (e.g. smart phones) can act as mobile sinks to collect urban

sensor data in an opportunistic way, through short-range wireless communication radios such

as Bluetooth, WiFi direct, Zigbee and LTE-direct [6,36,119,133]. With increasing short-range

communication capabilities of mobile devices and their huge population, WSNs with mobile

sinks (WSN-MSs) have been becoming a more and more realistic and cost-effective solution to

delay-tolerant urban sensing applications [108,115,123,193]. Besides urban sensing applications,

WSN-MSs can be used in other delay-tolerant sensing applications such as habitat and forest

monitoring [4].
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In WSN-MSs, a sensor node can either send its data directly to a sink as it passes by, or it can

send data via multi-hop routes to other sensor nodes who currently have contact with, or who

will be likely in contact with a sink in the future. Therefore, how to choose the best routes to

efficiently forward sensor data is a key issue for data collection in WSN-MSs.

Although this topic has received a reasonable amount of research to date, most of the work

has limitations that affect their adoption in practice. Some approaches [108, 115, 193] require

the prediction of trajectories of the sinks, which incurs considerable overheads and suffers from

prediction errors or may not even be possible in large-scale practical scenarios. While other

schemes, such as [123], focus on adaptively and smoothly updating routing tree structures as a

sink moves in the sensing area. These schemes suffer heavy communications overheads in WSN-

MSs with large numbers of fast moving sinks; or where there are intermittently-connected WSN-

MSs where the sensor nodes are disconnected from any routes to the sink for reasonable periods

of time (e.g. off-peak time in urban roads in [195]). Furthermore, due to the opportunistic

availability of mobile sinks and heavy data traffic potentially produced by ubiquitous sensors,

throughput performance is an important issue for data collection schemes. However, this has

received very little attention in current WSN-MS research.

To overcome the limitations of current work, this chapter aims to develop high-throughput and

low-delay opportunistic data collection approaches for practical WSNs-MSs with arbitrary num-

bers of mobile sinks, arbitrary sink movement speeds, taking account of routes being connected

or intermittently-connected. The contributions of this chapter are summarized as follows:

1. Based on queuing analysis theory, we propose a novel routing metric Contact-Aware

ETX (CA-ETX), to effectively estimate the packet transmission delay over opportunistic

wireless links between sensors and sinks, caused by both wireless link unreliability (i.e.

data packet retransmissions) and intermittent connectivity. Beside its efficiency, a major

advantage of CA-ETX is that it can simultaneously work with ETX (the most popular link

quality metric used by various WSN routing protocols such as the defacto TinyOS routing

standard CTP [72] and the IETF IPv6 routing protocol RPL [11]). By implementing

CA-ETX in two well-known WSN operating systems TinyOS [1] and Contiki [2], we



50Chapter 3. Mobility-aware Backpressure Collection in WSN with Mobile Sinks (WSN-MS)

demonstrate that current ETX-based routing standards CTP [72] and RPL [11] can be

extended easily to support opportunistic data collection WSN-MSs by using CA-ETX.

2. we propose a throughput-optimal approach, Opportunistic Backpressure Collection (OBC),

a joint dynamic multi-path routing and scheduling protocol for WSN-MSs by integrating

CA-ETX. In contrast to current data collection schemes in WSN-MSs, OBC is lightweight,

easy to implement, requires no mobility prediction, and can support a large number of fast

moving sinks. To our knowledge, OBC is the first scheme that combines the backpressure

approach [137, 181] and mobility awareness for WSN-MSs.

3. We construct real-world experiments and extensive simulations to evaluate the perfor-

mance of CA-ETX and OBC. The results show that the delay performance of both CTP

and RPL can be significantly improved by simply adopting CA-ETX over opportunis-

tic sensor-sink links. In addition, evaluation results demonstrate that OBC can achieve

significant performance improvements in terms of end-to-end delay, storage overheads,

energy consumption, and scalability compared with state-of-the-art approaches.

The remainder of this chapter is organised as follows: The next section discusses related work.

We present our system model in Section 3.3. Section 3.4 proposes the CA-ETX metric. Section

3.5 provides detailed descriptions of the OBC algorithm. Simulation and testbed experiment

results discussed in Section 3.6. Finally, we conclude the chapter in Section 3.7. All proofs of

theorems in this chapter and related lemmas are placed in Appendix A.

3.2 Related Work

3.2.1 Wireless Routing Metrics

In wireless networks, routing protocols use various link metrics to select the best end-to-end

forwarding path from sources to destinations. In static wireless networks such as WSNs, rout-

ing metrics like the expected transmission count (ETX) [49] estimate the packet transmission
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delays caused by link unreliability (i.e. retransmissions). ETX has been used in many routing

standards such as CTP [72] and RPL [11], and its efficiency has been validated in numerous

real-world experiments. However, it is not a surprise that metrics like ETX cannot be directly

applied to WSN-MSs. This is because that data transmission delays not only depend on link

unreliability, but also on the intermittent connectivity between the static sensor nodes and mo-

bile sinks. In mobile networks such as Delay Tolerant Networks (DTNs), routing metrics such

as inter-contact time [39],or contact probabilities [68] are widely used. However, all these met-

rics ignore the quality of the temporary wireless link that connects nodes during their moment

of contact. In contrast to existing routing metrics in both mobile and static wireless networks,

CA-ETX is specifically designed for the WSN-MSs and can efficiently estimate packet waiting

times in data buffers, which is the major delay of per-hop packet transmission.

3.2.2 Backpressure Algorithms

Backpressure algorithms [69, 111, 137] are well-known for their optimal throughput but poor

delay performance. Several techniques have been developed recently to improve the delay

performance of backpressure algorithms [82,83,197,206]. However, this is primarily theoretical

work, and focuses on networks with static topologies only rather than time-varying topologies;

therefore they cannot be applied to practical WSN-MSs. There are a few backpressure schemes

applied to mobile multi-hop networks [57, 158, 159]. Recent interesting work, BWAR [15],

develops an adaptive redundancy technique for backpressure routing in DTNs. However, the

idea of BWAR cannot be applied to WSN-MSs, in which packet replication is not used due to

the limited bandwidth resource.

[158,159] study backpressure flow control and routing in disconnected static wireless networks

with mobile relays and fixed gateways. In contrast, our work focuses on WSN-MSs where each

sensor node could dynamically serve as a gateway at every opportunistic contact with a mobile

sink.
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3.3 System Model

We consider a WSN-MS consisting of static sensor nodes and mobile sinks to collect sensor data

using short-range communication radios (e.g. Bluetooth, Zigbee, or WiFi direct). If a sensor

node is in contact with a mobile sink, it forwards its sensor data to a mobile sink directly;

otherwise, it stores the data and waits for its next connection to a mobile sink or forwards its

sensor data through other sensor nodes to any mobile sink in a multi-hop fashion.

Let the sets of all sensor nodes and mobile sinks be N s and Nm respectively, and denote

N = N s ∪ Nm. The network operates in discrete time slots (e.g. seconds) t ∈ {0, 1, ...}. We

define the packet reception probability (PRR) over a wireless link (x, y), 0 ≤ PRRx,y(t) ≤ 1, as

the probability of successfully transmitting a data packet, with acknowledgement from node x

to y, at slot t. PRRx,y(t) is assumed to be constant within the duration of a slot, but can vary

from slot to slot and across different wireless links, due to the time-varying wireless channel

quality and intermittent connectivity between static sensor nodes and mobile sinks. According

to its definition [49], the ETX value over a link (x, y) at slot t, ETXx,y(t), can be computed as

ETXx,y(t) =
1

PRRx,y(t)
≥ 1 (3.1)

We define

cx,y(t) = cmaxPRRx,y(t) ≥ 0 (3.2)

as the logical link-layer capacity of a wireless link from node x ∈ N to node y ∈ N at time t, i.e.

the maximum (integer) number of sensor data packets (or bits) with acknowledgements that

can be successfully transmitted from x to y during slot t, where cmax is the maximal possible

cx,y(t), ∀(t), which is bounded by the data rate of the wireless radio. For instance, experimental

studies show that a commonly used IEEE 802.15.4 transceiver, CC2420 (e.g. [8]), can achieve

a data rate of approximate 160 40-bytes packets per second [173] in practice. If cx,y(t) > 0, we

say nodes x and y are in contact at slot t; otherwise, they are not in contact at slot t (i.e.

ETXx,y(t) = ∞).
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The states of WSN-MS at a given slot t ≥ 0 can be represented as a directed, complete, and

time-varying weighted graph G(N,L, c(t)), where L represents the set of all possible wireless

links between each pair of nodes in N , and the |L|-dimensional vector c(t) represents the vector

of channel capacities over all wireless links at slot t.

It can be seen that c(t) can characterize the time-varying channel capacities of the WSN-MS

caused by both slow fading between the static sensor nodes and fast fading between sensor

nodes and the mobile sinks. Therefore, c(t) also implies the stochastic process of sink mobility.

We assume that c(t) is an ergodic Markov chain that takes values on a finite (but which can

be arbitrary large) discrete state space S, and is has stationary distribution probability πc

for each channel capacity state c. The Markov assumption is realistic and general for both

mobility (e.g. [112]) and channel states (e.g. [140]). It is shown that many real mobility traces

exhibit a high degree of spatial regularity [74,209]. In the context of WSN-MS, this means that

mobile sinks appear in some specific locations with a higher probability than others, resulting in

heterogeneous opportunities of sensor nodes to meet mobile sinks (e.g. sensor nodes in shopping

centers should have more opportunities to meet mobile sinks than those in park).

In addition, the network consists of all statically-deployed sensor nodes which can be repre-

sented as a directed graph Gs(N s, Ls), where Ls represents all wireless links between sensor

nodes. Topologically, the Gs(N s, Ls) could be either a connected graph, or disconnected graph

consisting of several connected subgraphs.

3.4 Contact Aware ETX

3.4.1 Shortest Path Routing based on CA-ETX Gradient in Op-

portunistic Contact Graphs

This chapter considers anycast routing i.e. the destination of each sensor data packet can be

any mobile sink. It is straightforward to extend our work to multi-commodity traffic models, by

defining a virtual sink for each commodity. By using a virtual sink V S to represent all the mobile
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sinks in Nm, we define the opportunistic contact graph as Go(No, Lo), where No = N s ∪ {V S}

represents the set of all sensor nodes and the virtual sink, and Lo represents the set of all

sensor-to-sensor and sensor-VS links, i.e. Lo = Ls ∪ {(x, V S) : x ∈ N s}. Fig. 3.1 illustrates an

example of opportunistic contact graph. For each opportunistic link (x, y) in Lo, we define a

Figure 3.1: An example for CA-ETX gradient and opportunistic shortest path routing in WSN-
MS. (a) An example opportunistic contact graph with link CA-ETX values, where solid and
dashed lines represent sensor-to-sensor links and sensor-VS links respectively; (b) node CA-
ETX values; and (c) opportunistic shortest path routing by using CA-ETX.

metric CA-ETXx,y, to estimate the packet transmission delay over this link. The computation

of link CA-ETX values will be discussed in detail in Subsection 3.4.2. Based on the link CA-

ETX values, each sensor node x can compute its node CA-ETX value, CA-ETXx in a fully

distributed way:

CA-ETXx = min
y∈No

x

(CA-ETXx, CA-ETXy + CA-ETXx,y) (3.3)

where

No
x = {V S} ∪ {y : (x, y) ∈ Ls}

represents the opportunistic contact neighbor set of x.

Specifically, the CA-ETX value of the virtual sink CA-ETXV S = 0. For instance, Fig.3.1 (a)

shows an example of an opportunistic contact graph and the link CA-ETX value for each link,

and Fig. 3.1 (b) shows corresponding node CA-ETX values computed by using (3.3). For

each sensor node x, let OSP (x, V S) be the shortest path from x to V S in Go(No, Lo), i.e.

OSP (x, V S) is the path with the minimal total link CA-ETX values from x to V S. It is easy
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Figure 3.2: An example to show how to compute and update CA-ETX value for sensor-VS
links.

to verify that

CA-ETXx =
∑

(i,j)∈OSP (x,V S)

CA-ETXi,j

i.e. the node CA-ETX value of each sensor node x represents the total link CA-ETX values of

all links in OSP (x, V S).

For each sensor node x, define its opportunistic parent

OP (x) = arg min
y∈No

x

(CA-ETXx + CA-ETXx,y)

For instance, Fig. 3.1 (c) shows the opportunistic parents of all sensor nodes based on their

node CA-ETX values.

With the CA-ETX gradient, the opportunistic shortest path routing can be easily performed

in a fully distributed way: If a sensor node x is in contact with any mobile sink m ∈ Nm, x, it

forwards data directly to m. Otherwise, it forwards data to OP (x), if OP (x) is a sensor node;

it waits for a sink, if OP (x) is the virtual sink. For instance, sensor node A in Fig. 3.1 (c)

will forward data to its opportunistic parent B, if it is not in contact with any mobile sink;

otherwise, it will forward data to the mobile sink directly.
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3.4.2 Link CA-ETX Calculation

We consider each link (x, y) in Lo as a queue with time-varying packet service times µx,y(t),

t ≥ 0, which is the service time duration required for a successful packet transmission over link

(x, y) at slot t. If (x, y) is a sensor-sensor link, µx,y(t) can be easily computed as

µx,y(t) = 1/cx,y(t), ∀t ≥ 0 (3.4)

From (3.2) and (3.4), we can see the the classic time-average ETX value over link (x, y) is

ETXx,y = E[µx,y(t)]c
max = µx,yc

max (3.5)

where E[·] is the expectation operator and µx,y is the long-term mean of µx,y(t).

For a sensor-VS link (x, V S), we have

µx,V S(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1/cx,m(t), CBn
x ≤ t ≤ CEn

x

CBn+1
x − t + 1/cx,m(CBn+1

x ), otherwise

(3.6)

where CBn
x and CEn

x , n ≥ 1 are the first and last time slots of the nth contact between x and

any mobile sink m respectively, shown in Fig. 3.2. Therefore, packet service times for sensor-VS

links depend on the dynamic contact durations, the inter-contact time (i.e. durations between

each contact), as well as the link quality during each contact, which cannot be reflected in

existing link metrics, such as ETX, contact probability, or inter-contact time.

Due to the complex dynamics of the system, both the arrival process and service times over

each link (x, y) ∈ Lo should follow general distributions rather than specific ones. Therefore,

we model each link in Lo as a G/G/1 queue. From queueing theory, the average packet waiting
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time wdx,y in the link queue (x, y) can be approximately represented as:

wdx,y =
σa
x,y + σs

x,y

2(χx,y − µx,y)
(3.7)

where µx,y and σs
x,y are the standard mean and variance of service time over link (x, y) respec-

tively, and χx,y and σa
x,y are the mean and variance of packet arrival intervals respectively. From

(3.7), we can see that wdx,y is an increasing function of both µx,y and σs
x,y. Therefore, we define

the CA-ETX value for each link (x, y) ∈ No as

CA-ETXx,y = (σs
x,y/σ̃

s
x,y)c

maxµx,y (3.8)

where σ̃s
x,y is the variance of the service times during each contact between x and y, i.e. if

(x, y) is a sensor-sensor link, σ̃s
x,y = σs

x,y is the variance of all service times samples; if (x, y) is a

sensor-VS link, σ̃s
x,y is the variance of all service times samples during CBn

x ≤ t ≤ CEn
x , n ≥ 1

. In (3.8), we normalize σs
x,y by σ̃s

x,y, in order to follow the concept of classic ETX, and

to facilitate its use in current ETX-based routing protocols such as CTP and RPL with the

minimal modification. As a result, we have:

CA-ETXx,y =

⎧
⎪⎪⎨

⎪⎪⎩

cmaxµx,y = ETXx,y y ∈ No
x − {V S}

(σs
x,y/σ̃

s
x,y)c

maxµx,y y = V S

(3.9)

From (3.9), we can see that CA-ETX for sensor-sensor links are identical to the classic ETX.

Therefore, we can directly use ETX-based routing schemes in WSN-MSs, by simply using CA-

ETX estimations for sensor-VS links.

3.4.3 Updating CA-ETX for Sensor-VS links

For a sensor-VS link (x, V S), service time samples can be easily estimated when x transmits

each packet to any mobile sink at run time. For each new service time sample, the values of
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µx,y, σs
x,y, and σ̃s

x,y can be updated based on following efficient online algorithm.

Consider a sequence of samples X(1), X(2), ...,. When the nth sample X(n) is obtained, the mean

µ(n) and variance σ(n) of these n samples can be updated as

µ(n) = µ(n−1) +
1

n
(X(n) − µ(n−1)) (3.10)

σ(n) = σ(n−1) + (n− 1)(X(n) − µ(n))(
X(n) − µ(n)

n
) (3.11)

with µ(1) = X1 and σ(1) = 0 [40].

However, when x is not in contact with any sink, packet service time of a sensor-VS link (x, V S)

could be very large (e.g. several minutes or hours), as shown in Fig. 3.2. As a result, simply

updating CA-ETXx,V S after each service time sample (e.g. the red time point in Fig. 3.2)

would result in the CA-ETX gradient being non-agile to the network dynamics. We solve this

problem by using a virtual sample of service times shown in Fig. 3.2 before a large real service

time sample is obtained. This virtual sample (also CA-ETXx,V S) is updated at time points

(e.g. green time points in Fig. 3.2) with a small interval (e.g. current mean service time µx,V S).

The virtual sample is abandoned when the real large service time sample is obtained.

3.4.4 Discussion

For a sensor node x, it is easy to see that the mean service time µx,V S depends on its contact

probability with any mobile sink and link quality during each contact, while the variance σs
x,y

mainly depends on the inter-contact time between x and any mobile sink. It is also not difficult

to verify that the former depends on a spatial distribution of mobile sinks and deployments

of sensor nodes, while the latter is greatly affected by the movement speeds of the mobile

sinks. Therefore, CA-ETX is very useful in practice, due to regular spatial behavior [74, 209]

and heterogeneous movement speeds (e.g. walking people, bikes, and vehicles) of mobile sinks.

For instance, by using CA-ETX, packets are relayed via sensor nodes close to a fast moving

highway rather than via nodes close to a pedestrian path even though they both have similar

traffic rates, resulting better delay performance.
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Figure 3.3: Delay performance of opportunistic shortest path routing with different metrics in
a WSN-MS with homogeneous and heterogeneous sink moving speeds.

As an example, Fig.3.3 illustrates the average end-to-end delays of opportunistic shortest

path routing that uses the following three metrics to measure the delay of all sensor-VS links

(x, V S), x ∈ N s: (1) CA-ETXx,V S, (2) µx,V S (pure mean), and (3) σs
x,V S (pure variance).

The WSN-MS used in the simulation consists of 400 sensor nodes and 50 mobile sinks in a 1000

m×1000 m simulation area. In the first and second simulations, the sink movement speeds

were fixed to each 5m/s and uniformly distributed between 1m/s and 9m/s respectively. Other

simulation settings can be found in Subsection 3.6.2.

Due to the same mean of sink movement speeds (i.e. 5m/s), the average service time are

similar are same for both simulations. However, the variances of packet service times σs
x,V S

are different, which results in significant delay performance difference shown in Fig.3.3. Since

CA-ETX manages to provide a fine measurement of the packet waiting time in each sensor-VS

link, it achieves the best delay performance in both simulations, demonstrated in Fig.3.3.
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3.5 Opportunistic Backpressure Collection

By forwarding sensor data through the minimal-cost routes, shortest path routing has good

delay performance especially in WSN-MSs with light-weight sensor data traffics. However, the

poor throughput performance of shortest-path routing limits its practical applications in WSN-

MSs with potential large volume of sensor data traffic. Therefore, this section develops a novel

throughput-optimal algorithm, OBC, by integrating CA-ETX into the backpressure algorithm

for WSN-MSs. Before presenting OBC, we first model the WSN-MS as a dynamic networked

queuing system.

3.5.1 Queueing Dynamics

Every sensor node x ∈ N s collects data at a sensing rate of rx . We assume the constant sensing

rate for analytical brevity. However, it is straightforward to extend our results to general ergodic

sensing rates. Let 0 ≤ fx,y(t) ≤ cx,y(t) represent the actual amount of sensor data transmitted

over the wireless link (x, y) at slot t. Define Nx(t) ⊂ N as the set of nodes that are in contact

with node x at slot t, i.e the set of node x’ all current neighbors. Each sensor node maintains a

queue (i.e. data buffer) to store the sensor data packets received from other sensor nodes and

produced by itself. Let Qx(t) ≥ 0 be the queue backlog (or queue length) of x ∈ N s at slot

t ≥ 0. From slot t to t+ 1, queue backlog updates as follows:

Qx(t+ 1) = |Qx(t)− f out
x (t)|+ + rx + f in

x (t), ∀x ∈ N s (3.12)

where f in
x (t) and f out

x (t) are the amount of total incoming and outgoing data of node x at slot

t respectively, i.e.

f in
x (t) =

∑

y∈Nx(t)

fy,x(t), f out
x (t) =

∑

y∈Nx(t)

fx,y(t)

and for any real number a, the operator |a|+ = a if a > 0; |a|+ = 0 otherwise. It is worth

noting that the queue backlog Qm(t) = 0, for all m ∈ N s, t ≥ 0.
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3.5.2 Link Rate Region

We say a set of wireless links in L are contention-free if they can be active (i.e.transmitting)

simultaneously, which depends on the interference relations between them. For a channel state

c, we define a L-dimensional contention-free link rate vector µ(c), where each entry l is the

capacity cl of the link l if link l is scheduled to transmit; otherwise, entry l is zero. The wireless

links associated with the non-zero entries in µ(c) are contention free. We further define the

link rate region Γ(c(t)) associated with channel state c(t) as the convex hull of all possible

contention-free link rate vectors.

3.5.3 Network Capacity Region

We define a network capacity region Λ by saying that any given r ∈ Λ if there exists a joint

routing and scheduling algorithm that controls fx,y(t), (x, y) ∈ L at every slot t ≥ 0 such that

f out
x − rx − f in

x = 0, ∀x ∈ N s (3.13)

f(t) ∈ Γ(c(t)), ∀t (3.14)

where f out
x and f in

x are the long-term averages of f in
x (t) and f out

x (t) respectively, and f(t) is the

vector of all fx,y(t), (x, y) ∈ L. Constraints (3.13) and (3.14) state the flow conservation law

and the link rate region constraint respectively.

3.5.4 OBC Algorithm

At each slot t ≥ 0, the OBC algorithm operates as follows:

1. Weight Calculation. Each sensor node x ∈ N s computes the weight wx,y(t) for each of

its current neighbors y ∈ Nx(t),

wx,y(t) = (Qx(t)/ϕx −Qy(t)/ϕy)cx,y(t) (3.15)
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where

ϕx =
1

CA-ETXx,V S

is called the Gateway Quality (GQ) of sensor node x. To guarantee the stability of OBC

in theory, we set deterministic lower and upper bounds for all sensor nodes x ∈ N s, i.e.

0 < ϕmin ≤ ϕx ≤ ϕmax < ∞. In addition, we set ϕm for each mobile sink m as any fixed

non-zero value between ϕmin and ϕmax, which has no impact on OBC algorithm.

2. Scheduling. The set of scheduled links F ∗(t) is chosen as

F ∗(t) = arg max
F (t)∈Γ(c(t))

∑

(x,y)∈F (t)

wx,y(t) (3.16)

It is clear that F ∗(t) is the set of contention-free links with the maximum aggregated

weights at slot t.

3. 3. Routing and Forwarding. Based on F ∗(t), each sensor node x ∈ N s transmits a

sensor data packet to the next one-hop node by setting fx,y(t), y ∈ Nx(t) as follows:

fx,y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

cx,y(t) (x, y) ∈ F ∗(t) ∧ wx,y(t) > 0

0 otherwise

Hence, each node x chooses the next hop node y such that link (x, y) is scheduled and

wx,y(t) > 0 (routing), then transmits cx,y(t) amount of data packets to y (forwarding).

4. Queue Update. Each sensor node x updates its queue backlog using (6.3).

According to the OBC algorithm, it can be seen that sensor nodes with higher GQs have

a higher opportunity to receive more packets than those with lower GQs, which naturally

combines mobility awareness (i.e. CA-ETX) and queue gradient of backpressure algorithm.

Since the packet waiting time over sensor-VS link can be precisely estimated by CA-ETX , the

packet transmission delay can be significantly reduced. Theorem to demonstrate throughput

optamality OBC can be found in Appendix A.
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It is worth noting that OBC does not require any future knowledge of the network, and makes

routing and scheduling decisions based on only the network information at the current slot.

3.5.5 Distributed Implementation and Practical Issues

Now we discuss distributed implementation of OBC in practical WSN-MSs.

1. Distributed Scheduling. The optimal solution to the scheduling problem (3.16) is cen-

tralized and NP-hard for practical wireless networks with general interference relations

(e.g. [166]), which is therefore intractable in practical WSN-MSs. To solve this problem,

we implemented a fully distributed suboptimal scheduler, the greedy Longest Queue

First (LQF), which can achieve a near-optimal performance in practical wireless net-

works [29, 42, 97]. The details of distributed LQF implementation can be found in [42].

The algorithm works as follows.

Each node i carries out the following steps:

1) Calculate weight w for each link to neighbour nodes.

2) Find a neighbour node j with maximum link weight

– If it received a matching request from j, then link i, j is a matched link. Node i sends

a matched reply to j and a drop message to all other neighbours. – Otherwise, node i

sends a matching request to node j.

3) Upon receiving a matching request from neighbour j:

– If j is neighbour node of node i with maximum link weight, then link i, j is a matched

link. Node i sends a matched reply to node j and a drop message to all other neighbours.

– Otherwise, node i just stores the received message.

4) Upon receiving a matched reply from neighbourj,link i, j is selected as a matched link,

and send a drop message to all other neighbours.

5) Upon receiving a drop message from neighbour j, node i excludes j from its neighbours

set.
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6) If node i is in a matched link or has no free neighbours, no further action is taken.

Otherwise, it will repeat steps 2 – 5.

7) Only Matched links are allowed to transmit.

2. WSN-MSs with CSMA radio. Consider the discrete time slot modeling in our system,

the distributed OBC with LQF scheduler can be directly used in synchronized TDMA

networks. However, Since most current wireless devices adopt CSMA-based radios, our

evaluation used an efficient technique proposed in [13,172] to implement OBC with LQF:

If a link (x, y) is scheduled to transmit (decision made by OBC with LQF), node x will

reduce its CSMA backoff window size to aggressively access the channel; otherwise, x

accesses the channel with normal backoff window size..

3. Mobile Sink Discovery and neighbour management. In our evaluation, each mobile

sink declares its presence to its current nearby sensor nodes by periodically broadcasting

one-hop beacons. We set the beacon broadcasting interval of mobile sink Tsink as 1 second

and 250 milliseconds for testbed experiments and simulations respectively. Each sensor

node also broadcasts a beacon per second to inform its neighbours its local information

(e.g. queue backlog). In addition, each node updates its neighbour table every Tneighbor =

50 milliseconds. To reduce the control packets, we implemented the overhearing (or

snooping) mechanism (e.g. [137]). Here, each data packet or acknowledgement message

includes the sender’s local information in a packet header filed. A node (sensor node

or mobile sink) does not need to broadcast a beacon in a broadcasting interval, if it

has already send a data packet or replied an acknowledgement in the same broadcasting

interval. It can be seen that our implementation achieves both precise and lightweight

sink discovery and neighbour table updating.

3.6 Evaluation

In this section, we constructed extensive real-world experiments and simulations to evaluate

the proposed CA-ETX metric and OBC algorithm. Our evaluation are based on two popular
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Table 3.3: Implementation details of CA-ETX and OBC.
Protocol CA-ETX-CTP CA-ETX-RPL OBC
Platform TinyOS Contiki TinyOS/Castalia

Code Changed 35 lines 68 lines -
RAM (kB) 3.1 9.8 2.7 (TinyOS)
ROM (kB) 30.5 42.5 26.9 (TinyOS)

Table 3.4: Summary of Evaluation Parameter Settings
Evaluation CA-ETX Evaluation OBC Evaluation
Method Testbed Simulation Testbed Simulation
Protocols CTP(CA-ETX vs ETX) RPL(CA-ETX vs ETX) OBC&BCP OBC BP MG-IP
Platform TinyOS/MicaZ Contiki/Cooja TinyOS/MicaZ Castalia Castalia Castalia

MAC Layer IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.4 CSMA+LQF CSMA+LQF CSMA
TX power -25 dbm 0 dbm -25 dbm 0 dbm 0 dbm 0 dbm
Mobility Real Mobility HHW Model Real Mobility HHW Model HHW Model HHW Model
Prediction no no no no no more than 95% accuracy
Packet Size 34 Bytes 40 Bytes 34 Bytes 34 Bytes

Retransmission 10 times 10 times 10 times 10 times
Scale 20 sensors+2 sinks 200 sensors+10 sinks 20 sensors+2 sinks up to 1000 sensors+20 sinks
Tsink 1 second 250 milliseconds 1 second 250 milliseconds

Tneighbor 50 milliseconds 50 milliseconds 50 milliseconds 50 milliseconds
Buffer size 20 packets 40 packets 20 packets 300 packets

WSN and IoT operating systems, TinyOS [1] and Contiki OS [2]; and a realistic WSN simulator

Castalia [3].

We applied the CA-ETX metric to the defacto TinyOS routing standard CTP [72] and the

IETF IPv6 routing protocol RPL (in Contiki OS) [11], and implemented the OBC algorithm

in both TinyOS and the Castalia simulator, as shown in Table 3.3. In addition, we adopted

the following implementation approaches in our evaluations.

Throughout the evaluation, we collected the follow four metrics to measure the performance of

all protocols.

• End-to-End Delay. The time taken for every packet from source to destination.

• Queue Backlog. The number of data packets in each node’s data buffer, which indicates

the storage efficiency.

• Communication Overhead. The number of transmitted and received packets (including

all data and control packets) per node per second. This performance metric can measure

the efficiency of routing algorithm in terms of energy and bandwidth consumptions.

• Packet Loss Rate. The percentage of lost data packets, indicating the reliability perfor-
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Figure 3.4: Sensor Deployments for the ETX and CA-ETX (with CTP) experiments.

mance. Here, the remaining packets at the end of each evaluation was not considered as

packet losses.

Table 3.4 summarizes the parameter settings of our evaluation, which will be discussed in detail

in specific subsections below.

3.6.1 Evaluation of CA-ETX

In this subsection, we demonstrate how to use the CA-ETX metric to extend current WSN

routing protocols to WSN-MSs. Specifically, we first applied CA-ETX to CTP [72], and evaluate

the performance improvement through a testbed experiment using TinyOS based MicaZ motes.

Then, we constructed a simulation using Cooja, the simulator of Contiki OS [2], to demonstrate

the performance gain of RPL [11] by using CA-ETX.

CA-ETX with CTP

We constructed experiments using MicaZ motes to evaluate the practical performance of ap-

plying CA-ETX in CTP [72]. As shown in Table 3.3, only 35 lines of nesC code is used to
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(a) connectivity visualization (b) sink mobility

Figure 3.5: Visualization of the ETX and CA-ETX (with CTP) testbed experiment settings:
(a) Sensor deployment topology and mobility hot spots, (b) the sequences of neighbor numbers
of the two sinks.

implement CA-ETX in CTP. We compared the performance of CTP with ETX and CTP with

CA-ETX by using the following methods:

As shown in Fig.3.4 and Fig.3.5, two WSN-MSs were concurrently deployed for the ETX and

CA-ETX experiments respectively in London Hyde Park. Each WSN-MSs consisted of 20

sensor nodes (i.e. the blue cycles in Fig. 3.5(a)), which were deployed in a grid topology with

a cell size of two meters. The mobile sinks were held by two researchers respectively (each

researcher carries two sinks for ETX and CA-ETX respectively). The experiment lasted for

20 minutes during which the two researchers (mobile sinks) roamed around the deployment

area, simulating both high probabilities of visiting some hot points (i.e. red circles and stars

in 3.5(a)) and other low probability locations. Therefore, the two WSN-MSs had the exactly

same deployments and sink mobility. In order to avoid inter-interference between the two WSN-

MSs, they were operated on two orthogonal channels of the CC2420 radio (channels 13 and

26) respectively. In addition, neither channel experienced interference by other external 2.4

GHz wireless transmissions during the experiment, as no WiFi signal was detectable around

the deployment area.

Fig.3.5 illustrates above experiment scenarios, where the diameter of each blue cycle in Fig.3.5(a)

is linearly proportional to the percentage of time that the corresponding sensor node was in
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Figure 3.6: Packet loss rate and CDF of end-to-end delay: CTP with ETX and CA-ETX.

contact with a mobile sink; the width of each blue line is linearly proportional to the percent-

age of time that corresponding pair of sensors were connected as neighbors; and Fig.3.5(b)

illustrates the time sequences of neighbor numbers of the two mobile sinks. Since the collected

illustration results are almost same for the two WSN-MSs with orthogonal channels, we plot

the CA-ETX experiment results in Fig.3.5 for brevity.

In this experiment, the packet size, node transmission power, and sensing rate, were set as 34

bytes, -25 dBm (results in around 2-3 meter transmission range), and one packet per five seconds

for each sensor node respectively. Fig. 3.6 shows the Cumulative distribution function (CDF)

of the end-to-end packet transmission delays. It can be seen that more than 90% of packets

were transmitted within 10 seconds by using CTP with CA-ETX, while only 40% packets in

the CTP with ETX experiment achieved this performance. The average delay of the CA-ETX

experiment is 3.6 seconds, which is 73% less than that of ETX experiment (i.e. 13.4 seconds).

Table 3.5: End-to-end delay (in seconds) of opportunistic shortest path routing with different
link metrics.

queue backlog Tx/Rx Rate
CTP with ETX 10.32 packets 5.63 packets/node/second
CTP with CA-ETX 7.83 packets 5.77 packets/node/second

As shown in Fig.3.6 and Tab.3.5, CTP with CA-ETX also achieves smaller packet loss rate,

lighter average storage overhead (queue length) and similar communication overhead (Tx/Rx

rate), compared with CTP with ETX. This experiment shows that although the real-time

routing protocol CTP is originally designed for static WSNs, it has a great potential to be
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Figure 3.7: Packet loss rate and CDF of end-to-end delay: Modified RPL/IPv6 with ETX and
CA-ETX.

extended to support delay-tolerant data traffic in the intermittently-connected WSN-MSs, by

using CA-ETX.

CA-ETX with RPL

In this subsection, we evaluated the performance of RPL with CA-ETX by using Cooja, the

simulator of Contiki OS. As shown in Table 3.3, we modified 68 lines of code to implement CA-

ETX and an enhanced loop detection scheme to RPL. We also changed some codes in Contiki’s

IPv6 stack to support node mobility and delay-tolerant applications, including implementing

a queue at the network layer, faster neighbour table updates, and broadcasting neighbour

solicitation messages more frequently.

In this set of simulations, we consider a multi-hopWSN-MS consisting of 200 randomly-deployed

sensor nodes and 10 mobile sinks in a 500 m×500 m simulation area. Each sensor node generated

one UDP packet (40 bytes) per 40 seconds. We use a realistic mobility model, the Heterogeneous

Human Walk (HHK) model [199] to simulate sink mobility. The sink movement speeds were

randomly set between 1 m/s and 9 m/s respectively. Each simulation lasted for 2000 seconds.

Fig. 3.7 shows the CDF of end-to-end delay for the modified RPL/IPv6 with ETX and CA-ETX

respectively.

It can be seen that using ETX and CA-ETX result in similar packet loss rates of RPL, and the
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(a) connectivity visualization (b) sink mobility

Figure 3.8: Visualization of the BCP and OBC testbed experiment settings: (a) Sensor deploy-
ment topology and mobility hot spots, (b) the number of neighbors for the two sinks.

transmission delay of around 20% data packets are similar (less than 1 seconds) when using

the two metrics. These 20% data packets could be either sent from sensor nodes directly to

the sink within one-hop, or through temporally existing multi-hop paths. In comparison to

ETX, however, CA-ETX significantly reduces the delay of data packets (around 80%) that

were transmitted through opportunistic multi-hop paths. As a result, the overall average of

end-to-end delay of RPL with ETX (19.92 seconds in average) is approximately three times

larger than that of CA-ETX (6.63 seconds in average).

3.6.2 Evaluation of OBC

Testbed Experiments

In this subsection, we compared OBC with a practical backpressure-based WSN routing pro-

tocol BCP [137], using real-world experiment with TinyOS-based MicaZ motes. Since BCP is

a pure backpressure routing protocol without scheduling, we only compared the routing part

of OBC with BCP for fairness. The method of this experiment was the same as that of the

CA-ETX experiment in Subsection 3.6.1 but sensor layouts and sink mobility were different,

which are illustrated in Fig. 3.8. In addition, sensing rates of OBC and BCP were set as
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Figure 3.9: OBC experiment results.

one packet per two seconds, while all other parameter settings were the same as that in the

CA-ETX experiment.

As shown in Fig. 3.9, OBC significantly outperforms BCP in end-to-end delay, storage overhead,

and communication overhead, while achieving similar packet loss rates as BCP. When a sensor

node x transmits data packets to a mobile sink in the WSN-MS running BCP, its queue length

reduces, resulting in a queuing gradient towards x. However, the mobile sink may disconnect

from x before the convergence of such a gradient, resulting in severe routing loops. Such time-

varying queue gradients caused by sink mobility aggravate the hop count performance of pure

backpressure routing which is known to perform poorly already in static networks (e.g. [206]).

In OBC, however, data packets are continuously forwarded to sensor nodes with low node

CA-ETX values, which significantly reduces convergent time therefore mitigates routing loops
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(i.e. CA-ETX gradient helps the convergence of queue gradient). This results in much less

unnecessary data transmissions (46% less average TX/RX rates), as shown in Fig. 3.9(c).

Furthermore, the network capacity resource (i.e. opportunistic contacts between sensors and

mobile sinks) is better utilized by OBC, compared with BCP. This is because that a sensor node

cannot transmit data to any nearby mobile sink during the slots when its queue is empty, while

OBC minimizes the number of such slots by ensuring that better gateways (sensors with lower

CA-ETX value) have high probability to receive more data. However, BCP treats all sensor

nodes homogeneously and inherently tries to balance all queues in the network. Therefore, the

probability of empty queues in good gateways is much higher, resulting in a waste of sensor-

sink contact opportunities. Due to the the better network capacity resource usage and less data

forwarding hops (less routing loops), OBC achieves much less network congestion and therefore

much smaller queue backlog (59.1% in average) and less end-to-end delay (38.2% in average)

than BCP, shown in Fig. 3.9 (b) and (a) respectively.

Simulations

We constructed extensive simulations to further evaluate the performance of OBC, in terms of

throughput, adaptability to sink movement, and scalability.

Simulation Settings. We compared OBC with a state-of-the-art protocol in WSN-MS that is

based on mobility graph and information potentials (MG-IP) [108], and the classic backpres-

sure routing/scheduling algorithm (BP). As shown in Table. 3.4, all the three protocols were

implemented on the top of Castalia CSMA link layer. We implemented LQF and the back-off

window adjustment technique [13] for the distributed scheduling of OBC and BP.

It is worth noting that OBC and BP do not require any knowledge of the dynamic system

states, but MG-IP requires to forecast future sink mobility. In our simulations, we set the

mobility prediction accuracy of a mobile sink m, PACm as a decreasing function of m’s speed
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Figure 3.10: Simulation results of OBC, BP, and MG-IP:(a)–(c) with different sensing rates
(average sink speed is 5 m/s); (d)–(f) with different sink speed (sensing rate is 2 packets per
minute); (g) –(i) with different scale WSN-MSs (average sink speed and sensing rate are 5 m/s
and 2 packets per minute respectively, the average node density of different scale networks
remained the same, by adjusting the size of corresponding simulation areas.
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spdm for MG-IP

PACm =

⎧
⎪⎪⎨

⎪⎪⎩

(100− spdm/4)%, if spdm ≤ 20 (m/s)

95% otherwise

(3.17)

which is much higher than the accuracy of mobility-graph based prediction reported in [108].

The aim of this setting is not only to show the limitations of prediction-based WSN-MS pro-

tocols, but also to demonstrate that OBC can significantly outperform MG-IP even when its

prediction accuracy is nearly perfect. Every simulation was run five times to obtain the average

result.

Impact of Traffic Loads. Fig. 3.10(a)-(d) show the performance of the three algorithms with

different sensing rate in a WSN-MS consisting of 200 sensor nodes and 4 mobile sinks, in a 600m

× 600m area. The average sink mobility speed is 5m/s. As shown in Fig. 3.10(a), MG-IP and BP

show opposite trends when the network data traffic changes. In general, end-to-end delay mainly

depends on two factors: queue backlog (i.e. Little’s Theorem) and routing path length. Since

the routing decision of the mobility-aware MG-IP is independent of network traffic, it suffers

from larger delay in simulations with heavier network traffics, caused by purely increased queue

length shown in Fig. 3.10(b). However, BP makes routing decision based on queue backlogs. As

network traffic load increases, its delay decreases. This is because the reduced routing loop is a

more dominant factor than the increased queue backlog. Fig. 3.10(b) and (c) respectively show

that purely queue-aware BP achieves better queue length but worse communication overhead

than the purely mobility-awareness MG-IP. By combining mobility and queue awareness, OBC

achieves the best delay performance in almost all these simulations. Finally, the packet drops

of MG-IP are caused by both wireless channel contention and imperfect mobility predictions,

which result in worse reliability performance than BP and OBC (no prediction requirement),

as shown in Fig. 3.10(d).

Impact of Sink Movement Speed. Fig. 3.10(e)-(h) show the performance of the three algorithms

with different sink movement speeds. In this set of simulations, the WSN-MS also consists of

200 sensor nodes and 4 mobile sinks in a 600m × 600m area. As the sinks moved faster, the

variance of packet service times over sensor-VS links decreases, as we discussed in Subsection ??.
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This results in faster packet transmission, lighter network congestion, and less routing loops, for

all three routing protocols, shown in Fig. 3.10(e)-(f) respectively. In addition, MG-IP exhibits a

large the packet loss rate in simulations with high-speed mobile sinks, caused by non-ignorable

mobility prediction errors, while BP and OBC are relatively insensitive to sink movement speed

in terms of transmission reliability. Furthermore, that reliability performance of MG-IP would

be significantly degraded in practical WSN-MSs, where high prediction accuracy (e.g. more

than 95% in our simulations) is impossible to achieve.

Scalability Study. Finally, we studied the scalability of the three protocols. Since all three

protocols only require local information (i.e. queue backlogs, CA-ETX, and information poten-

tials) to make routing and data forwarding decisions, their control complexities are O(1) with

respective to the network size, which demonstrates their potential to scale to large WSNs-MSs.

However, the simulation results shown in Fig. 3.10 (i)- (l) show that the performance of all three

protocols generally decreases as the network scale increases, but the performance degradation

speed of OBC is the slowest. It can also be seen that OBC outperforms the other two protocols

in both small-scale and large-scale WSN-MSs.

Besides network size, routing protocols in WSN-MSs are also expected to scale with respect to

the number of sinks. Both OBC and BP only require to maintain one data queue for anycast

data traffic, and adopt lightweight mobility scheme (i.e. one-hop beacon and CA-ETX) without

maintaining any information of a specific moving sink. Therefore, they are relatively insensitive

to sink population. In contrast, MG-IP needs to store n information potential values for n

mobile sinks respectively. Furthermore, MG-IP also suffers from high complexity due to the

maintenance of a mobility graph for sink mobility prediction, which restricts its application in

large-scale WSNs with a large number of sinks.

3.7 Summary

In this chapter, we study how to improve the delay and throughput performance for delay-

tolerant data collection applications in Wireless Sensor Networks with Mobile Sinks (WSN-
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MSs). We propose a novel routing metric, CA-ETX, based on queueing analysis theory to

estimate the packet transmission delay caused by both link unreliability and intermittent con-

nectivity. By implementing CA-ETX in CTP and RPL, we demonstrate that current ETX-

based routing protocols for WSN with static sinks can be easily applied to WNS-MSs by using

CA-ETX. We also introduce a throughput-optimal data collection scheme, OBC, by integrating

CA-ETX into the Lyapunov optimization framework. In contrast to current routing schemes

for WSN-MSs, OBC does not require any mobility prediction and is suitable for large-scale

sensor networks with a large number of fast moving sinks. Test-bed experiments and extensive

simulations demonstrate the significant performance improvement achieved by OBC, compared

with state-of-the-art approaches. Interesting future directions lie in the extension of CA-ETX

and OBC to duty-cycled WSN-MSs and to support a hybrid of delay tolerant and real-time

sensing applications.

Several problems remain for ubiquitous sensing using WSN-MSs.

(1) What should the mobile sink do after collecting sensor data? Could the data be sent via the

Internet through expensive long-range communication (e.g. 3G cellular), or through low-cost

short-range communications (e.g. WiFi) when the mobile sink passes a free access point?

(2) Since wireless communications result in energy and bandwidth costs, and even monetary

bills, how can mobile device owners be incentivised to collect and transmit data?

To address these problems, the next chapter will consider a more realistic and low-cost sensor

data collection paradigm for WSN-MP in which mobile devices such as smart phones are used

to sense and forward collected data to statically-deployed sinks, for example, free WiFi access

points and cellular base stations can be utilised as sinks.



Chapter 4

Citizen-centric Network Architecture

for Mobile Phone Sensing System

The mobility in Wireless Sensor Networks (WSNs) improves the performance of networks in

terms of throughput, coverage and cost. In chapter 3 we studied data collection from static

sensor nodes for delay-tolerant applications in Wireless Sensor Networks using mobile devices.

In last few years, the focus of wireless sensor networking research has evolved from static net-

works of sensor nodes to Mobile Phone Sensing Systems (MPSS) relying on the smart devices

and mobility of people. In a MPSS, ubiquitous sensor-rich mobile phones contribute to the un-

derstanding of future cities using its embedded sensors. Moreover, mobile devices can transmit

sensor data using short-range or long-range communication.

This chapter addresses following key challenges in MPSS.

• How to communicate huge volumes of sensor data from mobile phones to sinks (i.e cellular

base station or Wifi Access point) in a cost-effective way.

• How to incentivize mobile phone users to participate in the sensing system.

In this chapter, we develop a novel citizen-centric networking scheme to support both real-time

and delay-tolerant urban sensing applications via the seamless integration of inexpensive short-

77
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range opportunistic transmissions and reliable long-range cellular radios. Core to this is trading

of mobile sensor data in a virtual free market where we demonstrate that our scheme provides

a strong incentive system for phone owners, while achieving network throughput optimality

and minimizing phone users total costs in terms of their 3G budget and battery levels. The

proposed scheme considers realistic urban sensing issues such as user privacy and demonstrates

how social network awareness improves data transmission. Our scheme is fully distributed and

it self-configures and self-adapts to the environmental changes regarding mobility, topology, and

channel conditions. We evaluated our approach using a real testbed and extensive simulations.

WSN with Mobile Sinks (WSN-MSs) studied in Chapter 3 considers data forwarding from

sensor nodes to and mobile devices. In this chapter we focus on data forwarding from mobile

devices to the Wifi Access points or cellular base station.
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TTL Time-to-Live value of each packet.
NEI(x, t) One-hop neighbour table of x at slot t.
ratex,y(t) Transmission capacity between a phone x and its neighbours y.
scostx(t) Monetary cost of sending a packet at slot t.
rcostx(t) Monetary cost of receiving a packet at slot t.
α A positive system parameter set by the server t.
sellx(t) Monetary value of the data packets of a phone x.
profitsx,y(t) Potential individual profits a phone x at slot t.
max− lifetime Simulation variable to set maximum life time of packets.
ST (x, y) trust metric between two phones x and y.
max− trust Simulation variable to set maximum trust between two phones.

Table 4.1: Summary of symbols used in Chapter 4.
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MPSS Mobile Phone Sensing System
WSNs Wireless Sensor Networks
GPS Global Positioning System
D2D Device-to-Device communication.
E2E End-to-End
QoS Quality of Service.
OP Opportunistic communication
PAYG Pay as you go

Table 4.2: Summary of abbreviations used in Chapter 4.

4.1 Introduction

Sensor-rich smart phones are predicted to play an increasingly important role in urban sensing,

so much so that a number of next generation phones will be augmented with even more envi-

ronmental sensors such as GPS, accelerometer, microphone, camera, gyroscope, digital compass

and barometer. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile de-

vices, Mobile Phone Sensing System (MPSS) provide a highly flexible and ready-made wireless

infrastructure for future smart cities than traditional static Wireless Sensor Networks (WSNs)

[110] [104] [64]. At the same time, inherent mobility of phone users enables increased sens-

ing coverage both spatially and over time, providing opportunities to collect data at a higher

granularity and with more penetration. Furthermore, increasing short range communication

capabilities of smart phones (LTE, bluetooth, wifi-direct) has enabled mobile data off-loading

using low cost(free), short range communications. This releases the burden on traditional com-

munications technologies, which will reach upper physical bounds if all future MPSS systems

use them [78]. Mobile sensing can also exploit the social structures of the physical world to

improve the performance of cyber world and in doing so provides better services to the users

in the physical world by optimising the organization of the available resources in cyber world.

This paves the way towards large-scale citizen-centric urban sensing applications for smart cities

[148].

Fig. 4.1 illustrates a typical Mobile Phone Sensing System (MPSS). According to the demands

of specific sensing applications, mobile phones produce sensing data such as available parking
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places, traffic congestion, noise levels, air pollution, and smart meter readings. The sensor data

can be sent to the MPSS server through either cellular communication or short-range radios

such as WiFi direct [36], Bluetooth, and LTE direct [119].
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Figure 4.1: Conceptual illustration of the Mobile Phone Sensing System.

MPSS is predicted to be one of the major sources of big data due to prolifiration of mobile

devices and their potential for many urban sensing applications. Furthermore, sensor data

would differ in lifetime, monetary value, QoS requirements and privacy levels, etc. due to the

diversity of sustainable city applications.

Efficient transmission of potentially huge volumes of sensor data with different QoS require-

ments over expensive cellular networks with limited bandwidth is the key challenge in MPSS

[78]. However, recent forays into cheaper and robust opportunistic alternatives, leveraging ur-

ban mobility (e.g. human and vehicle) and short-range communications of mobile phones, have

suffered from large end-to-end delays.

In this chapter, we show how to provide autonomic and cost-effective networking services for

MPSS by combining short-range and cellular communication. We firstly examine the major

communication techniques designed to support MPSS. We then propose a hybrid architecture
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for MPSS by combining both cellular communication [128] and opportunistic networking [45]

for a large scale city network. To demonstrate the feasibility of our architecture, we develop a

joint pricing and data routing algorithm aiming to support both real-time and delay-tolerant

MPSS applications.

The MPSS is underpinned by an economic market model in which phone users produce sensor

data according to the demands of the MPSS applications, trade sensor data with each other

to obtain profits, and finally sell data to WiFi routers or cellular base-stations for returns.

By doing so, the proposed scheme can achieve not only effective incentivization for the phone

users, but also throughput optimality for big sensor data transmission and minimal costs of

phone users (e.g. 3/4G budgets and battery energy). Our scheme is distributive and scalable

which makes it robust to dynamic environment and variable user preferences and behaviours.

Through simulations, we show the impact of users preference and privacy on the performance

of MPSS. We also show that MPSS is able to adjust itself under dynamic conditions such as

disasters, variable pricing and joining and leaving of users. Finally, we developed an android

application (OppCom) to show the feasibility of our approach in real world scenario.

4.2 Communication Supports for Mobile Phone Sensing

4.2.1 Cellular Communication

Currently, the majority of mobile sensing applications send sensing data directly to the server

through single-hop 3/4G cellular radio communications. This is very suitable for real-time

applications, since the use of this expensive cellular service is justified for important and delay-

sensitive data. However, due to limitations such as 3/4G costs to the phone users [128] and

cellular system’s capacity bounds [54], using cellular communication solely would not be a

feasible solution for the potential huge volume of urban sensing data.
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4.2.2 Opportunistic Networking

Opportunistic networking [45] enables data communication in intermittently-connected delay-

tolerant mobile networks, where for a given instance an end-to-end communication path be-

tween sensor and ultimate destination may be absent. By leveraging inherent human mobility

and low-cost short-range communication, sensor data can be sent to base-stations (e.g. WiFi

routers) in a “carry-and-forward” fashion by relaying the data in short hops via different mobile

phones.With the increase in the short-range communication capabilities of smart phones, such

as in WiFi Direct for Android OS 4.0+, efficient neighbour discovery [23], and the development

of smart Device-to-Device (D2D) communications [54]; it becomes more and more promising

to use opportunistic networking for delay-tolerant MPSS applications [23], [151], [200].

This opportunistic networking can significantly reduce energy and telephony costs for phone

users and at the same time mitigate sensor data traffic load over cellular communication chan-

nels [78]. However, for such schemes to support sensing at the scale of a city, a distributed

approach is required; in terms of initial configuration and maintenance over time, and be agile

enough to overcome failure. Added to this is the privacy and security concerns, these could

discourage phone users from relaying data from unfamiliar parties [75].

4.3 MPSS Network Architecture

As shown in Fig. 4.2(a), networking is an important component in a MPSS. Considering the

characteristics of MPSS data and the communication paradigms we have discussed in earlier

sections, we propose a network architecture to provide cost-effective sensing applications for

the future intelligent cities, illustrated in Fig. 4.2(b). The proposed architecture consists of the

following three components:

1. Data Analysis. This component analyzes networking-related properties of every sensor

data packet or data stream, such as the packet lifetime metric time-to-live (TTL); mone-

tary data value (i.e. the importance of the data; the value of a fire alarm message should
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(a) MPSS Components (b) Network architecture

Figure 4.2: MPSS Architecture.

be much more expensive than periodic raw temperature data for daily environment moni-

toring); QoS requirements (e.g. jitter tolerance for video streams); and a value attributed

to the notion of privacy. The MPSS can decide what kind of services should be provided

for a given data packet, or data stream, by using the information above.

2. Cost-benefit analysis. This component quantitatively analyzes the benefits and costs

that a sensor data packet, or stream, can bring to the networking service providers such

as; phone users, E2E network owners, and the Internet access provider (e.g. WiFi router).

This may be based on the networking service providers context, computing and commu-

nication resources, as well as privacy concerns. For instance, where there is no 3G cellular

coverage, a phone may only forward a packet to other nodes that are in the nearby region,

or if this is not possible, the packet is dropped. This component optimizes the network-

ing efficiency, and more importantly, provides the notion of incentivisation to drive the

policies of MPSS. For instance, a phone user may not be willing to forward low valued

sensor data to through the 3G/4G network where he or she has a limited 3G/4G usage

contract (e.g. 1G data per month), or the phone currently has less than 10% battery

energy left. In addition, personal preferences, as well as security and privacy concerns,

have significant impacts on the network provider’s decision making.

3. Decision making and data transmission. After cost-benefit analysis, the network
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service provider can not only decide whether to forward the sensor packets or not, but

also decide on the type and volume of data that should be transmitted (in terms of

computation, communications and the human effort that would be required, and the

rewards received for carrying out the transmission) .

In many societies, individuals work to improve their social profit and obtain rewards according

to their performance. In this sense the proposed network architecture treats the MPSS as a

digital society, where every citizen can be a network provider as long as he or she is willing, and

able, to improve the profits of MPSS. Sensor data in future cities will be a commodity like any

other commodity in current economic systems. Here a large volume of easily attainable goods

are cheap, yet rarer goods are expensive. So too in this network architecture. Here the citizen is

encouraged to transmit larger volumes of low-value (and presumably delay tolerant) sensor data

using OP communications, which has a great network capacity.Then more expensive Internet

access can be used for the small amount of valuable (potentially real-time) data through the

expensive, higher quality E2E communications mechanisms.

4.4 A Citizen-centric Networking Scheme for MPSS

In a MPSS, mobile phone will belong to individuals with different personal preferences. Mobile

phone users may not be willing to fulfil a MPSS task, due to privacy concerns and the potential

costs that would be incurred; impacting battery usage and 3/4G budgets. Therefore, taking

account of the social and economic behaviours of phone users, though frequently ignored, is

central to the success of MPSS.

To demonstrate the feasibility and efficiency of the proposed scheme in terms of social and

economic behaviours of both citizens and the system, we present a simple distributed data

trading and networking algorithm in to support both real-time and delay-tolerant MPSS appli-

cations in a cost-effective way, through the combination of cellular communication short-range

communication.
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Figure 4.3: Example of MPSS network to describe the proposed scheme.

4.4.1 Network Model Scenario

We consider a MPSS network that consists of three types of nodes: smart phones, static WiFi

routers, and a cellular base-station as shown in Fig. 4.3 Each phone can report sensed data to

the mobile sensing server through 3G cellular radio directly, or through a WiFi router nearby.

In addition, two nearby phones have the opportunity to communicate directly to each other

through WiFi Direct during their contact duration, such as phones B and C shown in Fig. 4.3.

In our model, each data packet produced by a smart phone has a monetary value (e.g. which

can be represented in terms of a national currency or tokens to be traded in other ways such

as to purchase mobile phone apps). Further, each packet is has a lifetime e.g., 10 minutes, and

its duration is tightly coupled to the worth specific applications attribute to the packet. The

MPSS operates in discrete time with a unit time slot t =1, 2, ... . Every phone x maintains

a data buffer that stores the sensor data packets generated by its own sensors, and the data

received from other phones. Initially the queue backlogs of the base-station in the MPSS is

assumed to be zero.

4.4.2 Algorithm Description

At every time slot t =1, 2, ..., our scheme operates as follows:
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Sensor Data Sampling

1. According to the requirements of the MPSS application (e.g. the demands of external MPSS

users), each phone x generates sensor data packet(s), and then assigns its monetary value and

initial Time-To-Live (TTL) value to each packet based on data analysis discussed in earlier

section. Then, x inserts the sensor data packets into its phone data buffer.

Instantaneous Neighbour Discovery

2. Each node x builds a one-hop neighbour table NEI(x, t), consisting of the cellular base-

station, and all phones and WiFi routers that can connect to x through WiFi radios at current

slot t. Neighbour discovery schemes such as [23] can be used to populate the one-hop neighbour

table. Take Fig. 4.3 for instance, the instantaneous one-hop neighbour table of phone C,

NEI(C, t), consists of three nodes: B, D, and E.

Transmission Quality Estimation

3. Each node x estimates its transmission capacity, ratex,y(t), between itself and each of its

instantaneous neighbours y in NEI(x, t), i.e. the maximum number of packets that x can

transmit to y, based on the data rates of their wireless radios and WiFi duty-cycle settings of

x and y [23].

4. Each node x estimates the monetary costs of sending and receiving a packet, denoted as

scostx(t) and rcostx(t) respectively, based on its remaining energy, system resource usage, and

3G bills costs. It worth noting that if x is a WiFi router or the cellular base-station, its receiving

cost, rcostx(t), is equal to zero.

Pricing

5. Each phone x sets its current data selling price, sellx(t), as the total monetary value of the

data packets in its data buffer multiplied by a positive system parameter α, set by the server.

For instance, if α = 0.1 and x’s data packets are worth 10 cents, therefore sellx(t) = 1 cent per

packet. Then phone x communicates the selling price sellx(t) to all nodes in NEI(x, t). Recall,

the selling prices of any cellular base-station and WiFi router are set as zero for every slot.
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Profit computation

6. Each phone x computes the potential individual profits, profitsx,y(t), it could obtain by

selling data to each of its neighbours y in NEI(x, t). profitsx,y(t) is computed as a function of

the cost (that would incur in this potential data trading) and selling price differences between

x and y

profitsx,y(t) = (sellx(t)− selly(t)− scostx(t)− rcosty(t))ratex,y(t) (4.1)

Data Trading

7. Denote y∗ as the neighbour that can currently give phone x maximum profit, if it sells on

its data. If profits∗x,y(t) > 0, then x sells rate∗x,y (t) number of packets to y∗. Note that the

number of packets are a function of the communications rate so as to not overload that link. A

data packet with a smaller TTL will be forwarded with a higher priority. Packets which have

reached a 0 TTL value will be dropped as they are deemed no longer useful to the application.

8. Upon receiving data packets from the seller x, the buyer y∗ pays (sellx(t) − selly(t) −

rcosty(t))ratex,y(t) total amount of money to x, which means that the cost incurred in this

trade is paid by the seller x.

It can be seen that the proposed scheme is fully distributed and scalable, because it requires

only the local information of each mobile phone and its current one-hop neighbours. In addition,

this scheme is very lightweight, as it implements simple arithmetic calculations and does not

require any historic information to be maintained, nor does it require future knowledge of

mobile phones and their trajectory to be speculated.

4.4.3 Economic Interpretation of the System

By using the proposed networking scheme the MPSS acts as an economic system, shown in

Fig. 4.4. Smart phones produce and trade sensor data with others in a virtual market, according
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to demands of MPSS users that can be either the phone users themselves (e.g. in the parking

application) or external users such as city council and electricity/gas companies. The trading

market is supervised by the MPSS server, i.e. it sets the system parameter α, the pricing policy

and trading rules. The global cost of the MPSS system is the total transmission and receive

costs of all phones that participate in data trading in the virtual market.
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Figure 4.4: Economic Interpretation of the MPSS.

Now we discuss how the proposed scheme incentivizes phone users to participate. On one

hand, by selling sensor data to others, a phone user can directly reap profits computed by

Equation (4.1). On the other hand, a phone user would also be willing to buy sensor data

from others because of the following two reasons: firstly a buyer can obtain sensor data at no

cost; according to the data trading rule of the proposed scheme. Secondly, the selling price

of a buyer is increased due to the grown data value, which will in turn increase its overall

revenue. That is, the buyer will obtain more benefit by selling on sensor data to others (e.g.

WiFi routers and the cellular based-station) at a higher price in the future; similar to real-world

trading systems. The proposed scheme is suitable for a large-scale MPSS, where the trading

system can be considered as a pure competitive market. Here, each phone user is described
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as a price-taker. This means that they believe that the pricing and trading rules are given as

constants by the system and that these cannot be manipulated by actions of individuals. In

small-scale MPSSs, where there are a small number of phone users in the system; phone users

can strategically subvert their actions to manipulate the market and thus their return. In this

case, algorithmic economic schemes such as distributed mechanism design [179] can be used

for faithful implementation of the proposed scheme but this is beyond the scope of this chapter.

4.4.4 Network-Theoretic Interpretation of The System

Since the total value of the data carried by each phone in its buffer is proportional to its queue

backlog, it can be verified that the proposed scheme implicitly solves a stochastic optimiza-

tion problem (i.e. we minimize the total transmit and receive costs for all phones) in a fully

distributed way, by using the Lyapunov “drift-plus-penalty” method [139]. According to Lya-

punov optimization theory, optimal throughput and long-term minimization of global system

costs can be achieved, by controlling the weight between queue backlogs and communications

costs [139]. In our scheme, this weight is controlled by the price scaling parameter α. Based on

the Lyapunov “drift-plus-penalty” method, it is not difficult to verify that as α decreases, the

global system costs (total cost of all phone users) also decrease, but the average queue backlogs

increase resulting an increase in end-to-end transmission delays. Therefore, by controlling the

pricing parameter α , one can prove that the proposed scheme can not only achieve throughput

optimality, which is highly desirable when transmitting large volumes urban sensing data; but

it can also minimize the total cost incurred by the phone users [200], [139].

Since the instantaneous neighbor table on each phone can include a cellular base-station, and all

WiFi routers and other phones nearby, the phones can automatically switch data transmission

between WiFi radio and cellular radio, according to selling prices and transmission costs. In

addition, heterogeneous data packet types are addressed by sending smaller-TTL packets with

higher priorities. This buffer management operation does not affect the global queue backlog

gradients of the system, and therefore does not affect the Lyapunov optimization guarantees.
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4.4.5 Self-*

In MPSS, mobile phone users can join and leave the network very frequently. Similarly disasters

and the dynamic nature of urban environments can cause network failure. Therefore, MPSS

should be able to add nodes to the existing network without any manual configuration. Simi-

larly, MPSS should be robust towards node and link failures and it should adapt autonomously

to current network states such as channel conditions and evolving logical network topologies.

Besides achieving throughput optimality, our scheme exhibits the following autonomic be-

haviours verified by simulations in the next section.

1. Self-optimization Since the neighbour table on each phone can include a cellular base-

station, and all WiFi routers and other phones nearby, the phones can optimize their profit

by automatically switching data transmission between WiFi radio and cellular radio depending

upon selling prices and transmission costs.

2. Self-organization This scheme is fully distributed, because it requires only the local in-

formation of each mobile phone and its current one-hop neighbours. This enables MPSS to

self-organize based on current network state and topology. Moreover it is flexible enough to

cope with partial failure of communication infrastructure e.g., by natural disasters and can

scale across urban space.

3. Self-adaptation Our scheme provides a tailored service based upon the available resources

and requirements of the application and nature of the data. It reacts timely to the continuously

changing properties of data according to performance objectives such as delay and cost.

4. Self-Healing Our scheme is self-healing under various permutations, such as node(s) leave or

join the network. The system reconfigures it-self to choose the best available path to route the

data to the server and maintains stability.
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4.5 Evaluation

4.5.1 Simulation Settings

To evaluate the performance of our scheme, we constructed extensive simulations using the

realistic simulator Castalia (http://castalia.npc.nicta.com.au/). We randomly deployed a 151-

node MPSS in a 800m×800m geographic area, consisting of 10 WiFi routers, 140 mobile phones,

and one cellular base-station. We set the duration of a slot to 1 second and each simulation lasts

for 106 slots (around 12 days). The transmission ranges of the WiFi direct radio was set to 50

meters i.e. the typical WiFi direct transmission range in practice (http://www.wi-fi.org). The

time-varying transmission capacities of all cellular and WiFi radios were randomly set between

1 and 50 packets per second. We used a realistic human mobility model, Heterogeneous Human

Walk (HHW) [199], to simulate the mobility of smart phones. The movement speed of each

phone was randomly distributed between 1 and 10m/s (i.e. representing walking speeds and

typical urban vehicular speeds).

Each sensor and mobile phone produces sensor packets with a random monetary value of 10

credits at a rate of one packet per slot. For every mobile phone, the receiving and transmitting

costs of WiFi radios were randomly set between 0.1 and 1 credits per packet, while that of the

cellular communications were set between 1 and 10 credits per packet.

4.5.2 Impact of Packet Lifetime and Pricing Parameter α on the

MPSS Performance

In this set of simulations, we study the impact of different packet lifetimes and the pricing

parameter α on the global system cost and global social profits. The lifetime (i.e. the initial TTL

value) of each generated packet was randomly set between 5 seconds and the max − lifetime

minute, this latter parameter is a simulation variable ranging from 10 to 50 minutes. The

randomness of the packet lifetime assignment can reflect the heterogeneity of mobile sensing

data. The simulation results are shown in Fig. 4.5, 4.6(a) and Fig. 4.6(b). In all simulations,
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Figure 4.5: Impact of parameter α on packet cost and delay.
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Figure 4.6: Impact of sensor data lifetime and parameter α .

around 10%-65% of the sensor data traffic is sent through cellular radios, and the rest is sent

over WiFi direct radios.

As illustrated in Fig. 4.5, the packet cost shows a monotonically decreasing trend as the pricing

parameter α decreases; this verifies our optimal throughput discussion in Subsection 3.2. End

to End delay increases with the decrease in packet cost. This is due to more packets are sent

through Wifi direct radios to reduce the cost and less packets are sent through cellular radios

with low delay.

We use time-average global system costs and global social profits (both in credits per second)

to measure the performance of our scheme. Here the global system cost is measured as the sum

of both the transmission and reception costs of all phones, and global social profits is computed

as the total value of all the successfully received packets (by the MPSS server) minus the total
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Figure 4.7: Impact of user trust and social network topology.

system cost.

As shown in Fig. 4.6(a), by setting a sufficiently small α, the global system cost can be

arbitrarily close to the minimal, according to Lyapunov optimization theory. However, the end-

to-end delay becomes large as α decreases, resulting a higher risk of a packet being dropped,

taking TTL into account. This is reflected in Fig. 4.6(b), where the global social profit shows

a concave curve as α decrease when the packet life time is small. This is caused by the joint

effects of decreased system cost and increase in dropped packets.

When max-lifetime is sufficiently large, global social profits exhibit a monotonically increasing

function of α. This is because the impact of packet loss caused by expired TTL on the global

social profits can be ignored. It worth noting that every phone obtained positive profit in

all simulations. This means that our scheme has the potential to incentivize phone users to

participate in the MPSS because they receive a fair reward.

4.5.3 Impact of User Preference and Privacy on System Perfor-

mance

People have different privacy concerns and preferences. For instance, a phone user may restrict

transactions to buy (or sell) sensor data from his or her friends than from strangers. To see
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how this would affect the MPSS, we constructed a set of simulations to study the impact of

such social behaviours. A social network was established to simulate the social relationships

between phone users, by using a realistic social network model proposed by Jackson et al [92].

We define a trust metric 0 < ST (x, y) < 1 between two phones as the percentage of sensor

data packets, which x is willing to sell to y (and in turn y is willing buy from x). For instance,

if the trust betweenST (x, y) = 10%, and the link capacity, ratex,y(t) = 50, then x can send

at most 5 packets to y at time slot t. If two phone users share a social link, then their trust

value will be randomly assigned between 0 and a positive value max − trust, the latter being

a simulation variable ranging from 0.2 to 1; otherwise, their trust value was assigned as zero.

The randomness of the trust assignment reflects different personal preferences. Fig. 4.7(a)

and Fig. 4.7(b) show how the strength of trust and the underlying social network topology

affect the system performance. We can see that the high level of trust between the phone

users across the network results in high global social profits for the network as a whole. As

one would imagine, low levels of trust reduce the utilization of WiFi direct communications

between mobile phones and force phone users to send more packets directly through cellular

communication, which results in higher costs and low global social profits. In addition, we can

see that both global system cost and social profits changes considerably as the heterogeneity

of the social network [92] changes, which demonstrates that the underlying social network

topology also has a significant impact on the system performance.

4.5.4 Self-Configuration in Dynamic Environment

To study the ability of our proposed scheme to adapt to changing scenarios, we constructed

experiments by dividing the total simulation time into five periods of equal duration of 2× 105

secs. In first period, MPSS operates normally with operational cellular andWifi communication.

In the second period, we disabled the cellular communication of all nodes so that data packets

can only be transmitted and received directly through Wifi direct radios (simulating cellular

failure similar to what has occured in disaster situations). MPSS returns back to normal

(mixed) state in the third period. In fourth period we disabled Wifi direct communication
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between all the nodes in the network, so that nodes can only transmit data packets through

cellular communication. Finally, the network returns again to its normal state in the fifth

period.

Here we used global system costs and global social profits in every slot (both in credits) to

measure the effect of changing topology over time. Here the global system cost is measured

as the sum of both the transmission and reception costs of all phones in a slot. Global social

profits is computed as the total value of all the successfully received packets (by the MPSS

server) minus the total system cost in a slot.

In Fig. 4.8, we can see that in the second period, the global system cost decreases when cellular

communication is disabled. This is due to all the transmissions being relayed through Wifi

direct only, which is cheaper than cellular communication. However, Fig. 4.9 show that global

phone user profits also decrease in spite of the decrease in cost. This is caused by the large delay

in multi-hop transmission which results in increased number of dropped packets with smaller

TTL. In the fourth period, system costs increase significantly when Wifi direct communication

is disabled due to the high cost of cellular communication. This is also reflected by the decrease

in global profits of the MPSS. We can also see that the network self-adjusts very quickly to the

changing conditions of the network. When the network returns to normal operation in third

and fifth period, the data buffer of the phones contain large numbers of data packets that are

sent instantly after availably of alternate option. This is the reason behind sudden spikes in

system cost and global profits at the start of these periods. Once the backlog reduces, the

system becomes stable.

4.5.5 Self-Adaptation to dynamic pricing models and user behaviours

To evaluate the impact of customer’s actual mobile phone usage on system; we categorised

users according to their usage behaviours against the available tariffs in the market. The

pricing models for phone users can be divided in to following three categories with respect to

data.
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1. Pay as you go(PAYG)/ Prepaid.

PAYG is the simplest pricing model in which users pay fixed cost per unit for data usage.

PAYG subscribers are usually charged at higher rate for data usage than users who are

subscribed to monthly data packages/allowances.

2. Monthly package with limited data allowance.

Majority of the pricing plans for mobile networks include monthly data allowance (e.g.

2GB per month) for additional price at the start of each month. Per unit cost of the

data allowances is less than cost of data usage for PAYG users. If a user consumes data

allowance before the completion of monthly cycle, data usage is charged at a flat cost per

unit for the rest of the monthly cycle. This flat cost is considerably higher and is similar

to that of PAYG users.

3. Monthly package with Unlimited data allowance.

Few pricing plans include unlimited data allowance for the users at a higher monthly price

than the plans with limited data allowance. The users can consume data through out the

monthly cycle at no extra cost.

According to the analysis of on-line bills of users to find out exactly how they use their phone

[10], the number of mobile phone users paying for mobile data usage outside of allowance has

declined at an accelerated rate. In contrast with usage of tariff-inclusive data allownces; users

appear highly aware of and averse to using chargeable services out of allowance. Based upon

the user’s behaviour of mobile data usage, we divided users in to two groups.

1. Opportunistic users. The users who are willing to allow MPSS applications to use

data at any cost as long as they will earn profits in return.

2. Conservative users. The users who do not want to consume data out of their data

allowance. Their usage of data decreases with the decrease in remaining data allowance.

Therefore they decrease the data allocation for the MPSS applications with the decrease

in their monthly data allowance.
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We investigated the effect of user behaviour on the system by incorporating different user’s

preferences. For PAYG users, cellular communication cost is set between 5 - 10 credits per

packet and it remains fixed over time. For users with the limited and unlimited data allowance,

cellular cost was set between 1 - 5 credits per packet because these plans are available at less

data cost than PAYG plans. For users with a limited data allowance, we allocated 500 mb - 5GB

at the start of each month according to typical data plans available in the market. Remaining

data allowance is decreased randomly each day from 10mb - 200mb. If a user run out of

allowances, the cellular data cost increases to 5-10 credits per packet and it stays constant until

the end of the month, similar to PAYG plans. For conservative users, we decreased allocation

of data for MPSS applications linearly with respect to remaining data allowance. On the other

hand, opportunistic users allow MPSS applications to use the data only based on cost benefit

analysis.

We evaluated the capability of our approach to self-adapt the network as a consequence of

dynamic change in cost. We constructed a scenario where 100 mobile users are subscribed

to monthly package and 40 are PAYG users. Each cycle is of 30 days for monthly package

subscribers. We set slot size to 10 seconds and each simulation lasts for 106 slots ( 110 days).

The monthly cycle of limited or unlimited data package subscribers does not start at the same

day of the month. Network service providers assign different starting dates to each mobile phone

user as per their policy. To observe the effect of dynamic pricing on global network performance,

we constructed a scenario where each monthly data subscriber has been assigned random day of

the month as starting day on their monthly cycle. Although dynamic pricing has a significant

impact on single individual but we can see in Fig. 4.10(a) that the system adapts itself and

remains unaffected regardless of change in the data price of monthly subscribers.Mobile users

choose to forward data to users who have low cellular cost i.e they are in the start of their

monthly cycle. Due to different starting time of cycles, change in the the cost of individual

mobile phone user does not affect the performance of the global profit as shown in Fig. 4.10(b).

If the cellular cost of a user increases as the result of montly data allowance consumption, cost

benifit analysis will deter it to send MPSS data packets through cellular communication. This

will increase its backlog and other user will not choose it as as a relay for MPSS data. The
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Figure 4.10: Global Impact of pricing models and user behaviour

stability of the system can also be verified by queue lengths and packet loss shown in Fig.

4.10(c) and 4.10(d).

4.5.6 Self-Healing

In last set of simulations, we study the self-healing capability of our scheme. In particular, we

analysed the critical situation when a substantial number of the available mobile phone users

leave the network. We constructed a scenario where 40 phone users leave the network during

second month at random time and join back during third month. Fig. 4.11. shows the effect on

the network performance due to nodes leaving and joining back in the system. In Fig. 4.11(a)

and Fig. 4.11(b). we can observe that this does not affect global cost and global profit of the

network. The network self-heals itself when nodes leave the network as the total amount of data

also decreases and mobile phones wait until they find suitable cost-effective way to forward the

data. This is also validated through stability of average queue length and low packet loss as
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Figure 4.11: Impact of mobile phone users leaving and joining the network

shown by the Fig. 4.11(c) and Fig. 4.11(d). Furthermore the network is also able to reconfigure

itself when the users join back during the third month and remains stable.

4.5.7 OppCom App

We developed an application (OppCom App) for android to evaluate our approach in real

world. We also deployed a server to collect data from the phones running OppCom App shown

in Fig. 4.12. OppCom uses Wifi-Direct for short-range communication whereas it can also send

data through cellular network (3G) to the MPSS server.

For OppCom App, slot interval was set to 10 seconds to accomodate discovery delay in Wifi-

Direct and it senses location data every 30 seconds i.e. 1 packet in every 3 slots. The com-

munication cost using Wifi Direct was set as 1 credit per packet whereas 3G transmission cost

was kept random between 1 to 10. We set WiFi Direct Channel capacity to 100 packets/slot
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Figure 4.12: OppCom App.

and 3G/WiFi channel capacity to 150 packets/slot. We installed OppCom App on 10 mobile

devices including Nexus 5, Nexus 4, Samsung Galaxy S5, HTC M8 and Nexus 7. Two of the

devices have no 3G connection and they can only use Wifi Direct to communicate with other

devices. The devices were distributed to students at Imperial College, London. Steps were

taken to make sure OppCom App was deployed to a device that would be carried around as

opposed to being kept stationary. Also, users were chosen to ensure that a device would come

into contact with at least another device at a point during the day. However, the deployment

was kept sparse enough so that devices were not always in each other’s transmission range. We

conducted the experiment for approximately 3 days.

Table 4.3 and 4.4 contains the statistics that we gathered from the clients and the server. Table

4.3 provides various statistics from user’s devices.

Individual Profits

We can see that every device obtained positive profit in the experiment, which shows that our

scheme can incentivize phone users to participate in the MPSS by providing them fair reward.

The variation of individual profit depends mainly on the extent of their participation in data

relaying for other devices. Individual profits also depend on 3G cost and access to Wifi routers

of the users. The devices E, G, H and J have used Wifi Direct communication for relaying of
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Device Total Sensed From Peer To Peer To Server Local Cost Profit

(packets) (credits)

A 866 0 602 0 1468 144.32

B 2399 10 266 0 2665 343.85

C 8282 49 10 6867 56361 836.53

D 6844 48 131 6199 35770 695.8

E 6343 2562 1435 7124 38514 766.45

F 5124 0 0 3618 26712 515.99

G 9141 2636 6663 4919 40399 1781.28

H 9215 8512 1920 14720 90517 209.13

I 42 57 80 0 122 5.62

J 6086 666 3433 1703 17431 1800.57

Total 54342 14540 14540 45150 309959 7099.54

Table 4.3: Statistics gathered from mobile devices

Number of Packets 45150

Average Delay 1988.92 seconds ≈ 30mins

Average Hops 1.308

3G Packet Loss 0.0 (0%)

Wifi Direct Packet Loss 0.0 (0%)

Table 4.4: Statistics gathered from MPSS server

data and earned larger profits than others. It is interesting to note that although device H sent

more packets using Wifi Direct than device E but device H earned lower profits than device

E. This is due to tha fact device H more packets than device E and only sent a small portion

through Wifi Direct. Therefore, the local cost of device H is high and its profit is low. The

devices C and F also earned high profits although they relied majorly on 3G communication.

This is due to their lower 3G cost than other devices.
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Packet Received by Server

From the table 4.3 we can see that 83% of the packets sensed are delivered to the server. The

remaining packets are either in the message buffer of the devices or were lost when the devices

re-started the application. We can also see that a couple of devices participated much less

that other devices. A limitation on WiFi Direct in android was that it does not automatically

accept WiFi Direct connection requests. When two new devices try to connect for the first

time, android pops-up a message on screen prompting for user verification to allow the devices

to connect. This deterred some users from actively participating in the MPSS but this did not

affect the performance of the system, which verified our discussion of self-* properties of the

approach.

Delay

Figure 4.13: Packet delay.

In table 4.4 we can see that the average delay reported by the server was around 30 minutes.

This delay is due to sparsity of the network and devices were isolated during certain times of

the day (i.e. night time) Also, because two of the devices cannot communicate directly with

the server, they wait to find other peer to send their packets.

Fig. 4.13 shows the package delay from all the packets received by the server. We have

distributed the packets according to different time intervals. We observed that more than half

of the packets were received within 5 minutes. We also observe that the average hops is close
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to 1 for the packets received within five minutes. This is due to the devices, which can directly

connect to internet, therefore they were able to upload packets as soon as they are generated.

There were few packets with smaller delay that were received by the server with more than one

hop count. This is due to the devices which are in contact with other devices with internet

access at a given time, a device with no internet access can forward its packets to other devices

and these packets are sent to the server with small delay. We can see that with the increase

the delay, the average hop increases significantly. These packets with large delays are from

the devices with no or high cost internet access and no peers with internet access in their

communication range. These devices send packets to each other, and finally send the packets

to a peer with internet access upon encounter.

Packet Loss

During the experiment, there were no packet loss on 3G and WiFi Direct communication

network. This shows that the communication technology is consistent and reliable in terms of

transmission quality and speed.

4.6 Conclusion

In this chapter, we developed a citizen-centric network architecture to provide a cost-effective

networking service for real-time and delay tolerant applications in Mobile Phone Sensing Sys-

tems (MPSS). Based on the guiding principles of the proposed network architecture, we devel-

oped a joint pricing and routing scheme to support both real-time and delay-tolerant MPSS

applications through seamless integration of cellular and short-range communications of mo-

bile phones. The proposed scheme is not only lightweight and fully distributed, but can also

achieve optimal throughput, which is highly suitable to deliver large amount of mobile sensing

data. Moreover, it is autonomous and scalable in highly dynamic environment of large cities.

Through simulations, we demonstrate that our scheme can minimize global system costs, as

well as effectively incentivize phone users to participate in the MPSS. We also show that our
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scheme is adaptive to user’s preferences, privacy and self configures, self adapts and self heals

in dynamic network conditions. Finally we developed an android appliaction (OppCom App),

which shows the applicability of our scheme in real world deployments.

Although our network architecture addresses key design principles of MPSS networking services

but it does not consider the mobility characteristics of the network. Unlike traditional wireless

sensor networks, mobile sensing brings people in the loop. Therefore, the question remains;

How to exploit the underlying social networks of human relays to utilize their mobility patterns

for an efficient networking system.

In the next chapter, we address this problem, where we exploit underlying social networks

structure of people to design joint rate control, routing, and resource pricing scheme for a

hybrid sensor and mobile phone network consisting of static sensors, mobile phones and static

sinks.





Chapter 5

Socio-Economic aware Opportunistic

Data forwarding in WSN with Human

Relays

Fixed infrastructures of wireless sensing techniques have limitations in terms of sensor mainte-

nance, placement and connectivity in future smart cities. One approach to overcome some of

these problems is to utilise the ubiquity of mobile phones as discussed in chapter 4. Unlike tradi-

tional wireless sensor networks, mobile sensing brings people in the loop, not only as the owners

of sensing devices but also as the sources and consumer of the network. WSNs with Mobile

Phones (WSN-MP) can utilize the interactions between static sensors, mobile sensors (people

with mobile phones) and sinks with internet access to enable cost effective data collection for

delay tolerant networks. This has encouraged researchers to study the social characteristics of

people in order to design efficient data forwarding approaches in these systems.

In the chapter we build on economic-aware scheme for MPSSs described in chapter 4; and

exploit underlying social networks of human relays to design a socio-economic aware data

forwarding scheme. We propose a novel data forwarding metric, Sink-Aware (SA) centrality,

to measure the potential sensor data forwarding ability of mobile relays. Our work combines

network science principles and Lyapunov optimisation techniques to maximise global social
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profit across hybrid sensor and mobile phone networks. Sensor data packets are produced

and traded (transmitted) over a virtual economic network using a lightweight, social-economic-

aware backpressure algorithm which combines rate control, routing, and resource pricing. Phone

owners can receive benefits by relaying sensor data. Our algorithm is fully distributed and makes

no probabilistic/stochastic assumptions regarding mobility, topology, or channel conditions, nor

does it require prediction. Simulation results further demonstrate that the proposed algorithm

outperforms pure backpressure and social-aware schemes, highlighting the advantage of building

systems that combine communication with other types of networks.

Different than mobility aware scheme for WSN with mobile sink (WSN-MS) in chapter 3, where

we considered mobility of nodes to collect data from static WSN; this chapter considers an

WSN-MP, where mobile devices (i.e. smart phones) are used to collect and forward data from

static sensor nodes to the sink (Wifi Access Point or cellular base station) using opportunistic

short-range wireless communications. We refer such WSN-MP to as WSN with Human Relays

(WSN-HR) in this chapter. Furthermore, main focus of this chapter is on how the social and

economic behaviours of the phone owners can be utilised for efficient data transmission.
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S The set of all sensor nodes.
R The set of all human relays.
D The set of all sinks.
N The set of all nodes N = S ∪R ∪D.
L The set of all directed links between each pair of nodes in N .
cx,y(t) The capacity of wireless link (x, y) ∈ L at slot t.
c(t) Channel capacity vector for all wireless links at slot t.
G(N ,L, c(t)) The time-varying weighted graph of the WSN-HR.
Lwsn The set of all directed links between each pair of sensor nodes in S.
G(S ∪D,Lwsn) The graph of the static-deployed WSN.
Nx(t) The set of node x’s instantaneous neighbours at slot t.
rx(t) The sensing rate of sensor node x ∈ S at slot t.
fx,y(t) Actual amount of data transmitted over wireless link (x, y) ∈ L at slot t.
Qx(t) The queue backlog of node x ∈ N at slot t.
ICTx,y The inter contact time between nodes x and y.
Lsocial The set of social ties between human relays in R.
G(R,Lsocial) Social graph of human relays.
G(N social

x ) Social neighbour table of human relay x ∈ R.
Cx The set of community(ies) that mobile relay x ∈ R belongs to.
hx Local centrality vector for mobile relay x ∈ R.
Cstatic

x The set of community(ies), whose location static node x located in.
A The set of all static clusters.
Asink The set of all static clusters containing sinks.
Hsink

x The sink-aware centrality of a mobile relay x ∈ R.
λx(t) The selling price if node x ∈ S ∪R in slot t.
Ix(rx(t)) Utility function of sensor node x.
γrelay
x (t) The instantaneous profit of a mobile relay x ∈ R.

ΓWSN(t) The sum of the instantaneous profits of all nodes in the static WSN.
Γ(t) The sum of the instantaneous profits of all nodes in WSN-HR.
V The parameter to tradeoff global social profits and queue backlogs.
rmax, cmax The finite upper bounds of sensing rate and channel capacity respectively.
Qmax

x The finite queue buffer size of node x ∈ N .
tend The number of slots of the finite horizon.
Hmax

sink The maximum SA centrality.
λscale The price-scaling parameter.
α The weighting parameter for social awareness.
wx,y(t) The routing weight of wireless link (x, y) at slot t.
ηx(t) The maximal possible amount of data can be received by node x at slot t.
ηmax The finite upper bound of ηx(t) for all x ∈ N at slot 1 ≤ t ≤ tend.

Table 5.1: Summary of symbols used in Chapter 5.
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WSN-HR Wireless Sensor Network with Human Relays
OBSEA Opportunistic Backpressure with Social/Economic Awareness
SA Centrality Sink Aware Centrality
ICT Information and Communication Technology

Table 5.2: Summary of abbreviations used in Chapter 5.

5.1 Introduction

In this chapter, we apply network science principles to build a resilient architecture consisting

of a hybrid of mobile phones and WSNs. Here static sensors are deployed to instrument a space

and report sensed readings. However, we deviate from the traditional WSN architecture by

not only using static base-stations connected to the Internet to relay data about the space, but

also utilising human relays via their mobile devices. This resilient architecture is motivated

by sensing applications in sustainable smart cities [46, 148, 151]. For brevity we call our ar-

chitecture WSN-HR (Wireless sensor networks with Human Relays). For a WSN-HR to be a

cost-effective communication solution for smart sustainable cities, the following two key issues

must be addressed:

• Since the mobility patterns of human relays are governed by their underlying social net-

works [121,199], how can we exploit social network features, such as centrality and com-

munity, for efficient sensor data forwarding?

• Since using the mobile phone as a relay has costs, in terms of local resources (e.g. memory

and energy) and telecommunications, how can we incentivise individuals to participate?

5.1.1 Our Approach

To address the above issues, we develop a novel scheme: an Opportunistic Backpressure ap-

proach with Social/Economic Awareness (termed OBSEA) for joint rate control, flow routing,
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and resource pricing. This approach uniquely combines network science principles and Lya-

punov stochastic optimisation theory [43,69,203]. Specifically, the contributions of this chapter

are summarised as follows:

1. By exploiting mobility patterns and the underlying social networks of human relays, we

propose a novel data forwarding metric, Sink-Aware (SA) centrality, to measure the potential

sensor data forwarding ability of mobile relays.

2. To incentivise people to serve as data relays using their phone, we establish a virtual economic

network for sensor data producing and trading. Here, the static WSN consists of static sensors

and sinks. It makes a profit by producing sensor data to maximise the network utility. Each

mobile relay acquires profit by dynamically adjusting the selling price of its maintained sensor

data and then trading (transmitting and receiving) data with other nodes opportunistically at

each moment of contact.

3. We formalise a finite-horizon optimisation problem to maximise the global social profits

of the all nodes in WSN-HR. Our formalisation does not make any probabilistic/stochastic

assumptions (e.g. specific probability distributions or ergodic stochastic network processes)

about the network conditions (e.g. mobility, topology, and wireless channel) and thus is suitable

for the arbitrary dynamic evolution process of WSN-HR. The lightweight OBSEA solves the

problem using only current and local information. This means that OBSEA is fully distributed

and does not require any prediction capacity, therefore maximising the practical application of

the work.

4. We evaluate the performance of OBSEA using the Castalia [3] simulator and a realistic

mobility model, [199] which exhibits features observed from real social networks and human

mobility traces. Simulation results demonstrate that OBSEA is adaptive to different network

settings. The algorithm is also shown to outperform pure backpressure routing and pure social-

aware forwarding schemes in terms of global social profit, data buffer efficiencies, and end-to-

end delay. In addition, the results show that a ’win-win situation’ (positive outcome) can be

achieved by both the static WSN and all mobile phone owners.
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5.1.2 Related Work

Data Muling and Relaying for WSNs. Many data muling schemes have been proposed

to improve energy efficiency and coverage in sparse WSNs. Specifically, [31, 55, 81, 151, 183]

recognise the potential of human mobility in data mules. As far as we are aware, however,

none of them consider exploiting the underlying social networks of human relays or utilising

opportunistic multi-hop human contacts.

Intermittently Connected Networks and Social Awareness. Social network metrics,

centrality and community structure, have been used for many opportunistic routing schemes

[45,66,67,84,121] in Delay Tolerant Networks (DTN) [60]. However, all of them focus on packet

routing (i.e. unicasting or multicasting a single packet or multiple packets) rather than the flow

routing in our OBSEA.

For general intermittently connected networks [41,56,159], backpressure-type flow routing and

control schemes are studied in [158, 159]. However, their scheme is based on the assumptions

of predetermined gateways and ergodic network conditions (i.e. mobility and channel states).

In contrast, our work uses a much more general and realistic network model in which any

sensor could serve as a gateway at each opportunistic contact, and no probabilistic/stochastic

assumptions (e.g. Markov process of the mobility) are made for arbitrary network conditions.

Furthermore, none of them considers social or economic awareness.

Network Optimisation. Cross-layer network optimisation and control is an active networking

research area [43, 69, 203]. Most backpressure scheduling/routing schemes [111, 145, 206] are

developed for multi-hop wireless networks to achieve infinite-horizon stability, and to maximise

long-term network utilities or minimises costs. However, these schemes are limited to ergodic

network models, which may not hold true in our highly dynamic WSN-HR. The recent universal

scheduling framework developed by Neely [142] optimises finite-horizon general network utility

with arbitrary dynamic network processes, and has been used in P2P networks [143] and smart

electricity markets [144]. OBSEA is the first approach to combine the universal scheduling

framework [142] and network science principles for urban WSNs using mobile data relays.

Pricing and Incentive Schemes. In [103, 141, 143], Lagrange multipliers or queue backlogs
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are used as prices to solve static convex network problems or dynamic stochastic problems. In

contrast, OBSEA uses both queue backlog and social-aware metrics for pricing. [132, 147, 157]

study game-theoretic incentive and pricing approaches. Incentive-aware routing schemes [129,

168] are proposed for data forwarding in DTNs. DTN routing schemes [56, 122] consider the

concept of social selfishness, which describes the willingness of an individual to provide better

service to those with strong social ties than those with weaker social ties. However, rational

selfishness considered by our OBSEA means that each phone owner is willing to relay sensor

data as long as he or she can get benefits, which is different form the concept of social selfishness.

In addition, none of above schemes focus on data muling for WSNs.

5.1.3 Chapter Organisation

In the next section, the network model is presented. Section 5.3 presents the OBSEA algorithm.

Simulation and results are presented in Section 5.4. Finally, we summarise this chapter in

Section 5.5. All proofs of theorems in this chapter and related lemmas regarding theoretical

analysis can be found in Appendix B.

5.2 Network Model

In an intermittently connected WSN-HR, every sensor node collects environmental data (e.g.

temperature and humidity) and sends the sensor data to any of the sink(s) through other static

sensor nodes and mobile relays if necessary, in an opportunistic multi-hop manner.

5.2.1 Topology and Communication model

Let the sets of sensor nodes, human relays, and sinks be S, R, and D respectively. Denote

N = S ∪R∪D as the set of all nodes in the WSN-HRs. The network operates in discrete time

with a unit time slot t ∈ {1, 2, ...}. Let cx,y(t) ≥ 0 be the current capacity of wireless link from

node x ∈ N to node y ∈ N at time t, i.e. the maximum (integer) number of sensor data packets

that can be successfully transmitted from x to y during slot t. cx,y(t) is assumed to be constant
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within the duration of a slot, but can vary from slot to slot and across different wireless links.

Specifically, if cx,y(t) > 0, we say nodes x and y are in contact at slot t; otherwise, they are

not in contact at slot t.

We model the whole WSN-HR as a directed, complete, and time-varying weighted graph

G(N ,L, c(t)), where L = {(x, y)| x, y ∈ N} represents the set of all possible wireless links

between each pair of nodes in N , and the |L|−dimensional vector c(t) represents the vector

of channel capacities over all wireless links at slot t. Due to the sparsity and intermittent

connectivity of the network, most entries of instantaneous c(t) are zero at a given t. Figure

5.1(b) illustrates an example of instantaneous G(N ,L, c(t)) at a slot.

We do not make any probabilistic/stochastic assumption on c(t), such as specific probability

distribution, i.i.d., or even ergodicity. This is because the stochastic process c(t) could be

affected by many random time-varying events such as unexpected external interference, channel

fading, and human mobility, governed by various complex physical rules. It is easy to see that

the definition of G(N ,L, c(t)) is very general and can characterise arbitrary stochastic channel

states and topology processes (e.g. mobility) of the |N |-node WSN-HR.

Due to the sparse density of the WSN-HR, we assume that the wireless interference among

concurrent transmissions over links in L can be ignored, in order to focus on routing and rate

control1.

For notation brevity, we also define Gwsn(S ∪ D,Lwsn) to represent the static WSN, where

Lwsn = {(x, y)|cx,y(t) > 0 ∀t ≥ 1, ∀x, y ∈ S ∪D} is the set of all wireless links with non-zero

capacities between static nodes.

Definition 5.1 (Static Cluster). A static connected cluster A ⊆ S ∪D is defined as the set of

all static nodes in a connected component2 of the static WSN Gwsn(S ∪D, Lwsn).

For instance, there are four static clusters in the WSN shown in Figure 5.1 (a).

1It is easy to add greedy/approximate scheduling functionalities such as [42] into our OBSEA algorithm for
efficient distributed implementations.

2In graph theory, a connected component of a graph G is a subgraph in which any two vertices are connected
to each other by paths, and which is connected to no additional vertices in G.
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Figure 5.1: Conceptual illustration of a WSN-HR. (a) Four static clusters of a static discon-
nected WSN Gwsn(S∪D,Lwsn). (b) An example of instantaneous graph G(N ,L, c(t)) at a slot,
and community-location mapping. Solid lines between nodes represent the wireless links with
non-zero capacities, and the wireless links with zero capacity are not plotted. The colourful
rectangles indicate the geographic areas associated with the communities. (c) The underlying
social network consisting of mobile relays, and an example of 4-clique overlapping community
structure over the social network.

5.2.2 Queueing Dynamics

Each node x ∈ N maintains a queue (i.e. data buffer) for the sensor data, which stores the data

packets generated by itself (if x is a sensor node), and by other sensor nodes. Let Qx(t) ≥ 0 be

the queue backlog (or queue length) of x ∈ N at slot t ≥ 1. Let Nx(t) ⊂ N be the set of nodes

that are in contact with node x at slot t (i.e the set of x’ instantaneous neighbours),

Nx(t) = { y | cx,y(t) > 0, cy,x(t) > 0, y ∈ N − {x} }

From each node x ∈ N , its queue backlog updates from slot t to t+ 1 as follows:

Qx(t+ 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 x ∈ D

|Qx(t)−
∑

y∈Nx(t)

fx,y(t) +
∑

y∈Nx(t)

fy,x(t)|+ x ∈ R

|Qx(t)−
∑

y∈Nx(t)

fx,y(t) + rx(t) +
∑

y∈Nx(t)

fy,x(t)|+ x ∈ S

(5.1)

where rx(t) ≥ 0 is the sensing rate at which a sensor node x ∈ S collects environmental data
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at slot t; 0 ≤ fx,y(t) ≤ cx,y(t) represents the actual amount of data transmitted from node x to

node y at slot t; and for any real number a, the operator |a|+ = a if a > 0, |a|+ = 0 otherwise.

5.2.3 Mobility Pattern and Social Network of Human Relays

The following human mobility and social network properties are explored by our OBSEA algo-

rithm.

Pairwise Inter-Contact Time. Let ICTx,y be the inter-contact time (i.e. the time elapsed

between two successive contacts as shown in Figure 5.2) between a pair of relays x, y ∈ R.

The distribution of pair wise inter-contact times between mobile relays has great impact on

data forwarding [38]. We do not assume any special distribution of ICTx,y, x, y ∈ R (e.g.

power-law [38], exponential [67], or power-law head and exponential tail [102]). In addition,

we generalise the concept of inter-contact time from each pair of pure mobile relays in R to

that of all nodes in N . Specifically, if two static nodes x, y ∈ S ∪D are always in contact (i.e.

cx,y(t) > 0 for all t ≥ 1), ICTx,y = 0; otherwise (i.e. cx,y(t) = 0 for all t ≥ 1)), ICTx,y = ∞.

Figure 5.2: The concept of contact time and inter-contact time between a pair of nodes.

Overlapping Communities and Centrality. As shown in Figure 5.1 (c), we assume that

there is an underlying social network that consists of all mobile relays in R. We model the

social network as an undirected graphGsocial(R, Lsocial), where Lsocial represents the set of social

ties between mobile relays, which can be defined by inter-contact time or contact probability

between each pair of nodes. A social tie between two mobile relays x and y in R is considered

to exist, if ICTx,y is smaller than a predetermined threshold ICTmax. Each mobile relay x ∈ R

maintains and updates its social neighbour table N social
x ⊆ R, which is the set of mobile relays

that share social ties with x, i.e. for each relay y ∈ N social
x , ICTx,y ≤ ICTmax. Using social



118Chapter 5. Socio-Economic aware Opportunistic Data forwarding in WSN with Human Relays

neighbour table of each relay, the social network Gsocial(R, Lsocial) can be established in a

distributed way at runtime.

It has been observed that a social network always exhibits overlapping community structures

[86, 150, 199] and heterogeneous centrality [24, 66, 84]. In the WSN-HR context, overlapping

community structure means that mobile relays in the same community (a set of mobile relays)

meet each other much more frequently than that in different communities, and a mobile relay

may belong to multiple communities. Heterogeneous centrality indicates that few mobile relays

(e.g. postmen) meet a large number of other relays, but many mobile relays only meet a small

number of others. We explore these two useful social network features in our OBSEA algorithm.

Mathematically, we use a tuple (Cx,hx) to represent the social profile of a mobile relay x ∈ R,

where Cx is the set of community(ies) node x belongs to, and hx is a |Cx|–dimensional vector,

where each entry hi
x, 1 ≤ i ≤ |Cx| represents the local centrality [66, 199] of x in its ith

community Ci
x ∈ Cx. Specifically, the hi

x is measured as the number of social ties between x

and other mobile relays in Ci
x ∈ Cx, i.e. hi

x = |Ci
x ∩N social

x |. For instance, in Figure 5.1 (c), the

local centralities of relays x and y in community 4 are 3 and 4 respectively. It can also be seen

that for k-clique community structure of social network Gsocial(R, Lsocial), the local centrality

of every mobile relay in every community should be no less than k − 1 [150].

Spatial Regularity of Human Mobility. Recent observations [74,80] of real human traces

demonstrate that people in a given community normally move within some certain geographic

areas much more frequently than other locations (e.g. students in the same department normally

visit their department building with a much higher probability than other places). An example

of such community-location mappings are illustrated in Figure 5.1 (b) and (c). Based on this

property, we establish social awareness for each static node x ∈ S ∪ D, by using a variable

Cstatic
x , which represents the set of community(ies) associated with the geographic area where

x is located in. Take Figure 5.1 for instance, since sink 1 sensor 1 are located within the

area associated with communities 1 and 4 respectively, Cstatic
sink1 = {community 1} and Cstatic

sensor1 =

{community 4}.
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5.2.4 A Social Forwarding Metric: Sink-Aware Centrality

Based on social networking features, we define a novel metric, Sink-Aware (SA) centrality, to

measure the potential ability of a mobile relay for delivering sensed data to the sink. Let Asink

be the set of static clusters, each of which contains at least a sink:

A
sink =

⋃

A∈A, A∩D≠∅

{A} (5.2)

where A is the set of all static clusters. In Figure 5.1, for instance, A = {static clusters 1–4}

and Asink = {static clusters 2 and 3}. We then define the global sink-aware community set

Csink as

C
sink =

⋃

x∈A, A∈Asink

C
static
x (5.3)

For instance, Csink = { communities 1, 3, and 4 } in Figure 5.1.

Definition 5.2 (Sink-Aware (SA) Centrality). For a mobile relay x ∈ R with social profile

(Cx,hx), its SA centrality Hsink
x is defined as

Hsink
x =

∑

Ci
x∈Csink∩Cx

hi
x (5.4)

where hi
x is the local centrality of x in community Ci

x.

It can be seen that a mobile relay with a high global centrality (i.e. the sum of its all local

centralities) does not always have a high SA centrality. For instance, consider a policeman as a

mobile relay who can meet a large number of people and therefore has a high global centrality.

However, he may rarely patrol the streets where the sinks are deployed, resulting in a low SA

centrality. In addition, Figure 5.1 (c) also illustrates a numerical example, where the global

centralities of mobile relays x and y are 9 and 7 respectively. Therefore, relay x has a higher

global centrality than relay y. However, the SA centrality of x is lower than that of y, i.e.

Hsink
x = 6 < Hsink

y = 7).
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Let the maximal possible SA centrality over all mobile relays be Hmax
sink = maxx∈R Hsink

x . It is

obvious that Hmax
sink ≤ |R|. Although static nodes do not have centrality concept, we still assign

a SA centrality value for each static node x ∈ S ∪D,

Hsink
x =

⎧
⎪⎪⎨

⎪⎪⎩

|R| if x ∈ A ∈ Asink

0 otherwise

to support our OBSEA algorithm that seamlessly combines all static nodes and mobile relays

in the whole WSN-HR. For instance, in Figure 5.1, Hsink
x = |R| = 18, if a static node x is in

static clusters 2 and 3; Hsink
x = |R| = 0, otherwise.

Compared with classic centrality definitions used in social networks and DTNs (e.g. degree and

betweenness centralities [62, 84]), SA centrality provides the destination-awareness for mobile

relays, and thus is more effective for WSN-HR. A distributed lightweight algorithm to establish

SA centrality at runtime will be introduced in next section.

5.2.5 Economic Network Model: Pricing and Social Profits

To incentivise mobile relays to forward sensor data for the static WSN, we establish a virtual

economic network for the WSN-HR. The static WSN Gwsn(S ∪D,Lwsn) can be considered as

the employer who pays the mobile relays (the employees) in credits, which can be used for

online shopping (e.g. to buy Android/iPhone Apps online). Specifically, at each slot t ≥ 1, the

sensor data producing and trading processes are described as follows:

• When a sensor or sink node y ∈ S ∪D receives (buy) fx,y(t) amount of sensor data from

a mobile relay x ∈ R, y pays fx,y(t)λx(t) amount of credits to x, where λx(t) is the selling

price per unit data (decided by the seller x).

• When a mobile relay x sells (transmits) data to another relay y, x, y ∈ R, x will receive

a payment of fx,y(t)(λx(t)− λy(t)) amount credits from y.

• A mobile relay y ∈ R can receive data for free from any sensor node x ∈ S.
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• When a sensor node x ∈ S collects environmental data at a sampling rate rx(t), Ix(rx(t))

amount of revenue will be provided by the WSN, where Ix(rx(t)) can be any differentiable,

non-decreasing, non-negative, and concave utility function of rx(t).

The sub-network consists of all mobile relays (employees) which can be viewed as a free infor-

mation market, and every relay trades sensor data with other relays to reap benefits from price

difference; similar to the real-world business. The instantaneous profit of a mobile relay x ∈ R

is defined as

γrelay
x (t) =

∑

y∈Nx(t)

λx(t)fx,y(t)−
∑

y∈Nx(t)∩R

λy(t)fy,x(t) (5.5)

where the first term on the right-hand side of (5.5) represents the total revenue of x by selling

data to others, and the last term represents the total expenditure of x, i.e. the credits paid

for data purchased from other relays in R ∩Nx(t). Similarly, we can define the instantaneous

profit of the static WSN Gwsn() as

Γwsn(t) =
∑

x∈S

Ix(rx(t))−
∑

x∈S∪D

∑

y∈Nx(t)∩R

λy(t)fy,x(t) (5.6)

where
∑

x∈S Ix(rx(t)) represents the total instantaneous revenue of the WSN, and the last term

of (5.6) represents the total expenditure of the WSN, i.e. the total credits paid for data purchase

from mobile relays in {y|y ∈ R ∩Nx(t), x ∈ S ∪D} .

From (5.5) and (5.6), it is easy to verify that the instantaneous global social profit of the whole

WSN-HR is

Γ(t) =
∑

x∈R

γrelay
x (t) + Γwsn(t) =

∑

x∈S

Ix(rx(t)) (5.7)

This is because the sum of the internal payments of all nodes in N is equal to the sum of

revenue earned from taking these payments. Therefore, the total social profit is the total

external incomes of the WSN.
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5.2.6 Social Profits Maximisation

Due to the arbitrary stochastic process of channel state (which may be non-ergodic) c(t),

an infinite-horizon time-average social profits may not exist. Therefore, we consider a finite

number of slots t ∈ {1, 2, ..., tend}. The objective is to seek an algorithm to solve the following

finite-horizon optimisation problem:

max Γ =
1

tend

tend∑

t=1

Γ(t) (5.8)

subject to (5.9)

0 ≤ rx(t) ≤ rmax x ∈ S, 1 ≤ t ≤ tend (5.10)

Qx(t) ≤ Qmax
x , ∀x ∈ S ∪ R, 1 ≤ t ≤ tend (5.11)

0 ≤ fx,y(t) ≤ cx,y(t) ≤ cmax x, y ∈ N , 1 ≤ t ≤ tend (5.12)
∑

y∈N−{x}

fx,y ≥ 1{x∈S}rx +
∑

y∈N−{x}

f y,x, x ∈ S ∪R (5.13)

where fx,y =
∑tend

t=1 fx,y(t)/tend; and the indicator function 1{x∈S} = 1 if x ∈ S, 1{x∈S} = 0

otherwise. The objective (5.8) is to maximise the time average social profits of all mobile relays

and the WSN during the finite-horizon of size tend. The constraint (5.10) represents that the

sample rate rx(t) is bounded by a constant value rmax < ∞, which is realistic for typical sensor

nodes. The constraint (5.11) states that the queue backlog Qx(t) of a sensor node or a mobile

relay x should be less than its buffer size Qmax
x . The constraint (5.12) represents that the actual

amount of data forwarded over each link should not be greater than the capacity of this link.

Constraint (5.13) states the the flow conservation law, i.e. node x’s average total incoming data

rate must not be greater than its average total outgoing data rate.

5.3 Opportunistic Backpressure with Social/Economic

Awareness

In this section, we introduce our OBSEA algorithm and a simple distributed scheme to establish

SA centrality.
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5.3.1 SA Centrality Updating

The following simple GPS-free scheme can establish SA centrality for each mobile relays in a

fully distributed way:

• Step 1. Due to the time-varying nature of human mobility patterns [66,80,199], each node

operates steps 2–5 during every short-term period (e.g. 6 hours) to obtain the transient

SA centrality rather than the long-term cumulative one. At the beginning of a short-term

period, every mobile relay x ∈ R initialises its SA centrality as Hsink
x = 0.

• Step 2. Each mobile relay x ∈ R establishes the social profile (Cx,hx) during every period,

by using a distributed community detection algorithm [86] and the social neighbour table

N social
x established online.

• Step 3. Each static node maintains a set Fx = {y| ∈ R, ICTx,y < ICTmax}, i.e. the set of

mobile relays that visit x frequently3. Then x can establish Cstatic
x as

C
static
x =

⋃

y∈Fx, (Fx∩C)∈Cy

{C}

• Step 4. If a node x ∈ S ∪ D in a static cluster A that also contains one or multiple

sinks, then x broadcasts Cstatic
x to all other nodes in A. As a result, every static node

in A can know the set Cstatic
A =

⋃
y∈ACstatic

y , i.e. the set of communities whose geo-

graphic areas static cluster A is located in. For instance, in Figure 5.1, Cstatic
static cluster 2 = {

communities 1 and 2}.

• Step 5. When a mobile relay x ∈ R visits a node y in a static cluster A that contains a

sink, x checks whether y meets any node in A during current period. If not, x requires

Cstatic
A from y, and then updates its SA centrality as

Hsink
x = Hsink

x +
∑

Ci
x∈C

static
A

∩Cx

hi
x

3A static node x ∈ S ∪D establishes its Fx based on the same way that a mobile relay y ∈ R establishes its
social neighbour table N social

y .
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5.3.2 OBSEA Algorithm

At each slot t ≥ 1, each node x ∈ N first observes its current neighbours that it is in contact

with Nx(t), the queue backlogs of itself and its contact neighbours, and channel capacities of

all its outgoing links, cx,y(y), y ∈ Nx(t). Then each node runs the OBSEA algorithm as follows:

Pricing. The selling price set by every node x ∈ N in slot t is:

λx(t) = (Qx(t) + α(Hmax
sink −Hsink

x ))/λscale (5.14)

where λscale > 0 is the price-scaling parameter that does not impact the global social profits,

but controls the profit ratio between all mobile relays (all employees) and the static WSN

(the employer), i.e.
∑

x∈R γrelay
x (t)/ΓWSN(t)); and α ≥ 0 is the weighting parameter for SA

centrality awareness in the routing component of OBSEA. When α = 0, the routing of OBSEA

is the pure queue-backlog aware (backpressure) algorithm; as α → +∞, the routing of OBSEA

tends to be based on SA centrality only. It is worth noting that the selling price λx(t) is always

non-negative, due to the non-negative values of α, Qx(t), λscale, and Hmax
sink −Hsink

x .

Rate Control. Each source node x ∈ S sets its data sampling rate rx(t) to maximise the

following simple algorithm.

max Ix(rx(t))− rx(t)Qx(t)/V (5.15)

subject to

0 ≤ rx(t) ≤ rmax (5.16)

where V > 0 is the predefined control parameter for the tradeoff between queue backlogs and

social profits. Since Ix(rx(t)) is concave, problem (5.15) adopts an unique maximiser as

r̃x(t) = min[max[I ′−1
x (Qx(t)/V ), 0], rmax]

where I ′−1
x () represents the inverse function of the utility function Ix()’s first derivative.
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Routing. Recall that Qmax
x is the data buffer size of node x. Each node x ∈ S ∪R computes

the price differential between itself and each of its instantaneous contact neighbour y ∈ Nx(t),

by using (5.14). Then x computes the weight of instantaneous link as

wx,y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(λx − λy)λscale if Qy(t) < Qmax
y − ηy(t)

0 otherwise

where ηy(t) =
∑

z∈Ny(t)
cz,y(t) + 1{y∈S}rmax is the largest possible amount of data that can be

injected into node y at slot t. Then node x transmits fx,y(t) amount of data packets to y:

fx,y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

cx,y(t) if wx,y(t) > 0

0 otherwise

(5.17)

It is clear that sensor-data packets are dynamically forwarded hop-by-hop rather than through

maintained end-to-end paths.

Incentive and Credit Transfer. Based on the actual produced and transmitted sensor data

decided by above rate control and routing respectively, each node in N transfers the credits

using the mechanism described in Subsection 5.2.5.

All the static nodes in the WSN are enforced to obey the rate control and routing rule without

any incentive. Now we analyse why mobile relays are willing to follow above routing rule. For

wx,y > 0, there are two cases:

• Both x and y are mobile relays. Based on the rationally-selfish assumption of mobile

relays, if wx,y(t) > 0, x can achieve wx,y(t) per packet benefit by selling sensor data to y.

For node y, although it pays credits for buying sensor packets, but its selling price will be

increased due to the incremental of its queue backlog (see (5.14)). y can sell sensor-data

packets to other mobile relays with lower selling price or to static nodes. Therefore, if

wx,y(t) > 0, both nodes are willing to trade the sensor data at this contact.

• One is a static node and the other is a relay. If x is a sensor node, y can get free data
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from x, which can be sold to others in the future; if x is a relay, it can get benefit by

selling the data.

Queue Update. Queue backlog of each node ∈ N are updated according to (6.3).

Since every node x ∈ N requires only the information of its instantaneous neighbours in Nx(t),

the OBSEA algorithm is fully distributed. In addition, OBSEA is based on only current

knowledge of the network at current slot t and does not require any prediction capacity for

future knowledge after slot t.

Performance Analysis of OBSEA can be found in Appendix B

5.3.3 Control Overhead

The control overhead of the OBSEA algorithm is discussed as follows:

• Communication Overhead. Since OBSEA is fully distributed, each node only trans-

mits at most one beacon to communicate its local queue backlog and SA centrality at

each slot.

• Computational Overhead. Since a node x ∈ N can be in contact with at most |N |−1

nodes at each slot, it is clear that both the SA centrality update and the operations of

OBSEA require at most O(|N |) simple arithmetic calculations only. It is worth noting

that this is loosely bounded, since a node can normally contact a small number of nodes

at each slot due to the sparse density of the network.

• Storage Overhead. Each node needs to maintain its SA centrality and its social profile

(at most 2|N |− 1) values. Therefore, the per node storage overhead is O(|N |).
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5.4 Simulation

We implement the OBSEA algorithm in Castalia [3]; a realistic WSN simulator. Several real

human mobility traces exist, such as the MIT reality [58] and the Infocom [38] traces, however,

public GPS data for WSN is non-existent. To integrate mobile relays and static WSNs into a

geographic area, therefore, we constructed a WSN-HR that consists of a random deployed static

WSN and multiple mobile relays that follow the Heterogeneous Human Walk (HHW) mobility

model [199]. HHW is a realistic human mobility model based on social network theory, which

exhibits various features of real human mobility and social networks.

The size of the geographic area was set as 1.7×1.7 km2 which is approximately the same size

of the City of London. The total number of nodes was set as 100, which consists of 17 sensor

nodes, 3 sinks, and 80 mobile relays. We set the duration of a slot as 1 seconds and ran

the simulation for 106 slots (the equivalent of about 11 days). We considered the 4-clique

community structure for the HHW mobility model and set the parameters as PRCsize = 1.2,

PROsize = 2, PRCsize = 1.2, PRMN = 2, and PRLocal = 2, according to the observations of real

social networks and human mobility traces. In addition, the speed of each mobile relay was

randomly distributed between 0 and 10 m/s (between walking and urban vehicular speeds.).

The transmission ranges of all nodes were set as 50 metres, and the data forwarding rate

(capacity) of each instantaneous contact link is randomly selected between 1 and 20 packets

per second. We set rmax = 10, ηmax = 50, and Hmax
sink = 80. For each sensor node x ∈ S, we set

its buffer size Qmax
x = 150, and utility function I(rx(t)) = 20 ln(1 + rx(t)). The profit-backlog

tradeoff parameter V was set as 5 according to (B.13).

Figure 5.3 shows the average global social profit, network throughput, end-to-end delay, and

queue backlogs with different weighting parameter α in (5.14), where Qmax
relay represents the data

buffer size of each mobile relay, i.e. Qmax
x = Qmax

relay, ∀ x ∈ R. Here, Qmax
relay can be understood

as either the physical memory size of mobile phones, or the memory space that the phone-user

are willing to provide for the sensor data. We run each simulation five times and the results

are highly close. The results shown in Figure 5.3 are the average of the same simulations.
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When Qmax
relay = 150, OBSEA algorithm with small α values (large weight for queue-backlog

awareness) perform better than that with large α values (large weight for social awareness).

When Qmax
relay = 300, OBSEA with α = 100 achieves better global social profit and throughput

than that with other α values. Finally, when Qmax
relay = 600, larger weight for social awareness

achieves better social profit and throughput. The results above demonstrate that neither the

pure backlog-aware scheme (α = 0) nor the (approximately) pure social-aware scheme (α =

10000) can achieve the optimal performance in all network conditions. In addition, it can be

seen that OBSEA can adapt to different network settings, by simply adjusting the weighting

parameter α.WSN-HR
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Figure 5.3: Long-term average simulation results for different α and Qmax
relay. (a) The object of

this chapter Γ, which can be transferred to various units such as pounds or dollars per day.
(b) The sum of the packet receiving rates of all sinks. (c) The average sensor-to-sink delivery
delay of all generated sensor-data packets during the simulation. (d) Average queue backlog of
all sensor nodes and mobile relays during the simulation.

Figure 5.4 (a) shows that the profit of every mobile relay is positive, which means that every

phone user achieves benefits through relaying sensor data for the static WSNs. The phone
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users just need to allocate some memory space Qmax
relay and cost little power consumption for the

short-range data transmissions to achieve such benefits. Figure 5.4 (b) shows that the ’win-win

situation’ (positive benefits) is achieved by both static WSNs and mobile relays during every

hour of the simulation time. We run the other simulations with different parameter settings,

all of which shows similar features of the results in Figures 5.3 and 5.4.
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Figure 5.4: Distribution of average individual profit and dynamic global social profit with
Qmax

relay = 600, α = 100, and λscale = 104.

5.5 Summary

In this chapter, we combine network science principles and Lyapunov network optimisation

theory to develop a data collection scheme for sparse sensor networks with mobile phones.

Without making any assumptions regarding the topology, mobility, and channel conditions of

the network, we devise an approach for joint rate control, opportunistic routing, and resource

pricing, which maximises the global social profit of the network. By exploiting the social and

economic behaviours of mobile phone users, a lightweight algorithm (OBSEA) is proposed that

is fully distributed and scalable. Simulation results show that OBSEA is adaptive to different

network scenarios and outperforms pure backpressure and pure social-aware schemes.

Due to selfishness of mobile phone users secure pricing is another main challenge these networks.

Every selfish user can attempt to affect the network by providing wrong information in terms

of price, connectivity etc. to achieve maximum profit for itself, which may result in inefficiency
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of the system.

In the next chapter, we have designed a more strong economic system that includes faith-

ful sensor data market design; thus discouraging phone users to subvert the market through

misinformation, and incentivization based on the benefits a user brings to the system.



Chapter 6

Faithful Data Collection in Mobile

Phone Sensing Systems using Taxation

The use of sensor-enabled smart phones is considered to be a promising solution to large-

scale urban data collection. In previous chapters we investigated cost-effective data collection

solution for WSNs with Mobile Phones (WSN-MP) using hybrid cellular and opportunistic

short-range communications. We also established economic model to incentivise mobile users

to participate in the network. Due to the human involvement in virual economic network,

every selfish device owner can attempt to manipulate the network to maximize own benefits

e.g.,by reporting wrong cost of its resources or by generating fake data. This will reduce the

efficiency of the network. This chapter focuses on developing faithful market design for Mobile

Phone Sensing System (MPSS) that consists of mobile phones who generate the sensor data

and forward data to sinks (Wifi Access Point or cellular base-station).

We first develop an adaptive and distribute algorithm OptMPSS to maximize phone user finan-

cial rewards accounting for their costs across the MPSS.we then propose BMT to incentivize

phone users to participate, while not subverting the behavior of OptMPSS using mechanism de-

sign theory.We show that our proven incentive compatible approaches achieve an asymptotically

optimal gross profit for all phone users. Experiments with Android phones and trace-driven

simulations verify our theoretical analysis and demonstrate that our approach manages to im-

131



132 Chapter 6. Faithful Data Collection in Mobile Phone Sensing Systems using Taxation

prove the system performance significantly (around 100%) while confirming that our system

achieves incentive compatibility, individual rationality, and server profitability.

S Server.
N The set of mobile phones.
ri(t) The sensing rate of mobile phone i ∈ N at slot t.
µi,j(t) capacity from a phone i ∈ N to a phone j ∈ N or to the server j = S at slot t.
Ni(t) Time-varying temporary neighbor table of phone i.
fi,j(t) Amount of forwarded data from phone i to its current neighbor j ∈ Ni(t) at slot t.
xi(t) Vector for sensing and data forwarding actions of a phone i ∈ N at slot t.
Qi(t) The queue backlog of phone i ∈ N at slot t.
f out
i (t) Total numbers of outgoing packets from phone i at slot t.
f in
i (t) Total numbers of incoming packets for phone i at slot t.
QS(t) Queue backlog of the server.
psi (t) > 0 Sensing price per packet of phone i at slot t.
pti,j(t) Transmission price for phone i to send a sensor data packet to a neighbor j.
costi(t) Total cost of each phone i ∈ N .
pi(t) Vector for price profile of phone i at slot t.
ri Average sensing rate of phone i over the time horizon [1, tend].
vi(ri) Revenue function to indicate the time-average contribution level of phone i to the MPSS
α Percentage of the global social revenue that is allocated to all phones.
ϕi Time-average gross profit of each phone i ∈ N .
costi Time-average of costi(t) over time horizon 1 ≤ t ≤ tend.

f
in

i Time-average of f in
i (t) over time horizon 1 ≤ t ≤ tend.

f
out

i Time-average of f out
i (t) over time horizon 1 ≤ t ≤ tend.

ri Average sensing rate for each phone i ∈ N at slot tend.
wi,j(t) The routing weight of wireless link (i, j) at slot t.
θi Private type (parameters) of each phone i.
Θi Set of all possible types θi.
x(θ) Joint rate control and routing decisions of the MPSS during the whole time horizon.
Θ Set of all possible θ.

θ̂i Reported type (parameters) of each phone to the server S.

θ̂ Reported types of all phones.
λ Monetary transfer function.
ui Net profit of each phone user.
uS Time-average server profit.

xvcg(θ̂) social decision rule of the VCG mechanism.

Table 6.1: Summary of symbols used in Chapter 6.
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MPSSs Mobile Phone Sensing Systems.
IoTs Internet of Things.
BMT Backpressure Meet Taxes.
VCG Vickrey-Clarke-Groves.

Table 6.2: Summary of abbreviations used in Chapter 6.

6.1 Introduction

Proliferation of these sensor-rich mobile devices along with collection of ubiquitous sensors are

envisioned to constitute a powerful mobile sensing system which can be used to understand

and analyse many interesting phenomena of the physical world. Urban sensing is different

from existing sensor networks by bringing people in the loop because people are no longer

just consumers of sensed data but also are source of sensed data. Mobility of humans and

increasing short range communication capabilities of smart phones (LTE, bluetooth, wifi-direct)

have paved the way for opportunistic networking in urban sensing applications. Mobile Phone

Sensing Systems (MPSSs) are characterized by social-based mobility and participation of people

for data generation and communication. However, to build such a MPSS with hybrid cellular

and opportunistic short-range communications, the following research issues must be addressed:

Networking Issues. As discussed in previous chapters, it is a challenge to perform the sensing

and opportunistic multi-hop data transmission tasks that are adaptive to the time-varying

and potentially unpredictable network states, including fluctuating wireless channel quality;

intermittent connectivity caused by phone user movement; heterogeneous transmission and

sensing costs across mobile phones; 3G/4G mobile data costs; and the opportunistic availability

of nearby free Internet access points.

Economic Issues. To encourage the phone users to participate the MPSS, they should be

properly rewarded to cover sensing and transmission costs [107,116,198] as discussed in chapter 4

and 5. In addition, the self-interest phone users may try to maximize their benefits strategically

by misreporting their local state parameters. For instance, in order to prolong battery lifetime,

a phone user may hide that she is connected to a free WiFi router to avoid relaying other
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nearby phone data to the server. This would result in significant performance degradation of

the system.The problem of building mechanism and protocols that can tolerate selfish behaviour

is an important issue in the design of networking protocols and distributed systems for mobile

urban sensing systems. Therefore, incentivization to force faithful behaviour is a key issue for

MPSS, which is much more challenging compared to pure cellular networks.

6.1.1 Our Approach

In this chapter, we present theoretical and practical studies to address above two issues. Our

contributions are summarized as follows:

1. We formulate a finite-horizon stochastic optimization problem for continuous data collection

in MPSS using hybrid cellular and opportunistic short-range communications. The objective

of the formulated problem is to maximize the global gross profit, i.e. the total financial rewards

of all phone users after costs incurred by performing the sensing and transmission tasks are

deducted.

2. We develop a lightweight joint sensing rate control and dynamic routing algorithm, OptMPSS

to solves the data collection problem in a fully distributed and therefore scalable way.

3. We propose a fully distributed mechanism, Backpressure Meet Taxes (BMT), to incentivize

phone users to faithfully implement OptMPSS, by imposing taxes or providing subsidies for

each phone user, depending on her impact on the rest of phone users in the MPSS. We prove

that BMT manages to achieve asymptotic incentive compatibility [179]. To our knowledge,

BMT is the first approach that integrating algorithmic mechanism design theory [91, 146, 169]

to the stochastic Lynapunov optimization framework [69, 142]. Besides MPSS, this method

developed for BMT also has a great potential to be applied to other stochastic distributed

systems with self-interest and strategic users.

4. Through experiments with WiFi-direct-enabled Android devices and extensive simulations

with real human mobility trace [5], we demonstrate that system performance can be significantly

improved by exploiting low-cost short-range communications, in terms of global social profits
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and phone users’ costs. Evaluation results also show that each phone user can always get a

positive net profit (i.e. gross profit plus subsidies or minus taxes) and the server never incurs

a deficit (i.e. the server always obtain a positive profit). Furthermore, each phone user cannot

increase her net profit improvement by lying about her private parameters. These results

demonstrate that BMT can achieve individual rationality, server profitability, and incentive

compatibility (faithful implementation) in practice.

6.1.2 Related Work

Recently, several incentive-based mechanisms have been proposed for MPSS [107,116,130,198].

[198] develops platform-centric and user-centric schemes based on a Stackelbergy game and

auction theory respectively. [107] proposes a mechanism based on a Bayesian game to minimize

participation costs while ensuring certain service qualities, by determining the level of user

participation (i.e. sensing rate). However, all of these schemes focus on MPSS with pure

cellular radios only, which cannot be directly used in MPSS with hybrid cellular and multi-hop

short-range communications.

The explosive growth of cellular traffic has motivated an increase in research into cellular

traffic offload using other forms of opportunistic connectivity, including WiFi [53,118,211] and

Bluetooth [79]. However, none of these focus on MPSS. EffSense [190], considers MPSS with the

same hybrid wireless networks as us. However, this heuristic-based scheme does not provide any

performance guarantees, and does not consider incentivisation for the strategic and self-interest

phone users.

Stochastic Lyapunov optimization [69, 142] provides elegant and powerful theoretical tools to

derive backpressure style cross-layer network optimization and control algorithms. Due to

their adaptiveness to network dynamics, several backpressure rate control and routing schemes

[15, 158] have been proposed for opportunistic mobile networks. However, again none of them

focus on MPSS nor do they account for incentivisation and the strategic behaviors of phone

users.
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Mechanism design [91, 146, 169] is concerned with how to make a global decision with de-

sirable properties in systems consisting of strategic self-interest individuals who have private

information. Recent theoretical work [152, 179] on distributed Vickrey-Clarke-Groves (VCG)

mechanisms enables the faithful implementation of algorithms producing desired outcomes in

a distributed way. However, these approaches focus on deterministic rather than stochastic

systems. Our work combines threads of all the above works in a novel way.

6.1.3 Chapter Organization

The next section presents the system model and design objectives. Section 6.3 describes the

OptMPSS algorithm. Mechanism design models are established in Section 6.4. Section 6.5

presents the BMT algorithm, then Section 6.6 discusses the performance evaluation. Finally,

we conclude the chapter in Section 6.7.

6.2 System Model and Objectives

As shown in Fig. 6.1, we consider a MPSS that consists of a server S and a set of mobile phones

N collecting urban sensing data. The MPSS operates during a finite time horizon (e.g. a week)

with discrete time slots t = {1, 2, ..., tend}, tend < +∞. Every phone can communicate with the

server S through 3G/ 4G cellular radios, or through the low-cost WiFi when it passes a WiFi

router (slots 1-3 in Fig. 6.1). In addition, phones in immediate proximity can communicate

with each other, using short-range communications such as WiFi direct (slot 2) and Bluetooth

4.0 (slot 3).

6.2.1 Sensing and Communication Models

At each time slot t, each phone i produces 0 ≤ ri(t) ≤ rmax sensor data packets, where the

finite sensing rate upper bound rmax ≤ ∞ is defined by the specific mobile sensing application.

Let µi,j(t) ≥ 0 be the channel capacity from a phone i ∈ N to a phone j ∈ N or to the server
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Figure 6.1: An illustrative example of a MPSS with hybrid cellular and short-range communi-
cations, consisting of 4 phones and a server.

j = S at slot t, i.e. the maximum (integer) number of data packets that can be successfully

transmitted from i to j during slot t. It can be seen that µi,j(t) may vary significantly over

the time slots, due to the stochastic phone user movement and wireless channel qualities. In

practice, all possible channel capacities (i.e. µi,j(t), ∀i, j, t) must have an finite upper bound

µmax ≤ ∞, determined by the finite data rate of the wireless transceivers .

Each phone i maintains a time-varying temporary neighbor table Ni(t), consisting of the server

S (if currently connected) and the phones in proximity at slot t:

Ni(t) := {j : j ∈ N ∪ {S}, µi,j(t) > 0} (6.1)

In practice, Ni(t) can be established by using neighbor discovery schemes such as [23]. Denote

0 ≤ fi,j(t) ≤ µi,j(t) as the amount of forwarded data from phone i to its current neighbor

j ∈ Ni(t) at slot t. We use a vector

xi(t) = (ri(t), fi,j(t), j ∈ Ni(t)) (6.2)

to represent the sensing and data forwarding actions of a phone i ∈ N at slot t.
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6.2.2 Queue Dynamics

Each phone i maintains a data queue with size Qi(t) ≥ 0 to store the sensing data collected by

itself and received from other phones. Considering sensing and data forwarding dynamics, the

queue backlog of each phone i updates as follows:

Qi(t+ 1) = |Qi(t)− f out
i (t)|+ + ri(t) + f in

i (t) (6.3)

where for any real number a, the operator |a|+ = a if a > 0; |a|+ = 0 otherwise. f out
i (t) =

∑
j∈Ni(t)

fi,j(t), and f in
i (t) =

∑
j∈Ni(t)

fj,i(t) represent the total numbers of outgoing and incom-

ing packets of phone i at slot t respectively. It is worth noting that the queue backlog of the

server S is always zero, i.e. QS(t) = 0, ∀t, since it is the destination of all sensor data packets.

6.2.3 Costs of Phones

At each slot t, each phone incurs costs due to sensing and data transmission. Let psi (t) > 0

be the per packet sensing price of phone i at slot t . Therefore, the sensing cost of phone i

at slot t is psi (t)ri(t). In practice, the sensing price psi (t) depends on both MPSS application

requirements, and the available resources that phone i has at time t such as remaining battery

energy. Denote pti,j(t) as the per packet transmission price for phone i to send a sensor data

packet to a temporary neighbor j. If j is the server S, then pti,j(t) depends on financial cellular

costs, the availability of a nearby WiFi router, and the remaining battery level of phone i.

Specifically, price pti,j(t) are normally significantly smaller when i sends data to the server

through WiFi than through cellular radios. If j is another phone, the transmission price pti,j(t)

mainly depends on battery concerns of the users of phones i and j. We can see that the data

transmission price is highly dynamic and heterogeneous across different wireless transmission

links.

It is worth noting that although sensing and transmission prices are influenced by various

practical aspects, they can be all normalized to monetary values (e.g. US dollar or credits per



6.2. System Model and Objectives 139

packet), estimated by each phone user herself rather then the server. The detailed estimation

in practice is out of the scope of this work, but our BMT scheme can guarantee that faithful

estimation is the best strategy for each self-interest phone user.

For a given slot t, the total cost of each phone i ∈ N can be computed as

costi(t) = pi(t)x
ᵀ

i (t) (6.4)

where the vector

pi(t) = (psi (t), pti,j(t), j ∈ Ni(t) (6.5)

characterizes the price profile of phone i at slot t.

6.2.4 Revenue and Gross Profit Maximization

During the complete time horizon, the server obtains totally tend
∑

i∈N vi(ri) amount of mone-

tary revenue (i.e. global social revenue), by selling the collected mobile sensing date to external

MPSS users. Here, ri represents the average sensing rate of phone i over the time horizon

[1, tend], and the revenue function vi(ri) can be any concave (includes linear), differentiable,

and non-decreasing function of ri. The revenue function may differ across mobile phones, de-

pending on specific sensing applications and the Quality of Information (QoI) of sensor data

produced by each phone i [107, 126]. Therefore, vi(ri) indicates the time-average contribution

level of phone i to the MPSS.

At slot tend, the server computes vi(ri) and makes a payment αtendvi(ri) to each phone i (shown

in Fig. 6.1), where the system parameter 0 < α ≤ 1 is the percentage of the global social revenue

tend
∑

i∈N vi(ri) that is allocated to all phones. As a result, the time-average gross profit of

each phone user is given by:

ϕi = αvi(ri)− costi, ∀i ∈ N (6.6)

where costi is the time-average of costi(t) over time horizon 1 ≤ t ≤ tend.

We call the time-average aggregated gross profit of all mobile phones
∑

i∈N ϕi, as the global
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gross profit. The MPSS aims to maximize the global gross profit by solving the following

finite-horizon stochastic problem:

maximize
xi(t),i∈N

Φ =
∑

i∈N

ϕi (6.7)

s.t.

ri(t) < rmax, i ∈ N 1 ≤ t ≤ tend (6.8)

fi,j(t) ≤ µi,j(t), i ∈ N , j ∈ Ni(t), 1 ≤ t ≤ tend (6.9)

ri + f
in

i − f
out

i = 0, i ∈ N (6.10)

where f
in

i and f
out

i are the time-averages of f in
i (t) and f out

i (t) over time horizon 1 ≤ t ≤ tend

respectively. Constraint (6.10) states the flow conservation law, i.e. the average total incoming

and outgoing data rate should be equal for each phone. This constraint also ensures that

the server will know the average sensing rate ri for each phone i ∈ N at slot tend. Section

6.3 will develop OptMPSS, an optimal distributed solution to problem (6.7)-(6.10). However,

because each phone owner i is only interested in maximizing her own profit ϕi rather than

the global gross profit of the system Φ, the optimal solution to problem (6.7)-(6.10) cannot

be implemented without proper incentivization mechanism that encourages phone owners to

apply the OptMPSS. All variables regarding the incentivization mechanism such as net profit

will be defined in Section 6.4.

6.2.5 Objective

The objective of this work is to develop an algorithm that can achieve the following desired

properties:

1. Global Gross Profit Optimality. The algorithm should be the optimal solution to prob-

lem (6.7)-(6.10).

2. Adaptiveness. The algorithm should be adaptive to all possible dynamic network states,
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including time-varying and heterogeneous sensing and transmission cost across phones; wire-

less link qualities; and network connectivity (e.g. including extremely dense networks where all

phones can always communicate with each other, to extremely sparse networks where short-

range communication is rare or not available).

3. No Prediction Requirement. The desired algorithm is based on the current system state

only, and does not require the prediction of any future MPSS information.

4. Distributed and Real-time Operations. The computational and communication over-

heads of the algorithm should be lightweight for real-time operations of each phone.

5. Individual Rationality. Each participating phone user should obtain a non-negative net

profit, which is formally defined in Equation (6.17).

6. Server Profitability. The server S should not incur a deficit, which means a non-negative

server profit (formally defined in Equation (6.18)) should be achieved.

7. Incentive Compatibility. Adopting the action suggested by the proposed algorithm should

be the best strategy for each phone user, regardless others’ actions. An important corollary of

incentive compatibility is that using hybrid cellular and (opportunistic) short-range communi-

cations will always result in a same or increased net profit for each phone, compared with using

the cellular communications alone.

6.3 The OptMPSS Algorithm

In this section, we develop an fully distributed algorithm, OptMPSS to optimize global gross

profit (6.7), by controlling the action xᵀ

i (t) of each phone i ∈ N at every slot 1 ≤ t ≤ tend:

its sensing rate ri(t) and the data forwarding rate fi,j(t) to each of its temporary neighbors

j ∈ Ni(t). Initially, in this section, we assume that all phone users are willing to truthfully

implement the OptMPSS algorithm. We will relax this assumption in later sections.
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6.3.1 Distributed Operations of OptMPSS

At each slot 1 ≤ t ≤ tend, each phone i ∈ N operates as follows:

1. Sensing Rate Control. Phone i sets its sensing rate ri(t) as

ri(t) = min(rmax,αv
′−1
i (

Qi(t) + V psi (t)

V
)) (6.11)

where v′−1
i () represents the inverse function of revenue function vi()’s first derivative, and V > 0

is a system parameter defined by the server.

2. Opportunistic Routing and Data forwarding. Phone i computes a weight wi,j(t) for

each temporary neighbors j ∈ Ni(t) as

wi,j(t) = (Qi(t)−Qj(t))µi,j(t)− V pti,j(t) (6.12)

Based on wi,j(t), i sets the forwarding rate fi,j(t) for each of its temporary neighbor j ∈ Ni(t)

as:

fi,j(t) =

⎧
⎪⎪⎨

⎪⎪⎩

µi,j(t) if wi,j(t) > 0

0 otherwise

(6.13)

Remark 1. Since every node i ∈ N requires only the information of its temporary neighbors

in Nx(t), OptMPSS algorithm is fully distributed. In addition, OptMPSS requires current

knowledge of the network only for slot t and does not require any future knowledge after slot t.

At each slot, each phone broadcasts a one-hop beacon message to communicate its queue backlog

to its current temporary neighbors and performs simple arithmetic calculations. Therefore, the

per slot per node communication of OptMPSS is O(1) with respect to the network size |N |.

Proof of the asymptotical optimality of OptMPSS can be found in appendix C
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6.4 Mechanism Design for Faithful MPSS

A key property of MPSS is that all parameters local to each phone are private and not observable

to other phones and the server. Consequently, this provide the phone users with the opportunity

to subvert the system by miscommunicating their local parameters. In this section, we briefly

discuss algorithmic mechanism design [146, 169], which studies faithful implementation of an

intended algorithm in a system with a center and a set of individuals with private parameters.

MPSS can be viewed as such a system where the center is a server S and the individuals

are mobile phones, and we aim to design a mechanism to faithfully implement the intended

OptMPSS algorithm.

6.4.1 Centralized Mechanism Design

Although we focus on distributed mechanism design, for readability, we first discuss direct

revelation (centralized) mechanisms [152] in the context of MPSS.

Efficient Social Decision

For each phone i, define its private type (parameters) as

θi = (pi(t), µi,j(t), j ∈ Ni(t), 1 ≤ t ≤ tend) ∈ Θi

where Θi represents the set of all possible types θi. Denote the private types of all phones as

θ = (θ1, ..., θ|N |(t)) ∈ (Θ1×, ... ×Θ|N |) = Θ, where the type space Θ represents the set of all

possible θ.

Let x(θ) represent the joint rate control and routing decisions of the MPSS during the whole
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time horizon 1 ≤ t ≤ tend.

x = (xi(t), i ∈ N , 1 ≤ t ≤ tend)

= (ri(t), fi,j(t), i ∈ N , j ∈ Ni(t), 1 ≤ t ≤ tend)

∈ X

where X represents the set of all possible rate control and routing decisions. It is easy to see

that the gross profit of each phone ϕi, i ∈ N depends on its private type θi and the decision

x. Therefore, we can rewrite ϕi as ϕi(x, θi). In mechanism theory, The function x : Θ → X is

called a social decision.

Definition 1 [Efficient Social Decision] A decision xopt is said to be efficient if

∑

i∈N

ϕi(xopt, θi) ≥
∑

i∈N

ϕi(x, θi) (6.14)

for all θ ∈ Θ and for all x ∈ X . It can be seen that the sensing rate control and routing

decisions made by OptMPSS is the efficient social decision when V → ∞.

In order to make an efficient social decision x(θ̂) in a centralized way, each phone is asked to

report its type, denoted as θ̂i,

θ̂i = (p̂i(t), µ̂i,j(t), j ∈ N̂i(t), 1 ≤ t ≤ tend) ∈ Θi

to the server S, where θ̂ ∈ Θ represents the reported types of all phones.

Since each phone user i exhibits strategic behaviors in reality, he or she may be untruthful and

report a type value θ̂i that is different from the real type (i.e. θ̂i ̸= θi), in order to derive an

alternative social decision x′(θ̂) that results in a better gross profit ϕi(x′(θ̂), θi) > ϕi(xopt, θi).
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Tax, Subsidy, Net Profit, and Server Profit

In order to make an efficient social decision, server S introduces a monetary transfer function

λ : Θ → R|N |

λ(θ̂) = (λ1(θ̂), ...,λ|N |(θ̂)) (6.15)

to encourage the phone users to report their true types. Based on the announcement of a phone

i’s type θ̂i(t), the function λi(θ̂i), where this is negative this represents a tax that is imposed on

phone i, or where positive a subsidy is paid to i. The combined social decision and monetary

transfer function (x(θ̂),λ(θ̂)) is referred to as the social choice function [91]:

g : Θ → X × R
|N | (6.16)

As a result, the net profit of each phone user is defined as

ui(θi,x(θ̂),λi(θ̂)) = ϕi(x(θ̂), θi) + λi(θ̂) (6.17)

In our MPSS model, the time-average server profit uS can be formally defined as

uS = (1− α)
∑

i∈N

vi(ri)−
∑

i∈N

λi(θ̂) (6.18)

VCG Mechanisms

A direct revelation mechanism is defined as (g,Θ), with a strategy (type) space Θ and social

choice function g. A mechanism defines a non-cooperative game with incomplete information

as each phone has no knowledge of the types of other phones.

Definition 2 [Incentive Compatibility] A direct revelation mechanism g(θ) is dominant strategy

incentive compatible, if the reported θi(t) is a dominant strategy for each phone i ∈ N :

ui(g(θi, θ−i), θi) ≥ ui(g(θ̂i, θ−i), θi), ∀θ−i, θi, θ̂i ̸= θi
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, where θ−i(t) represents the types of all other phones j ∈ N − {i}. In this case we say the

social choice function is implemented in ex-post Nash equilibria.

The Vickrey-Clarke-Groves (VCG) mechanism is well-known for the desired property of incen-

tive compatibility [91]. The social decision rule of the VCG mechanism is given by

xvcg(θ̂) = argmax
x(θ̂)∈X

∑

i∈N

ϕi(x(θ̂), θ̂i) (6.19)

and the monetary transfer function of each phone i ∈ N is:

λvcg
i (θ̂i) =

∑

j ̸=i

ϕj(x
vcg(θ̂), θ̂j)

︸ ︷︷ ︸
(a)

− max
x−i∈X−i

∑

j ̸=i

ϕj(x−i, θ̂j)

︸ ︷︷ ︸
(b)

(6.20)

where the term (a) corresponds to the gross profit of all phones excluding i (i.e. all phones

in N − {i}) when an efficient social decision has been made, and term (b) represents the

maximum global gross profit achievable for all phones in N − {i}, without i’s presence in the

MPSS. Therefore, the monetary transfer λvcg
i (θ̂i) represents the impact (either loss or increase)

in value that is imposed on all other individuals (i.e. marginal social impact) due to the social

decision that has been updated resulting from i’s presence in the MPSSs.

6.5 The BMT Algorithm

By applying distributed mechanism design to OptMPSS, we develop BMT, an on-line and fully

distributed algorithm that calculates the marginal social impact (for computing the VCG tax)

of each phone in parallel with the operations of OptMPSS.

6.5.1 Distributed Operations of BMT

During the complete time horizon 1 ≤ t ≤ tend, the BMT algorithm operates as follows:
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1. Initialization. At beginning of slot t = 1.

• The server : S broadcasts the set N , revenue function αvi(), and system parameters V

and rmax to each phone i ∈ N .

• Mobile phones: Besides storing its data queue holding data, each phone i initializes a

virtual queue length (a non-negative integer number) Q−j
i (t) for each of all other phones

j ∈ N , j ̸= i, where Q−j
i (t) means the queue length of phone i without phone j’s presence.

The initial lengths of all virtual queues are set as zero.

2. At each slot 1 ≤ t ≤ tend

Distributed Sensing and Routing. Each phone i ∈ N adopts the OptMPSS algorithm for

optimal distributed sensing and data forwarding.

Distributed Marginal Social Impact Computation. In parallel, each phone i ∈ N computes the

virtual sensing rate r−j
i (t) and the virtual cost cost−j

i (t) for each of all other phones j ∈ N , j ̸= i

based on the corresponding virtual queue length Q−j
i (t),

r−j
i (t) = min(rmax,αv

′−1
i (

Q−j
i (t) + psi (t)

V
)) (6.21)

and

cost−j
i (t) = psi (t)r

−j
i (t) +

∑

k∈Ni(t), k ̸=j

f−j
i,k c

t
i,k(t) (6.22)

where the virtual forwarding rate is

f−j
i,k (t) =

⎧
⎪⎪⎨

⎪⎪⎩

µi,k(t) if w−j
i,k (t) > 0

0 otherwise

(6.23)

where for each k ∈ Ni(t), k ̸= j, the virtual weight is

w−j
i,k (t) = (Q−j

i (t)−Q−j
k (t))µi,k(t)− V pti,k(t) (6.24)
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The virtual queue lengths Q−j
i (t), ∀j ∈ N − {i} are updated as

Q−j
i (t+ 1) = |Q−j

i (t)−
∑

k∈Ni(t)

f−j
i,k (t)|+ + r−j

i (t)

+
∑

k∈Ni(t)

f−j
k,i (t)

The average virtual sensing rates and virtual costs for all j ̸= i, j ∈ N are updated as

r−j
i = (r−j

i + (t− 1)r−j
i )/t

cost
−j
i = (cost−j

i + (t− 1)cost
−j
i )/t

3. At slot t = tend.

• Each phone i reports the average virtual sensing rates r−j
i and virtual cost cost

−j
i for all

j ∈ N , j ̸= i to the server.

• The server The server can compute the VCG tax

λvcg
i =

∑

j∈N−{i}

(αvj(r
−i
j )− cost

−i
j )

−
∑

j∈N−{i}

(αvj(rj)− costj)

of each phone i ∈ N . Finally, the server makes a payment of tend(αvi(ri) + λvcg
i (θ̂i)) to

phone i.

From a global view of point, the BMT algorithm runs in total one real and |N | virtual OptMPSS

algorithms in parallel during the time horizon of the MPSS: the real OptMPSS algorithm makes

the actual sensing rate and routing decisions at each slot, while |N | virtual OptMPSS algorithms

simulate N virtual marginal societies with absence of each phone i ∈ N to compute the final

tax or subsidy for each phone in a fully distributed way.

Remark 2. It worth noting that the |N |− 1 virtual queue lengths maintained in each phone

are integer numbers rather than real data packet queues, which results in negligible storage
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Figure 6.2: Experiment Prototype Illustration.

overheads for mobile phones (e.g. only several KB storage overhead for a MPSS with thousands

of phones with several GB RAMs). In addition, BMT requires each node to transmit O(|N |)

bytes of information (its real and maintained virtual queue backlogs) to its current neighbors

only, while also performing O(|N |) simple arithmetic calculations. This is still realistic for

today’s smart phones using short-range radios such as WiFi direct that can achieve up to

250Mbps data transmission rate. Due to its distributed operations and light overheads, BMT

has a great potential to be applied in large-scale MPSS.

Proof of Asymptotic Incentive Compatibility of BMT can be found in Appendix C.

6.6 Evaluation

In this section, we evaluate the performance of the BMT algorithm via both prototype experi-

ments and simulations using real human mobility traces.

6.6.1 Experiments Based on Android Device

We implemented the BMT algorithm in Android OS 4.3, and developed an application called

BMT App. We constructed a proof-of-concept MPSS with three WiFi-direct enabled Android
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(a) (b) (c)

Figure 6.3: Experiment results: (a) time-average global gross profits for the three experiments.
(b) and (c) shows the impact of device A’s cheating action on the time-average individual gross
and net profits of every device respectively.

devices (i.e. a Nexus 5 phone and two Nexus 7 tablets) and a server implemented in NODE.JS

(http://nodejs.org/), as shown in Fig.6.2. The duration of a slot was set as two seconds and the

duration of each experiment was 10 minutes. At the each slot, the BMT App run a discovery

phase to update the temporary neighbor table (e.g. the server and nearby devices), and then

performed the sensing, routing, and marginal social impact computation tasks as defined by

the BMT algorithm. Each device was held by a researcher moved around our lab.

We use the revenue function vi(ri) = 4 ln(1+ ri) for each i ∈ N , and set the system parameters

V = 100 and α = 0.5. We use WiFi direct as the short-range radios. The channel capacities of

all wireless radios are set at 25 packets per slot. The sensing prices and transmission prices (in

credits per data packet) for the data sent by WiFi direct were set as 0.1, for all three Android

devices A, B, and C. The 3G transmission prices of A, B and C were set as 0.1, 1, and 1.5

respectively1.

As shown in Fig.6.3 (a), the time-average global gross profit of MPSS using hybrid 3G and WiFi

direct communications is approximately twice of that using 3G radios alone, which demonstrates

1This implies that Amay have an unlimited mobile data budget, while B and C may adopt a limited monthly
contract or ’pay as you go’ tariff rate.
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that significant performance improvement can be achieved by using hybrid cellular and short-

range radio.

In addition, we also evaluated the incentive compatibility of BMT. Since device A had a much

lower 3G prices than B and C, the routing decisions made by BMT would require A to relay

the sensor data packets collected by B and C (when A passed them) to the server, in order

to maximize the global gross profit. However, this would result in an individual gross profits

reduction for A (due to the relaying cost), and therefore (the owner of) A may not want to

faithfully adopt the distributed routing actions suggested by BMT. To check whether BMT can

avoid this, we mimic a quite intuitive cheating behaviour for A, i.e. disabling its WiFi direct

radio.

Fig. 6.3 (b) shows that the individual gross profit for each device before and after A’s cheating

action. It can be seen that this untruthful behavior can indeed improve A’s individual gross

profit, but results in a significant degeneration of global gross profit for the whole system, as

shown in Fig. 6.3(a). As shown in Fig.6.3 (c), however, A eventually missed the opportunity

of obtaining approximately 36% more net profit due to cheating. This means that A would

be better off relaying sensor data from other devices than misinforming the network. This

demonstrates that in practice BMT can achieve the highly desired incentive compatibility

property. In addition, the server profit and net profit of each device and server profit were

positive in all experiments , which demonstrates that BMT can achieve individual rationality

and server profitability in practice.

6.6.2 Trace-driven Simulations

To evaluate the practical performance of BMT at scale, we established simulations using the

real human trace collected from Infocom05 (41 nodes for 3 days) [5]. In all simulations, each

phone has both 3G, WiFi, and WiFi direct radios. When a phone meets a free WiFi router, it

sends data through the WiFi radio rather than 3G. In each simulation, a power-law distributed

random variable was assigned to each phone to simulate the heterogeneous free WiFi access

probability across phones, observed from real human mobility traces [38]. The sensing and
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(a) dynamic throughput (b) average throughput

(c) global profits (d) incentive compatibility

Figure 6.4: Simulation results of BMT.
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(a) Scenario 1: Wifi
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(b) Scenario 2: No Wifi
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(c) Scenario 3: Cheating

Figure 6.5: Individual Profits of Nodes.

WiFi/Wifi-direct transmission prices for each phone were dynamically set between 0 and 0.01

for each slot (representing channel quality variation) at each slot, while 3G transmission price

of each phone was randomly set between 0.1 and 0.5 at the beginning of each simulation and

remained constant over slots. We set rmax = 5 and the duration of a slot as one second. All other

parameters in the simulations were set the same as in the prototype experiment represented

earlier.

We run three simulations for three different scenarios:

• Scenario 1: MPSS with all wireless radios which show the normal operation of the

network where each user is willing to participate and data can be forwarded either using

Wifi Direct radio or cellular radio. The system can achieve optimal performance through

utilization of all available communication resources.

• Scenario 2: MPSS without WiFi direct where users are not willing to cooperate with

each other and all data is forwarded using only cellular radios. This results in increased

cost of the system as cellular communication is expensive.
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• Scenario 3: cheating actions in MPSS with all wireless radios, where the users of phone

1 to 10 try to hide their WiFi direct abilities in effort to increase their own profit without

cooperating with other users. The users who are involved in cheating report that they

only have cellular radio therefore they cannot receive or forward data to other users.

Fig. 6.4 (a) and (b) show the dynamic and time-average throughput (i.e. total sensing data

packets produced by all phones at each slot) of MPSS respectively, which demonstrate that the

BMT algorithm is adaptive to network dynamics (e.g. mobility) and manages to converge to

the time-average optimal. This also show higher packet rate when both Wifi Direct radio and

cellular radio are used which results in high system performance.

This is also shown in Fig. 6.4 (c), where global profits are higher in scenario 1. This demon-

strate that using multi-hop opportunistic short-range communications can significantly improve

network performance.

Fig. 6.4 (d) show individual profits of users 1-10 in scenario 1 and 3. It verifies that the

users earn less profit in scenario 3 where they cheated than scenario 1 under normal network

operations. This show that BMT can achieve incentive compatibility and server profitability

in practice.

Fig. 6.5 shows individual gross and net profit in above three scenarios. The gross and net profit

of each device were positive in all scenarios , which demonstrates that BMT achieves individual

rationality and effectively incentivizes the users to participate in the network.

6.7 Conclusion

In this chapter we investigate a cost-effective data collection solution for Mobile Phone Sensing

Systems (MPSS) that utilize hybrid cellular and opportunistic short-range wireless commu-

nications. We formulate a stochastic optimization problem for mobile sensor data collection,

and develop OptMPSS, a scalable joint sensing rate control and routing algorithm to solve the

formulated optimization problem in a fully distributed and scalable way. In order to encourage
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phone users to faithfully apply the OptMPSS algorithm’s control suggestions, we propose BMT,

a joint networking and taxing scheme, based on combing Lyapunov stochastic optimization and

distributed mechanism design theories. We prove that BMT achieves asymptotical optimality

and incentive compatibility.

In order to evaluate the practical performance of BMT, we developed BMT App, an An-

droid application that implements BMT algorithm for WiFi-direct-enabled devices. Trough

real-world experiments and realistic trace-driven simulations, we demonstrate that BMT can

efficiently exploit low-cost short-range communications, which significantly improves the global

gross profit of the MPSS (around 100%). In addition, we also verify the incentive compatibility

of BMT by mimicking potential cheating behaviors of phone users. Evaluation results show

that the sensing and routing actions suggested by BMT are the best choice for each individual

phone user. In addition, evaluation results also demonstrate that our approach can achieve

individual rationality and server profitability in practice.

In the future, we plan to construct a larger-scale practical MPSS with real phone users to test

BMT App in a non-lab environment, and investigate how to achieve strict individual rationality

and server profitability guarantees in theory.





Chapter 7

Conclusion

7.1 Summary of Achievements

There are many cases in which the classic WSN deployment, consisting of a single static sink

node, is infeasible. An alternative is to use mobile sinks, such as wireless devices carried by

people, robots, or vehicles to collect data from statically-deployed sensors in an opportunistic

way. For example, a smart sustainable city typically requires deployments of sensor nodes over

a large space to ensure sensing coverage. This means that the sensors are sparsely spread and

the network may even be disconnected. Mobile sinks can solve this problem by visiting some

nodes in network to collect data. These nodes close to the trajectory of mobile sink act as relay

nodes for other nodes in the network. All the other nodes in the network can forward their

data to relay nodes in multi-hop manner. The detection of such relay nodes is important in

WSNs with mobile sinks.

Chapter 3 propose a novel routing metric CA-ETX to estimate the packet transmission delay

caused by both link unreliability and intermittent connectivity. An opportunistic shortest path

routing scheme, OSPR, is also developed to demonstrate the efficiency of CA-ETX. CA-ETX

can seamlessly and synchronously work with ETX, illustrating that existing ETX-based routing

protocols, such as standard CTP and IETF IPv6 Routing Protocol RPL, can be easily applied

to WSN-MSs using CA-ETX.

157
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We developed a novel joint routing and scheduling algorithm Opportunistic Backpressure Col-

lection (OBC) that integrates mobility-awareness for opportunistic data collection in WSNs

with mobile sinks (WSN-MSs). OBC requires each node to maintain only a one-hop neighbour

table by periodically broadcasting a small one-hop beacon (several bytes). The communication

overhead of OBC is therefore O(1) with respect to the number of sensor nodes and mobile

sinks, which demonstrates that it has a much better scalability than current mobility-aware

schemes that require explicit routing structure maintenance [108, 115, 123]. In addition, OBC

does not require mobility prediction. It is well-known that backpressure algorithms suffer from

large end-to-end delay and unnecessary packet transmissions (which significantly increase the

energy cost) due to routing loops. By using a lightweight mobility-aware scheme, OBC sig-

nificantly mitigates this problem and therefore achieves a significantly improved performance

in end-to-end delay and energy consumption. We prove the throughput optimality of OBC

and also implement OBC in TinyOS 2.1 [1] and a realistic WSN simulator, Castalia [3]. The

results of both the testbed experiments and extensive simulations show that the shortest path

routing with CA-ETX and OBC can achieve significant performance improvements in terms of

end-to-end delay, storage overheads, and energy consumption, compared with state-of-the-art

approaches.

After sensing or collecting data from sensors, a mobile phone can send this data via the Internet

using two approaches; (1) To cellular base station through expensive and bandwidth limited

3G or 4G cellular communication radios. (2) To a static base-station (e.g. WiFi router) via

other mobile relay nodes through short-range opportunistic communication, which has a great

network capacity.

Also, the owners of these devices may not be willing to collect sensor data (i.e. act as a mobile

sink) and forward this data to others devices or Internet.

To address these problem, we considered a Mobile Phone Sensing System (MPSS) consisting of

mobile phone for sensing and communication inChapter 4. We devolop a network architecture

to provide cost-effective networking service for MPSS by seamlessly integrating short-range

communication with 3G/4G. This architecture considers properties of data packet and performs
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cost-benefit analysis to chooses the best approach for forwarding of data packet. Based on the

guiding principles of the proposed network architecture, we develop a joint pricing and routing

scheme aiming to provide cost-effective networking services for both real-time and delay-tolerant

data of MPSS applications. To achieve effective incentivization for the phone users, we modelled

the MPSS as an economic system where sensor data is a commodity produced by sensors and

end users are consumers whereas everyone can contribute to the system by providing goods

or services to achieve benefits. This scheme achieves throughput optimality for big sensor

data transmission and minimizes costs of phone users. show how the performance of MPSS is

affected by not only urban sensor data properties and communication infrastructures, but as

also the social and economic behaviours of people. Through simulations, we demonstrate that

our scheme adapts to user’s preferences and privacy. Furthermore, it is able to self configure,

self adapts and self heals under different dynamic network conditions.

Although there are many wireless devices around us in the real world, every owner of these

devices may not be a very good choice to relay the sensor data. A postman can be a good

relay, who is popular and visit sink frequently whereas a geek will be bad relay, who is lazy to

move or far from any sink.

To solve this problem, Chapter 5 exploit social behaviors of humans for efficient data transmis-

sion. We proposes a new sensing architecture, WSN with Human Relays (WSN-HR), consisting

of a static sensor network combined with mobile phone users for delay-tolerant sensing appli-

cations in future smart and sustainable cities. By integrating social and economic behaviours

of citizens into sensor networking, a joint rate control, routing, and resource pricing algorithm

(OBSEA) is developed to reduce end-to-end delay and incentivise the participation of phone

users. By exploiting mobility patterns and the underlying social networks of human relays, a

novel data forwarding metric Sink-Aware (SA) centrality is proposed to measure the potential

sensor data forwarding ability of mobile relays. SA centrality significantly improves the per-

formancu of the network in terms of end-to-end delay. We also established a virtual economic

network for sensor data production and trading to incentivise people to serve as data relays

using their phones. Each mobile relay acquires profit by dynamically adjusting the selling price

of its maintained sensor data and then trading (transmitting and receiving) data with other
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nodes opportunistically at each moment of contact. We formalise a optimisation problem to

maximise the global social profits of all nodes in a WSN-HR. We do not make any probabilis-

tic/stochastic assumptions (e.g. specific probability distributions or ergodicity) for the network

conditions (e.g. mobility, topology, and wireless channel), and thus is suitable for arbitrary

dynamic evolution process of WSN-HR. The lightweight OBSEA solves the problem using only

current and local information. This means that OBSEA is fully distributed and does not require

any prediction capacity, thereby maximising the practical application of the work.

We evaluate the performance of OBSEA using the Castali simulator [3] and a realistic mobility

model [199]. Simulation results demonstrate that OBSEA is adaptive to different network

settings and outperforms both pure backpressure routing and pure social-aware forwarding

schemes, in terms of global social profit, data buffer efficiencies, and end-to-end delay. In

addition, the results show that a ’win-win situation’ (positive profits) can be achieved by both

the network and all mobile phone owners.

Every mobile owner can attempt to maximize his profits through his strategic actions. They

may use information learned from participation in MPSS to manipulate the network for their

benefit. e.g. by dropping packets, reporting wrong information regarding their cellular cost or

turning off short-range connectivity etc. This behaviour may increase the benefits of the user

but it would result in significant performance degradation of the network.

In chapter6, we developed a well designed mechanism that will incentivize users into behaving

according to networks wishes. We considered a MPSS that utilize hybrid cellular and oppor-

tunistic short-range wireless communications for mobile sensor data collection. To solve the

data collection problem, we first develop a joint sensing, rate control and routing algorithm

OptMPSS, which is fully distributed and scalable. OptMUSS maximizes the global gross profit,

i.e. the total financial rewards of all phone users after costs incurred by performing the sensing

and transmission tasks are deducted. OptMPSS is fully distributed and its operation depend

on the local information of its neighbours such as queue length. In MPSS, all parameters local

to each phone are private and not observable to other phones and the server. Consequently,

phone users can subvert the OptMUSS system by miscommunicating their local parameters.
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We develop a joint networking and taxing scheme BMT by applying distributed mechanism

design to OptMPSS. BMT calculates the social impact for computing the tax of each phone in

parallel with the operations of OptMPSS. BMT provides the subsidy to a phone user if he has

positive effect on the network otherwise it imposes the tax on the phone user. BMT ensures

incentive compatibility, so that all of the participants are better off when they truthfully reveal

any private parameter required in OptMPSS operation.

To evaluate the practical performance , we developed an Android application BMTApp that

implements BMT algorithm for WiFi-direct-enabled devices. To evaluate large-scale scenarios,

we established simulations using the real human mobility traces. The results show that that

BMT can improves the global gross profit of the MUSS up to 100 percent by exploiting low-cost

short-range communications. In addition, we also verify the incentive compatibility of BMT

by introducing potential strategic behaviours of some phone users in the network. Evaluation

results show that the sensing and routing actions suggested by BMT are the best choice for

each individual phone user and they will not be able to increase their profit through reporting

wrong information.

7.2 Future Work

This section will outline some important and promising extensions of the work presented in

this thesis

7.2.1 Utilizing Multiple Short-range radios

Current phones can have multiple short-range radios such as LTE direct, WiFi direct, and

Bluetooth, which have different properties in terms of neighbor discovery time, throughput,

energy consumption, and transmission range. In order to fully exploiting performance gain by

using short-range communications, all possible available radios rather than a single one should

be considered. For instance, WiFi direct has a high throughput but a large energy cost for
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neighbor discovery. If we use WiFi direct as the only short-range radio, the battery will run

out of energy fast. To solve this issue, we can use bluetooth which has a much less energy

cost for the always-on neighbor discovery, and WiFi direct can be used for data transmission

whenever a contact opportunity is discovered by bluetooth. Therefore, it is highly desirable to

develop optimal networking and incentivisation algorithms for such multi-radio MPSS.

7.2.2 Cost-effective Networking Support Beyond MPSS

It can been seen that our social/economic-aware algorithms and protocols for MPSS can be

easily extended to general networks consist of human-carried devices. Besides sensor data,

all kinds of Internet traffic can be supported by using the hybrid short-range and long-range

communications. This will not only significantly reduce the cost of individual users, but also

the congestion of the cellular networks. To this end, three key issues should be addressed in

the future work.

• Classification schemes should be designed to rank different types of data traffics according

to their delay tolerance.

• Algorithms with strong Quality of Service (QoS) guarantees (e.g. end-to-end delay and

bandwidth) should be developed to support real-time applications such as HTTP video

streams.

• Develop theoretical-optimal pricing algorithm and seamlessly combine this with the ex-

isting price policy provided by Internet service providers(ISPs).

7.2.3 Secure and Rapid Communication

With the increase in short range communication capabilities of smart phones, a large number

of mobile devices can form an ubiquitous opportunistic network: Contact duration can not be

precisely determined for mobile devices that meet opportunistically for an undetermined time.

It ranges from few seconds for pedestrian users or few minutes for passengers of a train to
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hours for devices held by adjacent colleagues. Then connections between nearby devices have

to be established for short range data communication. How to effectively establish secure short

range communication connections between mobile devices, or device pairing, is a fundamental

but challenging problem to solve in future networks based on mobile devices.

we will focus on the device pairing problem in opportunistic networks based on mobile devices

to develop a device pairing mechanism that has the following properties:

• Secure. Security has the first priority in communications involving personal devices,

e.g. smart phones or tablets. Attackers may disguise themselves as potential relays or

sinks which can compromise the integrity of the system. To solve this issue, both devices

should be aware of whom it is communicating with, therefore mutual authentication is

necessary before the short range connection is established. Furthermore, short-range

communication should be confidential for any third party trying to eavesdrop or modify

transmitted data. Therefore a shared secret is necessary for content encryption.

• Rapid. In opportunistic scenarios, devices are encountered for an undetermined time.

The short range connection may be intermittent, and reconnection could be frequent.

The device pairing should be as quick as possible for devices to exchange data in time,

and to efficiently reconnect to alternative devices.
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Theorems for Chapter 3

The following appendix presents the results of the joint work between Shusen Yang and Usman

Adeel.

Theorem below demonstrates the throughput optimality of OBC.

Theorem A.1. Given any arriving traffic (sensing rate vector) r such that r+ ε ∈ Λ for any

ϵ > 0, the OBC algorithm can stabilise all queues, i.e.

lim sup
K→∞

1

K

K∑

t=1

∑

x∈N

E[Qx(t)] < ∞

Proof of Theorem A.1. Let the N -dimensional vector Q(t) be the queue backlogs of all nodes

in the WSN-MSs at slot t. Define △Qx(t) = Qx(t + 1) − Qx(t). According to (6.3), we

have△Qx(t) ≤ rx + f in
x (t) − f out

x (t). Define a constant value W = 1
ϕmin |N |(rmax + 2|N |cmax)2

where rmax = maxx∈Ns rx. We then define the Lyapunov function V (t) =
∑

x∈N Q2
x(t)/ϕx and
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consider the its 1-slot drift:

△1V (t)

= V (t+ 1)− V (t)

=
∑

x∈N

(2Qx(t)△Qx(t) +△Q2
x(t))/ϕx

≤ W + 2
∑

x∈N

Qx(t)△Qx(t)/ϕx

≤ W + 2
∑

x∈N

Qx(t)(rx + f in
x (t)− f out

x (t))/ϕx

= W + 2
∑

x∈N

(
Qx(t)

ϕx

rx −
∑

y∈Nx(t)

(
Qx(t)

ϕx

− Qy(t)

ϕy

)fx,y(t))

It is clear that OBC choose fx,y(t), ∀t ≥ 0 to minimize the right-hand side of above inequality

over all possible other algorithms. Hence we have

△1V (t) ≤ W + 2
∑

x∈N

1

ϕx

Qx(t)(rx + f̃ in
x (t)− f̃ out

x (t)) (A.1)

where f̃ in
x (t) and f̃ in

x (t) are the routing and scheduling decision made by any other algorithm ξ̃

which is independent of queue backlogs.

Since the channel capacity c(t) is a discrete finite state ergodic Markov chain, we use a sequence

Ti, i ≥ 0 to represents recurrence times to the initial state c(0). It is clear that Ti, i ≥ 0 is

a i.i.d. sequence with E[Ti] = 1/πc(0). Also, it is known that the first and second moments

of sequence Ti are finite, which are denoted as E[T ] and E[T 2] respectively. Finally, we define

si =
∑i−1

τ=0 Tτ , i.e. the time of the ith revisitation to channel state c(0). Consider the variable

Ti-slots drift of the Lyapunov function
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△Ti
V (si)

= V (si+1)− V (si)

=
si+Ti−1∑

t=si

(V (t + 1)− V (t))

≤ W

2
(T 2

i + Ti)

+2
∑

x∈N

Qx(si)

ϕx

si+Ti−1∑

t=si

(rx + f̃ in
x (t)− f̃ out

x (t)) (A.2)

where the equality is because of (A.1) and the fact for any si ≤ t ≤ si + Ti − 1,

|Qx(t)−Qx(si)|/ϕx ≤ (t− si)W/|N | (A.3)

Now we consider the conditional expectation of the variable Ti-slots drift (A.2)

E[△Ti
V (si)|Q(si)]

≤ E[
W

2
(T 2

i + Ti) + 2
∑

x∈N

Qx(si)

ϕx

si+Ti−1∑

t=si

(rx

+ f̃ in
x (t)− f̃ out

x (t))|Q(si)]

=(a)
W

2
(E[T 2] + E[T ])

+2
∑

x∈N

Qx(si)

ϕx

E[
si+Ti−1∑

t=si

(rx + f̃ in
x (t)− f̃ out

x (t))]

=(b)
W

2
(E[T 2] + E[T ])

+2
∑

x∈N

Qx(si)

ϕx

E[T ](rx + E[f̃ in
x (t)− f̃ out

x (t))] (A.4)

where the equality (a) is because both recurrence time Ti and the algorithm ξ̃ are independent

of queue backlogs Q(si); and the equality (b) is based on the renewal reward theory. Consider
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(A.4), ϕx ≤ ϕmin and the fact that r+ ε is inside the capacity region, we have

E[△Ti
V (si)|Q(si)]

≤ W

2
(E[T 2] + E[T ])− 2εE[T ]

ϕmin

∑

x∈N

Qx(si) (A.5)

Taking expectations of the above, summing the resulting telescoping series over i ∈ {0, 1, ...I −

1}, dividing by 2εE[T ]/ϕmin,rearranging the terms, and using the fact that V (0) = 0 and

V (si ≥ 0), ∀i, we have:

I−1∑

i=0

∑

x∈N

E[Qx(si)] ≤
IWϕmin(E[T 2] + E[T ])

4εE[T ]
(A.6)

Consider (A.3), we have

si+Ti−1∑

t=si

∑

x∈N

Qx(t) ≤ Ti

∑

x∈N

Qx(si) +
ϕmaxW (T 2

i − Ti)

2
(A.7)

Combine(A.6) and (A.7), and we have

si+Ti−1∑

t=0

∑

x∈N

E[Qx(t)] ≤ IWϕmin(E[T 2] + E[T ])

4ε

+
IϕmaxW (E[T 2]− E[T ])

2
(A.8)

Let K = si + Ti − 1, dividing both sides by K, taking an expectation and lim sup over both

sides, we have

lim sup
K→∞

1

K

K∑

t=0

∑

x∈N

E[Qx(t)]

≤ Wϕmin(E[T 2] + E[T ])

4εE[T ]
+

ϕmaxW (E[T 2]− E[T ])

2E[T ]

< ∞
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This completes the proof of Theorem A.1.



Appendix B

Performance Analysis for Chapter5

The following appendix presents the results of the joint work between Shusen Yang and Usman

Adeel.

B.1 Bounded Queues

Memory is a key resource for both sensor nodes and mobile relays. Theorem B.1 below shows

that all data queue backlogs are deterministically bounded.

Theorem B.1. Suppose the initial queue backlogs Qx(1) = 0, ∀x ∈ S∪R, then Qx(t) is always

less than its buffer size ≤ Qmax
x , ∀t ≥ 1, if V satisfy:

Qmax
x ≥

⎧
⎪⎪⎨

⎪⎪⎩

V I ′x(0) + ηmax x ∈ S

ηmax x ∈ R
(B.1)

where ηmax = maxx∈S∪R,t≥1 ηx(t) ≤ |N |cmax. The proof of Theorem B.1 can be found below

B.1.1. In practice, I ′x(0) and Qmax
x , x ∈ S ∪ R are normally fixed and can be determined

in advance. It is also easy to estimate ηmax based on the data rate of wireless transceiver 1.

1Although we ignore wireless interference and assume full-duplex wireless radio for simplicity, most current
wireless transceivers are half-duplex. Therefore, each node x ∈ S ∪ R can simply set ηmax as the data rate (in
packets per slot) of its wireless transceiver.
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Therefore, the parameter V can be set to guarantee inequality (B.1). For instance, if the utility

function of a sensor node x is chosen as Ix(rx(t)) = ln(rx(t) + 1), then I ′x(0) = 1 and V should

be not larger than Qmax
x − ηmax.

B.1.1 Bounded Queues and The Supporting Lemma

We first propose Lemma B.1 to support the proof of Theorem B.1.

Lemma B.1. Considering a sensor node x ∈ S at a slot t ≥ 1, if Qx(t) ≥ V I ′x(0), then the

rate controller of OBSEA algorithm sets rx(t) = 0.

Proof. Since Ix(r(t)) is concave, its first derivative I ′x(r(t)) is a monotonically decreasing func-

tion of r(t). Therefore, we have

Ix(r(t)) ≤ Ix(0) + I ′x(0)rx(t), ∀ 0 ≤ rx(t) ≤ rmax (B.2)

Considering (B.2) and the objective of the rate controller (5.15), we have for any 0 ≤ rx(t) ≤

rmax

Ix(r(t))−Qx(t)rx(t)/V

≤ Ix(0) + I ′x(0)rx(t)−Qx(t)/V

= Ix(0)− rx(t)(Qx(t)/V − I ′x(0))

≤ Ix(0) (B.3)

Inequality (B.3) holds only when rx(t) = 0, as Qx(t)/V − I ′x(0) > 0 (the condition of Lemma

B.1). Then, the rate controller must set rx(t) = 0 to maximise (5.15).

Proof of Theorem B.1. We will prove that Theorem B.1 by using mathematical induction.

From the supposition of Theorem B.1, we have Qx(1) ≤ Qmax hold at slot 1. For all t > 1,

suppose Qx(t) ≤ Qmax
x for a slot t ≥ 2, then there are two cases :
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• Case 1. Qx(t) ≤ Qmax
x − ηx(t), x ∈ S ∪R. Since ηx(t) is the maximum possible amount

of data that can be injected in to node x at slot t, it is clear that Qx(t + 1) < Qmax
x at

slot t+ 1, according to (6.3).

• Case 2. Qmax
x − ηx(t) < Qx(t) ≤ Qmax

x , x ∈ S ∪ R. In this case, the link weight

wz,x(t) will be assigned as 0, for all x’s instantaneous neighbours z ∈ Nx(t), according

to (5.17). Hence, no data will be transmitted to x, according to (5.17). Therefore, if

x is a mobile relay, then Qx(t + 1) ≤ Qx(t) ≤ Qmax
x , x ∈ R. Further, if x is a sensor

node, since Qx(t) > Qmax
x − ηx(t) ≥ V I ′x(0) + ηmax − ηx(t) > V I ′x(0), we have rx(t) = 0,

according to Lemma B.1 and the condition of Theorem B.1. Therefore, we can see that

Qx(t + 1) ≤ Qx(t) ≤ Qmax
x , x ∈ S. In summary, Qx(t+ 1) ≤ Qmax

x , ∀x ∈ S ∪R.

Because Qx(t + 1) ≤ Qmax
x , ∀x ∈ S ∪R in both cases, we can conclude that Qx(t) ≤ Qmax

x for

all t ≥ 1.

B.2 Social Profits performance

To derive the performance bounds of our OBSEA scheme, we divide the duration 1 ≤ t ≤ tend

into K frames with size of T slots as shown in Figure B.1. We assume that there exists an

ideal algorithm that fully knows the network information (i.e. the mobility trace and channel

capacity) for the future T slots. Based on the future knowledge, the ideal algorithm solves the

following optimisation problem:

Figure B.1: Illustration of slots and frames.
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max
1

T

kT−T+1∑

t=kT

Γ(t) (B.4)

subject to (B.5)

0 ≤ rx(t) ≤ rmax ∀x ∈ S, ∀t (B.6)

Qx(t) ≤ Qmax
x , ∀x ∈ S ∪R, ∀t (B.7)

0 ≤ fx,y(t) ≤ cx,y(t), ∀x ∈ N , y ∈ Nx(t), ∀t (B.8)

1

T

kT∑

t=kT−T+1

(
∑

y∈N−{x}

fx,y(t)− 1{x∈S}rx(t)−
∑

y∈N−{x}

fy,x(t)) ≥ 0, ∀x ∈ S ∪R, ∀k ≤ K (B.9)

The objective (B.4) demonstrates that the ideal algorithm optimises the social profits over each

frame 1 ≤ k ≤ K. Define the Γ∗
k(T ) be the optimal social profits of problem (B.4) for the kth

T -slot frame. Let r∗x(t), x ∈ S and f ∗
x,y(t), x ∈ N , y ∈ Nx(t) respectively be the rate control

and routing decisions of the ideal algorithm that achieve Γ∗
k(T ). Due to the requirement of

complete future knowledge, it is impossible to design such an ideal algorithm to achieve Γ∗
k(T )

in practice. We use Γ∗
k(T ) as a performance baseline to evaluate our OBSEA algorithm.

Theorem B.2. The average social profits of OBSEA algorithm satisfies:

Γ =
1

KT

KT∑

t=1

Γ(t) ≥ 1

K

K∑

k=1

Γ∗
k(T )−

MT + Z

V
(B.10)

where

M =
1

2
|N |2(cmax + rmax)2 (B.11)

Z = |N |2cmax(2αHmax
sink + ηmax) (B.12)

The proof of Theorem B.2 can be found below B.2.1. Inequality (B.10) demonstrates that

the average social profits of our OBSEA algorithm will not be smaller than that of the ideal

algorithm minus a term (MT + Z)/V during a finite horizon with size tend. In addition, the

constraint (B.9) is more stringent than the constraint (6.10), since constraint (B.9) states the

total amount of data injected to a node must be less than or equal to the total amount of

data departures from this node, over each T -slot frame, rather than over the total K frames.
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Therefore, 1
K

∑K
k=1 Γ

∗
k(T ) should be not greater than the optimal solution to problem (6.7).

Therefore, the global social profit achieved by our OBSEA algorithm is not necessarily smaller

than that of the ideal algorithm 1
K

∑K
k=1 Γ

∗
k(T ).

As M and Z are constant, parameter V can be set as large as desired to enforce (MT + Z)/V

to be arbitrarily small, but resulting a large risk of packet loss caused by data buffer overflow,

according to Theorem B.1. In practice, V can be chosen as

V = min
x∈S

(Qmax
x − ηmax)/I ′x(0) (B.13)

to maximise the worst-case global social profit bounds while guaranteeing no packet loss caused
by buffer overflow.

B.2.1 Proof of Theorem B.2

Proof. Let Q(t) be the vector of all queues maintained at all nodes in N . To simplify the proof,

we assume the initial queue backlogs Q(0) = 0. Define the Lyapunov function L(Q(t)) as

L(Q(t)) =
1

2

∑

x∈N

Q2
x(t) (B.14)

Then we define the T -slot sample-path drift as

△TL(Q(t)) = L(Q(t+ T ))− L(Q(t)) (B.15)

Denote ∆Hsink
x,y = Hsink

x −Hsink
y and ∆Qx,y(t) = Qx(t) − Qy(t). We first consider 1-slot drift-
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plus-penalty for each slot 1 ≤ t ≤ tend, we have

△1L(Q(t))− V Γ(t)

= L(Q(t+ 1))− L(Q(t))− V Γ(t)

=
1

2

∑

x∈N

Q2
x(t + 1)− 1

2

∑

x∈N

Q2
x(t)− V Γ(t)

≤a M +
∑

x∈N

Qx(t)(rx(t)1x∈S +
∑

y∈Nx(t)

fy,x(t)−
∑

y∈Nx(t)

fx,y(t))− V Γ(t)

= M +
∑

x∈S

rs(t)Qs(t)− V Γ(t)−
∑

x∈N

∑

y∈Nx(t)

fx,y(t)(Qx(t)−Qy(t))

= M +
∑

x∈S

rx(t)Qs(t)− V Ix(t)− α
∑

x∈N ,y∈Nx(t)

fx,y(t)∆Hsink
x,y

−
∑

x∈N ,y∈Nx(t)

1{Qy(t)>Qmax
y }fx,y(t)(△Qx,y(t)− α△Hsink

x,y (t))

−
∑

x∈N ,y∈Nx(t)

1{Qy(t)≤Qmax
y }fx,y(t)wx,y(t)

≤b M + Z − V
∑

x∈S

(Ix(t)− rx(t)Qs(t)/V )−
∑

x∈N ,y∈Nx(t)

1{Qy(t)≤Qmax
y }fx,y(t)wx,y(t)(B.16)

where inequality ≤a followed by the fact thatM ≥
∑

x∈N (Qx(t+1)−Qx(t))2, ∀t; and inequality

≤b is because of the following fact

Z = |N |2cmax(2αHmax
sink + ηmax)

= α|N |2(cmaxHmax
sink) + |N |2cmax(ηmax + αHmax

sink)

≥ −α
∑

x∈N ,y∈Nx(t)

fx,y(t)∆Hsink
x,y −

∑

x∈N ,y∈Nx(t)

1{Qy(t)>Qmax
y }fx,y(t)(△Qx,y(t)− α△Hsink

x,y (t))

It is easy to see that our OBSEA algorithm greedily minimises the right-hand side of inequality
(C.8) at every slot t, i.e. the rate controller minimises the third term of the right-hand side of

inequality (C.8), and the routing component minimises the last term.
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Then we define the T -slot sample-path drift-plus-penalty as

△TL(Q(t))− V
kT∑

t=kT−T+1

Γ(t)

= L(Q(t+ T ))− L(Q(t))− V
kT∑

t=kT−T+1

Γ(t)

=
kT∑

t=kT−T+1

(L(Q(t+ 1))− L(Q(t)))− V
kT∑

t=kT−T+1

Γ(t)

=
kT∑

t=kT−T+1

(△1L(Q(t))− V Γ(t))

≤a MT + ZT +
√
2M

T (T − 1)

2
+

∑

x∈N

kT∑

t=kT−T+1

1{Qx(t)≤Qmax
x }Qx(t)(rx(t)1x∈S

+
∑

y∈N−{x}

fx,y(t)−
∑

y∈N−{x}

fy,x(t))− V
kT∑

t=kT−T+1

Γ(t)

≤b MT 2 + ZT +
∑

x∈N

kT∑

t=kT−T+1

1{Qx(t)≤Qmax
x }Qx(t)(r

∗
x(t)1x∈S

+
∑

y∈N−{x}

f ∗
x,y(t)−

∑

y∈N−{x}

f ∗
y,x(t))− V TΓ∗(t)

≤c MT 2 + ZT − V TΓj ∗k (T ) (B.17)

where the inequality ≤a is based on inequality (C.8), the sum of △1L(Q(t)) − V Γ(t) over T

slots, and the fact that the each queue backlog does not change by more than (t− (kT − T +

1))(rmax + cmax) for any slot kT − T + 1 ≤ t ≤ kT ; the inequality ≤b is because M ≥
√
M

(M is a non-negative integer number), and our OBSEA algorithm minimises the right-hand

side of ≤a over all possible rate control and routing decisions, including the decisions of ideal

algorithm, r∗x(t), x ∈ S and f ∗
x,y(t), x ∈ N , y ∈ Nx(t) that achieves Γ∗

k(T ); the inequality ≤c

follows from the fact that the decisions r∗x(t) and f ∗
x,y(t) satisfy constraints (B.7) and (B.9).

Taking a telescopic sum of the inequality (C.9) over k ∈ {1, ..., K} and dividing both side by

V KT , we get

L(Q(KT + T ))− L(Q(0))− 1

KT

KT∑

t=1

Γ(t) ≤ MT + Z

V
− 1

K

K∑

k=1

Γ∗
k(T ) (B.18)
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Consider L(Q(1)) = 0 and L(Q(KT + T )) ≥ 0, we have

1

KT

KT∑

t=1

Γ(t) ≥ 1

K

K∑

k=1

Γ∗
k(T )−

MT + Z

V



Appendix C

Theorems for Chapter 6

The following appendix presents the results of the joint work between Shusen Yang and Usman

Adeel.

C.1 Asymptotical Optimality of OptMPSS

To prove the optimality of OptMPSS, We divide the time horizon of the MPSS, 1 ≤ t ≤ tend,

into K successive frames with size T slots (i.e. tend = KT ). We assume that there exists an

ideal algorithm operating at the first slot of each frame t = (k − 1)T + 1, 1 ≤ k ≤ K, which

can obtain full information regarding the dynamics of the MPSS for future T slots (which is

impossible in practice). Based on future knowledge, the ideal algorithm solves problem (6.7)-

(6.10) over each frame [(k − 1)T + 1, kT ], 1 ≤ k ≤ K rather than the whole horizon [1, tend]

. Note that when T = tend, the ideal algorithm becomes the optimal solution of the original

problem (6.7)-(6.10) . Let Φideal(k, T ) denote the optimal global gross profit computed by the

ideal algorithm over each frame 1 ≤ k ≤ K.

177
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Theorem C.1. The time-average global gross profit computed by OptMPSS satisfies:

ΦOptMPSS ≥ 1

K

K∑

k=1

Φideal(k, T )− MT

V
(C.1)

where M = |N |(rmax + µmax)2/2 is a constant value.

Proof of Theorem C.1. Theorem C.1 can be proved by using sample-path based Lyapunov opti-

mization theory. We first present the formalized optimization problem that the ideal algorithm

aims to optimize at the beginning of each frame k, 1 ≤ k ≤ K.

max
xi(t),i∈N

∑

i∈N

(αv(ri(k, T )− costi(k, T ))) (C.2)

s.t.

ri(t) < rmax, i ∈ N kT − T + 1 ≤ t ≤ kT (C.3)

fi,j(t) ≤ µi,j(t), i ∈ N , j ∈ Ni(t), kT − T + 1 ≤ t ≤ kT (C.4)

ri(k, T ) + f
in

i (k, T )− f
out

i = 0, kT − T + 1 ≤ t ≤ kT (C.5)

where [35]

ri(k, T ) =
kT∑

k=kT−T+1

ri(t) (C.6)

which represents the time-average sensing rate during the kth T -slot frame. Other time-average

variables during the kth frame are defined in a similar way.

Now we prove Theorem C.1. Let Q(t) be the vector of all queues maintained at all phones in

N and the server S. To simplify the proof, we assume the initial queue backlogs Q(0) = 0.

Define the Lyapunov function L(Q(t)) as

L(t) =
1

2

∑

i∈N∪{S}

Q2
i (t) =

1

2

∑

i∈N

Q2
i (t) (C.7)

Let ϕi(t) = αvi(ri(t)) − costi(t) and Φ(t) =
∑

i∈N ϕi(t). We first consider 1-slot Lyapunov
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drift plus penalty for each slot 1 ≤ t ≤ tend:

△1L(t)− V Φ(t)

= L(Q(t+ 1))− L(Q(t))− V Φ(t)

=
1

2

∑

i∈N

Q2
x(t+ 1)− 1

2

∑

x∈N

Q2
x(t)− V Γ(t)

≤a M +
∑

i∈N

Qi(t)(ri(t) + f in
i (t)− f out

i (t))− V
∑

i∈N

ϕi(t)

= M −
∑

i∈N

(V αvi(ri(t))−Qi(t)ri(t)− V csi (t)ri(t))

︸ ︷︷ ︸
sensing rate control

−
∑

(i,j)∈L

(Qi(t)−Qj(t))− V cti,jfi,j(t)

︸ ︷︷ ︸
routing and data forwarding

(C.8)

where inequality ≤a followed by the fact that

M =
1

2
|N |(rmax + µmax)

2

≥ 1

2

∑

i∈N

(Qi(t + 1)−Qi(t))
2, ∀1 ≤ t ≤ tend

It can be verified that the OptMPSS algorithm minimizes the right-hand side of inequality
(C.8) by making sensing rate control and routing decisions at each slot 1 ≤ t ≤ tend. Then we
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consider the T -slot sample-path drift-plus-penalty for a frame k, 1 ≤ k ≤ K:

△TL(t)− V
kT∑

t=kT−T+1

Φ(t)

= L(kT )− L(kT − T + 1)− V
kT∑

t=kT−T+1

Φ(t)

=
kT∑

t=kT−T+1

(△1L(t)− Φ(t))

≤a MT +
√
2M

T (T − 1)

2

+
kT∑

t=kT−T+1

(
∑

i∈N

Qi(t)(ri(t) + f in
i (t)− f out

i (t))

− V
∑

i∈N

ϕi(t))

≤b MT 2 − V TΦideal(k, T ) +
kT∑

t=kT−T+1

∑

i∈N

Qi(t)(ri(t)

+
∑

j∈Ni(t)

(f ideal
j,i (t)− f ideal

i,j (t))) (C.9)

where the inequality ≤a is based on inequality (C.8), the sum of △1L(t)− V Φ(t) over T slots

of the kth frame, and the fact that the each queue backlog does not change by more than

(t− (kT −T +1))(rmax+µmax) for any slot kT −T +1 ≤ t ≤ kT ; the inequality ≤b follows from

M ≥
√
M, ∀M ≥ 1, and the fact that our OptMPSS algorithm minimizes the right-hand side of

inequality ≤a over all possible sensing rate control and routing decisions, including the decisions

of the ideal algorithm: rideali (t) and f ideal
i,j (t), ∀i ∈ N ,j ∈ Ni(t), which achieves the optimal

gross profits of the ideal algorithm Φideal(k, T ). Consider (C.9) and the fact that rideali (t) and

f ideal
i,j (t) satisfy constraint (C.5), we have

△TL(t)− V
kT∑

t=kT−T+1

ΦOptMPSS(t)

≤ MT 2 − V TΦideal(k, T ) (C.10)
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Taking a telescopic sum of the inequality (C.10) over k ∈ {1, ..., K} and dividing both side by

V KT , we get

L(KT + T )− L(0)− 1

KT

KT∑

t=1

ΦOptMPSS(t)

≤ MT

V
− 1

K

K∑

k=1

Φideal(k, T )

Consider L(1) = 0 and L(KT + T ) ≥ 0, we have

ΦOptMPSS

=
1

KT

KT∑

t=1

ΦOptMPSS(t)

≥ 1

K

K∑

k=1

Φ(k, T )− MT

V

This completes the proof the Theorem C.1. ✷

Inequality (C.1) shows that parameter V can be set as large as desired to force MT/V to be

arbitrarily small. Specifically, Theorem C.1 also demonstrates that when T = tend, the optimal

average global gross profit can be asymptotically achieved by OptMPSS, as V → ∞.

C.2 Asymptotic Incentive Compatibility of BMT

To prove that BMT achieves asymptotic incentive compatibility, We first introduce a new

definition and a supportuing lemma.

Definition 5 [Asymptotically Efficient Social Decision] For a distributed mechanism dM =

(h,Π, A), a social decision hx(θ) made by the suggested algorithm A is said to be asymptotically

efficient if
∑

i∈N

ϕi(hx ◦ A(θ), θi) ≥
∑

i∈N

ϕi(hx ◦ A′(θ), θi)− ε(V )

for all θ ∈ Θ and for all A′ ∈ Π, where ε(V ) > 0 and ε(V ) → 0 as V → ∞.
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Lemma 1. The social decision made by BMT algorithm, xbmt is asymptotically efficient.

Proof. Proof. Since the distributed social decision (e.g. sensing rate control and routing

decisions) made by BMT is the same as that of OptMPSS, this Lemma obviously holds when

ε(V ) = MT/V and frame size T = tend, according to Theorem 1. ✷

Theorem C.2. BMT achieves asymptotic incentive compatibility.

Proof of Theorem C.2. We prove Theorem C.2 by contradiction. Consider a distributed mecha-

nism dM = (h,Π, Abmt), where Abmt = (Abmt
1 , ..., Abmt

|N | ) is the distributed strategy of each phone

allocated by BMT algorithm. Suppose that BMT is not asymptotically incentive compatible,

i.e. ∃i ∈ N , A′
i ̸= Abmt

i such that

ui(h(A
bmt
i (θi), A

bmt
−i (θ−i), θi) + ε(V )

=(a) ϕi(hx(A
bmt
i (θi), A

bmt
−i (θ−i)), θi)

+hλi
(Abmt

i (θi), A
bmt
−i (θ−i)) + ε(V )

=(b)

∑

i∈N

ϕi(hx(A
bmt
i (θi), A

bmt
−i (θ−i)), θi)

−max
∑

j ̸=i

ϕj + ε(V )

<
∑

i∈N

ϕi(hx(A
′
i(θi), A

bmt
−i (θ−i), θi)−max

∑

j ̸=i

ϕj

= ui(hx(A
′
i(θi), A

bmt
−i (θ−i), θi) (C.11)

where equalities (a) and (b) follow the definitions of net profit and VCG tax respectively. It

can be seen that inequality (C.11) implies that

∑

i∈N

ϕi(hx ◦ Abmt(θ), θi) <
∑

i∈N

ϕi(hx ◦ A′(θ), θi)− ε(V )
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where A′ = (Abmt
1 , ..., A′

i, ..., A
bmt
|N | ). This contradicts the asymptotically social efficiency of BMT,

i.e. Lemma 1. ✷
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