447 research outputs found

    On Radar Deception, As Motivation For Control Of Constrained Systems

    Get PDF
    This thesis studies the control algorithms used by a team of ECAVs (Electronic Combat Air Vehicle) to deceive a network of radars to detect a phantom track. Each ECAV has the electronic capability of intercepting the radar waves, and introducing an appropriate time delay before transmitting it back, and deceiving the radar into seeing a spurious target beyond its actual position. On the other hand, to avoid the errors and increase the reliability, have a complete coverage in various atmosphere conditions, and confronting the effort of the belligerent intruders to delude the sentinel and enter the area usually a network of radars are deployed to guard the region. However, a team of cooperating ECAVs could exploit this arrangement and plans their trajectories in a way all the radars in the network vouch for seeing a single and coherent spurious track of a phantom. Since each station in the network confirms the other, the phantom track is considered valid. This problem serves as a motivating example in trajectory planning for the multi-agent system in highly constrained operation conditions. The given control command to each agent should be a viable one in the agent limited capabilities, and also drives it in a cumulative action to keep the formation. In this thesis, three different approaches to devise a trajectory for each agent is studied, and the difficulties for deploying each one are addressed. In the first one, a command center has all information about the state of the agents, and in every step decides about the control each agent should apply. This method is very effective and robust, but needs a reliable communication. In the second method, each agent decides on its own control, and the members of the group just communicate and agree on the range of control they like to apply on the phantom. Although in this method much less data needs to communicate between the agents, it is very sensitive to the disturbances and miscalculations, and could be easily fell apart or come to a state with no feasible solution to continue. In the third method a differential geometric approach to the problem is studied. This method has a very strong backbone, and minimizes the communication needed to a binary one. However, less data provided to the agents about the system, more sensitive and infirm the system is when it faced with imperfectionalities. In this thesis, an object oriented program is developed in the Matlab software area to simulate all these three control strategies in a scalable fashion. Object oriented programming is a naturally suitable method to simulate a multi-agent system. It gives the flexibility to make the code more iv close to a real scenario with defining each agent as a separated and independent identity. The main objective is to understand the nature of the constrained dynamic problems, and examine various solutions in different situations. Using the flexibility of this code, we could simulate several scenarios, and incorporate various conditions on the system. Also, we could have a close look at each agent to observe its behavior in these situations. In this way we will gain a good insight of the system which could be used in designing of the agents for specific missions

    Estimation and Optimal Configurations for Localization Using Cooperative UAVs

    Get PDF
    The time-difference of arrival techniques are adapted to locate networked enemy radars using a cooperative team of unmanned aerial vehicles. The team is engaged in deceiving the radars, which limits where they can fly and requires accurate radar positions to be known. Two time-differences of radar pulse arrivals at two vehicle pairs are used to localize one of the radars. An explicit solution for the radar position in polar coordinates is developed. The solution is first used for position estimation given "noisy" measurements, which shows that the vehicle trajectories significantly affect estimation accuracy. Analyzing the explicit solution leads to The Angle Rule, which gives the optimal vehicle configuration for the angle estimate. Analyzing the Fisher Information Matrix leads to The Coordinate Rule, which gives a different optitmal configuration for the position estimate. A linearized time-varying model is also formulated and an Extended Kalman Filter applied. This estimation scheme is compared with the earlier one, with the second showing overall improvement in reducing the variance of the estimate

    [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Get PDF
    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions

    Coordinated Multi-Agent Motion Planning Under Realistic Constraints

    Get PDF
    Considered is a class of cooperative control problems that has a special affine characterization. Included in this class of multi-agent problems are the so called radar deception problem, formation keeping and formation reconfiguration. An intrinsic geometric formulation of the associated constraints unifies this class of problems and it is the first time such a generalization has been presented. Based on this geometric formulation, a real-time motion planning algorithm is proposed to generate dynamically feasible reference trajectories for the class. The proposed approach explicitly considers actuator and operating constraints of the individual agents and constrained dynamics are derived intrinsically for the multi-agent system which makes these constraints transparent. Deriving the constrained dynamics eliminates the need for nonlinear programming to account for the system constraints, making the approach amenable to real-time control. Explicit consideration of actuator and operating limitations and nonholonomic constraints in the design of the reference trajectories addresses the important issue of dynamic feasibility. The motion planning algorithm developed here is verified through simulations for the radar deception, rigid formation keeping and formation reconfiguration problems. A key objective of this study is to advocate a change in paradigm in the approach to formation control by addressing the key issues of dynamic feasibility and computational complexity. The other important contributions of this study are: Unifying formulation of constrained dynamics for a class of problems in formation control through the intrinsic geometry of their nonholonomic and holonomic constraints; Deriving these constrained dynamics in any choice of frame that can even be coordinate free; Explicit consideration of actuator and operating limits in formation control to design dynamically feasible reference trajectories and Developing a real-time, distributed, scalable motion planning algorithm applicable to a class of autonomous multi-agent systems in formation control

    Cooperative UAV Formation Flying with Obstacle/Collision Avoidance

    Get PDF
    Navigation problems of unmanned air vehicles (UAVs) flying in a formation in a free and an obstacle-laden environment are investigated in this brief. when static obstacles popup during the flight, the UAVs are required to steer around them and also avoid collisions between each other. In order to achieve these goals, a new dual-mode control strategy is proposed: a “safe mode” is defined as an operation in an obstacle-free environment and a “danger mode” is activated when there is a chance of collision or when there are obstacles in the path. Safe mode achieves global optimization because the dynamics of all the UAVs participating in the formation are taken into account in the controller formulation. In the danger mode, a novel algorithm using a modified Grossberg neural network (GNN) is proposed for obstacle/collision avoidance. This decentralized algorithm in 2-D uses the geometry of the flight space to generate optimal/suboptimal trajectories. Extension of the proposed scheme for obstacle avoidance in a 3-D environment is shown. In order to handle practical vehicle constraints, a model predictive control-based tracking controller is used to track the references generated. Numerical results are provided to motivate this approach and to demonstrate its potential

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    Review of radar classification and RCS characterisation techniques for small UAVs or drones

    Get PDF
    This review explores radar-based techniques currently utilised in the literature to monitor small unmanned aerial vehicle (UAV) or drones; several challenges have arisen due to their rapid emergence and commercialisation within the mass market. The potential security threats posed by these systems are collectively presented and the legal issues surrounding their successful integration are briefly outlined. Key difficulties involved in the identification and hence tracking of these `radar elusive' systems are discussed, along with how research efforts relating to drone detection, classification and radar cross section (RCS) characterisation are being directed in order to address this emerging challenge. Such methods are thoroughly analysed and critiqued; finally, an overall picture of the field in its current state is painted, alongside scope for future work over a broad spectrum

    Leader-Follower Control and Distributed Communication based UAV Swarm Navigation in GPS-Denied Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have developed rapidly in recent years due to technological advances and UAV technology finds applications in a wide range of fields, including surveillance, search and rescue, and agriculture. The utilization of UAV swarms in these contexts offers numerous advantages, increasing their value across different industries. These advantages include increased efficiency in tasks, enhanced productivity, greater safety, and the higher data quality. The coordination of UAVs becomes particularly crucial during missions in these applications, especially when drones are flying in close proximity as part of a swarm. For instance, if a drone swarm is targeted or needs to navigate through a Global Positioning System (GPS)-denied environment, it may encounter challenges in obtaining the location information typically provided by GPS. This poses a new challenge for the UAV swarms to maintain a reliable formation and successfully complete a given mission. In this article, our objective is to minimize the number of sensors required on each UAV and reduce the amount of information exchanged between UAVs. This approach aims to ensure the reliable maintenance of UAV formations with minimal communication requirements among UAVs while they follow predetermined trajectories during swarm missions. In this paper, we introduce a concept that utilizes extended Kalman filter, leader-follower-based control and a distributed data-sharing scheme to ensure the reliable and safe maintenance of formations and navigation autonomously for UAV swarm missions in GPS-denied environments. The formation control approaches and control strategies for UAV swarms are also discussed
    corecore