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Abstract-- Unmanned Aerial Vehicles (UAVs) have developed 

rapidly in recent years due to technological advances and UAV 

technology finds applications in a wide range of fields, including 

surveillance, search and rescue, and agriculture. The utilization 

of UAV swarms in these contexts offers numerous advantages, 

increasing their value across different industries. These 

advantages include increased efficiency in tasks, enhanced 

productivity, greater safety, and the higher data quality. The 

coordination of UAVs becomes particularly crucial during 

missions in these applications, especially when drones are flying 

in close proximity as part of a swarm. For instance, if a drone 

swarm is targeted or needs to navigate through a Global 

Positioning System (GPS)-denied environment, it may encounter 

challenges in obtaining the location information typically 

provided by GPS. This poses a new challenge for the UAV 

swarms to maintain a reliable formation and successfully 

complete a given mission. In this article, our objective is to 

minimize the number of sensors required on each UAV and 

reduce the amount of information exchanged between UAVs. 

This approach aims to ensure the reliable maintenance of UAV 

formations with minimal communication requirements among 

UAVs while they follow predetermined trajectories during 

swarm missions. In this paper, we introduce a concept that 

utilizes extended Kalman filter, leader-follower-based control 

and a distributed data-sharing scheme to ensure the reliable and 

safe maintenance of formations and navigation autonomously 

for UAV swarm missions in GPS-denied environments. The 

formation control approaches and control strategies for UAV 

swarms are also discussed.  

Keywords -- UAV Swarms, Autonomous Navigation, Formation 

Control, GPS-denied Environment, Extended Kalman Filter 

 

I. INTRODUCTION 

A swarm of drones is a collection of autonomous or 
remotely controlled aircraft in which the drones maintain 
some form of internal structure among themselves. Swarms of 
drones have essential uses in many fields and missions, such 
as surveillance [1], transportation [2], search and rescue [3], 
agriculture, and defense [4]. UAVs are low-cost, casualty 
free, simple to equip, easy to operate, flexible, and reliable. 

Usually, a single UAV with advanced control strategies can 
achieve real-time high-precision attitude control and complete 
trajectory tracking. The success rate and resistance to 
emergencies of multiple UAVs flying in formation are higher 
than that of a single UAV. However, the current level of 
technology still needs to support the autonomous decision-
making function of multi-UAV formation in the complete 
sense of the word. It is almost impossible to achieve a high 
degree of intelligent clustered mass cooperative formation 
flight [5]. Therefore, developing UAV trajectory planning, 
formation control, and positioning technology is of great 
interest. 

In the field of UAV swarm systems, several methods have 
been investigated to achieve reliable coordinated movement. 
One commonly utilized approach is leader-follower formation 
control [6] [7]. In this strategy, a designated leader follows a 
predetermined path, while followers maintain a specific 
configuration, matching the leader's speed and direction. This 
leader can serve as a reference point for tracking. Desai's 
research team at the University of Pennsylvania [8] has made 
significant research in advancing both theoretical 
understanding and practical implementation of this approach 

In terms of information interaction within the UAV 
network, a distributed control method [9] [10] comes into 
play. Each UAV in the network requires information about its 
neighboring counterparts, which is illustrated in Fig. 1. 
Despite its slightly lower accuracy, distributed control 
requires less information exchange and simpler 
implementation due to less computational demands [11].  

The main goal of this paper is to use a method that copes 
with GPS-denied environments without incurring the system 
cost of complex sensor fusion and navigation computations. 
For a group of UAVs with limited intra-UAV communication 
and computational resources, there are navigation techniques 
that can compensate for the lack of GPS-based position 
feedback. One of the simplest ways to deal with the lack of 
direct position feedback operation is through application of 
heading projection techniques. Applying heading projection 
methods to a swarm of UAVs introduces a new source of 
error, namely the rapid accumulation of UAV errors due to 
environmental biases [33]. 
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Considering the above methods and premises, in a 3D 
environment, when a UAV in a swarm formation loses its 
GPS signal / localization data, its IMU data is used to predict 
the position [12] [13] and, through valid communication 
between UAVs. Thus, its positioning accuracy can be 
improved. 

II. MOTIVATION 

The positioning function of UAVs is essential for 
autonomous navigation. However, it can be challenging to 
achieve accurate positioning when GPS or indoor positioning 
systems such as Ultra-Wide Band (UWB) based relative 
positioning signals are lost. Various localization methods 
were proposed to address this problem. In recent years, UAV 
positioning technologies such as visual [14] [15] and anchor-
based positioning [16] have made significant progress in both 
theoretical and practical research, and some of these 
technologies have even entered the market stage. They have 
demonstrated good practicality in unique environments. 
However, there are still many challenges to achieve safe and 
reliable navigation and positioning tasks for UAVs in outdoor 
environment, compared to indoor environment for UAVs or 
mobile robots. There are numerous limitations to UAV 
positioning in outdoor environments that need to be overcome 
to achieve reliable and safe navigation. 

A UAV must generate sufficient vertical lift to maintain 
flight, so it has a limited load capacity. Currently, UAVs can 
be loaded with sensors including cameras, IMUs, and lidars, 
etc. An onboard controller is required to accomplish the 
UAV's autonomous positioning task by combination of most 
of those sensor inputs. Using a lot of sensors on UAV also 
increases the weight of the load that decreases the flight time 
and performance accordingly. Reducing the weight of the 
UAV load and achieving more accurate autonomous 
positioning has become a vital issue for navigation. 

On the other hand, UAV vision localization algorithms 
require processing image sequences captured by vision 
sensors, and the image computation is extensive. The 
processing is required to handle the image data effectively, 
which may involve tasks like image analysis, manipulation, 
or enhancement that demand a lot of computational effort.  
Even a desktop computer with high computational 
performance requires significant computation time. 
Currently, the processing performance of airborne devices is 
far from that of desktop computers. There are high-
performance GPU-enabled companion boards available, like 
NVIDIA Jetson Nano, Xavier NX-Serie, etc. One common 
approach is to use the ground station to process the visual 
localization algorithm and transmit the results to the UAV via 
communication equipment, allowing the UAV to be localized. 
The outdoor environment is complex, and the performance of 
the communication equipment will directly affect the real-
time performance of the UAV positioning when a large 
amount of data needs to be transmitted [15]. 

The fastest flight speed of a quadrotor UAV can reach 8 
meters per second. If the visual positioning algorithm cannot 
achieve real-time positioning, UAV can obtain delayed 
position information, thus results in the visual positioning 
function to fail. Positioning delays and positioning errors do 
not only affect the autonomous navigation, also significantly 
reduce the safety of the UAV. Therefore, positioning accuracy 
is also very crucial for UAV autonomous positioning 
algorithms [17]. 

In the field of autonomous navigation for UAVs, it is 
important to explore methods that utilize minimal onboard 
instruments and can operate in GPS-denied environments. 
One way to improve positioning accuracy is to utilize a small 
amount of information exchange between UAVs when they 
are in formation. An effective formation control method and 
positioning algorithm can be utilized to achieve this. The main 
objective of this paper is to improve the positioning accuracy 
of UAVs in formation  by sharing data through valid 
communication between UAVs and an Extended Kalman 
Filter [18], while minimizing the need for onboard 
instrumentation. By developing a method that relies on 
minimal onboard instruments and can operate in a variety of 
environments, including those where GPS is not available, it 
will be possible to improve the autonomous navigation 
capabilities of UAV swarms. 

 

III. STATE OF THE ART 

  In this section, the state-of-the-art research includes the 
following three main aspects: 

• Control strategies for UAV swarms,  

• Formation control approaches to control and 
maintain UAV swarm formation, 

• Positioning methods used in UAV swarms. 

 

A. Control Strategies for UAV Swarms 

UAVs in formation often must keep their relative position 
in the formation substantially constant due to mission 
requirements. The general holding strategy is that each UAV 
in the formation maintains the same relative position to the 
agreed point in the formation. This holding strategy is called 
follow-and-hold when this agreed point is the pilot aircraft. In 
formation keeping, some disturbances may be caused by some 
disturbing factors. The conflict prevention strategy is to avoid 
collisions and blockages in information interaction that may 
occur under the disturbance. To maintain a specific formation 
shape, the UAV group must have information interaction 
between them. Control strategies for information interaction 
are generally centralized [19], distributed [9], and 
decentralized control [20], each has its unique definition and 
advantages. 

 

Centralized Control: 

In a centralized scheme, a core processing unit is 
introduced. It can be a base station on the ground or an agent 
with high computing power in formation. The core unit 
monitors the coordination of the team to accomplish global 
tasks based on the information gathered from all remaining 
agents. All agents must remain in contact with the core unit. 
The centralized solution introduces some disadvantages, such 
as poor robustness and wasted energy. Due to the core unit's 
critical function in monitoring the team's global tasks, a 
failure of the core unit can bring down the entire formation. 
The computational power of each agent is not utilized, and the 
connection links required between the core unit and other 
members burden the communication resources [19]. 
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Decentralized Control: 

In the decentralized scheme, each UAV maintains its close 
relationship to the agreed points in the queue and does not 
interact with other UAVs. It has the least effective Control, 
essentially no interaction of information and the least amount 
of computation, but the simplest structure [20]. 

 

Distributed Control: 

In a distributed scheme, the organization does not need a 
core unit to be organized. As shown in Fig.1, agents in the 
formation can communicate and share information with other 
members. The processing unit is available on the agent itself, 
and decisions are made by the agent based on local 
observations. Each UAV must interact with information about 
its position, velocity, attitude, and motion target with the 
UAVs adjacent to it in the queue. In a distributed control 
strategy, each UAV needs to know the information of the 
UAVs adjacent to it. Although the Control is relatively 
ineffective, there is less information interaction, which 
significantly reduces the amount of computation, the system 
is relatively simple to implement, and the bottlenecks in 
computation and communication of the centralized approach 
are overcome [9]. 

UAV-1

UAV-2

UAV-4

UAV-3

UAV-5 Data transfer 

flow

Formation 

maintanence structure

 

Fig. 1: The distributed control. 

B. Formation Control Approaches 

Leader-Follower Approach: 

The Leader-follower based control method is used in this 
thesis for the follower with no set path, while the main UAV 
formation control methods currently available are Leader-
follower based Control [6], Behavior-based control method 
[21], and Virtual structure method [22]. This section explains 
the reasons for using Leader-follower based Control by 
comparing the advantages and disadvantages of each method. 

The Leader-Follower control method is a strategy that is 
often used in the control of multi-agent systems, such as a 

formation of UAVs. In this method, one intelligence is 
designated as the leader and the rest are followers that track 
the leader's movement. The followers are able to track the 
position and direction of the leader using parameters such as 
distance or speed. Within a multi-intelligence system, there 
can be one or multiple navigators, but only one navigator is 
responsible for controlling the shape of the group formation. 
By setting different position relationships between the 
navigator and the following intelligence, different network 
topologies, or formation shapes, can be achieved. The key 
feature of this method is that the collaboration between the 
members of the intelligence group is achieved through the 
sharing of information about the state of the leader 
intelligence [6]. 

One advantage of the Leader-Follower control method is 
that the leader, as the dominant player in controlling the 
movement of the entire system, can control the behavior of 
the entire group of intelligence with a given trajectory, which 
greatly simplifies the control process. This can be particularly 
useful in scenarios where the leader is able to accurately 
follow a predefined path and the followers are able to adjust 
their flight data based on the leader's position, heading, 
distance, velocity, and angular velocity. However, a 
disadvantage of this approach is the lack of direct feedback 
control in the system. If the leader misbehaves, it can directly 
lead to a disruption in the behavior of the followers, 
potentially causing the entire system to collapse. For example, 
if the leader moves faster than the followers can track, the 
followers will fall out of line [32]. 

 

Behavior-based Control Approach:  

The main idea of the behavior-based control method is to 
design the individual behavioral rules and local control 
schemes of each intelligent body in advance. This is based on 
the overall behavioral pattern expected to be produced by the 
control effect on the intelligent body system. It is a movement 
control method for the first effect and causes. Usually, the 
behavioral pattern of each intelligent body is stored in the 
formation controller like a 'library function.' When the system 
is running, the corresponding behavior is executed according 
to the environmental information and control instructions, 
such as avoiding obstacles, forming a particular formation, 
changing to another formation, moving in the direction of the 
target, etc. For example, in an obstacle environment, the 
formation intelligence has to avoid collision with obstacles 
and other intelligence during their movement. The intelligent 
body system uses its sensing system to detect changes in the 
external environment and selects the desired behavior from 
the behavioral pattern "library function" based on the current 
system input. This is then used as the system response and 
output. Unlike the pilot-follower approach, the collaborative 
role in this method is achieved through sharing information, 
such as position and state input values, between the 
intelligence, for which an efficient and stable communication 
system is indispensable [21]. 

 

Virtual Structure Approach: 

The idea of the virtual body method is to view the multi-
intelligent body formation as a single rigid body structure. 
The intelligence points at certain fixed positions on this rigid 
body structure, using their positions in the structure's 
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coordinate system as a reference, and when the intelligence 
move, i.e., when the multi-intelligent body formation moves, 
as long as the individual intelligence track their corresponding 
points in the rigid body structure. In other words, the 
coordinates of the intelligence in the reference coordinate 
system remain the same, which means that the relative 
positions of the intelligence remain unchanged, and the whole 
multi-intelligence system is always moving in a particular 
formation [22]. 

C. Positioning Techniques and Optimization Methods 

UAV positioning has various technical details depending 

on various environments and conditions. As it can be seen in 

Table I below, that illustrates the lists of some common 

applications where positioning techniques and optimization 

methods are used for the localization of UAV swarms at 

indoor or outdoor environment via communication or vision 

sensors. 

 

TABLE I. Positioning techniques and optimization methods used for UAV navigation 

Reference Positioning Techniques Optimization Methods Data 

Xiaoqiang Qi. 

(2021) [23] 

Sensor fusion using onboard 

IMU and external position 

measurement 

Extended Kalman Filter Noisy and delayed position data 

Zhimin Han et 

al. (2018) [24] 

Distance position 

measurements -based scheme 

Complex Laplacian-based 

formation control scheme 
Distance, velocity, all agents Share: Orientation 

Zhiyun Lin et al. 

(2015) [11] 

Relative position 

measurements-based scheme 

Fully distributed localization 

algorithm 

Known anchor node position, other nodes 

unknown, anchor node positions in a typical global 

coordinate frame and relative position 

measurements in local coordinate frames between 

node pairs 

Kexin Guo et al. 

(2017) [25] 

Distance measurements-based 

scheme 
Kalman Filter Distance, self-displacements 

William Power 

et al. (2020) 

[26] 

Dead reckoning 

Multi-Target Gaussian 

Conditional Random Field 

(MT-GCRF) 

The share of predicted global position between 

UAVS 

Xiaoyang Liu et 

al. (2018) [27] 

Dead reckoning, distance 

measurements-based scheme, 

bearing measurements-based 

scheme 

Traditional Federal Kalman 

Filter 

The relative navigation system provides the 

distance and angle information between the leader 

and the follower, and the dead reckoning system 

provides information on the position coordinates 

and speed of each UAV 

Mario Coppola 

et al. (2018) 

[28] 

Distance measurements-based 

approach 

Discrete-time Extended 

Kalman Filter (EKF) 

The MAVs exchange on-board states (height, 

velocity orientation) while the signal strength 

indicates the range 

Che Lin et al. 

(2016) [10] 

Bearing measurements-based 

scheme 

Distributed source 

localization 
Bearing angle 

Fabian Schilling 

et al. (2022) 

[15] 

Relative visual localization 
Attractive/repulsive flocking 

algorithm 
/ 

Martin Saska et 

al. (2017) [17] 
Relative visual localization 

Algorithm detail is described 

in [31] 

Information from an onboard camera, data from 

IMU, the altitude and velocities from the 

intelligent sensor 
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IV. CONCEPT 

 This paper presents a control scheme for the UAVs 
formation. The UAVs use distributed communication, 
meaning each UAV communicates with and considers one 
neighbor UAV to be a local leader. Leader-follower approach 
is employed for formation control. In this approach, the leader 
UAV follows a predefined path and the other UAVs in the 
formation determine their flight data based on the leader's 
position, heading, distance, speed, and angular velocity. Two 
types of positioning systems are used in the formation: 
relative positioning systems such as UWB based positioning 
[29] for indoor environments, and a GPS-aided inertial 
navigation system (INS) used in MATLAB or GPS [30] for 
outdoor environments. While UWB positioning tends to have 
a good accuracy, INS positioning can be less accurate due to 
the influence of wind and the limitations of GPS positioning 
at outdoor environment. If most of the UAVs in the formation 

lose location information, they can still receive positioning 
information from UAVs that have not lost these capabilities. 
By combining this relative position information with their 
own IMU data, they can reduce positioning errors in GPS-
denied environments using an EKF. In order to validate the 
effectiveness of the proposed method in this paper, the 
following simulation scheme was designed as shown in Fig.2. 

In our simulation, firstly the initial and relative positions 
of the UAV formation are defined, and the predefined paths 
are given. The flight speed of the drone formation is 
determined based on the number of path points imported. The 
initial GPS position / UWB based positioning accuracy are 
also entered and incorporated these parameters into the 
simulation scenario. The control flow of the implemented 
concept is given in Fig.2. If location data from GPS or UWB 
based positioning is lost, UAV uses the distance, velocity, 
acceleration, angular velocity, position and direction 

Fig. 2: Flowchart of the control scheme in MATLAB simulation 
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information from neighbor leader UAV. The absolute position 
of itself is calculated from this information. The EKF is used 
to obtain more accurate position information. The calculated 
new position information is then used to follow the 
neighboring leader. The fusion process involves combining 
predicted position data with IMU signals. In this process, the 
IMU data serves as the basis for state prediction, while the 
predicted GPS position contributes to filtering correction. 
Specifically, the predicted GPS position is used in the volume 
measurement equation, while the IMU measurements are 
directly integrated into the state prediction equation. 

V. RESULTS 

 Most of the simulation results shown are the trajectory of 
a UAV randomly selected in a V-shaped formation in a 
straight path of 350 meters, in order to facilitate visual 
comparison of trajectories. Other preset paths are also shown 
at the end of the results. Each UAV is equipped with a GPS 
and an IMU sensor, and it is assumed that they generate 
information at the same frequency of 240 Hz. In practice, the 
GPS usually generates information at a slower frequency than 
the IMU, but since this paper aims to simulate GPS loss, the 
same frequency is set here. It is also assumed that each UAV 
has also a valid communication with other UAVs, i.e., so that 
neighbor UAVs are able to communicate according to a 
distributed approach.  

 The simulation results demonstrate the effectiveness of 
the proposed control scheme in maintaining the formation of 
UAVs. The combination of distributed communication, 
leader-follower control, and EKF localization enables the 
UAVs to effectively follow a predefined path and maintain 
their positions relative to one another, even in the presence of 
GPS loss or high noise. The results show that the EKF can 
reduce the positioning error and improve the formation's 
ability to follow the desired path, particularly when at least 
one UAV has not lost GPS or UWB based positioning data. 
However, even when all UAVs have lost these capabilities, 
the EKF is still able to provide better performance than the 
dead reckoning method alone. The results also demonstrate 
the effectiveness of the proposed method in adapting to the 
loss of the leader UAV, with the formation able to smoothly 
transition to a new leader and continue to follow the desired 
path. The results for the different preset paths show that the 
proposed method is flexible and able to handle the paths in 
varying complexity. Overall, the results of the simulations 
support the conclusion that the control scheme proposed is 
effective in maintaining the reliable formation of UAVs in a 
different of scenarios and environments. 

TABLE II. Positioning accuracy setting values for indoor 
and outdoor 

Data Units Indoor Outdoor 

Roll, Pitch, Yaw deg [0.2  0.2  0.2] [0.2  0.2  0.2] 

Position m 
[0.15 0.15 

0.15] 
[1.0  1.0  1.0] 

Velocity m/s 0.02 0.05 

Acceleration m/𝑠2 0.02 0.05 

Angular velocity deg/s 0.02 0.05 

 For the initial accuracy settings as shown in Table II, the 
accuracy of GPS can be improved, but it is also affected by 
many factors, including the location and orientation of the 

antenna, the environment (e.g., buildings, forests, etc.), the 
quality and functionality of the receiver, and the orbit and 
signal of the GPS satellite. In general, the accuracy of GPS is 
around 5 meters. However, by using more advanced receivers, 
the accuracy of GPS can be improved to about 1 meter. The 
accuracy of an IMU depends on a variety of factors, including 
the quality, accuracy, and performance of the sensor, the 
quality and efficiency of the signal processing algorithm, and 
the characteristics of the environment in which it is used. In 
general, IMUs can achieve accuracies in the range of a few 
centimeters to tens of centimeters. High accuracy IMUs can 
achieve accuracies of several centimeters, but typically 
require the use of higher quality sensors. Compared with the 
actual accuracy, the following accuracy settings are for better 
simulation and are usually more ideal [34].  

A. Results of Indoor Simulation 

 The following results are for the case where there is at 
least one drone indoors that has not lost positioning data like 
UWB-based positioning system data. The Fig.3 shows the 
trajectory of a random drone in a swarm. The red line is the 
preset path, where a random drone loses GPS or UWB 
positioning data after about 50 m. In the case of a straight 
path, the top view on the right clearly shows that the EKF with 
the green line has an improved position after fusing the 
predicted position of the blue line with the position of the DR 
with the yellow line. Compared to DR, the implementation 
achieves a maximum accuracy improvement of about 40% to 
0.25 meters. 

 
Fig. 3: Simulation result of True path (Preset), predicted 

position through neighbor UAV’s data (Pred), DR 
positioning using IMU, and positioning result by EKF 

 The formation can be also maintained while using complex 
trajectories as shown in Fig. 4 and Fig. 5. 

 

 

 

 

 

Fig. 4: Trajectory 2 with EKF 
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Fig. 5: Trajectory 3 with EKF 

  

 The individual UAVs are specifically observed using 
complex trajectory as shown in Fig. 6. The red line is the 
predefined path. The EKF “green line” effectively integrates 
with both the predicted “blue line” and the DR data “yellow 
line”, resulting in the drone closely following its intended 
path. 

 

 
Fig. 6: Comparison of simulation results for a complex 

trajectory 

 By observing the Root Mean Squared Error (RMSE) as 
shown in Fig. 7, it can be clearly seen that, like the expected 
results, the INS localization (the green line) is better than the 
EKF localization (the blue line). The EKF localization is 
better than the GPS of the UAV (the red line) and the DR (the 
yellow line) from the IMU in the indoor situation.  

In an environment where GPS or localization system data 
is completely lost, as shown in Fig. 8, the accumulated error 
in the own DR “yellow line” can also be corrected to some 
extent by the EKF “green line” through the neighbor UAV’s 
DR position “blue line”. However, the effect is not obvious. 
Compared to DR, our implementation achieves a maximum 
accuracy improvement of about 20% to 1.3m. 

 
Fig. 7: Comparison of RMSE results after 500 simulations 

by using proposed concept 

 

 

Fig. 8: Simulation results when the UAV swarm completely 
loses GPS or localization system data 

 Fig. 9 illustrates V-shape formation used in the tests of 
Fig. 10. Fig. 10 shows the simulation results that flight 
formation is not affected in case of losing assigned leader 
UAV. If UAV-1 fails, UAV-2 will use the pre-stored preset 
trajectory and UAV3 will assign UAV2 as the new leader. 
Due to the distributed idea, there is no need to change other 
settings.    

 

 

 

 

 

 

 

 

Fig. 9: V-shape formation. 

UAV-1

UAV-2

UAV-4

UAV-3

UAV-2 is assigned as new leader 

for UAV-3 in case of UAV-1 fails
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Fig. 10: The swarm loses Leader and assigns a new leader in 
a V-shape formation 

B. Results of Outdoor Simulation 

 Like the indoor case, the fusion effect of the green line 
EKF in the outdoor case is more obvious as shown in Fig. 11. 
This is because the accuracy of IMU is similar no matter 
indoor and outdoor. Compared to DR, our implementation 
achieves a maximum accuracy improvement of about 60% to 
1.6m.  

 

Fig. 11: Simulation results for the configuration outdoor 
environment given in Table II 

VI. CONCLUSION 

 In this study, a control scheme is proposed for the 
formation of UAVs. The scheme utilizes distributed 
communication, where each UAV communicates with 
neighboring UAVs and treats them as a local leader, and 
leader-follower control, where the leader UAV stores a 
predetermined path and the other followers adjust their flight 
data according to the leader's position, direction, distance, 
speed, and angular velocity. The reliable formation can be 
maintained in both indoor and outdoor environments but 
using localization system with reference points like ultra-
wideband based positioning system, which typically has good 

positioning accuracy in indoor situations. However, the 
accuracy of (inertial navigation systems) INS positioning can 
be low due to the limitations of GPS positioning accuracy and 
other noises like the effect of wind on the UAV, etc. In this 
paper, to improve the positioning accuracy indoors and 
outdoors, we proposed that UAVs in formation can receive 
minimal navigation information from other UAVs (single 
UAV is sufficient) that have not lost GPS connectivity or 
indoor localization system capability and use extended 
Kalman Filter in combination with data from their own 
inertial measurement units (IMU) to effectively reduce 
positioning errors in GPS-denied environments at outdoor or 
where location data cannot be obtained at indoor environment. 
The final simulation results demonstrate that this scheme can 
be very effective in reducing the error accumulation caused 
by its own DR positioning and improving the positioning 
accuracy when at least one UAV in the UAV fleet has not lost 
GPS signal or localization system information. Even in the 
case of that the all UAVs completely lose GPS or localization 
system information, the proposed control method can improve 
the positioning accuracy in more than half of the cases and 
provides safe formation though swarm mission. This paper 
also conducts simulations using predefined paths of different 
complexity and different formation shapes to demonstrate the 
effectiveness of the method.  

 Furthermore, it's important to note that we operate under 
the assumption that the relative angles between UAVs remain 
constant. This assumption is based on the limitations of our 
sensors in the simulation environment, which are incapable of 
measuring this parameter. Therefore, we cannot guarantee 
that the formation will maintain its shape for an extended 
period after all UAVs lose GPS connectivity. Nevertheless, 
the UAVs are proficient at consistently maintaining a 
specified distance from one another. To address this issue, the 
use of an azimuth sensor can enhance the calculation of 
relative positions and improve accuracy. Lai et al. [35] 
conducted research on azimuth-only passive positioning of 
UAV formations regarding azimuth angle. 
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