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Special Section Brief Papers

Cooperative UAV Formation Flying With Obstacle/Collision Avoidance
Xiaohua Wang, Vivek Yadav, and S. N. Balakrishnan, Member, IEEE

Abstract—Navigation problems of unmanned air vehicles
(UAVs) flying in a formation in a free and an obstacle-laden
environment are investigated in this brief. When static obstacles
popup during the flight, the UAVs are required to steer around
them and also avoid collisions between each other. In order to
achieve these goals, a new dual-mode control strategy is proposed:
a “safe mode” is defined as an operation in an obstacle-free
environment and a “danger mode” is activated when there is a
chance of collision or when there are obstacles in the path. Safe
mode achieves global optimization because the dynamics of all
the UAVs participating in the formation are taken into account in
the controller formulation. In the danger mode, a novel algorithm
using a modified Grossberg neural network (GNN) is proposed for
obstacle/collision avoidance. This decentralized algorithm in 2-D
uses the geometry of the flight space to generate optimal/subop-
timal trajectories. Extension of the proposed scheme for obstacle
avoidance in a 3-D environment is shown. In order to handle
practical vehicle constraints, a model predictive control-based
tracking controller is used to track the references generated.
Numerical results are provided to motivate this approach and to
demonstrate its potential.

Index Terms—Collision avoidance, cooperative control, Gross-
berg neural network (GNN), model predictive control (MPC), ob-
stacle avoidance, unmanned aerial vehicle (UAV), visibility graph.

I. INTRODUCTION

THERE has been a spurt of interest in recent years in the
area of unmanned aerial vehicle (UAV) formation control

and obstacle avoidance. Many interesting applications of for-
mation flying have been studied. Examples include forest fire
monitoring [1], radar deception [2], and surface-to-air missile
(SAM) jamming [3]. Main considerations in formation flying
include how to come together and maintain a formation and
how to achieve collision/obstacle avoidance. Obstacle avoid-
ance in a 2-D environment has been studied earlier [4], [5]. In
[4], the concept of rapidly exploring random trees (RRT) orig-
inally investigated in [6] was used to find dynamically feasible
obstacle-free paths. After obtaining an obstacle-free path, a re-
active path planner was used to avoid pop-up obstacles. This
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Fig. 1. Two-layer hierarchical structure.

generates trajectories that are not taxing for the vehicle, i.e., the
trajectories involve less turns. As the main idea is to track a path
generated a priori and avoid pop-up obstacles as they appear,
this scheme does not guarantee a shortest distance path always.
Also, the RRT scheme requires larger computation times than
the method proposed in this brief. In [5], mixed integer linear
programming (MILP) was used to design dynamically feasible
trajectories for obstacle avoidance. However, the MILP scheme
requires larger computation capabilities when compared to the
scheme proposed in this study. Furthermore, the 2-D approach
presented in this brief gives the shortest distance paths.

In this brief, a fairly general scheme is developed that has
components of formation development, collision avoidance,
and obstacle avoidance. The phrase “collision avoidance” is
used in this brief to refer to a UAV trying to avoid another
UAV, and the expression “obstacle avoidance” represents the
scenario where the UAVs try to avoid obstacles. Contributions
of this brief include development of a dual mode strategy to
handle formation control and collision/obstacle avoidance, a
novel, implementable and scalable scheme to compute optimal
obstacle avoidance paths in 2-D and 3-D, and offer a practical
model predictive control (MPC) solution for tracking the trajec-
tories. Computation times of the obstacle avoidance scheme are

, where is the number of obstacles. These concepts are
developed and demonstrated through a representative problem
consisting of four UAVs forming a square, heading east, and
avoiding obstacles and collisions is studied in this brief.

A schematic of the control architecture is presented in Fig. 1.
Mode selection is based on the existence of threat/collision
possibility. In both modes, the upper layer is used to generate
reference trajectories, and the lower layer uses an MPC based
tracking controller to make the UAVs follow the references
generated by the upper layer. Compared to the most commonly
used leader–follower formation method, where the leader
considers only its own path and no cooperative feedback exists

1063-6536/$25.00 © 2007 IEEE
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[7], in safe mode, the upper layer controller uses the relative
dynamics between the UAVs to generate trajectories that result
in an optimal scheme for the entire formation.

The upper layer in danger mode uses a modified version of
Grossberg neural network (GNN) [8] to get the shortest-distance
trajectories between the UAV’s current position and a target
point outside of the danger zone that can be chosen based on
current sensor information and the mission objectives. GNN
has been used earlier in robot applications [9]. GNN has sev-
eral properties (discussed in Section III-B) that make it suitable
for applications in obstacle avoidance. Also, the GNN technique
has lower computational and storage requirements when com-
pared to the Dijkstra algorithm [5], [10] and it is implementable
in UAVs that have limited capabilities. Both fixed obstacles and
pop-up obstacles are considered in this study.

In [9], the GNN is used to find an obstacle-free path for a
single robot. The entire workspace is divided into grids. One
neuron is kept at each node of the grids. Each neuron’s states
are decided by the excitation of the neighboring neurons. All
neurons achieve stable steady states, and the shortest distance
path is obtained by moving along a path showing increasing
activity value of the neurons. The method in [9] generates the
globally optimal path; however, the computation time is large
because a neuron is placed at every node point in the grid. The
total number of neurons will be , where and are the
numbers of grid points in the and directions, respectively.
The method presented in this brief places neurons only at the
vertices of the obstacles and the goal, which means that only

neurons are required ( is the number of obstacles).
neurons are due to 4 vertices per obstacle and 1 neuron comes
from the goal (target).

Compared with the earlier papers [11], [12], the approach
used in this brief is more flexible with the use of MPC [13]–[16].
MPC can deal with changes in reference values during the op-
eration and handle state and control constraints easily.

The remainder of this brief is organized as follows. The
system model is introduced in Section II. The hierarchical con-
troller structure, the MPC controller design, and GNN-based
obstacle/collision avoidance algorithm are presented in
Section III. In Section IV, simulation results of formation
control, collision avoidance, and obstacle avoidance in 2-D
and 3-D cases are shown. Conclusions and future work are
discussed in Section V.

II. SYSTEM MODELING

A. System Dynamics

For concept demonstration, an individual UAV is modeled
as a unit mass, and the problem is considered in a 2-D plane,
i.e., the UAVs are flying at a constant altitude. Dynamics of an
individual UAV are modeled as a double integrator as

(1)

where indexes the airplanes. and are the
displacements of th airplane in the and direction, respec-
tively. and are the resultant forces acting on the airplanes

in the and direction, respectively. Dots denote differentia-
tions with respect to time.

As UAVs are not dynamically coupled, the states can be de-
fined as

(2)
and the controls can be defined as

(3)
The system model can be expressed as

(4)

where

where is a 2 2 zero matrix and is a 2 2 identity
matrix. The formulation (4) can be easily extend to vehicle
case by defining states and control, respectively

(5)

(6)

The upper level formulation operates with relative dynamics
and, therefore, the abstraction of the UAVs with double inte-
grators does not make this approach restrictive. Actuator con-
straints in achieving the acceleration command can be consid-
ered with the use of MPC.

B. Relative Dynamics Model

A desired geometric formation is achieved by driving the sep-
arations between the UAVs to the desired values and the relative
velocities between them zero. An optimality-based formulation
is used in this study to obtain feedback control.

Details are presented in the following. Relative dynamics be-
tween two UAVs are obtained as follows:

(7)

where are UAV indices; , are the rela-
tive distances between the airplanes and ; and and

are the relative forces acting at the center of an imagi-
nary string between the airplanes and .

Consider the relative distances and velocities as upper layer
states

(8)
The complete system relative dynamics can be written in the

following state space form:

(9)
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Fig. 2. Formation definition.

where

Similarly, the relative dynamics formulation (9) can be extend
to vehicle case with vehicle index . The
corresponding states and controls become

C. Relation Between Relative Dynamics and Individual
Vehicle Dynamics

There is a linear relationship between the individual system
dynamics and the relative system dynamics. This relationship
can be represented by two aggregation matrices: and

(10)

where

(11)

The aggregation matrix for vehicles can be easily figured
out as well.

D. Formation Definition

In this brief, the example formation considered is a square
of length (see Fig. 2). The commanded relative distances be-

Fig. 3. Control hierarchy in the safe mode.

tween the vehicles are constants, and the relative velocities are
zeros. The final constraint equations are presented in Fig. 2.

III. HIERARCHICAL CONTROL DESIGN

A. Safe Mode

In safe mode, the control commands are generated in a cen-
tralized manner. However, this process can be decentralized to a
cooperative scheme with information at a UAV limited to neigh-
boring or selected number of vehicles of the UAV fleet. Relative
distances and relative velocities are the upper layer system states
and the relative forces are the controls. For the problem consid-
ered in this brief, the safe mode will give an optimal scheme to
drive the states of the relative system to the desired ones. The
safe mode structure is given in Fig. 3.

1) Upper Layer (Reference Trajectory Generation): Note
that an infinite time formulation is used for optimal trajectory
generation. If a specific final time for formation should be stip-
ulated, this could be accommodated through variable weights in
the cost function. The cost function for this problem is given as
follows:

(12)

Subject to: (12a)

where is the relative state and contains the desired relative
positions and velocities as defined. Optimal reference trajecto-
ries are generated online at every step. and are
constant weight matrixes with proper dimensions on tracking
errors and relative controls, respectively.

Using the optimal control law [17], the relative dynamic equa-
tion becomes

(13)

where and come from the following algebraic equations:

(14)

2) Lower Layer (Tracking): After the upper-layer trajectories
are generated as shown in (13), an MPC-based controller [15]
as described in the following paragraphs calculates controls that
drives each UAV to form the square.

Consider a general linear system in the following discrete
form:

(15)
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Fig. 4. Control hierarchy in the danger mode.

where is the system state, is the system control, and is
the system output. and are system matrices and is the
output matrix.

Define the control increment as

(16)

Assuming the current instant as step , control at and
states at are known. The aim here is to calculate the control
increments at steps to match system
future outputs with the desired ones (i.e., reference trajectories).
Note that system future output can be predicted as a function of
system future control increment based on the system function in
(15). is called the prediction horizon.

Future steps’ prediction of system output is written as

(17)

where are the
future control increments. Note that represents the
value of the variable at stage ( ) given the information up
to stage with the integer . Please refer to [15] for the
parameters , , and .

Define an objective function at the th stage as

(18)
where and are weight matrices with the proper
dimensions. are the future
references. In safe mode, is given by the upper layer tra-
jectories generated according to (13) and in danger mode,
are calculated through GNN. Total velocity and total accelera-
tion constraints are taken into account as done in [18].

B. Danger Mode

Danger mode operations seek to achieve obstacle/collision
avoidance. Presence of an obstacle is assumed to be detected
using on board sensor information. It is assumed that the obsta-
cles can be represented by convex polygons. The shortest dis-
tance between two points in a 2-D environment is obtained by
moving in straight lines in free space and turning only at obsta-
cles’ vertices. This implies that the UAV changes direction only
at the vertices of the polygons in the space.

For the safety of the UAVs, a buffer zone is created around
the obstacles (or threat region). The upper layer uses a modified
GNN and a visibility graph [19] (explained later) to calculate
the optimal paths. The control structure is shown in Fig. 4.

Fig. 5 shows the obstacle avoidance scheme. Neurons are
placed at the vertices of the buffer zone and the target loca-
tion. In a GNN, each neuron receives excitation from its neigh-
boring neurons. In this brief, a neighboring neuron is defined as
the vertex that the UAV can go to without hitting an obstacle.

Fig. 5. Obstacle avoidance flowchart.

Fig. 6. Visibility graph.

Each neuron sees as its neighbors only the vertices where UAVs
can go without hitting an obstacle and this guarantees an ob-
stacle-free path. The obstacle-free optimal path is generated by
moving from one vertex (neuron) to another vertex that has the
highest activity.

Details of the trajectory generation algorithm are presented
in the following.

1) Upper Layer (Trajectory Generation):
a) Vertices creation and visibility graph formation: Ob-

stacles are represented by rectangles along the – axis. Note
that the geometric shape does not restrict the applicability of
this method. A small buffer zone (problem-dependent) is cre-
ated around each obstacle to create a safety margin to accom-
modate for possible tracking errors. Four neurons are located at
the vertices of the buffer zones.

A visibility graph [19] is created according to the topology
of the environment, namely, the geography of the flight space.
A visibility graph is defined as a map showing the lines joining
mutually visible vertices. Visibility between two vertices is ob-
tained by joining them by a straight line and checking whether
it crosses an obstacle. If this line cuts any of the obstacle (i.e.,
edges of the obstacle), then the vertices are considered mutually
invisible. A visibility graph for a simple geometric configuration
is shown in Fig. 6. In the picture, the patches on the left and in
the middle are obstacles that have four vertices each.
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b) Modified GNN: Grossberg proposed a model to de-
scribe how the human vision system works [8]. He proposed
a shunting equation with neurons distributed in the space [8],
[20]. A modified version of the GNN is developed in this brief
to adapt to the UAV obstacle avoidance problem. The dynamics
of activities of the GNN are given by

(19)

if the neuron sits on the destination
otherwise

(20)

where , where is the distance between the th
and th vertex. is the index describing the neighboring neu-
rons, which is defined as the vertex that can be seen from the
th vertex. is a weighting factor (described later). is the ex-

citation input to each of the neurons which is comprised of two
parts: and . is the excitation due to the closeness of
a vertex to the target or a goal point defined by the perpendic-
ular distance to the straight line joining UAV and target.

is also a weighting factor. The second term is intro-
duced so that the target location gets a high excitation input. A
value of 100 is chosen so that the destination node gets a high
excitory input.

The following paragraph will explain how the UAV is able to
go to target in a shortest distance path by using the activities of
the neurons.

Each of the neuron’s activities depends on the activity of its
neighboring neurons and excitation it receives. As the excitation
for the target is set as a very high value, its activity is the highest,
and a high activity propagates to other neurons in the network
through the interconnection term . Therefore, the
neurons closer to the target have higher activity values. Also,
since and are inversely proportional to and

, a neuron will receive a high activity if these distances are
small. It is desired that the UAV move to a point that is close
to the target, however, this should not cause the UAV to take
large deviations. Therefore, the target’s attraction and the devi-
ation from the straight path should be weighted properly. This
is done by adjusting the parameters and . Note that the pa-
rameters are adjusted to weigh the shortest distance and finding
least stressed paths. A high value of results in an algorithm
where a UAV sees an obstacle and moves towards the vertex
whose is the lowest. However, this move may not result
in the overall shortest path. Similarly, a high value of causes
the activity level of the vertices closest to the target to dominate
and will cause the UAV to move to the vertex closest to target.
Also, a neuron that has less number of neurons between itself
and destination has higher activity. Hence, this implies that the
path chosen has less turns. This, however, may not result in the
overall shortest path to the target. Any positive values for and

will result in an obstacle-free path for the UAVs. Therefore,
the values of and should be adjusted properly to get a path
that results in smaller values and also chooses the vertices
closer to target when such a path is the shortest.

Fig. 7. Collision avoidance.

The parameter represents the time decay and can be used
to modulate the rate at which steady state is reached. The value
of must be proper to allow activities to propagate throughout
the network and at the same time react to changes in the
environment.

Once the steady state is achieved, the UAV moves towards
the neighbor that exhibits the maximum activity. If the target (or
goal point) is visible, the UAV directly goes to the target. The
modified GNN represents the obstacle configuration, UAV’s
current position and target location as inputs and its outputs are
the activity levels of the neurons. The highest activity neurons
are used by the UAV to obtain a sequence of waypoints to be
visited to get an obstacle free shortest path to the destination.
Once the sequence of waypoints is obtained, the UAV goes to
a point that is farthest in the sequence towards the destination
among all the waypoints visible.

Every time a new obstacle is detected, new vertices can be
added to the existing map and the optimum obstacle-free path
is recalculated.

Activities of the neurons are generated at every instant, and
therefore, the effect of the changing operational environment is
reflected by the change in the activity of the neurons. Time taken
for the neurons to attain a steady state can be understood as the
reaction time of the network that reflects the change in the envi-
ronment. As an example, the time was 0.1 s with seven obstacles
in the environment. The simulations were carried on a 3.2-GHz,
1-GB RAM Dell desktop. It must be noted that the effect of
changes in the environment in the previous stages is not carried
forward for future path planning because the activities are gen-
erated every step. Also, since the initial conditions do not affect
the steady state value, effect of the previous environment con-
figuration is not carried over to later stages. Note that irrelevant
obstacles (not in the desired path) do not affect path planning.

2) Lower Layer (Tracking): Control for dynamically feasible
trajectory paths are generated in the lower layer with an MPC
scheme similar to the safe mode operation.

3) Collision Avoidance: A priority indexing scheme is used
in collision avoidance: all UAVs are tagged and the UAV with a
lower index creates an imaginary obstacle around the UAV with
a higher index (see Fig. 7) and tries to avoid it. Thus, collision
avoidance is achieved.

IV. SIMULATION RESULTS

Numerical experiments to analyze the architecture and the so-
lution techniques developed in this study consist of four UAVs
that start from different initial positions in the safe mode and
are required to form a square with a side of 20 m and fly east.
In doing so, the UAVs will encounter a danger zone, where
UAVs switch to the danger mode, break formation, and fly out
of the danger zone. After the UAVs get out of the danger zone,
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Fig. 8. Task completion.

Fig. 9. Formation trajectory.

they regain the commanded formation and head east. Numer-
ical results for the safe and danger modes in 2-D are presented
in Sections IV-B and IV-C. Section IV-D presents the obstacle
avoidance scheme in a 3-D environment.

Simulation parameters of the UAVs are taken from the Uni-
versity of Missouri-Rolla experimental airplanes. The desired
UAV velocity is chosen as 25 m/s. Maximum velocity and the
minimum velocity are 35.7 and 17.9 m/s, respectively. Max-
imum acceleration is 4.9 m /s.

A. Task Completion

UAVs are commanded to form a square with a side of 20 m
and are commanded to head east. Fig. 8 shows the trajectories
of four UAVs starting from nonsquare initial positions. It can be
seen that a square formation occurs when is about 1000 m. As
the UAVs continue to fly east, they run into an obstacle shown as
a large rectangle. The UAVs then switch to the danger mode to
avoid the obstacles. Once back in the safe mode, they regroup
into a square geometry when the value of the coordinate is
around 3200 m.

B. Formation Performance

In this section, results are presented for the safe mode where
the UAVs are commanded to form a square. From Fig. 9, it can
be seen that the UAVs start from different locations and come
together to form a commanded square formation.

Fig. 10. Path generated with three obstacles.

Fig. 11. Path generated after fourth obstacle is detected.

C. Obstacle/Collision Avoidance

1) Obstacle Avoidance: In order to demonstrate the potential
of this method, pop-up obstacles have been included in the UAV
path.

The UAVs are unaware of the pop-up obstacle , and
they see it only after 600 m. In these simulations, a buffer
zone of 4 m is chosen. Values of , and
are used. A value of unity for the upper bound in (19) is found
to give satisfactory numerical results in all cases considered in
this study.

The optimal obstacle avoidance path with the modified GNN
was generated assuming that UAVs sense only three obstacles
(see Fig. 10) when they come into danger zone. Note that this
process takes place online and no a priori information was used.
The resulting paths are presented in Fig. 10.

However, once the UAVs cross the three known obstacles,
they sight the fourth obstacle and plan their trajectory again. The
new online generated individual UAV trajectories are presented
in Fig. 11. Note that this path is different from Fig. 10 when the
pop-up obstacle (the fourth obstacle) was not sighted.

It may happen that there is not sufficient space available for
all the UAVs to pass through a narrow passage when the for-
mation cannot be maintained. In such case, the UAVs can break
formation and go in a straight line. The logic used in this con-
text is that each UAV waits for a time proportional to its distance
from the passage before leaving the formation. This ensures that
all the UAVs travel one behind another in the narrow passage
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Fig. 12. Head-on collision avoidance.

Fig. 13. Separation between UAVs.

2) Collision Avoidance: In order to simulate collision avoid-
ance, a two-UAV scenario is considered. Two different cases
are considered: In one case, the UAVs path represents a pos-
sible head-on collision and in the second case, their paths col-
lide at a right angle. It can be seen from Fig. 12 that the second
UAV which has been tagged as second in the priority index has
changed its path to avoid collision with the first UAV. That is,
the second UAV treated the first as an obstacle, created a buffer
(a rectangle of 150 50 m with UAV at one-third of length.
Larger portion being towards the direction of motion) around
the first UAV, used the modified GNN technique and generated
a path to avoid collision into the first UAV. This fact can be
better comprehended by looking at the plot for separation be-
tween the UAVs in Fig. 13. The separation between the UAVs
is high enough to avoid collision.

Similar results were obtained for the second case with a min-
imum separation distance of 46.6 m.

D. 3-D Obstacle Avoidance

For 3-D cases, each obstacle is represented as a cuboid. It
should be noted that the space configuration matrix is a 6 3
matrix because each obstacle is defined using six variables and
there are three obstacles in the space considered. Each one of
the rows indicates an obstacle configuration. More details on
3-D obstacle avoidance can be found in [24].

Note that a suboptimal path could emerge because waypoints
are generated every time after the UAV reaches the previous de-
sired location. Such a reasoning (technique) is used to reduce
computational requirements. When the UAV reaches the way-
point, the plane of its motion changes from a plane parallel to the

-axis to the one that contains both the UAV and the target and is

Fig. 14. Trajectory generated by the upper layer.

Fig. 15. Trajectories generated by MPC.

perpendicular to the face. This happens because it is shorter for
the UAV to fly around the obstacle than to go over it and hence
the UAV changes its plane of motion from a vertical plane to
another. However, the paths generated are the shortest in each
of the plane of motion and can be guaranteed to give an obstacle
free path in a 3-D environment.

Fig. 14 shows the trajectories generated by the upper layer.
The path generated by the upper layer is obstacle free but has
sharp turns. The trajectory obtained by the MPC-based con-
troller is shown in Fig. 15. Here, the MPC-based controller gives
a smoother trajectory with speed and acceleration constraints
satisfied.

E. Scalability

Simulations were carried to compute the time taken for the
simulations. It can be seen that the relation is linear. It again
shows that computation time is . All computations were
carried in Matlab 7.0 on a dell desktop with a 3.2-GHz processor
and 1-GB RAM. It can be seen from Fig. 16 that computation
times are small. The following plot shows that the scheme can
be implemented online.

F. Implementation Issues

The UAV in Fig. 17 used at the University of Missouri-Rolla
has a wingspan of 133 ft and a wing area of 2100 sq ft. It is
powered by a Zenoah G-62 engine which produces 4.75 hp at
7200 r/min. The JR XP8103 radio along with JR DS8231 servos
are used to actuate the control surfaces remotely. A pack of
Li-poly batteries power the radio receiver and the servos. An
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Fig. 16. Computation time versus number of obstacles.

Fig. 17. UAVs used at the University of Missouri-Rolla.

auxiliary power source is also provided through a battery cir-
cuit to power the radio-controlled components in the rare event
of exhausting the main power source.

An IMU, VG-400CA from Crossbow is used to provide the
pitch, pitch rate, roll, roll rate, yaw rate, and acceler-
ations. The angle of attack, side slip, altitude, and airspeed
are provided by a Space Age Control 100400 mini-air boom
(ADM). Honeywell precision pressure transducers are con-
nected to the ADB pressure ports to measure the pressure drop
from the boom to calculate the static and total pressure. The
onboard data acquisition and control (ODAC) system is com-
posed of a Diamond Prometheus PC-104 486 DX4 at 100 MHz
with 32 MB of RAM and 512 MB of Flash RAM.

Each UAV is fitted with a GPS unit, a camera and an image
processing unit. If the UAVs operate in a terrain with a priori
knowledge of threats, the visibility graph and the buffer zone
can be calculated ahead and stored on board. However, if it is a
situation like patrolling an urban area, computational needs will
result in a communication link with a base station. At UMR, the
base communicates with UAVs using a 115.2 kb/s RS232 radio
modem from Cirronet, Inc.1

V. CONCLUSIONS AND FUTURE WORK

In this brief, problems of formation flying of multiple
UAVs navigating through an obstacle-laden environment were
discussed. A novel dual-mode approach was presented for
formation flying in a safe and danger modes. A new technique
for obstacle/collision avoidance through a modified GNN was
developed. The time taken for the computations is a function
of geometry only and not of the number of UAVs (unless they
are on collision paths). It can be concluded from the numerical
results that it is usable in an obstacle-rich environment and may

1[Online]. Available: http://www.web.umr.edu/~autosys/uavs/airplane1.
html; contains more details about the airplane and real-time flight results of a
single UAV.

be implementable in small UAVs for real time applications. It
should be noted that as used the MPC scheme assumes that the
formation path generated by the upper layer is a feasible path.

The control architecture presented is being applied to the RC
airplanes1 at the University of Missouri-Rolla and the concepts
presented in this brief are being tested.
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