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ABSTRACT

Coordinated Multi-agent Motion Planning Under Realistic Constraints. (August

2008)

D. H. Asanka Maithripala, B.S., University of Peradeniya;

M.S., Texas A&M University

Chair of Advisory Committee: Suhada Jayasuriya

Considered is a class of cooperative control problems that has a special affine char-

acterization. Included in this class of multi-agent problems are the so called radar

deception problem, formation keeping and formation reconfiguration. An intrinsic ge-

ometric formulation of the associated constraints unifies this class of problems and it

is the first time such a generalization has been presented. Based on this geometric for-

mulation, a real-time motion planning algorithm is proposed to generate dynamically

feasible reference trajectories for the class. The proposed approach explicitly considers

actuator and operating constraints of the individual agents and constrained dynam-

ics are derived intrinsically for the multi-agent system which makes these constraints

transparent. Deriving the constrained dynamics eliminates the need for nonlinear

programming to account for the system constraints, making the approach amenable

to real-time control. Explicit consideration of actuator and operating limitations and

nonholonomic constraints in the design of the reference trajectories addresses the im-

portant issue of dynamic feasibility. The motion planning algorithm developed here

is verified through simulations for the radar deception, rigid formation keeping and

formation reconfiguration problems.

A key objective of this study is to advocate a change in paradigm in the ap-

proach to formation control by addressing the key issues of dynamic feasibility and

computational complexity. The other important contributions of this study are: Uni-
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fying formulation of constrained dynamics for a class of problems in formation control

through the intrinsic geometry of their nonholonomic and holonomic constraints; De-

riving these constrained dynamics in any choice of frame that can even be coordinate

free; Explicit consideration of actuator and operating limits in formation control to

design dynamically feasible reference trajectories and Developing a real-time, dis-

tributed, scalable motion planning algorithm applicable to a class of autonomous

multi-agent systems in formation control.
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CHAPTER I

INTRODUCTION

Cooperating multi-agent systems have received increased attention in the recent past,

due primarily to technological advancements, and have applications in exploration

and mapping, search and rescue, surveillance, cooperative manipulation, automated

highways and network centric warfare. Autonomous, distributed and real-time control

is an important if not imperative feature for the successful implementation of such

multi-agent systems. Some of the other more important desirable features of multi-

agent systems include, scalability in the number of agents, minimal communication,

local sensing and communication, fault tolerance and learning behavior [1, 2]. In

all the above paradigms of cooperative control one is interested in motion planning

for a group of agents and in most cases involves some sort of formation control of

the agents and our attention in this study is drawn only to such formation control

problems in cooperating multi-agent systems. Formation control can be defined as

a particular spatial arrangement of a group of agents through a common control

strategy. Some of the problems in formation control that have been investigated are;

formation feasibility [3], moving into formation [4], maintaining formation shape [5],

and switching between formations [6].

Two main approaches can be seen in the literature on formation control. One

approach is to formulate the formation control problem as a constrained optimization

problem while the other approach is to formulate it in the framework of a tracking

control problem. The main limiting characteristic of many existing motion planning

algorithms utilizing the former approach is the computational complexity [7] where

The journal model is IEEE Transactions on Automatic Control.
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even those proposed for real-time path planning lead to the solution of an optimiza-

tion problem using nonlinear programming [8, 9]. The typical approach in constrained

optimization is to cast the problem in a framework to find a trajectory of a nonlinear

dynamic system (i.e. ẋ = f(x, u) with x : states and u : controls) that minimizes a

cost function (J(x, u)) subject to constraints possibly on the states, trajectory, initial

time and final time. For the so called radar deception problem considered in this

study the optimization approach reduces to solving a nonlinear two point boundary

value problem using one of the standard numerical approaches of the shooting method,

finite difference method or projection method, all of which are computationally intense

processes at best. On the other hand, most approaches that formulate formation con-

trol as a tracking control problem assume the reference trajectory for the group as a

whole is known a priori rather than designed in real-time to include the individual

agent dynamics and constraints. This approach generally does not work well for a

system having dynamic constraints at the individual agent level since we are likely

attempting to track a trajectory of the system that may be dynamically infeasible.

For example, in [10, 11] the phantom trajectory being generated by a coordinating

team of UAVs engaged in a radar deception task is assumed rather than designed

and reference trajectories of the individual agents are found through inverse kinemat-

ics. However the dynamic feasibility of tracking these reference trajectories quickly

becomes a difficult issue and this was first pointed out in [12]. A leader following

approach is used in [13, 14] for formation control where the trajectory of the leader

is assumed. In leader following approaches, the leader-robot is required to follow

a given trajectory while the follower robots are responsible for changing the forma-

tion. A leader-following approach for a system consisting of nonholonomic robots is

presented in [15]. The concept of virtual structure (VS), introduced in [16] allowing

a group of agents to behave as if they were embedded in a rigid body, is used in
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[16, 17, 18] for the rigid formation keeping problem. The dynamic constraints of the

individual agents are incorporated in the group behavior to a certain degree in [17, 18]

where the VS slows down or speeds up along its assumed path depending on how well

the formation is maintained. In all the above approaches, the resulting formation

tracking error necessarily depends on a desired reference path/trajectory assumed

rather than designed for the leader, the phantom or the VS. An exception to this

is the work presented in [5], designing reference trajectories for the rigid formation

keeping problem, which can theoretically result in zero tracking error for the mobile

agents maintaining formation. However dynamic constraints are captured only to

the extent that the designed reference trajectories will be smooth. Other notable

approaches to formation control include behavior-based control [19], potential field

approaches [20] and geometric control methods [21, 22].

In order to put in perspective the importance of designing trajectories that are

dynamically feasible by each of the agents in the multi-agent system, let us now con-

sider a scenario where three robots are maintaining an equally spaced line formation.

If all three agents are restricted to have the same speed they must have common veloc-

ity directions to maintain this line formation. This corresponds to pure translational

motion (parallel motion) of the formation line. In fact multi-agents constrained to

have the same speed can have only one of two stable formations; parallel motion char-

acterized by common velocity directions of agents (with arbitrary relative spacing) or

circular motion characterized by circular orbits of the agents about a common fixed

point [23, 24]. For the three agent line formation, a rotation of the line formation,

no matter how small, will necessarily demand the agents to have differential speeds.

The amount of dynamically feasible rate of rotation of the formation line will be a

nonlinear function of the allowable differential speeds and the spacing between agents

and will generally be considerably less than the allowable rate of turn of the individ-
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ual agents. This simple example shows that the dynamic constraints that limit the

maneuverability of a single agent can have a magnified effect in limiting the maneu-

verability of a formation as a whole. Parallel motion of a formation, while escaping

this fact, will generally be too restrictive to be useful in practical applications. This

is particularly so for example in the box pushing or formation flight scenarios. The

issue of real-time trajectory generation under actuator and operating constraints is

addressed for a constrained system in [8, 9] and in the multi-agent formation control

setting in [25]. However these methods end up solving a constrained optimization

problem using nonlinear programming to generate feasible trajectories, which is a

computationally intense process.

The critical role played by dynamic constraints in formation control problems

that do not allow flexibility in their formation constraints has been over looked in most

approaches to formation control. Approaches that do consider dynamic constraints do

so by solving a constrained optimization problem using nonlinear programming. One

of the main goals of this study is to advocate a change in paradigm in the approach

to formation control that would address the key issues of dynamic feasibility and

computational complexity. Dynamic feasibility is especially critical for formation

control problems that have little flexibility in their formation constraints.

A. A Class of Problems in Formation Control

We look at the class of problems in formation control that can be defined by a forma-

tion constraint (configuration constraint) and where the individual agent dynamics

and constraints can be captured through an affine control form having inequality

constraints on the affine control functions. At a minimum this class comprises of the

following three general problems in formation control, each of which involves coor-
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dinated motion planning of multi-agents to achieve a team goal in the presence of

configuration and dynamic constraints. For convenience of presentation, the class of

problems in formation control is identified by these three example problems though

the results and analysis of this study are applicable to a broader class in general.

• Radar deception problem

• Rigid formation keeping

• Formation reconfiguration

The first problem, which we shall call the radar deception problem, serves as a mo-

tivating example in formation control involving a rather unique constraint on the

system configuration. In this problem a team of fixed winged UAVs cooperate to de-

ceive a ground radar network into seeing a spurious phantom track in its radar space.

It is assumed that each UAV engaging a radar it is assigned to has the capability

to intercept, introduce a time delay and re-transmit the radar’s transmitted pulses

thereby making the radar detect a target at a false range. The problem essentially

involves all the extended lines of sight, from the radars to the UAVs engaging them,

intersecting at a common point and tracing a path in space, which is a constraint

on the system configuration space. The radar deception problem first appeared in

[26, 10] while the essential role dynamic feasibility plays in this problem was first

pointed out in [12]. Subsequently it has been studied in [11, 27, 28, 29, 30] for the 2D

scenario while the only known 3D results are in [31]. The radar deception scenario is

illustrated in Fig.1 for the case of four UAVs engaging a radar network having four

radar stations.

The second problem we consider, rigid formation keeping, requires the relative

distances of all the agents in the system to be fixed which is again a constraint on the
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Fig. 1. Radar deception through phantom track generation.

configuration space. This problem has applications in formation flying [32, 33, 34],

box pushing (also known as load transportation) [16, 35], cooperative sensing [36]

and in scouting [19, 37]. In box pushing a group of robots uniformly surround a

rigid object and may or may not grasp the object. By guaranteeing the shape of

the formation, the surrounded or grasped object can be kept “trapped” amidst the

robots and moved to a desired location. The robots are required to maintain a rigid

geometric relationship with its load while in motion, as loose adherence will result in

uneven load distribution [16, 35]. In close formation flight, an aircraft can benefit in

terms of fuel efficiency from a reduction in drag if it can continue to stay in the “hot

spot” of a vortex created by an aircraft in front of it [32, 33]. This requires that the

group of aircraft fly in a rigid formation with considerable precision especially since

separation of aircraft can be as little as a few meters while flying at very high speeds.

Rigid formation keeping can in general be too restrictive for an environment with

obstacles and therefore formation reconfiguration, the third problem we consider,

becomes important. In this problem we treat the time-invariant constraints defining
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a rigid formation as time varying constraints to allow the formation to change from

one fixed formation to another. Formation reconfiguration is also crucially important

for the initial deployment of the multi-agents to form a rigid formation since it is

unreasonable to assume the initial position of agents to be consistent with the desired

rigid formation. Examples of rigid formation keeping and formation reconfiguration

are illustrated in Fig.2.

Fig. 2. Rigid formation keeping and formation reconfiguration.

Motion planning for the above three problems require satisfying constraints on

the configuration of the multi-agent system while also satisfying constraints on the

dynamics of the individual agents. At a minimum, constraints on individual agent

dynamics will come through limitations on actuator capabilities. Dynamic constraints

can also often include nonholonomic constraints, for example when the multi-agents

are wheeled robots where the no slip condition at the wheel base is essentially a non-

holonomic constraint on the agent dynamics. We show for the first time that the

multi-agent motion planning for the above three problems are intrinsically geometric

problems in the configuration space-time and can be expressed in a unifying manner.

This is because, as will be shown later, these three problems can be defined through

geometric constraints on the system configuration space-time. Hence from a geomet-

ric control point of view, the above three problems in formation control have a similar

intrinsic geometry to them. The radar deception problem highlights the role of actu-

ator and operating constraints in the feasibility of coordinated motion planning while
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by considering the latter two problems, we in effect investigate the formation control

problems of formation feasibility, moving into formation, maintaining formation and

switching between formations.

Although a lot of research has been done on each of the formation control prob-

lems of formation flying [34, 32], box pushing [16, 35], scouting [19, 37], formation

reconfiguration [6, 15], moving into formation [38, 39] and radar deception [11, 28, 31],

we are unaware of any motion planning work that unifies these problems while also en-

suring dynamic feasibility of such results. The class of problems in formation control

we consider in this study encompasses and unifies all the above mentioned problems in

formation control. We propose a motion planning algorithm applicable for the above

class of problems in formation control, which also addresses the issue of dynamic

feasibility.

The approach we propose in here is to embed the configuration and dynamic

constraints of formation control into the design of reference trajectories to be used

simultaneously by the tracking controllers of the individual agents. Theoretically

(in the absence of model uncertainty, and external disturbances) this can result in

zero tracking error. Based on this approach, we develop a real-time motion planning

algorithm for the above class of problems to design formation trajectories that can

ideally result in zero formation error at the tracking control stage. At the heart

of the proposed algorithm is the explicit consideration of actuator and operating

constraints of the individual agents and the derivation of constrained dynamics of the

multi-agent system that makes these constraints transparent, thereby addressing the

key issues of dynamic feasibility and computational complexity in formation control.

In particular the actuator constraints we consider include lower bounds (with strictly

positive bounds) for the individual robot speeds which we believe is imperative in

aircraft/UAV applications.
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Theoretical merit. Unifying formulation of constrained kinematics/dynamics

for a class of problems in formation control through the intrinsic geometry of their

nonholonomic and holonomic constraints. Deriving these constrained dynamics in

any choice of frame that can even be coordinate free.

Practical merit. Explicit consideration of actuator and operating limits in

multi-agent motion planning to design dynamically feasible reference trajectories.

Developing a real-time, distributed, scalable motion planning algorithm applicable to

a class of autonomous multi-agent systems in formation control.

B. Dissertation Outline

The work presented here is organized into eight chapters of which this introduction

is Chapter-I. Chapter-II motivates the proposed motion planning algorithm for for-

mation control through a kinematic analysis of the radar deception problem. The

proposed motion planning algorithm for the class of formation control problems con-

sidered in this study is outlined in Chapter-III next. Chapter-IV formulates the

constrained dynamics intrinsically and presents the main theoretical result of this

study. The motion planning algorithm is next applied to the radar deception, the

rigid formation keeping and the formation reconfiguration problem in Chapters V

through VII. Chapter-VIII concludes with a discussion of proposed future work and

conclusions of the study.
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CHAPTER II

THE RADAR DECEPTION PROBLEM, A MOTIVATING EXAMPLE IN

FORMATION CONTROL

The radar deception problem serves as a motivating example in formation control

involving a rather unique constraint on the configuration space of the multi-agent

system. Here a team of fixed winged UAVs cooperate to deceive a ground radar

network into seeing a spurious phantom track in its radar space. A radar detects

the presence of a target by listening into the echoes of its transmitted radio waves,

bouncing off of the target. Measurements of the round-trip time and comparison of

the frequency of the transmitted pulses to that of the moving target enables it to

determine the range as well as the range-rate of the target [40]. Each UAV engaging

a radar it is assigned to has the capability to intercept, introduce a time delay and

re-transmit the radar’s transmitted pulses thereby making the radar detect a target

at a false range. This capability of intercepting and digitally storing and returning

encoded pulses is known as range delay in Electronic Warfare [41, 27]. We assume

each UAV to have stealth capability so as to remain hidden from the radar network

and we assume the radar stations to be stationary. The challenge is to deceive the

entire radar network into seeing a single coherent phantom track. This essentially

involves all the extended lines of sight, from the radars to the UAVs engaging them,

intersecting at a common point and tracing a path in space. By introducing the

appropriate time delays to the radar signals, this path being traced is exactly what

the radar network falsely detects as a target trajectory and hence the name phantom

track. Based on this principle of range delay technique, Fig.3 illustrates how a team

of four UAVs can be used to generate a phantom track to deceive a radar network.

In this example scenario, there are four ground radars that share information about
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the phantom track and four UAVs, one assigned to each radar. From an operational
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Fig. 3. Phantom track generation through a team of four UAVs.

point of view in the event a UAV fails, the radar it engaged will no longer detect the

phantom and a loitering UAV can be brought in to re-engage the particular radar.

The temporary loss of detection by one of the radars may not be detrimental for the

deception process since often a radar network decides on the targets they detect based

on majority ruled voting. However we emphasize that the radar deception scenario

addressed here is not meant for operational significance but is more importantly

intended as a motivating example to address the issue of finding dynamically feasible

real-time solutions to formation control. In this study we assume that there are

always as many UAVs as there are radars.

The requirement that all the lines of sight intersect at a common point is a

constraint on the system configuration space, a constraint seemingly unique to this

problem. Designing trajectories that satisfy the above configuration space constraint

while operating within flight operating and actuator constraints of the UAVs makes
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this a difficult but at the same time an interesting problem in formation control.

In fact satisfying operating and actuator constraints becomes the most limiting or

restricting factor in designing these trajectories. Satisfying these constraints is how-

ever essential for the trajectories to be dynamically feasible for the UAVs. This fact

that the radar deception problem highlights the need to explicitly consider operating

constraints and actuator limitations is exactly why we choose this particular problem

as a motivating example. The radar deception problem was chosen in this study for

several reasons: 1) it serves as a motivating example of multi-agent formation control,

2) demands a shift in paradigm to formation control to address the issues of feasibility

and real-time control, 2) presents a problem in nonholonomic mechanics where the

system can never be brought to rest making the vast majority of available results

on nonholonomic systems inapplicable, 3) has all the typical issues that accompany

multi-agent systems from scalability to real-time control.

Let us consider the radar deception problem that is restricted to the 2D plane.

Suppose there are N -UAVs engaging N -radars and also suppose that we assign an

imaginary UAV to mimic the motion of the phantom aircraft to make the phantom

track realistic. The multi-agent system is decoupled into N -subsystems corresponding

to the N radar-UAV pairs. Each subsystem (N of them) now only has two UAVs, one

representing the phantom and the other the UAV engaging the radar. The configura-

tion space of the i-th subsystem has the structure of a manifold, which we shall call

Qi, and we assign the local coordinates qi = (Ri, ϑi, ϕ, ri, θi, φi) as shown in Fig.4.

Here, (Ri, ϑi) gives the position of the phantom in polar coordinates and ϕ gives

its orientation in a global inertial frame. Similarly, (ri, θi, φi) gives the position and

orientation of the UAV engaging the radar. Without loss of generality, the radar is

assumed to be at the origin of the local polar coordinate system qi. The subscript i

denotes the i-th subsystem. V and Vi denote the speed of the i-th UAV and the UAV
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Fig. 4. Configuration of i-th subsystem in polar coordinates.

representing the phantom, respectively. When a coordinate or a function is global,

having the same meaning in each of the N local coordinate systems, and there is no

need to identify it with a particular subsystem we shall simply not use a subscript.

The requirement that the UAV has to be in-line with its corresponding radar

and the phantom gives rise to a line of sight(LOS) constraint;

ϑi = θi. (2.1)

We assume the dynamics of a UAV can be captured reasonably well, through the
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following nonholonomic constraints of a unicycle;

Ṙi sin(ϕ − ϑi) − Riϑ̇i cos(ϕ − ϑi) = 0

ṙi sin(φi − θi) − riθ̇i cos(φi − θi) = 0.

(2.2)

The above nonholonomic constraints of Eq.(2.2) define the following equivalent control

system on Qi;

Ṙi = V cos(ϕ − ϑi)

ϑ̇i = V
sin(ϕ − ϑi)

Ri

ϕ̇ = U

ṙi = Vi cos(φi − θi)

θ̇i = Vi
sin(φi − θi)

ri

φ̇i = Ui

(2.3)

and can be written in the compact form;

q̇i = fV (qi)V + fU(qi)U + fVi
(qi)Vi + fUi

(qi)Ui. (2.4)

As evident, the above equivalent control form is affine in the functions V, U, Vi, Ui

and these functions are nothing but the kinematic controls corresponding to speed

and turn rate of the unicycle model we considered. Dynamic constraints due to

actuator and flight operating limitations are explicitly captured through constraints

on these kinematic controls μi = (V, U, Vi, Ui) of the above equivalent control system.

Note that these constraints are explicitly associated with the equivalent control form

of Eq.(2.4). The admissible control range of the forward speed V of a UAV is a

strictly positive range due to the stall speed constraint of fixed winged UAVs while

the admissible range of the steer control U is assumed symmetric. Hence, flight and
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actuator constraints are assumed to be as follows;

V min ≤ V ≤ V max

−Umax ≤ U ≤ Umax

Vi
min ≤ Vi ≤ Vi

max

−Ui
max ≤ Ui ≤ Ui

max.

(2.5)

A. Feasible Trajectory Solutions

The formation configuration constraint given in Eq.(2.1) can be written in the fol-

lowing compact form

Gi(qi) = 0 (2.6)

while the dynamic constraints of the UAVs given by Eq.(2.3) can be written in the

compact form

q̇i = Fi(qi, μi). (2.7)

Also the actuator and operating constraints given in Eq.(5.5) can be written in the

compact form

μi ∈ Πi (2.8)

where μi = (V, U, Vi, Ui).

Consider a multi-agent system A separable to N subsystems where each i-th

subsystem can be completely described by configuration constraints Gi(qi) = 0, dy-

namic constrains q̇i = Fi(qi, μi) and operating and actuator constraints μi ∈ Πi. Such

a generalization allows us to consider and comment on the rigid formation keeping

problem and the formation reconfiguration problem in addition to the radar deception
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problem that is considered in this chapter. Let us formally define what we mean by

feasible solutions to A next.

Feasibility. Feasible solutions for the multi-agent system A are defined as those

solutions that satisfy individual agent dynamic constraints given by q̇i = Fi(qi, μi),

formation configuration constraints given by Gi(qi) = 0 subject to actuator and oper-

ating constraints given by μi ∈ Πi for i = 1, . . . , N .

We derive the constrained kinematics that retain the control functions μi since

we need to explicitly satisfy the actuator constraints μi ∈ Πi. The two equations

q̇i = F(qi, μi) and Gi(q̇i, qi) := d
dt

(Gi(qi)) = 0 can be solved to yield Hi(qi, μi) = 0.

Consider the partition of controls μi = (wi, ui) such that the dimension of wi

is equal to the dimension (number of equations, call it s) of Hi(qi, μi). Then, if the

jacobian matrix |∂Hi

∂wi | �= 0 for (qi, μi) ∈ Qi ×Πi, the implicit function theorem assures

us that we can solve Hi(qi, w
i, ui) = 0 for the wis in terms of the uis;

wi
1 = Hi,1(qi, u

i)

...

wi
s = Hi,s(qi, u

i)

(2.9)

and we get the constrained kinematic system affine in ui, where ui are the only

independent controls. The constrained kinematic control system affine in the controls

ui can be written in the following compact form;

q̇i = F̃i(qi, u
i) (2.10)

and the multi-agent system A is now completely described by q̇i = F̃i(qi, u
i), μi ∈ Πi

where μi = (wi, ui) and wi = Hi(qi, u
i).

Suppose F̃i of Eq.(2.10) are piecewise continuous in time and Lipschitz in its

configuration variables qi. Then given any initial condition qi(0) ∈ Qi and controls
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ui(0) ∈ Πi, there exists a time δt such that ∀ t ∈ [0, δt] a unique trajectory exists

for q̇i = F̃i(qi, u
i) given by Eq.(2.10). Hence for feasibility of solutions we only need

to guarantee that the controls μi = (wi, ui) are in the admissible control space, i.e.

μi ∈ Πi, subject to wi = Hi(qi, u
i) given by Eq.(2.9).

Suppose the control form q̇i = F̃i(qi, u
i) satisfies the Lie Algebra Rank Condition.

Such a system is said to satisfy the accessibility property. If the set Πi contains the

origin, the control form q̇i = F̃i(qi, u
i) represented by Eq.(2.10) is also a symmetric

system and hence will be small time controllable. Finding controls ui that ensure

μi ∈ Πi for small time controllable systems will not be difficult since rest to rest

motion is allowed and thus feasibility of solutions will not be an issue. For details on

the accessibility property and small time controllability we refer the reader to [42].

Assume that the admissible control space of the system A, Πi, is such that Πi is a

compact and dense set not containing the origin as is the case for the radar deception

problem we consider. Hence it will be a system that will not be small time controllable.

In fact feasibility of solutions by itself becomes an issue. Consider piecewise constant

controls ui. For initial conditions qi(0) ∈ Qi, if wi(0) is within its control set bounds,

then there exists a time δit and admissible controls ui such that ∀ t ∈ [0, δit], wi(t)

continues to stay within its admissible range subject to wi = Hi(qi, u
i) given by

Eq.(2.9). If however wi(0) is at the boundary of Πi, we require arbitrary control

over the signature of d
dt

[Hi,s(qi, u
i)] for ∀s to ensure the existence of such a time δit.

Based on the above, we have the following proposition for feasibility of solutions to

the system A, [29].

Proposition 1. If (1) |∂Hi

∂wi | �= 0, (2) Hi,s(qi, u
i) are continuous and (3)

sgn
(
Ḣi,s(qi, u

i)
)

can be arbitrarily controlled with admissible controls ∀s and ∀ i =

1, . . . , N then the system A has feasible solutions.

The rest of this chapter will deal exclusively with the radar deception problem
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and when we say the multi-agent system A, we will be referring to the team of

UAVs engaging a radar network. For the radar deception problem Hi(qi, μi) :=

ViRi sin(φi − θi) − V ri sin(ϕ − ϑi) = 0 and for the partition of controls μi = (wi, ui)

where wi = Vi, ui = (V, U, Ui) we have |∂Hi

∂wi | �= 0.

wi = Hi(qi, u
i) only has one equation and is given by;

Vi = V
ri sin(ϕ − ϑi)

Ri sin(φi − θi)
. (2.11)

The constrained kinematic system q̇i = F̃i(qi, u
i) is of the form;

q̇i = f̃V (qi)V + f̃U(qi)U + f̃Ui
(qi)Ui (2.12)

where ui = (V, U, Ui) are the only independent controls.

We pause to note that the above constrained kinematics expressed explicitly in

terms of the kinematic controls ui was possible because |∂Hi

∂wi | �= 0, a luxury we do not

see in the other two formation control problems we consider.

Consider constant V leaving U,Ui as the only independent controls. Taking the

first derivative of Hi(qi, u
i) we get

Ḣi = a(qi)U + b(qi)

[
Ui − c(qi)

]
(2.13)

where

a(qi) = V riRi sin(ϕ − θi) cos(φi − θi)

b(qi) = −V riRi sin(ϕ − θi) cos(φi − θi)

c(qi) =
V (sin(ϕ − φi) + cos(ϕ − φi))

Ri cos(φi − θi)
.

(2.14)

Note from Eq.(2.5) that U can always be set to zero. Hence from Prop.1 if

|Umax
i | > sup c(qi), we have arbitrary control over the signature of Ḣi to ensure

feasibility of solutions to A. This result, which is a sufficient but not necessary
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condition for the existence of feasible solutions to A, provides the basis to a trajectory

generating algorithm we develop for this example problem.

B. Straightening of Trajectories

Consider the following constraints, which act as obstacles on the configuration man-

ifold Qi.

| ϕ − θi |< π

2
, | φi − θi |< π

2
(2.15)

For all meaningfully realizable trajectories we have

ϕ > θi ⇐⇒ φi > θi and θi > ϕ ⇐⇒ θi > φi. (2.16)

We can also easily derive the following relationship;

d

dt

(
ri

Ri

)
=

ri

R2
i

sin(ϕ − φi)

sin(φi − θi)
V. (2.17)

Equation (2.15), Eq.(2.16) and Eq.(2.17) yield the following;

d

dt

(
ri

Ri

)
> 0 when

ri

Ri

<
Vi

V

d

dt

(
ri

Ri

)
< 0 when

ri

Ri

>
Vi

V

d

dt

(
ri

Ri

)
= 0 ⇐⇒ ri

Ri

=
Vi

V
.

(2.18)

Thus we have limt→∞
(

ri

Ri

)
=

[
V min

i

V max ,
V max

i

V min

]
. Furthermore forcing V to be con-

tinuous ensures Vi

V
to be continuous. Then as t → ∞, for some t = Ti, we see that

ri

Ri
= Vi

V
at least once, instantaneously. This results in limt→∞ | ϕ − φi |= 0 at

least once instantaneously and we say asymptotically the flow of trajectories, locally,

straighten out with respect to the orientation angle ϕ. We draw on this point to give

a controllability result that we present next for the radar deception problem.
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C. Controllability Result

Suppose at t = Ti (maybe a very large time) we have ri(Ti)
Ri(Ti)

= Vi(Ti)
V (Ti)

for the system

satisfying the inequality constraints of Eq.(2.15), described in the earlier section. This

implies θi(Ti) = θ(Ti). We then freeze the controls Vi ≡ Vi(Ti), V ≡ V (Ti), make

Ui(t) ≡ U(t), ∀t ≥ Ti and update the control bounds Umax = min[Umax, Umax
i ],

resulting in φi(t) ≡ ϕ(t), ∀t ≥ Ti. Then the equivalent control system given by

Eq.(2.3), for ∀t ≥ Ti simplifies to the following control system;

Ṙi = cos(ϕ − θi)V (Ti)

ṙi = cos(ϕ − θi)Vi(Ti)

θ̇i =
sin(ϕ − θi)

Ri

V (Ti)

ϕ̇ = U

φ̇i = U.

(2.19)

The control system of Eq.(2.19) gives the coupled dynamics of two Dubins’ cars

represented by (Ri, θi, ϕ) and (ri, θi, ϕ). The only control of it is U since V (Ti) and

Vi(Ti) are now constants. A result due to Dubins in [43] states that this system

is controllable on the submanifold (Ri, θi, ϕ) or on the submanifold (ri, θi, ϕ). These

results extend to the case of the N -UAV system A given by Eq.(2.1), Eq.(2.3), Eq.(5.5)

and we make the following conclusion.

Proposition 2. The multi-agent system A satisfying |ϕ−ϑi| < π
2
, |ϕi − θi| < π

2

is asymptotically controllable on the submanifold (Ri, ϑi, ϕ) or (ri, θi, φi) where i =

1, . . . , N .
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D. Motion Planning Algorithm for the Radar Deception Problem

Based on the results presented above, an algorithm was developed that generated

trajectories online and in real-time for a team of N -UAVs engaging their correspond-

ing radars to generate a coherent phantom track. The algorithm computes piecewise

constant controls along with the time periods over which these controls are to be ap-

plied, and incrementally steps forward in time in a receding horizon framework until

the goal waypoint of the phantom trajectory is reached.

The system is decoupled into N -subsystems for the N -UAVs engaging their cor-

responding N -radars as described earlier in this chapter. The algorithm is presented

in the form of a flow chart in Fig.5. The decoupling causes the phantom kinematics

(Ri, ϑi, ϕ) to appear in all the N -subsystems resulting in some redundancies in the

computations but is justified by the advantage it offers in way of distributed control.

We assume that the team of UAVs starts off with an admissible control-configuration

combination. Here an admissible control-configuration combination is any system

configuration along with a set of admissible controls that satisfies the LOS constraint

together with the constraints derived in Eq.(2.11).

For simplicity the control V is assumed fixed at (V min+V max)/2. Equation (2.13)

along with Prop.1 provides the basis to the algorithm which computes piecewise

constant controls U and Ui that continually drive the Vi s of Eq.(2.11) to (V min
i +

V max
i )/2, the mean of their admissible bounds, for ∀i = 1, . . . , N . Depending on the

current value of Vi, the gradient of Hi,
d
dt

(Hi), might have to be made either positive

or negative to drive Vi towards its mean value. Each UAV estimates, the range of

controls of U and Ui that would ensure the desired signature of d
dt

(Hi). Call these

ranges Ūph,i, Ūi. Note that Ūph,i estimated by each UAV always has zero included, and

hence the intersection of these Ūph,i for i = 1, . . . , N will never be empty. Next the
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Fig. 5. Flow Chart: Algorithm used in generating real-time trajectories.
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subsets of these ranges of Ūph,i, Ūi that would satisfy | ϕ− θi | < π/2, | φi− θi | < π/2

are computed with the objective of straightening out the trajectories as detailed out

in a previous section. Call these subsets ¯̄Uph,i,
¯̄Ui. However not being able to satisfy

the above inequalities it appears, would only slow the straightening of trajectories

and will not affect feasibility. In the event these subsets or the intersection of ¯̄Uph,i

for i = 1, . . . , N is found to be empty, the above step (4th block of Fig.5) is simply

ignored. Although theoretically it is not clear to us as to why these subsets would not

be empty, simulation results have shown that for the most part they are indeed non

empty. Simulation results have shown that for any given time interval the cumulative

time over which the above constraints are not satisfied is either zero or is only a

fraction of the time interval considered. Hence the net effect is for ri

Ri
to converge to

Vi

V
. However we refrain from making a strong claim of this for the lack of a formal

proof.

Next the intersection of ¯̄Uph,i for i = 1, . . . , N is computed and final controls are

determined for U and Ui based on cost functions. The cost function associated with

calculating U attempts to minimize the phantom heading angle required to reach the

final goal waypoint. This merely assists in keeping the phantom track directed as close

to the the final waypoint as possible while it is the straightening of the trajectories

and the consequent controllability of the phantom track that ensures the goal way

point can be ultimately reached. The cost function associated with computing Ui

minimizes the relative angle | ϕ − φi | to quicken the straightening of trajectories.

Once the controls U,Ui are selected, each UAV estimates its maximum time ti over

which these controls can be applied before; Vi exceeds its admissible bounds or either

| ϕ − θi | < π/2 or | φi − θi | < π/2 is violated, which ever occurs first. Then

Δt = mini ti is selected as the time period over which the selected constant controls

are applied for each of the N -UAVs in the team.
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The computations shown in the blocks (i),(ii) and (iii) of the flow-chart are per-

formed in parallel by each of the N -UAVs and hence scaling of the number of UAVs

has minimal effect on the computation time. The communication architecture of the

algorithm is distributed as evident from Fig.5 though it requires global communica-

tion, meaning each UAV needs to communicate with each of the other UAVs. The

ranges Ūph,i estimated by each of the UAVs and the times ti are the only pieces of

information that have to be communicated amongst the team agents and this has to

happen only twice in each cycle of the algorithm as seen by the 5th and 9th blocks of

Fig.5. Some of the key attributes of the algorithm are; (i) scalable in the number of

UAVs (ii) suited for real time computation, as the search for the 2D case is reduced

to single parameter searche over U,Ui (iii) low communication between agents (iv)

implementable as an autonomous team of agents (v) the feedback structure of the

proposed receding horizon approach provides inherent robustness.

E. Simulation Results

The algorithm produced the trajectories shown in Fig.6 in real-time for the case of

4-UAVs engaging 4-radars. Here we assumed a phantom speed of 400± 40m/s, UAV

speeds of 100±15m/s and minimum turn radii of 5000m and 1500m for the phantom

and the UAVs, respectively. The straightening of the trajectories, where the phantom

and all the UAVs converge to a common orientation angle ϕ is seen in the latter part

of the trajectory evolution in Fig.6. The convergence of ri

Ri
to Vi

V
as explained in

Section B is illustrated in Fig.7 for the 4th UAV. As soon as ri

Ri
= Vi

V
, the control Ui

is locked onto U as explained in Section C, resulting in ri

Ri
being fixed as seen in the

latter part of the time history of Fig.7. Obviously if all UAVs start off with initial

admissible control-configuration combinations such that ri

Ri
= Vi

V
for i = 1, . . . , N ,
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Fig. 6. Simulation results of trajectories for a team of four UAVs engaging four radars

generating a coherent phantom track.

then the phantom track trivially evolves towards the goal waypoint in a straight line.

The algorithm produces controls that are piecewise constant and result in continuous

but non smooth speed and steer controls for the individual UAVs and this can be seen

in Fig.7. However this is justified since this was a kinematic study only, where we did

not take mass or inertia of the UAVs into consideration. In general, the computation

time of the algorithm was an order of magnitude less than the real-time over which

the algorithm was implemented. As mentioned earlier in the introduction of Chapter

I, formulating this in the framework of a constrained optimization problem would

require nonlinear programming methods to arrive at the trajectory solutions. Such

an approach would not have been amenable to real-time control nor would it have

been scalable in the number of agents.
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While the analysis and results given in this chapter are specific to radar deception

and hides much of the geometry of the problem, it nevertheless motivates the intrinsic

geometric formulation to formation control we present next.
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CHAPTER III

PROPOSED APPROACH TO FORMATION CONTROL

In this chapter we present a motion planning algorithm for the class of problems

considered in this study.

A. Formation Guidance

In formation control literature, we often come across the terms formation guidance

and formation tracking control. Formation guidance is simply another term for trajec-

tory generation in formation control where it is defined as the generation (or design)

of reference trajectories to be used as the input for the formation agents’ relative state

tracking control law. Formation tracking control on the other hand refers to design

techniques and associated stability/performance results for these relative state track-

ing control laws. The proposed approach to motion planning is on real-time reference

trajectory generation as opposed to formation tracking. These reference trajectories

are then to be simultaneously used as the input for the formation agents relative state

tracking control law allowing the agents to track their reference trajectories online

and in real-time.

Each of the three formation control problems we consider can be viewed as a

multi-agent system A constrained to satisfy a formation constraint, which is a con-

straint on its configuration space. The configuration space of the multi-agent system

A will have the structure of a smooth manifold which we shall call Q. Let q ∈ Q

denote the configuration of A. The formation constraint on A will be a constraint on

the configuration space Q and can be given by

C(q) = 0. (3.1)
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The objective is to design reference trajectories on Q satisfying the formation con-

straint C(q) = 0 that will also be dynamically feasible for the individual agents to

track.

Explicitly incorporating the dynamic model, including all dynamic, operating

and actuator constraints of the agents, in the design of the reference trajectories

will ensure zero tracking error in the relative state tracking control stage, at least

in theory. We say at least in theory, since this is with idealized assumptions of zero

model uncertainty and zero disturbance. Explicit incorporation of the configuration

constraints C(q) = 0 in the design of the reference trajectories will in theory result

in zero error in the formation. But this is again with the assumption that zero

tracking error can result in the tracking control stage. In actual implementation,

model uncertainty and disturbance rejection is to be accounted through feedback in

the tracking controllers, resulting in tracking errors (non zero) that will be functions

of the model uncertainty, disturbance and performance of the feedback controller.

B. Agent Dynamics and Constraints

The individual agent trajectories of the multi-agent system are viewed as curves on

the special Euclidean group SE(n). We propose to design reference trajectories for

these agents that capture the essential agent dynamics and constraints, but through

a simplified dynamic model. For example, the dynamic capabilities of a four wheeled

robot having many degrees of freedom and controls can be captured approximately

but reasonably well through the much simpler unicycle model. The Unicycle model

essentially captures the no slip condition of the wheeled robot while appropriate

constraints on its higher level controls of speed, steer, force and torque can effectively

capture the wheeled robot’s actuator, operating and dynamic capabilities. This is the
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reason why a lot of studies on wheeled robots, or even UAVs restricted to the plane,

prefer to use the unicycle model to represent the agent dynamics.

Consider a general multi-agent system A. Nonholonomic constraints of the agents

in A are constraints on the velocities in the form of C(q̇, q) = 0. Suppose these

constraints will have an equivalent control form which will be affine in its controls.

q̇ = vjfj(q) (3.2)

where n = dim(Q), vj ∈ R, j = 1, . . . ,m and m < n. Here vj are control functions

while fj are vector fields on Q. In Eq.(3.2) and in the rest of this dissertation, we

use the Einstein summation convention, also known as the tensor notation. For a

multi-agent system A that does not have nonholonomic constraints, the system may

still be written in the equivalent control form given above in Eq.(3.2) with m = n.

x
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0

0

sin

cos
21

vvy

x
1

v

y

Fig. 8. Unicycle model, where (x, y): position, θ: orientation, v1: speed, v2: steer of

unicycle.

We assume the agent dynamics of A can be represented through the above affine

control form, q̇ = vjfj(q). This control form is general enough to consider at least the

commonly seen simplified vehicle models in formation control literature. For example

the unicycle model shown in Fig.8, the simplified kinematic model of a UAV shown

in Fig.9 and the single integrator model (dynamics of a holonomic robot) shown in
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Fig.10 are all of the control affine form given by Eq.(3.2).

Fig. 9. Simplified UAV kinematic model, where (x, y, z): position, θ: heading angle,

β: flight path angle, α: bank angle, v1: speed, v2: pitch, v3: yaw and v4: roll

of UAV.

We propose to capture actuator and operating constraints of the agents through

bounds on the control functions vj and their first derivatives v̇j. These actuator and

operating constraints, which are inequality constraints, can be compactly written as

(μ, μ̇) ∈ Π, μ = {v1, . . . , vm} (3.3)

where Π is a compact set which does not necessarily have to have zero in its inclusion.

Technically this can be stated as q̇ = vjfj(q) being a drift system where the drift term

is non-vanishing for μ ∈ Π. The consideration of allowing Π to not have zero in its

inclusion makes the above formalism general enough to consider a system A comprised

of multi-agents whose operating constraints prohibit the system from coming to rest.

An example being a multi-agent system comprised of fixed winged UAVs where the

air speed must be maintained for the UAVs to remain aloft which is an operating

limitation. Considering bounds on μ̇ allows us to treat the individual agents as
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Fig. 10. Single integrator model of a mobile robot, where (x, y): position and v1, v2

are controls in the x, y directions.

having mass and inertia thus capturing their dynamic constraints more accurately.

The agent dynamic constraints given by q̇ = vjfj(q), (μ, μ̇) ∈ Π can hence include

nonholonomic, actuator and operating constraints, and take mass and inertia effects

into consideration, making the above formulism powerful in capturing individual agent

dynamics reasonably well.

Representing agent dynamics through a simplified dynamic model, while ensuring

the essential constraints and limitations of the agent are captured reasonably well,

makes the approach model independent and applicable to the class of problems we

consider in formation control involving a variety of multi-agents from wheeled robots

to UAVs. The accuracy with which the dynamic models of the individual agents

are captured in the design of the reference trajectories will determine the degree of

tracking error in the tracking control stage and ultimately in the degree of the error

in formation. In actual implementation, model uncertainty and disturbances need to

be accounted through feedback in the tracking controllers.

In 2D we prefer to employ the unicycle model for each of the agents making

it applicable to wheeled robots and UAVs alike with controls vj being the “speed”,
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“steer” of the agent while the first derivative of these controls, v̇j will be associated

with the “force” and “torque” acting on the agent. Actuator and operating constraints

can be captured through bounds on these “speed”, “steer”, “force” and “torque”

functions. If the application involves Hilare-type mobile robots, which have dynamics

equivalent to a unicycle, the dynamic model is then explicitly and accurately captured

in the design of the reference trajectories.

Each of the formation control problems of the class of problems we consider is

assumed to be completely described, and hence defined, through a set of geometric

constraints including a formation constraint of the form given by Eq.(3.1) and agent

dynamic constraints of the form given by Eq.(3.2), Eq.(3.3). A feasible solution to

the formation control problem is one that satisfies all these constraints.

C. Separation of the Problem for Distributed Control

Of the two approaches of centralized and decentralized coordinated motion plan-

ning for multi-agent systems, currently the dominant paradigm is the decentral-

ized approach. There are two types of decentralized architectures; distributed ar-

chitectures in which all agents are equal with respect to control, and hierarchical

architectures which are locally centralized. The choice of architecture in the pro-

posed motion planning algorithm is distributed control. We assume the multi-agent

system to be homogeneous, meaning the dynamic capabilities and constraints of

the individual agents are assumed identical. For distributed control of the multi-

agent system A having N agents, we decouple the problem into N subproblems.

From a geometric control point of view, this means the configuration and dynamic

constraints given by C(q) = 0, q̇ = vjfj(q), (μ, μ̇) ∈ Π defining the formation

control problem can be separated into N geometrically similar sets of constraints
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C(qi) = 0, q̇i = vjfj(qi), (μi, μ̇i) ∈ Πi for i = 1, . . . , N . Separating the multi-agent

system into geometrically similar subsystems makes the approach and the resulting

motion planning algorithm scalable in the number of agents in the system.

In the radar deception problem the phantom and each UAV makes up a separate

subsystem where the coupling between the subsystems will be through the controls

on the phantom. For consensus between the N subsystems, these controls (subset of

the controls μ) need to have intrinsic meaning. In other words, these controls that

couple the N subsystems should be independent of the coordinates of the subsystems.

For purposes of control, the agents in the multi-agent system for rigid formation

keeping is viewed as forming a virtual structure (VS). Here the virtual structure

consisting of the N agents is considered time invariant while each agent and a unique

point on this VS defining the formation is treated as a separate subsystem. For

convenience we consider the centroid of the VS as this unique point and assume

virtual control over the VS as a whole. The coupling between the N subsystems will

be through these controls on the VS. As in the radar deception problem, here too the

controls that couple the N subsystems need to have intrinsic meaning for consensus

amongst the N subsystems.

From a geometric control point of view, the formation reconfiguration problem is

different from the rigid formation keeping problem only in that the VS made up of the

multi-agent system is time varying. Here in the formation reconfiguration problem,

each agent and the initial centroid (centroid of the VS at t = t0) of the now time

varying VS is considered a subsystem. Virtual control is assumed over the relative

positions of each of the agents in the VS giving us control over the physical geometry

of the time varying structure. Once again the controls that couple the N subsystems

need to have intrinsic meaning for consensus.

We note that in the above three multi-agent systems, the controls that couple
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the subsystems, controls on the phantom and on the VS, are only virtual controls,

considered for the purpose of coordinated motion planning.

D. Constrained Dynamics

Having separated the problem into geometrically similar subproblems, next con-

strained dynamics are developed for the subsystem, which is the basis to the motion

planning algorithm we present here. Constrained dynamics are formulated intrinsi-

cally to make it applicable to the class of problems considered and is presented in

detail in the next chapter. We opt for tools from geometric mechanics to formulate

the constrained dynamics due to the inherent geometry of constraints seen in the

formation control problems we consider. The constrained dynamics are derived in a

particular frame where the choice of frame for which these constrained dynamics are

formulated is intimately associated with the affine control form q̇i = vjfj(qi) because

of the particular manner in which we capture the actuator and operating constraints

(through the set constraint (μi, μ̇i) ∈ Πi). What this particular frame actually is, will

be made clear in the proceeding chapter. The significance of deriving constrained dy-

namics in a particular frame is that we then have actuator and operating constraints

appearing quite transparently in the constrained dynamic equations. This in turn

facilitates control law design to satisfy these inequality constraints coming through

actuator and operating limitations.

The use of concepts and tools from geometric mechanics is necessary for two rea-

sons. One, the particular frame of choice is not a coordinate frame and it is the tools

of geometric mechanics that come to our rescue in deriving the constrained dynamics

exploiting the intrinsic geometry of the formation control problem. Second, it unifies

a class of formation control problems through the intrinsic geometric formulation of
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the governing constrained equations of motion.

E. Control Strategy for Consensus and Feasibility

A control law that would achieve consensus between all subsystems is identified and

designed for a subset of the controls μi (by examining the constrained dynamics of

the subsystem). Next we design two sets of control laws for the remaining of the

control functions μi.

First solutions to these remaining control functions μi satisfying the dynamic

constraints ((μi, μ̇i) ∈ Πi) are identified and a control law is designed driving the sub-

system towards these solutions. This control law focusing on the dynamic feasibility

aspect of solutions is called the control law for feasibility. Note that this is different

from the ideal case of designing a control law that would ensure dynamic feasibility

by satisfying the set constraints ((μi, μ̇i) ∈ Πi). Next a control law that would opti-

mize the team goal is developed for the subsystem for these same remaining control

functions. We propose a simple switching control strategy for motion planning for the

multi-agent system based on these latter two control laws together with the control

law for maintaining consensus. When actuator and operating constraints of all the

subsystems are satisfied, feasibility is not an issue and the control law that optimizes

the team goal is implemented on all the constrained subsystems. If actuator or op-

erating constraints of even one of the subsystems are violated then the control law

for feasibility is implemented on all the constrained subsystems to drive the system

towards feasible solutions.

Instead of identifying solutions to μi that satisfy the dynamic constraints and de-

signing a control law that would drive the subsystem towards these feasible solutions,

if a control law is designed to guarantee feasible solutions then this control strategy
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is guaranteed to produce dynamically feasible reference trajectories. We note here

that for the three formation control problems considered in this study, we have only

identified particular solutions for μi that are guaranteed to be feasible (as opposed

to control laws that guarantee feasibility of solutions) and designed control laws that

drive the system towards these feasible solutions. However, through simulation results

for all three formation control problems considered in this study, we have shown that

by appropriately tuning the control gains of the control law for feasibility, this control

strategy can effectively produce dynamically feasible reference trajectories although

there is no theoretical guarantee for feasibility of solutions.

Identifying a subset of control functions and designing control laws to achieve

consensus and feasibility is quite subjective and heavily relies upon the form of the

constrained dynamics developed. This is the reason why we restrict our comments to

only the three formation control problems we consider, for each of which these steps

are demonstrated.

F. Communication and Control Algorithm for Distributed Control

Synchronized and global communication is proposed for the control architecture of

the motion planning algorithm. For the implementation of the switching control

strategy, all that needs to be communicated amongst all the agents in the team is

which controller to be used and for how long. The constrained dynamics takes care

of the equality constraints corresponding to the formation and nonholonomic con-

straints while the switching control strategy takes care of the inequality constraints

corresponding to actuator and operating constraints and this approach is amenable to

real-time trajectory generation. Each agent in the multi-agent system is responsible

for solving the constrained dynamics associated with its subsystem for distributed
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control. The proposed communication/control algorithm is presented in the form of

a flow-chart in Fig.11. The computations shown in the blocks (i),(ii) and (iii) of the

flow-chart of Fig.11 are performed by each of the N -agents in parallel and as such

increasing the number of agents in the system has minimal effect on the overall com-

munication/computation time thus making the approach scalable. Communication

amongst the agents need not be continuous and has to occur only once in each cycle

of the receding horizon control strategy. For simplicity we have assumed that the

algorithm step time δt is a constant and the algorithm incrementally steps forward

in these step increments in a receding horizon framework. All the preceding sections

of this chapter taken together describes the proposed motion planning algorithm.

From an implementation point of view, the biggest weakness in the proposed

distributed control algorithm is the admittedly strong assumption of synchronized

communication. We note that the distributed receding horizon control architecture

is not technically decentralized, since a globally synchronous implementation requires

centralized clock keeping. Communication topology, time delays, robustness in the

communication architecture, local sensing and communication architectures as op-

posed to global communication are other issues we do not consider in this study.

Nevertheless, these and other important issues in sensing and communication will

need to be addressed before implementing the proposed motion planning algorithm

on a multi robot test-bed.
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CHAPTER IV

GEOMETRIC FORMULATION OF CONSTRAINED DYNAMICS

Consider a system A required to satisfy holonomic and nonholonomic constraints.

Let Q be the configuration manifold of A and TQ, T ∗Q its tangent and cotangent

bundles respectively. A trajectory of the system A is a curve on Q, γ : [a, b] → Q,

whose tangent vector on Q along the curve γ we denote by γ
′
. For purposes of de-

veloping a motion planning algorithm for a class of formation control problems, this

system A will represent the i-th subsystem, and Q its configuration space. Holo-

nomic constraints on Q will capture the formation constraint while the nonholonomic

constraints on Q will capture nonholonomic constraints of the agents in A.

Let us next introduce some of the terminology used in the rest of this chapter.

A system A constrained to satisfy these holonomic and nonholonomic constraints is

termed the constrained system A. When equations of motion satisfying these holo-

nomic and nonholonomic constraints of A are derived at the velocity level, through a

distribution, we term these as the constrained kinematics. When the equations of mo-

tion satisfying these constraints of A are derived at the dynamic level, corresponding

to a metric on Q, we call them the constrained dynamics.

A. Constrained Kinematics

We refer the reader to [44, 45] for details of the differential geometric ideas used in this

section. A map C : Q �→ 0 ∈ Rm captures all configuration constraints (holonomic)

on Q. M = C−1(0) = {q ∈ Q | C(q) = 0} is an embedded submanifold of Q (M ⊂ Q)

and is the true configuration manifold of the constrained system A. The differential

of the map C, denoted dC, is a codistribution that annihilates the entire tangent

space TqM for every q ∈ M and uniquely identifies TM. Thus for a vector v on Q,
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dC(v) = 0 iff the vector v is on M.

A distribution Δ on Q captures all nonholonomic constraints on Q. There is

a unique annihilating codistribution Λ = {α ∈ T ∗Q | α(v) = 0; ∀v ∈ Δ} on Q

associated with Δ (Here we have made an abuse of notation by denoting the distri-

bution as well as the set of vector fields taking their values in the distribution by

the same symbol since it should be clear from the context which we mean). Let

{e1, · · · , erank(Δ)} be a basis for the distribution Δ. Then γ′ = viei is its equivalent

control system form associated with the nonholonomic constraints and the nonholo-

nomic constraints alone.

Note. For the three formation control problems we consider, this equivalent

control form γ′ = viei represents the individual agent kinematics (that need not satisfy

the configuration constraints) and we propose to capture actuator and operating

constraints of the individual agents through inequality constraints on the functions vi

and their first derivatives v̇i. In other words, actuator and operating constraints are

captured through the set constraint (μ, μ̇) ∈ Π where μ = (v1, . . . , vrank(Δ)) and Π is

a compact set. Notice that the above set constraint depends on the choice of frame

{ei}.
Ω = {α ∈ T ∗Q | α ∈ dC, α ∈ Λ} is the intersection of the codistributions dC

and Λ. There exists a unique distribution on Q, call it the constrained distribution

D = {v ∈ TqQ, ∀q ∈ Q | Ω(v) = 0}, associated with the annihilating codistribution

Ω. A trajectory γ will satisfy both the holonomic and nonholonomic constraints iff

its associated tangent vector γ
′
along γ is annihilated by Ω. i.e. iff Ω(γ

′
) = 0.

The vector γ
′
being annihilated by Ω is equivalent to having γ

′
be in the distri-

bution D. Hence a necessary condition for the trajectory γ to satisfy the holonomic

and nonholonomic constraints on A is that the vector γ
′

along γ has to be in the

distribution D. We immediately see that, for such a γ to exist, we must have a
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non-empty D. This condition is given in terms of an algebraic rank condition on

the matrix representation of Ω in [3] where a trajectory γ satisfying holonomic and

nonholonomic constraints on A is equated to a feasible trajectory.

Kinematic control. If {X1, . . . ,Xrank(D)} is a basis for the distribution D,

then γ
′
= uiXi describes the equivalent kinematic control system of the constrained

system. In general it will not be possible to find a relationship between ui and

actuator/operating constraints (μ, μ̇) ∈ Π in the way we have defined them, and we

turn to the dynamics of the constrained system.

To the best of our knowledge, [3] is the only meaningful study on the feasibility

aspect to formation control. However, feasibility results of [3] are limited to kine-

matic systems only and do not consider dynamics-related effects other than through

the consideration of nonholonomic constraints. For the formation control problems

we consider, for a trajectory γ to be a feasible one, it has to have a non-empty D
and also has to satisfy actuator and operating constraints captured through the set

constraint (μ, μ̇) ∈ Π where γ′ = viei with μ = (v1, . . . , vrank(Δ)). The work pre-

sented in this study goes beyond the constrained kinematics presented in [3], to

derive constrained dynamics and to consider dynamics related effects of the individ-

ual agents through actuator/operator constraints. Let us formally define what we

mean by feasible solutions to A.

Feasibility. Necessary and sufficient conditions for the trajectory γ to be a

feasible trajectory of A are;

1. The distribution D has to be non-empty.

2. γ′ restricted to the distribution D with, (μ, μ̇) ∈ Π

where γ′ = viei, μ = (v1, . . . , vrank(Δ)).



42

B. Constrained Dynamics

The notion of an affine connection is used to derive the constrained dynamics. An

affine connection or covariant differentiation is an operator ∇ that assigns to each

pair consisting of a vector x at q ∈ Q and a vector field v defined near q, a vector

∇xv at q satisfying the following three properties [45];

∇x(av + bw) = a∇xv + b∇xw

∇ax+byv = a∇xv + b∇yv

∇x(fv) = x(f)v + f∇xv

for all vectors x and y, vector fields v and w, functions f , and real numbers a and b.

For the local coordinates q = (q1, . . . , qn) in a coordinate patch in Q, let ∂q =

(∂q1 , . . . , ∂qn) be its coordinate frame of vector fields that span every tangent space of

Q and dq = (dq1, . . . , dqn) its associated dual frame of covector fields (i.e. dqi(∂qj) =

δi
j). Also consider the frame of vector fields e = (e1, . . . , erank(Δ), . . . , en) where

{e1, . . . , erank(Δ)} forms a basis for Δ and {erank(Δ)+1, . . . , en} forms a basis for Δ⊥,

the orthogonal compliment to Δ. The frame e has the associated frame of covector

fields σ = (σ1, . . . , σn) on Q (i.e. ei(σ
j) = δi

j). Then,

γ
′
= q̇k∂qk = vkek.

where vk includes the same functions that capture the actuator and operating limits

as mentioned earlier.

The frame e is locally a coordinate frame iff [ei, ej] = 0, ∀i, j in which case we

can always find local coordinates p = (p1, . . . , pn) such that ej = ∂pj and σj = dpj.

i.e. locally each σj will be exact. Here [ei, ej] is the Lie bracket between the vector

fields ei, ej. For the three problems considered in this study, the choice of e will be
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such that it will not be a coordinate frame.

For a vector x = Xjej and a vector field v = vkek, the covariant derivative of v

with respect to x is obtained through the properties of a connection as follows;

∇xv = Xjej(v
k)ek + Xjeiω

i
jkv

k

= ei{dvi(x) + Xjωi
jkv

k}

= ei{dvi(x) + vkωi
jkσ

j(x)}

= ei{dvi + vkωi
k}(x)

(4.1)

where the connection coefficients ωi
jk and the connection 1-forms ωi

k are defined by;

∇ej
ek : = eiω

i
jk

ωi
k : = ωi

jkσ
j

(4.2)

and where we have used the fact that x(vk) = dvk(x).

Let G be the Riemannian metric on Q specified by the kinetic energy of the

system A. The Levi-Civita connection
G

∇ is the unique affine connection associated

with (Q, G), satisfying the following two properties ∀x,y;

G

∇ = 0

G

∇x y− G

∇y x = [x,y].

(4.3)

The connection coefficients of the Levi-Civita connection
G

Γi
jk are defined similarly

by

G

∇∂
qj

∂qk : = ∂qi

G

Γi
jk . (4.4)

These connection coefficients
G

Γi
jk, which are called Christoffel symbols, are given in
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the coordinates q by

G

Γi
jk=

1

2
G

ir

(
∂Gjr

∂qk + ∂Gkr

∂qj − ∂Gjk

∂qr

)

where G
ij are defined by GijG

jk = δk
i .

For a force represented by the one-form F (t, γ
′
(t)) ∈ T ∗Q, a curve γ : [a, b] → Q

satisfies the Lagrange-d’Alembert principle and is a solution of the system satisfy-

ing the constraints (holonomic and nonholonomic constraints captured through the

distribution D) iff

∇γ
′
(t)γ

′
(t) = λ(t) + Y (γ(t))

P
′
(γ

′
(t)) = 0

where λ is in D⊥, the G orthogonal compliment to D, Y is the vector field associated

with the one-form F given by Y = G
�(F ), G

� : T ∗Q → TQ is the isomorphism

associated with the metric G mapping covector fields to vector fields, and P
′
: TQ →

TQ is the G orthogonal projection map onto D⊥.

Taking the covariant derivative of P
′
(γ

′
(t)) leads us to another affine connection,

the constrained affine connection
D
∇ given by

D
∇γ′ (t) γ

′
(t) = ∇γ′ (t)γ

′
(t) + (∇γ′ (t)P

′
)(γ

′
(t)).

A property of
D
∇ is that it restricts to D meaning that

D
∇X1 X2 ∈ D for every X2 ∈ D.

In practice however, computation of
D
∇ can be quite troublesome and for compu-

tational convenience we instead consider the constrained connection given by;

A

∇γ′(t) γ′(t) = ∇γ′(t)γ
′(t) + A−1

((
∇γ′(t)AP ′

)(
γ′(t)

))

where A can be any invertible matrix [46]. Usually one would choose A to cancel

out the denominator terms of P ′ that would cause computational problems in the
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covariant differentiation of P ′. It is shown in [46] (along with a proof) that this

connection
A

∇ too restricts to D and hence serves just as well as
D
∇ in determining the

constrained equations of motion as long as γ′(t0) ∈ D.

A curve γ : [a, b] �→ Q is a solution of the constrained system A iff γ′(t0) ∈ D
and γ satisfies;

A

∇γ′(t) γ′(t) = P

(
Y (γ(t))

)

where Y = G
#(F ) and P : TQ �→ TQ is the G orthogonal projection map onto D.

Let γ′ = q̇k∂qk = vkek and using Eq.(4.1) we have
A

∇γ′ γ
′
given in the two frames

e, ∂q as follows;

A

∇γ′ γ
′
= vjej(v

k)ek + vjei

A

ωi
jk vk

= ek(dvk(vjej) + vj
A

ωk
j (vrer))

= ek(v̇
k + vj

A

ωk
j (γ

′
))

(4.5)

A

∇γ′ γ
′
= q̇j∂qj(q̇k)∂qk + q̇j∂qi

A

Γi
jk q̇k

= ∂qk(dq̇k(q̇j∂qj) + q̇j
A

Γk
j (q̇r∂qr))

= ∂qk(q̈k + q̇j
A

Γk
j (γ

′
))

(4.6)

where the connection coefficients and the connection 1-forms of
A

∇ in the two frames

e, ∂q are defined by
A

∇ei
ej := ek

A

ωk
ij,

A

ωk
j :=

A

ωk
rj σr and

A

∇∂qi
∂qj := ∂qk

A

Γk
ij,

A

Γk
j :=

A

Γk
rj dqr

as usual. To actually compute
A

∇γ′ γ
′
, we need to be able to compute the connection

coefficients
A

ωk
ij,

A

Γk
ij.

Consider a type (1, 1) tensor P with components P i
j. The components of the
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covariant derivative of P with respect to x, ∇XP , in the coordinate frame ∂q are;

(∇xP)i
j =

∂P i
j

∂qk
Xk + Γi

krPr
j X

k − Γr
kjP i

rX
k (4.7)

where the connection coefficients Γi
jk are defined by ∇∂

qj
∂qk := ∂qiΓi

jk. The connection

coefficients of
A

∇ in the coordinate frame ∂q are computed using Eq.(4.7) as;

A

Γi
jk =

G

Γi
jk +(A−1)i

r

∂(AP
′
)r
j

∂qk
+ (A−1)i

r

G

Γr
km (AP

′
)m
j

− (A−1)i
r

G

Γm
kj (AP

′
)r
m.

(4.8)

For the three problems considered in this study, the frame e will not be a coordinate

frame. Hence we need to transform the connection 1-forms
A

Γj
k from the basis ∂q to

the basis e to compute the 1-forms
A

ωj
k.

Define
A

∇ ej(ei) :=
A

∇ej
ei = ek

A

ωk
ij. This can also be written in terms of a vector

valued 1-form as ek⊗
A

ωk
rj σr(ei) = ek

A

ωk
ij. However since

A

ωk
j :=

A

ωk
rj σr we have

A

∇ ej = ek⊗
A

ωk
j .

Hence

A

∇ e = e
A
ω

where
A
ω:=

(
A

ωk
j

)
is the n × n matrix of connection 1-forms.

Since
A

∇ is well defined, independent of basis, we have compatible
A

∇ e = e
A
ω and

A

∇ ∂q = ∂q

A

Γ where
A

Γ:=

(
A

Γk
j

)
.

Let e = ∂qS be the change of basis where ei = ∂qjSj
i and S is the non-singular
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matrix whose (i, j)th element is S i
j. Then,

A

∇ e =
A

∇ (∂qS)

= (
A

∇ ∂q)S + ∂qdS

= ∂q

A

Γ S + ∂qdS.

But we also have

A

∇ e = e
A
ω = ∂qS A

ω

We must then have

A
ω= S−1

A

Γ S + S−1dS (4.9)

which is the transformation rule for the matrix of connection 1-forms. Notice that
A

Γ does not transform as would the components of a tensor since
A

Γ is in fact not a

tensor.

Since e = ∂qS we have σ = S−1dq. Let α be a 1-form and α = akdqk = bkσk.

This can be written as α = a dq = bσ = bS−1dq and we have a = bS−1 and hence

b = aS

which is the transformation rule for 1-forms. This will be required in the actual

computations of
A
ω given in Eq.(4.9) to represent

A
ω in the e frame.

The significance of deriving constrained dynamics
A

∇γ
′ γ

′
= ek(v̇

k + vj
A

ωk
j (γ

′
))

in the e frame is that we then have the equations of motion of the constrained sys-

tem exclusively in the functions μ, which also capture the actuator constraints of

the individual agents, and configuration coordinates q. Note that in the above con-

strained dynamics, vrank(D), . . . , vn will be identically zero since erank(D), . . . , en ∈ D⊥,

to satisfy the nonholonomic constraints.
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CHAPTER V

RADAR DECEPTION

The proposed motion planning algorithm outlined in Chapter-III is applied to the

radar deception problem and verified in simulation in this chapter.

Consider the multi-agent system restricted to the 2D plane comprising of N -

UAVs engaging N -radars. We propose the unicycle model to capture the dynamic,

operating and actuator constraints of a UAV restricted to fly in the 2D plane. Let

(xi, yi, θi) give the configuration of the i-th UAV where (xi, yi) is the position and θi

its orientation. Assume an imaginary UAV whose trajectory will be considered the

phantom trajectory to make the phantom trajectory realistically mimic the trajectory

of an actual aircraft. Let (x, y, θ) be the position and orientation of this imaginary

UAV. Let (x̄i, ȳi) give the position of the i-th ground radar which is stationary by

assumption. With the assumption of the ground radar network being a stationary

one, x̄i, ȳi will be constants for i = 1, . . . , N .

The multi-agent system is then comprised of the N -UAVs, the corresponding N

radars they engage and the imaginary UAV assigned for the phantom. The configu-

ration of this multi-agent system can be given by the local coordinates

qi = (x1, y1, θ1, . . . , xN , yN , θN , x, y, θ)

and will have the structure of a smooth differentiable manifold having dimension

3(N + 1). The configuration of the multi-agent system involved in radar deception is

illustrated in Fig.12, where only the imaginary UAV assigned for the phantom, and

the 1st and the Nth UAV-radar pairs are shown.

The requirement that the N UAVs have to be in-line with their corresponding
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Fig. 12. Configuration of the radar deception problem where only the 1st, Nth and

the imaginary UAV representing the phantom are shown.

radar and the phantom gives rise to configuration constraints

(x − x̄i)(yi − ȳi) − (y − ȳi)(xi − x̄i) = 0 (5.1)

for ∀ i = 1, . . . , N .

The nonholonomic constraint of a unicycle representing the i-th UAV is

ẋi sin θi − ẏi cos θi = 0. (5.2)

The equivalent control system corresponding to the above nonholonomic constraint,

the unicycle kinematic model, is given by

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi

(5.3)
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where vi, wi are the speed and steer controls.

Considering the i-th UAV to be of mass mi and inertia Ji we also have the

following;

v̇i =
1

mi

fi

ẇi =
1

Ji

τi

(5.4)

where fi, τi are respectively the force and torque acting on the UAV. The above

description that takes mass and inertia of the UAV into consideration, together with

its kinematic model given by Eq.(5.3), describes the dynamics of the UAV.

Assuming the UAV to be fixed winged, its speed vi will have to be lower bounded

to avoid stall, a flight operating constraint on the UAV. Stability of the UAV and

actuator limitations will upper and lower bound the steer wi as well as the rate of

steer ẇi. These bounds will in general be assumed symmetric about zero. Actuator

limitations will impose an upper bound on the thrust force fi on the UAV while the

maximum attainable drag force will impose a lower bound on fi. Although the upper

bound of fi will in general be different from its lower bound, we assume these to be

symmetric for notational convenience. These actuator and operating constraints of

the UAV are captured through the following constraints.

vi
min ≤ vi

−wi
max ≤ wi

−fi
max ≤ fi

−τi
max ≤ τi

≤ vi
max

≤ wi
max

≤ fi
max

≤ τi
max

(5.5)

where vmax
i , vmin

i , wmax
i , fmax

i , τmax
i are all positive constants.

We assume that the unicycle kinematic model given by Eq.(5.3), the inertia

and mass effects captured through Eq.(5.4), and operating and actuator constraints
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given by Eq.(5.5), will capture the dynamics of the i-th UAV restricted to the plane,

reasonably well.

Similarly we have the following dynamical model for the imaginary UAV repre-

senting the phantom.

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

v̇ =
1

m
f

ẇ =
1

J
τ

(5.6)

vmin ≤ v ≤ vmax

−wmax ≤ w ≤ wmax

−fmax ≤ f ≤ fmax

−τmax ≤ τ ≤ τmax

(5.7)

where v, w are the speed and steer, m, J the mass and inertia and f, τ force and

toque, and vmax, vmin, wmax, fmax, τmax are positive constants, all of which are virtual

quantities of an imaginary UAV.

Next the multi-agent system is separated into geometrically equivalent N sub-

systems corresponding to the N radar-UAV pairs. Each subsystem (N of them)

now only has two UAVs, one representing the phantom and the other the UAV

engaging the radar. Consider the i-th such subsystem and call it A. The config-

uration space of the i-th subsystem, shown in Fig.13, has the structure of a man-

ifold Q, and we assign the local coordinates q = (x, y, θ, xi, yi, θi). On the man-

ifold Q, ∂q = { ∂
∂x

, ∂
∂y

, ∂
∂θ

, ∂
∂xi

, ∂
∂yi

, ∂
∂θi

} is the coordinate basis for TqQ and dq =
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Fig. 13. Configuration of the i-th subsystem.

{dx, dy, dθ, dxi, dyi, dθi, dφ} its dual basis for T ∗
q Q. The Riemannian metric corre-

sponding to the kinetic energy of the system is G = m(dx ⊗ dx + dy ⊗ dy) + Jdθ ⊗
θ + mi(dxi ⊗ dxi + dyi ⊗ dyi) + Jidθi ⊗ θi where (mi, Ji) are mass and inertia of the

i-th agent and (m, J) the fictitious mass and inertia of the virtual UAV assigned to

be the phantom. Since the multi-agent system is assumed to be restricted to the 2D

plane, the potential energy of A is assumed zero. For computational convenience, and

without loss of generality, we assume unit mass and inertia for both these UAVs. The

inertia matrix associated with the Riemannian metric G is then the identity [I]6×6.

Let us next proceed to derive the constrained dynamics of the i-th subsystem A as

explained in the previous chapter.

Nonholonomic constraints on A are

ẋ sin θ − ẏ cos θ = 0

ẋi sin θi − ẏi cos θi = 0.

(5.8)
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The annihilating codistribution associated with the above nonholonomic constraints

of A is given by;

Λ :
α1 = sin θdx − cos θdy

α2 = sin θidxi − cos θidyi.

The distribution Δ associated with the annihilating codistribution Λ is spanned by

Δ = {ev, . . . , ewi
} where

ev = cos θ
∂

∂x
+ sin θ

∂

∂y

ew =
∂

∂θ

evi
= cos θi

∂

∂xi

+ sin θ
∂

∂yi

ewi
=

∂

∂θi

and Δ⊥, the compliment of Δ, is spanned by Δ⊥ = {ez, ezi
} where

ez = G
�(α1) = sin θ

∂

∂x
− cos θ

∂

∂x

ezi
= G

�(α2) = sin θi
∂

∂xi

− cos θi
∂

∂yi

.

For a covector α = αjdqj, and basis ∂q = { ∂
∂qj }, the computation of G

�(α) is as

follows: G
�(α) = G

ijαj
∂

∂qi where G
ij

Gjk = δi
k.

The frame of vector fields {ev, ew, evi
, ewi

, ez, ezi
} span TqQ on the manifold Q

and hence is another basis for TqQ. Associated with the frame e = {ev, ew, evi
, ewi

, ez, ezi
}

is its dual frame σ = {σv, σw, σvi , σwi , σz, σzi}.
The tangent vector on Q associated with a trajectory curve γ is given by γ′ =

ẋ ∂
∂x

+ ẏ ∂
∂y

+ θ̇ ∂
∂θ

+ ẋi
∂

∂xi
+ ẏi

∂
∂yi

+ θ̇i
∂

∂θi
= vev +wew + vievi

+wiewi
+ zez + ziezi

in the

two frames ∂q and e. Note that the functions v, w, vi, wi of γ
′
= vev + wew + vievi

+

wiewi
+zez +ziezi

are the same speed and steer controls corresponding to the dynamic
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models of the i-th and the phantom UAV. The actuator and operating constraints

acting on A, given by Eq.(5.5), Eq.(5.7), can be written concisely as follows

(μi, μ̇i) ∈ Πi (5.9)

where μi = (v, w, vi, wi) and Πi is a compact set.

The map C : Q �→ 0 ∈ Rm capturing the configuration constraint on A is

(x − x̄i)(yi − ȳi) − (y − ȳi)(xi − x̄i) = 0 (5.10)

and the differential of this map, dC, is given by the 1-form

dC : β1 = (yi − ȳi)dx − (xi − x̄i)dy − (y − ȳi)dxi + (x − x̄i)dyi.

The intersection of the annihilating codistributions Λ and dC gives the unique anni-

hilating codistribution Ω : Λ⊕ dC and has the following matrix representation in the

∂q basis;

[Ω]∂q =

⎡
⎢⎢⎢⎢⎣

sin θ − cos θ 0 0 0 0

0 0 0 sin θi − cos θi 0

(yi − ȳi) −(xi − x̄i) 0 −(y − ȳi) (x − x̄i) 0

⎤
⎥⎥⎥⎥⎦ (5.11)

The distribution D associated with the annihilating codistribution Ω is spanned by

the following vector fields (which is the null space of the above matrix representation

of Ω);

x1 = hi cos θ
∂

∂x
+ hi sin θ

∂

∂y
+ h cos θi

∂

∂xi

+ h sin θi
∂

∂yi

x2 =
∂

∂θ

x3 =
∂

∂θi

(5.12)
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where

h � (xi − x̄i) sin θ − (yi − ȳi) cos θ

hi � (x − x̄i) sin θi − (y − ȳi) cos θi.

(5.13)

Vector fields x4 = G
�(α1), x5 = G

�(α2) and x6 = G
�(β1) span D⊥, the G-

orthogonal compliment to the distribution D.

x4 = sin θ
∂

∂x
− cos θ

∂

∂y

x5 = sin θi
∂

∂xi

− cos θi
∂

∂yi

x6 = (yi − ȳi)
∂

∂x
− (xi − x̄i)

∂

∂y
− (y − ȳi)

∂

∂xi

+ (x − x̄i)
∂

∂yi

(5.14)

Let us next compute P
′
, the G-orthogonal projection map onto D⊥. In the basis

{x1, . . . ,x6}, P
′
has the matrix representation;

[
P

′
]
x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.15)

Let x = ∂qR be the change of basis where xi = ∂
∂qj Rj

i and R is the non-singular



56

matrix whose (i, j)th element is Ri
j.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hi cos θ 0 0 sin θ 0 (yi − ȳi)

hi sin θ 0 0 − cos θ 0 −(xi − x̄i)

0 1 0 0 0 0

h cos θi 0 0 0 sin θi −(y − ȳi)

h sin θi 0 0 0 − cos θi (x − x̄i)

0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.16)

Matrix representation of P
′
in the ∂q = { ∂

∂x
, . . . , ∂

∂θi
} basis is given by [P

′
]∂q =

R[P
′
]xR−1. The projection map P , the G-orthogonal projection onto D, in the basis

∂q is simply [P ]∂q = I − [P
′
]∂q where I is the identity.

We choose A = (h2 + h2
i )I to eliminate the denominator terms of P

′
. Then

[AP
′
]∂q is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2
i sin θ2 + h2 −h2

i sin θ cos θ 0 −hhi cos θi cos θ −hhi sin θi cos θ 0

−h2
i sin θ cos θ h2

i cos θ2 + h2 0 −hhi cos θi sin θ −hhi sin θi sin θ 0

0 0 0 0 0 0

−hhi cos θ cos θi −hhi sin θ cos θi 0 h2 sin θ2
i + h2

i −h2 sin θi cos θi 0

−hhi cos θ sin θi −hhi sin θ sin θi 0 −h2 sin θi cos θi h2 cos θ2
i + h2

i 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Recall that the choice of A does not affect the dynamics of system A. The above

choice of A simplifies the computation of the connection coefficients
A

Γi
jk a great

deal by eliminating the denominator terms of P
′
without which the computation of

partial differentiation of Eq.(4.8) would have made the symbolic computations of the

connection coefficients
A

Γi
jk simply intractable.
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Since the Riemannian metric G is constant, we also have

G

Γi
jk= 0 for ∀ i, j, k.

Remark. This further simplifies the computation of connection coefficients
A

Γi
jk

and is exactly the reason why we consider the holonomic constraints in the distribution

rather than working with the true configuration manifold, the embedded submanifold

C−1(0) of Q. On the embedded submanifold C−1(0), the Riemannian metric would

have been a tensor field on Q rather than a constant, and would have resulted in

nonzero, and cumbersomely lengthy, connection coefficient terms
G

Γi
jk.

However since
G

Γi
jk= 0 and since A is diagonal, from Eq.(4.8) we have

A

Γi
jk= (A−1)i

r

∂(AP
′
)r
j

∂qk
=

1

(h2 + h2
i )

∂(AP
′
)i
j

∂qk
. (5.17)

As an example let us show the connection coefficients of
A

Γx
x=

A

Γx
xx dx+

A

Γx
yx dy+

A

Γx
θx

dθ+
A

Γx
xix

dxi+
A

Γx
yix

dyi+
A

Γx
θix

dθi;

A

Γx
xx = 2 sin2 θ sin θi((x − x̄i) sin θi − (y − ȳi) cos θi)

A

Γx
yx = −2 cos θ sin θ sin θi((x − x̄i) sin θi − (y − ȳi) cos θi)

A

Γx
θx = 0

A

Γx
xix

= sin θi cos θi cos θ((yi − ȳi) cos θ − (xi − x̄i) sin θ)

A

Γx
yix

= sin2 θi cos θ((yi − ȳi) cos θ − (xi − x̄i) sin θ)

A

Γx
θix

= 0.

The force acting on A, along a curve γ on Q, is given by the covector

F = f cos θdx + f sin θdy + τdθ + fi cos θidxi + fi sin θidyi + τidθi
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and the vector field associated with this covector F is give by Y = G
�(F );

Y = f cos θ
∂

∂x
+ f sin θ

∂

∂y
+ τ

∂

∂θ
+ fi cos θi

∂

∂xi

+ fi sin θi
∂

∂yi

+ τi
∂

∂θi

.

The projection map P in the basis ∂q is [P ]∂q = I − [P
′
]∂q . Multiplying [P ]∂q on

the right by the matrix representation of Y in the ∂q basis, [Y ]∂q = [f cos θ, f sin θ, τ,

fi cos θi, fi sin θi, τi]
�, gives the matrix representation of P (Y (γ)) and we have

P (Y (γ)) = hi cos θ(hif + hfi)
∂

∂x
+ hi sin θ(hif + hfi)

∂

∂y
+ (h2 + h2

i )τ
∂

∂θ

+ h cos θi(hif + hfi)
∂

∂xi

+ h sin θi(hif + hfi)
∂

∂yi

+ (h2 + h2
i )τi

∂

∂θi

.

Constrained dynamics
A

∇γ′ γ
′
= P (Y (γ)) of A in the ∂q frame are given as follows

using Eq.(4.6).

ẍ + ẋẋ
A

Γx
xx +ẋẏ

A

Γx
yx + . . . + θ̇iθ̇i

A

Γx
θiθi

= hi cos θ(hif + hfi)

ÿ + ẋẋ
A

Γy
xx +ẋẏ

A

Γy
yx + . . . + θ̇iθ̇i

A

Γy
θiθi

= hi sin θ(hif + hfi)

θ̈ + ẋẋ
A

Γθ
xx +ẋẏ

A

Γθ
yx + . . . + θ̇iθ̇i

A

Γθ
θiθi

= (h2 + h2
i )τ

ẍi + ẋẋ
A

Γxi
xx +ẋẏ

A

Γxi
yx + . . . + θ̇iθ̇i

A

Γxi
θiθi

= h cos θi(hif + hfi)

ÿi + ẋẋ
A

Γyi
xx +ẋẏ

A

Γyi
yx + . . . + θ̇iθ̇i

A

Γyi

θiθi
= h sin θi(hif + hfi)

θ̈i + ẋẋ
A

Γθi
xx +ẋẏ

A

Γθi
yx + . . . + θ̇iθ̇i

A

Γθi
θiθi

= (h2 + h2
i )τi

Notice that by looking at the above equations of motion satisfying the configuration

and nonholonomic constraints of A, it is not clear what control strategy would satisfy

the actuator and operating constraints of A. Since operating and actuator constraints

of the UAVs are captured through the constraints (μi, μ̇i) ∈ Π where μi = (v, w, vi, wi)

with γ′ = vev +wew + vievi
+wiewi

+ zez + ziezi
in the frame e, we proceed to derive

the constrained dynamics of A in this e frame.
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Let e = ∂qS be the change of basis where ei = ∂
∂qj Sj

i and S is the non-singular

matrix whose (i, j)th element is S i
j.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ 0 0 0 − sin θ 0

sin θ 0 0 0 cos θ 0

0 1 0 0 0 0

0 0 cos θi 0 0 − sin θi

0 0 sin θi 0 0 cos θi

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.18)

The transformation rule for the matrix of connection 1-forms given by
A
ω= S−1

A

Γ

S + S−1dS in Eq.(4.9), after some lengthy computations yield the following as the
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only nonzero connection 1-forms;

ωv
v =

sin(θ − θi)h

h2 + h2
i

σvi

ωv
w =

2hh
′

h2 + h2
i

σv − h
′
hi

h2 + h2
i

σvi − h2
i

h2 + h2
i

σz

ωv
vi

=
2 sin(θ − θi)h

h2 + h2
i

σv − hi sin(θ − θi)

h2 + h2
i

σvi

ωv
wi

= − hh
′
i

h2 + h2
i

σvi − hhi

h2 + h2
i

σzi

ωv
z = −σw +

h cos(θ − θi)

h2 + h2
i

σvi

ωv
zi

= −2h cos(θ − θi)

h2 + h2
i

σv +
hi cos(θ − θi)

h2 + h2
i

σvi

ωvi
v =

h sin(θ − θi)

h2 + h2
i

σv +
2hi sin(θi − θ)

h2 + h2
i

σvi

ωvi
w = − h

′
hi

h2 + h2
i

σv − hhi

h2 + h2
i

σz

ωvi
vi

=
hi sin(θi − θ)

h2 + h2
i

σv

ωvi
wi

= − hh
′
i

h2 + h2
i

σv +
2hih

′
i

h2 + h2
i

σvi − h2

h2 + h2
i

σzi

ωvi
z =

h cos(θ − θi)

h2 + h2
i

σv − 2hi cos(θ − θi)

h2 + h2
i

σvi

ωvi
zi

=
hi cos(θ − θi)

h2 + h2
i

σv − σwi

ωz
v = σw +

2hi sin(θi − θ)

h2 + h2
i

σz

ωz
w = − h2

i

h2 + h2
i

σv − hhi

h2 + h2
i

σvi +
2hh

′

h2 + h2
i

σz

ωz
vi

=
2h sin(θ − θi)

h2 + h2
i

σz

ωz
wi

=
2hih

′
i

h2 + h2
i

σz

ωz
z = −2hi cos(θ − θi)

h2 + h2
i

σz

(5.19)
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ωz
zi

= −2h cos(θ − θi)

h2 + h2
i

σz

ωzi
v =

2hi sin(θi − θ)

h2 + h2
i

σzi

ωzi
w =

2hh
′

h2 + h2
i

σzi

ωzi
vi

= σwi +
2h sin(θ − θi)

h2 + h2
i

σzi

ωzi
wi

= − hhi

h2 + h2
i

σv − h2

h2 + h2
i

σvi +
2hih

′
i

h2 + h2
i

σzi

ωzi
z = −2hi cos(θ − θi)

h2 + h2
i

σzi

ωzi
zi

= −2h cos(θ − θi)

h2 + h2
i

σzi

where

h
′ � (xi − x̄i) cos θ + (yi − ȳi) sin θ

h
′
i � (x − x̄i) cos θi + (y − ȳi) sin θi.

The force F along γ, is given by the following covector in the frame σ

F = fσv + τσw + fiσ
vi + τiσ

wi

and the tangent vector field Y = G
�(F ) associated with this covector F is

Y = fev + τew + fievi
+ τiewi

.

Let x = eZ be the change of basis where Z = S−1R with x = ∂qR and e = ∂qS.

Matrix representation of the projection map P in the e basis is given by [P ]e =

Z[P ]xZ−1. Recall that [P ]x = I − [P
′
]x. The projection of Y onto the distribution

D is then

P (Y (γ)) =
hi(hif + hfi)

(h2 + h2
i )

ev + τew +
h(hif + hfi)

(h2 + h2
i )

evi
+ τiewi

. (5.20)
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The constrained dynamics in the frame e are then as follows where γ′ = vev +

wew + vievi
+ wiewi

+ zez + ziezi
;

v̇ + vωv
v(γ

′) + wωv
w(γ′) + . . . + ziω

v
zi
(γ′) =

hi(hif + hfi)

(h2 + h2
i )

ẇ = τ

v̇i + vωvi
v (γ′) + wωvi

w (γ′) + . . . + ziω
vi
zi

(γ′) =
h(hif + hfi)

(h2 + h2
i )

ẇi = τi

ż + vωz
v(γ

′) + wωz
w(γ′) + . . . + ziω

z
zi
(γ′) = 0

żi + vωzi
v (γ′) + wωzi

w (γ′) + . . . + ziω
zi
zi

(γ′) = 0.

The choice of the frame e is such that ez, ezi
∈ D⊥. For γ′(0) ∈ D, we have

z(0) = zi(0) = 0 and since
A

∇ restricts γ′ to D the functions z(t), zi(t) will remain

identically zero. Let us define ηi � hi(hif+hfi)

(h2+h2
i )

. The constrained dynamics of A in the

frame e then reduce to

v̇ + vωv
v(γ

′) + wωv
w(γ′) + viω

v
vi

(γ′) + wiω
v
wi

(γ′) = ηi

ẇ = τ

v̇i + vωvi
v (γ′) + wωvi

w (γ′) + viω
vi
vi

(γ′) + wiω
vi
wi

(γ′) =
h

hi

ηi

ẇi = τi.

The above equations when expanded using the connection 1-forms given in Eq.(5.19)

result in the following form of the constrained dynamics.

v̇ + vviω
v
viv

+ wvωv
vw + wviω

v
viw

+ vivωv
vvi

+ viviω
v
vivi

+ wiviω
v
viwi

= ηi

ẇ = τ

v̇i + vvωvi
vv + vviω

vi
viv

+ wvωvi
vw + vivωvi

vvi
+ wivωvi

vwi
+ wiviω

vi
viwi

=
h

hi

ηi

ẇi = τi

(5.21)
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Notice that the constrained dynamics of the i-th subsystem A in the e frame

appear explicitly in the functions μi, μ̇i, qi where μi = (v, w, vi, wi) and qi is the

configuration. The functions v, w, τ are the only common functions to appear in each

of the N such subsystems. For consensus, we require these functions v, w, τ to have

the same value at any given time in each of the N such subsystems.

To ensure we have the same values for w, τ in each of the N subsystems simply

means to have the same intrinsic control law for τ in each of them along with compat-

ible initial conditions (since τ = ẇ). By an intrinsic control law, we mean a control

law which will be independent of the local coordinates qi of its subsystem.

To ensure v has the same value in each of the N subsystems, consider the fol-

lowing control law for τi;

τi = Kw(wd
i − wi) + ẇd

i
(5.22)

where

wd
i =

−vviω
v
viv

− wvωv
vw − wviω

v
viw

− vivωv
vvi

− viviω
v
vivi

viωv
viwi

.

The above control law that exponentially stabilizes wi to wd
i along with the initial

condition wi(0) = wd
i (0), reduces the first equation of constrained dynamics to

v̇ = ηi. (5.23)

With the above control law for τi, to ensure we have the same value for v in each of

the subsystems simply means to have the same intrinsic control law for ηi = f (and

hence the same value for ηi) in each of the N subsystems.

Implementing the same functions τ, f together with the above control law for τi on

each of the N subsystems would then result in the same functions v, w, τ appearing

in each of them, thus ensuring consensus between the subsystems. We now have
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only two independent controls τ and f . We develop two sets of controllers for these

functions τ and f , one for feasibility and the other to achieve the team goal.

A. Controls for Feasibility

From preliminary results of this same problem, presented in Chapter II, it was seen

that when w = 0, actuator and operating constraints are satisfied, thus ensuring

feasibility. We use this observation without analysis or proof here and simply verify

it in simulations.

Consider the following controllers for the functions τ and f ;

τ =

⎧⎪⎪⎨
⎪⎪⎩
−Kww if |Kww| ≤ τmax

−sgn(w)τmax else

f = 0

(5.24)

where the control law for τ asymptotically stabilizes w to zero.

B. Controls to Achieve Team Goal

The team goal is to generate a phantom trajectory moving towards the desired way-

point. We translate this goal to the requirement of orienting the phantom UAV

towards the desired waypoint and propose the following control laws to achieve this

team goal.
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τ =

⎧⎪⎪⎨
⎪⎪⎩

Kw(wd − w) + ẇd if |Kw(wd − w) + ẇd| ≤ τmax

sgn(Kw(wd − w) + ẇd)τmax else

f =

⎧⎪⎪⎨
⎪⎪⎩

Kv(v
d − v) + v̇d if |Kv(v

d − v) + v̇d| ≤ fmax

sgn(Kv(v
d − v) + v̇d)fmax else

(5.25)

where,

ωd = Kβ−θ(β − θ) + β̇

vd =

⎧⎪⎪⎨
⎪⎪⎩

vmin if (β − θ) is large

vmax else

asymptotically stabilizing (β−θ) to zero and v to vd in the two controllers. Here β =

tan−1

(
yf−y

xf−x

)
with (xf , yf ) being the desired waypoint of the Phantom. Physically,

(β − θ) is the angle between the desired waypoint of the phantom and its current

heading and the objective is to orient the phantom UAV towards the desired waypoint.

In the control law for f , vd is vmin when the angle (β − θ) is above a threshold

value (i.e. when the phantom is not sufficiently oriented towards its final waypoint),

and is vmax otherwise. The objective is to speed up the phantom UAV when oriented

towards its desired waypoint and to slow down when not.

The constrained dynamics are solved for the time interval t = [t, t + δt] using

either the controls for feasibility or the controls for team goal, and this is repeated

continuously from one time interval to the next. We assume δt to be fixed. The UAVs

are responsible for computing their own trajectories as well as that of the phantom by

solving the constrained dynamics of their corresponding subsystems. The proposed

control strategy ensures that all the UAVs identically design the same phantom tra-
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jectory thus achieving consensus. The distributed control architecture, shown in the

form of a flow-chart in Fig.14, to generate reference trajectories implemented in a

receding horizon approach is explained next.

C. Distributed Control Architecture
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Fig. 14. Distributed control architecture.

Each of the N UAVs solves its corresponding constrained dynamics for the time

interval t = [t, t + δt] with controls to achieve the team goal first. Next they verify if
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all actuator/operating constraints (μi, μ̇i) ∈ Πi were satisfied for their corresponding

subsystems during this same time interval [t, t + δt]. Since constrained dynamics are

solved in the functions μi, this step is straight forward. If all the actuator/operating

constraints were satisfied in a particular subsystem, the corresponding UAV votes for

the controls achieving the team goal. If any of the actuator/operating constraints

were violated within [t, t + δt], the UAV votes for the controls for feasibility. Recall

that each of the subsystems need to implement identical control actions for τ, f for

consensus. Hence each of the N UAVs communicates the type of controller it voted for

and the entire team of UAVs picks a common controller to implement for the horizon

interval [t, t+δt]. If even one of the N UAVs had voted for controls for feasibility, then

all of the N UAVs chooses controls for feasibility to solve the constrained dynamics

for [t, t + δt]. If on the other hand, all the N UAVs had voted for the controller

for team goal, then each of the UAVs computes its trajectory for the time interval

[t, t + δt] using controls to achieve the team goal. Note that the phantom trajectory

is designed (identically) by each of the N UAVs in addition to their own trajectory.

This is a necessary redundancy in computation in the proposed distributed approach.

The computations shown in the blocks (i), (ii) and (iii) of the flow-chart of Fig.14 are

performed by each of the N UAVs in parallel and as such increasing the number of

agents in the system has minimal effect on the overall communication/computation

time thus making the approach scalable. Communication amongst the agents need not

be continuous and has to occur only once in each cycle of the receding horizon control

strategy. A severe drawback of this strategy however is that it requires synchronized

control and communication among all its agents.
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D. Simulation Results

Simulation results of this algorithm for the case of 4-UAVs engaging 4-radars are

shown in Fig.15. Actuator and operating constraints on the phantom and the in-

dividual UAVs were assumed as follows. Phantom speed of 400 ± 40m/s, UAV

speeds of 100 ± 15m/s and minimum turn radii of 5000m and 1500m for the phan-

tom and the UAVs, respectively. Force and toque bounds of [−0.7N, 0.7N ], and

[−0.04Nm, 0.04Nm], respectively, for the phantom and the UAVs. The force and

torque are normalized quantities with the earlier assumption that mass and inertia

of all the UAVs, including that of the imaginary UAV assigned for the phantom,

are of unit magnitude. The time history of the functions v, w, vi, wi corresponding
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Fig. 15. Four UAVs deceiving a radar network of four radars through the generation

of a phantom track.
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to “speed” and “steer” of the UAVs and the phantom are shown in Fig.16, for the

trajectory results shown in Fig.15. The lower and upper bounds of v, w, vi, wi are

also shown. The normalized torque and force corresponding to each of the four UAVs
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Fig. 16. Speed and steer, along with their upper and lower bounds, for each of the four

UAVs and the UAV representing the phantom.

and the phantom UAV are illustrated in Fig.17 and here it is seen that the forces

fi and f remain identically the same. As mentioned in Chapter III, Section E, the

control law for feasibility given in Eq.(5.24) only drives the system towards feasi-

ble solutions and hence does not provide a theoretical guarantee on satisfying the

constraints (μi, μ̇i) ∈ Πi until after the controller stabilizes w to zero. However, sim-

ulation results suggest that these set constraints can be effectively satisfied even in



70

the transient stages of the controller (i.e. before w stabilizes to zero) by tuning the

control gain Kw in Eq.(5.24). Simulation results given in Fig.16, Fig.17 verify that the

set constraints (μi, μ̇i) ∈ Πi are satisfied and hence the reference trajectories designed

are dynamically feasible to be tracked by each of the four UAVs.
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Fig. 17. Torque and force controls, for each of the four UAVs and the UAV representing

the phantom.

The forces fi and f remain identically the same since the control law for τi, given

by Eq.(5.22), apparently forces vi

v
to remain the same constant value. This is verified

in Fig.18 which plots the ratios vi

v
and ri

Ri
against time for each of the UAVs, where

ri is the distance from the i-th UAV to its corresponding radar and Ri is the distance

from the phantom to the same radar. As can be seen in Fig.18, the ratio vi

v
remains

constant with time while the ratios of ri

Ri
all converge to it. This is a phenomena which

was explained in the kinematic analysis of the radar deception problem presented

in Chapter II. There it was shown that the convergence of ri

Ri
→ vi

v
reduces the
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Fig. 18. The ratios of vi

v
and ri

Ri
for the four UAV-radar pairs.

dynamics of the multi-agent system to the dynamics of a single UAV, controllable

on its configuration submanifold. In other words, all the four UAVs converge to a

seemingly stable rigid formation maintaining parallel motion. The rigid formation it

converges to is a contracted geometric copy (contracted by a factor of
(
1 − vi

v

)
) of

the geometric formation the network of radars make. If all four UAVs were to start

out with initial conditions such that ri

Ri
= vi

v
, (i.e. with initial conditions such that it

is already in the stable rigid formation), then the phantom UAV is controllable with

all the UAVs in parallel motion, maintaining a rigid formation. This is illustrated in

Fig.19. In general, the computation time of the algorithm was an order of magnitude

less than the real-time over which the algorithm was implemented. The real-time

corresponding to the trajectories shown in Fig.15 was 89 sec while the CPU time



72

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

X/km

Y
/k

m

Phantom track
UAV # 1
UAV # 2
UAV # 3
UAV # 4
Radar stations

Fig. 19. Parallel motion of four UAVs maintaining a stable rigid formation, for initial

conditions satisfying ri

Ri
= vi

v
.

(computation time) of each of the UAVs in the distributed control architecture was

7.5 sec.

Some of the key attributes of the motion planning algorithm verified through

simulations for the radar deception problem are: (i) produces dynamically feasible

reference trajectories (ii) scalable (iii) suited for real time computation (iv) communi-

cation (time and data) between agents is small (v) implementable as an autonomous

team of agents (vi) the receding horizon approach has a feedback structure providing

inherent robustness.
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CHAPTER VI

RIGID FORMATION KEEPING

In this chapter, the proposed motion planning algorithm is applied to the rigid forma-

tion keeping problem and verified in simulation. Preliminary results of this problem

can be found in [47, 48].

Consider N agents restricted to the plane making up a virtual structure (VS)

with an arbitrary point Oc (the centroid of the VS). An orthogonal local coordinate

frame B is assumed fixed to the VS at Oc and let (bi,1, bi,2) denote the place holder for

the i-th agent in this B frame. These bi,1, bi,2 are assumed constant thereby forcing

the VS to behave as a rigid formation. Once again we propose the unicycle model to

capture the dynamic, operating and actuator constraints of an agent restricted to the

2D plane and the agents can be either wheeled robots or UAVs. Let (x, y) be local

coordinates of Oc with respect to an inertial frame I and φ the orientation of the B

frame with respect to I. Let (xi, yi) describe the position and θi the orientation of

an i-th agent with respect to the frame I. Similarly let (x, y, θ) describe the position

and orientation of a virtual agent at Oc.

The multi-agent system then comprises of the N -agents, the B frame and the

virtual agent at Oc. The configuration of this multi-agent system has local coordinates

q = (x1, y1, θ1, . . . , xN , yN , θN , x, y, θ, φ)

and will have the structure of a smooth differentiable manifold having dimension

3N + 4.
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We have the following configuration constraints for the above multi-agent system;

xi − x − bi,1 cos φ + bi,2 sin φ = 0

yi − y − bi,1 sin φ − bi,2 cos φ = 0.

(6.1)

Agent constraints of the i-th agent and the virtual agent at Oc are captured through

the following unicycle models;

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(6.2)

where vi, wi are the speed and steer controls of the i-th agent while v, w are that of

the virtual agent.

Also assume the following virtual control over the orientation of the B frame;

φ̇ = u (6.3)

where u is the virtual steer control over the B frame.

Actuator and operating constraints are captured through the following con-

straints;

vi
min ≤ vi

−wi
max

vmax
i

vi ≤ wi

vmin ≤ v

−wmax

vmax
v ≤ w

≤ vi
max

≤ wi
max

vmax
i

vi

≤ vmax

≤ wmax

vmax
v.

(6.4)

The control u being a virtual control we do not consider constraints over it. However

we do consider constraints over the virtual steer and speed controls v, w correspond-

ing to the virtual agent at Oc since we need to keep the formalism general enough to
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allow this virtual agent be replaced by an actual agent. For convenience, we consider

only actuator/operating constraints involving μi = (v, w, vi, wi) in this problem. Con-

sidering μ̇i in the formulation is quite straight forward, but would be at the expense

of more symbolic computations.

Next the multi-agent system is decoupled into N -subsystems corresponding to

the N agents. Consider the i-th subsystem, A, made up of the i-th agent, the

virtual agent at Oc and the B frame as shown in Fig.20. Here the vectors ri =

(xi, yi), r = (x, y) are in the inertial frame I while the vector bi = (bi,1, bi,2) is in

the B frame and Oi denotes the place holder for the i-th agent. The manifold Q

cO

iO

O

1b̂

φ

2b̂

2Î

ir
ib

r

1Î

Fig. 20. Configuration of the i-th subsystem for the rigid formation keeping problem.

representing the i-th subsystem will have local coordinates qi = {x, y, θ, xi, yi, θi, φ}
where ∂q = { ∂

∂x
, ∂

∂y
, ∂

∂θ
, ∂

∂xi
, ∂

∂yi
, ∂

∂θi
, ∂

∂φ
} is the coordinate basis for TqQ and dq =

{dx, dy, dθ, dxi, dyi, dθi, dφ} its dual basis for T ∗
q Q. The Riemannian metric corre-
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sponding to the kinetic energy of the system is G = m(dx⊗dx+dy⊗dy)+Jdθ⊗θ+

mi(dxi ⊗ dxi + dyi ⊗ dyi) + Jidθi ⊗ θi + J̃dφ⊗ dφ where (mi, Ji) are mass and inertia

of the i-th agent, (m, J) the fictitious mass and inertia of the virtual agent and J̃ the

fictitious inertia of the VS formation about Oc. As in the radar deception problem, for

computational convenience, and without loss of generality, we assume m, J,mi, Ji, J̃

to be of unit magnitude. The inertia matrix associated with the Riemannian metric

G is then the identity [I]7×7. Next we proceed to derive the constrained dynamics of

the i-th subsystem, A.

Nonholonomic constraints on A are

ẋ sin θ − ẏ cos θ = 0

ẋi sin θi − ẏi cos θi = 0.

(6.5)

The annihilating codistribution associated with the above nonholonomic constraints

of A is given by

Λ :
α1 = sin θdx − cos θdy

α2 = sin θidxi − cos θidyi.

The distribution Δ associated with the annihilating codistribution Λ is spanned by

Δ = {ev, . . . , ewi
} where

ev = cos θ
∂

∂x
+ sin θ

∂

∂y

ew =
∂

∂θ

evi
= cos θi

∂

∂xi

+ sin θi
∂

∂yi

ewi
=

∂

∂θi
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and Δ⊥, the compliment of Δ, is spanned by Δ⊥ = {eu, . . . , ezi
} where

eu =
∂

∂u

ez = G
�(α1) = sin θ

∂

∂x
− cos θ

∂

∂x

ezi
= G

�(α2) = sin θi
∂

∂xi

− cos θi
∂

∂yi

.

The frame of vector fields e = {ev, ew, evi
, ewi

, eu, ez, ezi
} span TqQ on the manifold Q

and hence is another basis for TqQ. Associated with the frame e is its dual frame σ =

{σv, σw, σvi , σwi , σu, σz, σzi}. The tangent vector on Q associated with a trajectory

curve γ is given by γ′ = vev + wew + vievi
+ wiewi

+ ueu + zez + ziezi
in this e

frame. The actuator and operating constraints acting on A, given by Eq.(6.4), can

be written concisely as follows.

μi ∈ Πi (6.6)

The map C : Q �→ 0 ∈ Rm capturing the configuration constraint on A is

xi − x − bi,1 cos φ + bi,2 sin φ = 0

yi − y − bi,1 sin φ − bi,2 cos φ = 0

(6.7)

and the differential of this map, dC, is given by the 1-forms

dC :
β1 = dx − dxi − (bi,1 sin φ + bi,2 cos φ)dφ

β2 = dy − dyi + (bi,1 cos φ − bi,2 sin φ)dφ.

The intersection of the annihilating codistributions Λ and dC gives the unique anni-

hilating codistribution Ω : Λ⊕ dC and has the following matrix representation in the
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∂q basis;

[Ω]∂q =

⎡
⎢⎢⎢⎢⎣

sin θ − cos θ 0 0 0 0 0

1 0 0 −1 0 0 −(bi,1 sin φ + bi,2 cos φ)

0 1 0 0 −1 0 (bi,1 cos φ − bi,2 sin φ)

⎤
⎥⎥⎥⎥⎦ (6.8)

The distribution D associated with the annihilating codistribution Ω is spanned by

the vector fields

x1 =
hi cos θ

sin(θi − θ)

∂

∂x
+

hi sin θ

sin(θi − θ)

∂

∂y
+

h cos θi

sin(θi − θ)

∂

∂xi

+
h sin θi

sin(θi − θ)

∂

∂yi

+
∂

∂φ

x2 =
∂

∂θ

x3 =
∂

∂θi

(6.9)

and D⊥ is spanned by

x4 = G
�(α1) = sin θ

∂

∂x
− cos θ

∂

∂y

x5 = G
�(α2) = sin θi

∂

∂xi

− cos θi
∂

∂yi

x6 = G
�(β1) =

∂

∂x
− ∂

∂xi

− (bi,1 sin φ + bi,2 cos φ)
∂

∂φ

x7 = G
�(β2) =

∂

∂y
− ∂

∂yi

+ (bi,1 cos φ − bi,2 sin φ)
∂

∂φ

(6.10)

where h � bi,1 cos(θ − φ) + bi,2 sin(θ − φ) and hi � bi,1 cos(θi − φ) + bi,2 sin(θi − φ).

Let x = ∂qR be the change of basis where xi = ∂
∂qj Rj

i and Ri
j is the (i, j)th

element of R. The projection map P ′ : TQ → TQ has the matrix representation
[
P ′

]
x

=

⎡
⎢⎣[0]3×3 [0]3×4

[0]4×3 [I]4×4

⎤
⎥⎦ and

[
P

′
]

∂q

= R
[
P

′
]
x

R−1 in the two basis x and ∂q.

Choosing A = (h2
i + h2 + Θ)I to eliminate the denominator terms of P

′
, we then
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have [AP
′
]∂q to be

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(h2
i sin2 θ + h2 + Θ) (−h2

i cos θ sin θ) 0

(−h2
i cos θ sin θ) (h2

i cos2 θ + h2 + Θ) 0

0 0 0

(−hhi cos θ cos θi) (−hhi sin θ cos θi) 0

(−hhi sin θi cos θ) (−hhi sin θi sin θ) 0

0 0 0

(−hi cos θ sin(θi − θ)) (−hi sin θ sin(θi − θ) 0

. . .

. . .

(−hhi cos θ cos θi) (−hhi sin θi cos θ) 0 (hi sin(θ − θi) cos θ)

(−hhi sin θ cos θi) (−hhi sin θi sin θ) 0 (hi sin(θ − θi) sin θ)

0 0 0 0

(h2 sin2 θi + h2
i + Θ) (−h2 cos θi sin θi) 0 (h sin(θ − θi) cos θi)

(−h2 cos θi sin θi) (h2 cos2 θi + h2
i + Θ) 0 (h sin(θ − θi) sin θi)

0 0 0 0

(−h cos θi sin(θi − θ)) (−h sin θi sin(θi − θ)) 0 (h2 + h2
i )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Θ � sin2(θi − θ).

Here too, as in the radar deception problem, the kinetic metric G is constant

resulting in
G

Γi
jk= 0 for ∀ i, j, k and A is diagonal, and hence from Eq.(4.8) we

have

A

Γi
jk= (A−1)i

r

∂(AP
′
)r
j

∂qk
=

1

(h2
i + h2 + Θ)

∂(AP
′
)i
j

∂qk
. (6.11)

The constrained dynamics of A are derived in the e frame next. Let e = ∂qS be

the change of basis where ei = ∂
∂qj Sj

i and S is the non-singular matrix whose (i, j)th
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element is S i
j.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ 0 0 0 0 − sin θ 0

sin θ 0 0 0 0 cos θ 0

0 1 0 0 0 0 0

0 0 cos θi 0 0 0 − sin θi

0 0 sin θi 0 0 0 cos θi

0 0 0 1 0 0 0

0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.12)

The transformation rule for the matrix of connection 1-forms given by
A
ω= S−1

A

Γ

S + S−1dS in Eq.(4.9), after some lengthy computations yield the following as the

only nonzero connection 1-forms;

ωv
w =

(2hhθ − sin 2(θi − θ))

h2 + h2
i + Θ

σv − hihθ

h2 + h2
i + Θ

σvi +
hi cos(θi − θ)

h2 + h2
i + Θ

σu − h2
i

h2 + h2
i + Θ

σz

ωv
wi

=
sin 2(θi − θ)

h2 + h2
i + Θ

σv − hhθi

h2 + h2
i + Θ

σvi − (bi,1 cos(2θi − θ − φ) + bi,2 sin(2θi − θ − φ))

h2 + h2
i + Θ

σu

− hhi

h2 + h2
i + Θ

σzi

ωv
u = − 2hhθ

h2 + h2
i + Θ

σv +
hihθ + hhθi

h2 + h2
i + Θ

σvi +
hθi

sin(θi − θ)

h2 + h2
i + Θ

σu

ωv
z = −σw

ωvi
w = − hihθ

h2 + h2
i + Θ

σv − sin 2(θi − θ)

h2 + h2
i + Θ

σvi +
bi,1 cos(2θ − θi − φ) + bi,2 sin(2θ − θi − φ)

h2 + h2
i + Θ

σu

− hhi

h2 + h2
i + Θ

σz

ωvi
wi

= − hhθi

h2 + h2
i + Θ

σv +
2hihθi

+ sin 2(θi − θ)

h2 + h2
i + Θ

σvi − h cos(θi − θ)

h2 + h2
i + Θ

σu − h2

h2 + h2
i + Θ

σzi

ωvi
u =

hhθi
+ hihθ

h2 + h2
i + Θ

σv − 2hihθi

h2 + h2
i + Θ

σvi +
hθ sin(θi − θ)

h2 + h2
i + Θ

σu

ωvi
zi

= −σwi
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ωu
w =

hi cos(θi − θ)

h2 + h2
i + Θ

σv +
bi,1 cos(2θ − θi − φ) + bi,2 sin(2θ − θi − φ)

h2 + h2
i + Θ

σvi +
2hhθ

h2 + h2
i + Θ

σu

− hi sin(θi − θ)

h2 + h2
i + Θ

σz

ωu
wi

= −bi,1 cos(2θi − θ − B) + bi,2 sin(2θi − θ − B)

h2 + h2
i + Θ

σv − h cos(θi − θ)

h2 + h2
i + Θ

σvi +
2hihθi

h2 + h2
i + Θ

σu

− h sin(θi − θ)

h2 + h2
i + Θ

σzi

ωu
u =

hθi
sin(θi − θ)

h2 + h2
i + Θ

σv +
hθ sin(θi − θ)

h2 + h2
i + Θ

σvi − 2(hhθ + hihθi
)

h2 + h2
i + Θ

σu

ωz
v = σw

ωz
vi

= − h2
i

h2 + h2
i + Θ

σv − hhi

h2 + h2
i + Θ

σvi − sin(θi − θ)hi

h2 + h2
i + Θ

σu +
2 ∗ h ∗ hθ − sin2(θi − θ)

h2 + h2
i + Θ

σz

ωz
wi

=
sin 2(θi − θ) + 2hihθi

h2 + h2
i + Θ

σz

ωz
u = −2hhθ + 2hihθi

h2 + h2
i + Θ

σz

ωzi
w =

2hhθ − sin 2(θi − θ)

h2 + h2
i + Θ

σzi

ωzi
vi

= σwi

ωzi
wi

= − hhi

h2 + h2
i + Θ

σv − h2

h2 + h2
i + Θ

σvi − h sin(θi − θ)

h2 + h2
i + Θ

σu +
2hihθi

+ sin2(θi − θ)

h2 + h2
i + Θ

σzi

ωzi
u = −2hihθi

+ 2hhθ

h2 + h2
i + Θ

σzi

where hθ � ∂h
∂θ

and hθi
� ∂hi

∂θi
.

The vector field Y associated with the force F acting on A, along a curve γ on

Q, is give by Y = G
�(F );

Y = fev + τew + fievi
+ τiewi

+ Γeu (6.13)

where f = v̇, τ = θ̇, fi = v̇i, τi = θ̇i, Γ = φ̇ with the earlier assumption that

m, J,mi, Ji, J̃ are all of unit magnitude.

Let x = eZ be the change of basis where Z = S−1R with x = ∂qR and
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e = ∂qS. Matrix representation of the projection map P in the e basis is then given

by [P ]e = Z[P ]xZ−1 and the projection of Y onto the distribution D is

P (Y (γ)) = hiηiev + τew + hηievi
+ τiewi

− sin(θ − θi)ηieu

where

ηi = {bi,1 sin(θ − 2θi + φ) + bi,1 sin(θ − φ) − bi,2 cos(θ − φ) + bi,2 cos(θ − 2θi + φ))f

+(bi,1 sin(2θ − θi − φ) + bi,1 sin(φ − θi) + bi,2 cos(φ − θi) − bi,2 cos(2θ − θi − φ))fi

−2ΘΓ}/{2(h2 + h2
i + Θ) sin(θ − θi)}.

The constrained dynamics in the frame e are as follows where γ′ = vev + wew +

vievi
+ wiewi

+ ueu + zez + ziezi
;

v̇ + wωv
w(γ′) + wiω

v
wi

(γ′) + uωv
u(γ

′) + zωv
z (γ

′) = hiηi

ẇ = τ

v̇i + wωvi
w (γ′) + wiω

vi
wi

(γ′) + uωvi
u (γ′) + ziω

vi
zi

(γ′) = hηi

ẇi = τi

u̇ + wωu
w(γ′) + wiω

u
wi

(γ′) + uωu
u(γ′) = sin(θi − θ)ηi

ż + vωz
v(γ

′) + wωz
w(γ′) + wiω

z
wi

(γ′) + uωz
u(γ

′) = 0

żi + wωzi
w (γ′) + viω

zi
vi

(γ′) + wiω
zi
wi

(γ′) + uωzi
u (γ′) = 0.

(6.14)

Recall that for γ′(0) ∈ D,
A

∇ restricts γ′ to D. Once again the choice of the frame e

is such that ez, ezi
∈ D⊥ and the functions z, zi will remain identically zero.

The next step is to design control laws for ηi, τ, τi of the above constrained system.

For consensus of the N subsystems, the functions v, w, u must identically be the same
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functions with respect to time in each of the N systems. Notice that

ηi =
wωv

w(γ′) + wiω
v
wi

(γ′) + uωv
u(γ

′) + f

hi

wi =
sin(θi − θ)ηi − (wvωu

vw + wviω
u
viw

+ wuωu
uw + uvωu

vu + uviω
u
viu

+ uuωu
uu) − Γ

vωu
vwi

+ viωu
viwi

+ uωu
uwi

would reduce the first and the fifth equations of the constrained dynamics to v̇ = f

and u̇ = Γ respectively. Hence the following control laws are proposed to achieve

consensus between the N subsystems.

ηi =
wωv

w(γ′) + wiω
v
wi

(γ′) + uωv
u(γ

′) + f

hi

τi = Kw(wd
i − wi) + ẇd

i

(6.15)

where

wd
i =

sin(θi − θ)ηi − (wvωu
vw + wviω

u
viw

+ wuωu
uw + uvωu

vu + uviω
u
viu

+ uuωu
uu) − Γ

vωu
vwi

+ viωu
viwi

+ uωu
uwi

.

The above control laws of Eq.(6.15) along with initial conditions wi(0) = wd
i (0) re-

duces the constrained dynamics to the following form.

v̇ = f

ẇ = τ

v̇i + vi(wi − u)
hθi

hi

− v(w − u)
hθ

hi

=
h

hi

f

ẇi = τi

u̇ = Γ

(6.16)

Implementing the same functions f, τ, Γ together with the above control laws for ηi, τi

on each of the N subsystems would result in identical functions v, w, u with respect

to time appearing in each of them, thus ensuring consensus between the subsystems.

We develop two sets of controllers for the functions f, τ, Γ; one for feasibility and the
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other to achieve the team goal.

A. Controls for Feasibility

Solving either of the last two equations in the constrained dynamics of Eq.(6.14) with

ż = 0 (or żi = 0) results in the identity hiu = sin(θi − θ)v. This identity along

with Eq.(6.15) implies that vi approaches v and wi approaches w as both u and Γ

approach zero (assuming v �= 0). Hence controllers that achieve v ∈ [vmin, vmax],

w, u = 0 trivially satisfy actuator and operating constraints μi ∈ Πi, thus ensuring

feasibility. The control law

τ = −Kww

Γ̇ = −KΓΓ

ḟ = Kf (fa − f) + ḟa

fa = Kv

(vmin + vmax

2
− v

)
(6.17)

exponentially stabilizes w, u,
(
v − vmin+vmax

2

)
to zero. Hence the above control law

along with the control law for τi given by Eq.(6.15), drives the system towards feasible

solutions.

B. Controls to Achieve Team Goal

Let us consider a multi-agent system in a scouting scenario. The goal is to move the

multi-agents in a rigid formation through a set of waypoints. The following control
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law

τ = Kw(wd − w) + ẇd

Γ̇ = KΓ(Γa − Γ) + Γ̇a

Γa = Ku(u
d − u) + u̇d

ḟ = Kf (fa − f) + ḟa

wd = Kβ−θ(β − θ) + β̇

ud = Kθ−φ(θ − φ) + w

fa = Kv(v
d − v)

vd =

⎧⎪⎪⎨
⎪⎪⎩

vmin if formation is turning

vmax else

(6.18)

exponentially stabilizes (β−θ), (θ−φ) and (vd−v) to zero where β = arctan

(
yf−y

xf−x

)

with (xf , yf ) being the desired waypoint of the rigid formation. Then (β − θ) is the

angle between the desired waypoint of the formation and its current heading and the

objective is to orient the formation towards the desired waypoint. The objective of

the choice of vd is to slow down the formation when negotiating a turn and speed up

when not. The control laws given above along with the control law for τi given in

Eq.(6.15) drives the system to achieve the team goal.

The same distributed control strategy proposed in the radar deception problem

is proposed here and implemented in a receding horizon framework. The constrained

dynamics described by Eq.(6.16) are solved for the time interval t = [t, t + δt] using

either the controls for feasibility or the controls for team goal, and this is repeated

continuously from one time interval to the next.
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C. Simulation Results

Figure 21 shows simulation results of the motion planning algorithm for six agents

moving through a given set of waypoints while maintaining formation emulating a

scouting scenario. These waypoints are specified for the geometric center Oc of the

rigid formation which coincides with the origin of the B frame as explained earlier.

These waypoints need to be specified sufficiently far apart from one another for the

formation to successfully move through them. The spacing between agents in the

rigid formation is 0.5m and agent speeds of [0.2, 1.0]m/s, and minimum turn radii of

0.4m are assumed to be the only actuator and operating constraints of the agents.

The time history of the functions v, w, vi, wi corresponding to “speed” and “steer”

for each of the six agents for the above results are shown in Fig.22. The lower and

upper bounds of vi, wi are also shown and it can be seen that these functions vi, wi

stay within their bounds. The real-time corresponding to the trajectories shown in

Fig.21 was 48 sec while the CPU time (computation time) of each of the UAVs in the

distributed control architecture was 3 sec.
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Fig. 21. Formation keeping motion for six mobile agents.
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CHAPTER VII

FORMATION RECONFIGURATION

This chapter presents results of the motion planning algorithm applied to the forma-

tion reconfiguration problem.

The configuration of the formation reconfiguration problem is identified by adopt-

ing the same approach we did in the rigid formation keeping problem in the previous

chapter. The only difference is that the VS made up of N agents restricted to the

plane is now considered time varying. Once again let Oc be an arbitrary point on the

VS (the centroid of the VS at time t0 for example). An orthogonal local coordinate

frame B is assumed fixed to the VS at Oc and let (bi,1, bi,2) denote the place holder

for the i-th agent in this B frame. Here, (bi,1, bi,2) are assumed to be time varying

allowing the VS to reconfigure with time. Let (xi, yi, θi) describe the position and

orientation of an i-th agent with respect to an inertial frame I while (x, y, θ) describes

the position and orientation of a virtual agent at Oc. Let φ describe the orientation

of the B frame with respect to I.

The multi-agent system is decoupled into N -subsystems corresponding to the N

agents, where the i-th subsystem, A, comprises of the i-th agent, the virtual agent at

Oc and the B frame. The manifold Q representing the i-th subsystem will have local

coordinates qi = {x, y, θ, xi, yi, θi, bi,1, bi,2, φ}.
Configuration constraints of the i-th subsystem are

xi − x − bi,1 cos φ + bi,2 sin φ = 0

yi − y − bi,1 sin φ − bi,2 cos φ = 0.

(7.1)

Once again the dynamics of the i-th and the virtual agent at Oc are captured through
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the following unicycle models

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(7.2)

along with actuator and operating constraints ui ∈ Πi

vi
min ≤ vi

−wi
max

vmax
i

vi ≤ wi

vmin ≤ v

−wmax

vmax
v ≤ w

≤ vi
max

≤ wi
max

vmax
i

vi

≤ vmax

≤ wmax

vmax
v.

(7.3)

The following virtual controls are also assumed for control over the orientation of the

B frame and control over the position of the i-th agent in the B frame;

φ̇ = u

ḃi,1 = ui,1

ḃi,2 = ui,2.

(7.4)

Note that the above formalism differs from the rigid formation keeping problem

only in that bi,1, bi,2 are considered time varying hence adding two extra coordinates

to the configuration space Q of the i-th subsystem. Deriving its constrained dynamics

will be similar to that of the rigid formation keeping problem of the previous chapter.

Instead we follow an ad-hoc method to derive these constrained equations here. The

main advantage is the ease of symbolic computations it offers while the disadvantage

of course is the method being ad-hoc.

Consider the following which is the same as condition Eq.(7.1); provided that
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Eq.(7.1) holds at some time instant (for example, t=0);

ẋi = ẋ − φ̇(bi,1sinφ + bi,2cosφ) + ḃi,1cosφ − ḃi,2sinφ

ẏi = ẏ + φ̇(bi,1cosφ − bi,2sinφ) + ḃi,1sinφ + ḃi,2cosφ.

(7.5)

The above can be re-written using Eq.(7.2) and Eq.(7.4) to give the following.

vi cos θi = v cos θ − u(bi,1 sin φ + bi,2 cos φ) + ui,1 cos φ − ui,2 sin φ

vi sin θi = v sin θ + u(bi,1 cos φ − bi,2 sin φ) + ui,1 sin φ + ui,2 cos φ

(7.6)

Equation (7.6) directly yields the following;

v sin(θ − θi) =
(
u bi,2 − ui,1

)
sin(φ − θi) −

(
u bi,1 + ui,2

)
cos(φ − θi). (7.7)

Taking the derivative of Eq.(7.7) with respect to time once, along with Eq.(7.2),

Eq.(7.4) and Eq.(7.6) then yields;

vi = {v cos θ − u(bi,1 sin φ + bi,2 cos φ) + ui,1 cos φ − ui,2 sin φ} / {cos θi}

wi = {v w cos(θ − θi) + v̇ sin(θ − θi) −
(
u2bi,1 + 2u ui,2 + u̇bi,2 − u̇i,1

)
sin(φ − θi)

− (
u2bi,2 − 2u ui,1 − u̇bi,1 − u̇i,2

)
cos(φ − θi)}

/ {v cos(θ − θi) −
(
u bi,2 − ui,1

)
cos(φ − θi) −

(
u bi,1 + ui,2

)
sin(φ − θi)}.

(7.8)

The expression for wi in Eq.(7.8) is the same as Eq.(7.7) as long as Eq.(7.7) holds for

some time instant.

Then

v̇ = f

ẇ = τ

u̇ = Γ

u̇i,j = Gi,j

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(7.9)
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along with the expressions for wi, vi given in Eq.(7.8) describes the constrained dy-

namics of the i-th subsystem. Implementing the same functions f, τ, Γ on each of the

N subsystems would achieve consensus.

Consider the following control law for t = [t, t + δt];

τ = Kw(wd − w) + ẇd

Γ̇ = KΓ(Γa − Γ) + Γ̇a

Γa = Ku(u
d − u) + u̇d

ḟ = Kf (fa − f) + ḟa

fa = Kv(v
d − v) + v̇d

Ġa,(i,j) = KG

(
Ga,(i,j) − Gi,j

)
+ Ġa,(i,j)

Ga,(i,j) = Ku

(
ud

i,j − ui,j

)
+ u̇d

i,j.

(7.10)

We develop two sets of functions vd, wd, ud, ud
i,j for j = 1, 2 for the control law given

above in Eq.(7.10), resulting in two sets of controllers; one to drive the system towards

feasibility and the other to achieve the team goal.

A. Controls for Feasibility

Looking at Eq.(7.8) and Eq.(7.7) we see that vi approaches v and wi approaches

w as u, ui,1, ui,2, u̇, u̇i,1, u̇i,2 all approach zero (assuming v �= 0). Hence the controls

v ∈ [vmin, vmax] and w = u = ui,1 = ui,2 = 0 satisfy ui ∈ Πi; ∀i, resulting in feasible
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solutions. Hence the control law given in Eq.(7.10) along with

wd = 0

ud = 0

vd =
vmin + vmax

2

ud
i,j = 0

exponentially stabilizes w, u, ui,j to zero and v to (vmin + vmax)/2 driving the system

towards feasibility.

B. Controls to Achieve Team Goal

The control laws to achieve the team task or the team goal depends on the task and

the application at hand. Let us again consider the scouting scenario, where the goal

is to move the multi-agent formation through a set of waypoints while changing the

group formation on its way.

The control law given by Eq.(7.10) along with

wd = Kβ−θ(β − θ) + β̇

ud = Kθ−φ(θ − φ) + w

vd =

⎧⎪⎪⎨
⎪⎪⎩

vmin if V S is turning

vmax else

ud
i,j = Kb

(
bd
i,j − bi,j

)
+ ḃd

i,j

exponentially stabilizes (β − θ), (θ − φ), (bd
i,j − bi,j) and (vd − v) to zero where bd

i,j

describes the desired VS formation and where β = arctan

(
yf−y

xf−x

)
with (xf , yf ) being

the desired waypoint of the VS as earlier.
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C. Simulation Results

Figure 23 shows simulation results for six agents moving through a given set of way-

points while maintaining formation and changing between predetermined formations

as required. The predetermined formation configurations are specified for each of the

desired waypoints and in the receding horizon approach only one desired waypoint

and an associated desired formation configuration is visible to the algorithm at any

given time. The control laws act to change the formation to a specific desired forma-

tion configuration only until the formation center reaches the associated waypoint,

after which the algorithm only “sees” the next desired waypoint and its associated

desired formation configuration. Hence for the successful transition between prede-

termined formation configurations, these associated waypoints need to be sufficiently

far apart. Actuator and operating constraints are assumed to be the same as those

for the rigid formation keeping results of the previous chapter. The simulation results

are shown in the form of a series of superimposed snap shots of the coordinated multi

agent motion. The functions vi, wi corresponding to “speed” and “steer” for each of

the six agents are shown in Fig.24. The upper and lower bounds are also shown and

once again it can be seen that these functions vi, wi stay within their bounds. The

real-time corresponding to the trajectories shown in Fig.23 was 48 sec while the CPU

time (computation time) of each of the UAVs in the distributed control architecture

was 3 sec.
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Fig. 23. Formation keeping and reconfiguration motion for six mobile agents.
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motion shown in Fig.23.
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CHAPTER VIII

CONCLUSION

A class of problems in formation control is considered where an intrinsic geometric for-

mulation of the associated constraints unifies the class of problems. The constraints

can include nonholonomic, holonomic, actuator and operating constraints. A mo-

tion planning algorithm is presented for the class of problems advocating a change in

paradigm to formation control by addressing both the key issues of dynamic feasibility

and computational complexity. The approach to the algorithm is to embed the con-

figuration and dynamic constraints of formation control into the design of reference

trajectories to be used simultaneously by the tracking controllers of the individual

agents. At the heart of the proposed approach is the explicit consideration of actuator

and operating constraints of the individual agents and the derivation of constrained

dynamics of the multi-agent system that makes these constraints transparent. Each of

the three multi-agent formation control problems considered in this study is separated

into geometrically similar subsystems for distributed control. In this distributed con-

trol architecture, each agent in the multi-agent system is responsible for the real-time

computations associated with its subsystem. A control strategy ensures consensus

between these subsystems and also addresses the dynamic feasibility aspect by ad-

dressing the inequality constraints that are not captured in the constrained dynamics.

Deriving the constrained dynamics eliminates the need for nonlinear programming.

This addresses the issue of computational complexity thereby making the approach

amenable to real-time trajectory generation. Explicit consideration of actuator and

operating limitations and nonholonomic constraints in the design of the reference

trajectories addresses the important issue of dynamic feasibility. Global and synchro-

nized communication is required for the implementation of the proposed algorithm.
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Here global communication refers to the requirement of all the agents in the system

having to communicate with all the rest of the agents in the multi-agent system.

The derivation of constrained dynamics as well as the real-time trajectory generating

algorithm is verified and validated through simulations for the radar deception, rigid

formation keeping and formation reconfiguration examples.

From an implementation point of view, the weakest element in the proposed

motion planning algorithm is the admittedly strong assumption of synchronized com-

munication. Future research will look into the possibility of eliminating synchronized

communication through an alternative control strategy, replacing the simple switching

control strategy proposed in this study. Another interesting future research direction

could be to consider capturing individual agent dynamic limitations through intrinsic

geometric means as opposed to the proposed explicit consideration of the kinematic

control form of the agents. An example would be energy shaping considerations or to

directly control the intrinsic quantities of curvature, torsion and speed of individual

agent trajectories to capture the dynamic limitations of agents including actuator and

operating limits. Such an abstraction to capture individual agent dynamics, capabil-

ities and operating constraints independent of exact agent dynamic models would be

helpful, especially for formation control scenarios in the 3D.
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