459,310 research outputs found

    Rhizomes for Understanding the Production of Social Science

    Get PDF
    This article is about the social processes which produce social science knowledge. It is based on a discourse analysis of DELOS, a European research project into organizational learning in clusters of SMEs (Small to Medium Enterprises). The substantive focus is on the researchers’ core theoretical object: the “cluster of SMEs.” This construct remained a highly contested artifact which, for complex reasons, defied singular definition. The analysis draws on, among others, the labyrinthine novels of Franz Kafka and the theoretical musings of Deleuze and Guattari on rhizomic forms of organization in connection with actor-network theory. It is argued that the intrinsic ambiguity and endless processes of social construction and reconstruction which characterized DELOS can be accounted for by seeing the production of social science as a continuous (and continuing) process that drifts along multiple organizational logics, theoretical perspectives, and local agendas. The article demonstrates how the reality of social scientific knowledge is something which the many actors endeavor to stabilize and re-stabilize as it circulates within a tirelessly working net-work

    Rhizomes for Understanding the Production of Social Science

    Get PDF
    This article is about the social processes which produce social science knowledge. It is based on a discourse analysis of DELOS, a European research project into organizational learning in clusters of SMEs (Small to Medium Enterprises). The substantive focus is on the researchers’ core theoretical object: the “cluster of SMEs.” This construct remained a highly contested artifact which, for complex reasons, defied singular definition. The analysis draws on, among others, the labyrinthine novels of Franz Kafka and the theoretical musings of Deleuze and Guattari on rhizomic forms of organization in connection with actor-network theory. It is argued that the intrinsic ambiguity and endless processes of social construction and reconstruction which characterized DELOS can be accounted for by seeing the production of social science as a continuous (and continuing) process that drifts along multiple organizational logics, theoretical perspectives, and local agendas. The article demonstrates how the reality of social scientific knowledge is something which the many actors endeavor to stabilize and re-stabilize as it circulates within a tirelessly working net-work

    SOCIAL NETWORK ANALYSIS OF INFORMATION FLOW IN AN IPD-PROJECT DESIGN ORGANIZATION

    Get PDF
    ABSTRACT Lean Construction recommends concurrent development of product and process by bringing Last Planners into the design phase. While this approach offers opportunities to reduce downstream waste and improve value generation, it increases coordination complexity during design due to the increased number of participants in the design team. In large projects, this increased number of participants can demand a multiteam structure with roles and mechanisms to coordinate the work between teams. In a case study we document the coordination mechanisms of a design organization on a large-scale construction project, being delivered under an Integrated Project Delivery (IPD) type contract, the Integrated Form of Agreement (IFOA). We conduct a Social Network Analysis (SNA) of information flow between people on the project, who work in a big-room environment. Analysis of this IPD-based social network with indices of degree centrality, betweenness centrality, and clustering, yields the following results: (1) the Chief Engineer and leaders of cross-functional teams play key roles in the coordination between teams, (2) people take on coordination jobs, even if it is not part of their formal role, and (3) IPD projects foster cross-functional collaboration. We conclude the paper with managerial recommendations for the efficient and effective coordination of IPD-based design project organizations and ideas for future research

    Human-Organization-Technology Fit Model for BIM Adoption in Construction Project Organizations: Impact Factor Analysis Using SNA and Comparative Case Study

    Get PDF
    The sluggish adoption of building information modeling (BIM) is attributable to various technical, managerial, personnel, procedural, and institutional issues encountered by an organization in which such adoption takes place. However, these issues are under researched from a holistic perspective. Based on a proposed human-organization-technology (HOT) fit model, this paper aims to study the impacting factors of HOT fit in BIM adoption within construction project organizations (CPOs). The HOT fit indexes of 14 BIM case projects were operationalized using social network analysis (SNA) method and how different factors impact the HOT fit and its three subdimensions [i.e., human-technology (HT) fit, organization-technology (OT) fit, and human-organization (HO) fit] was investigated using a comparative case study. It was found that the project size has significantly negative relations with HOT fit, HT fit, and OT fit; while hierarchy steepness has positive correlations with HT fit, OT fit, and HO fit. OT fit was also found to have a weakly negative relationship with BIM level of details (LODs). A joint factor analysis further disclosed that the flatter the hierarchy, the larger the project size, and the higher the BIM LOD, the more difficult to achieve a high HOT fit, HT fit, or OT fit. Thus, CPOs should use steeper hierarchical structure and take a progressive BIM adoption strategy by adopting from smaller projects and/or lower LODs. This research empirically examined how project organizational and technological factors can impact BIM adoption. The HOT fit model can help CPOs evaluate their general HOT fit status, redesign optimal HOT configuration, diagnose the problems when the HOT fit is not ideal, and make strategic directions to better harvest the benefits of BIM. Limitations and future research directions are also identified

    Understanding Interactions between Design Team Members of Construction Projects Using Social Network Analysis

    Full text link
    [EN] Social network analysis (SNA) has not been used to study design project teams in which the full interactions have become more complex (formal and informal) because the team members are from different companies and there is no colocation. This work proposes a method to understand the interactions in the design teams of construction projects using SNA metrics and the sociograms generated within temporary organizations. This study includes three stages: (1) a literature review of the dimensions of interactions within work teams and the application of SNA to the architecture, engineering, and construction (AEC) industry; (2) a proposal of an interaction network method for construction project design teams; and (3) an analysis of a pilot project. Interaction networks were defined in two categories: general interactions and commitment management. For each network, metric indicators were defined for the analysis. The pilot project showed high levels of consistency among team responses. The proposed method allows an analysis of the entire work team and of each individual team member. The method also makes it possible to analyze the work team from a global perspective by carrying out a joint analysis of two or more networks.The authors would like to acknowledge the help and support provided by GEPUC and GEPRO SpA., which provided access to data collection for this study. In addition, the authors acknowledge financial support from FONDECYT (1181648) and the Pontificia Universidad Catolica de Chile. Rodrigo Herrera acknowledges financial support for Ph.D. studies from VRI of PUC and CONICYT-PCHA/National Doctorate/2018-21180884.Herrera, RF.; Mourgues, C.; Alarcón, LF.; Pellicer, E. (2020). Understanding Interactions between Design Team Members of Construction Projects Using Social Network Analysis. Journal of Construction Engineering and Management. 146(6):1-13. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001841S1131466Alarcón D. M. I. M. Alarcón and L. F. Alarcón. 2013. “Social network analysis: A diagnostic tool for information flow in the AEC industry.” In Proc. 21st Annual Conf. of the Int. Group for Lean Construction 2013 947–956. Fortaleza Brazil: International Group for Lean Construction.Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317Al Hattab, M., & Hamzeh, F. (2015). Using social network theory and simulation to compare traditional versus BIM–lean practice for design error management. Automation in Construction, 52, 59-69. doi:10.1016/j.autcon.2015.02.014Austin, R. B., Pishdad-Bozorgi, P., & de la Garza, J. M. (2016). Identifying and Prioritizing Best Practices to Achieve Flash Track Projects. Journal of Construction Engineering and Management, 142(2), 04015077. doi:10.1061/(asce)co.1943-7862.0001061Baiden, B. K., Price, A. D. F., & Dainty, A. R. J. (2006). The extent of team integration within construction projects. International Journal of Project Management, 24(1), 13-23. doi:10.1016/j.ijproman.2005.05.001Cash, P., Dekoninck, E. A., & Ahmed-Kristensen, S. (2017). Supporting the development of shared understanding in distributed design teams. Journal of Engineering Design, 28(3), 147-170. doi:10.1080/09544828.2016.1274719Castillo, T., Alarcón, L. F., & Pellicer, E. (2018). Influence of Organizational Characteristics on Construction Project Performance Using Corporate Social Networks. Journal of Management in Engineering, 34(4), 04018013. doi:10.1061/(asce)me.1943-5479.0000612Castillo, T., Alarcón, L. F., & Salvatierra, J. L. (2018). Effects of Last Planner System Practices on Social Networks and the Performance of Construction Projects. Journal of Construction Engineering and Management, 144(3), 04017120. doi:10.1061/(asce)co.1943-7862.0001443Craft, R. C., & Leake, C. (2002). The Pareto principle in organizational decision making. Management Decision, 40(8), 729-733. doi:10.1108/00251740210437699Dainty, A. R. J., Briscoe, G. H., & Millett, S. J. (2001). Subcontractor perspectives on supply chain alliances. Construction Management and Economics, 19(8), 841-848. doi:10.1080/01446190110089727Dave B. S. Kubler K. Främling and L. Koskela. 2014. “Addressing information flow in lean production management and control in construction.” In Proc. 22nd Annual Conf. of the Int. Group for Lean Construction 581–592. Oslo Norway: International Group for Lean Construction.Flores J. J. C. Ruiz D. Alarcón L. F. Alarcón J. L. Salvatierra and I. Alarcón. 2014. “Improving connectivity and information flow in lean organizations—Towards an evidence-based methodology.” In Proc. 22nd Annual Conf. of the Int. Group for Lean Construction 2014 1109–1120. Oslo Norway: International Group for Lean Construction.Herrera R. F. C. Mourgues and L. F. Alarcón. 2018. “Assessment of lean practices performance and social networks in Chilean airport projects.” In Proc. 26th Annual Conf. of the Int. Group for Lean Construction 2018 603–613. Chennai India: International Group for Lean Construction.Hickethier G. I. D. Tommelein and B. Lostuvali. 2013. “Social network analysis of information flow in an IPD-project design organization.” In Proc. 21st Annual Conf. of the Int. Group for Lean Construction 2013 319–328. Fortaleza Brazil: International Group for Lean Construction.Hoppe, B., & Reinelt, C. (2010). Social network analysis and the evaluation of leadership networks. The Leadership Quarterly, 21(4), 600-619. doi:10.1016/j.leaqua.2010.06.004Karp, N. C., Hauer, K. E., & Sheu, L. (2019). Trusted to Learn: a Qualitative Study of Clerkship Students’ Perspectives on Trust in the Clinical Learning Environment. Journal of General Internal Medicine, 34(5), 662-668. doi:10.1007/s11606-019-04883-1Kereri, J. O., & Harper, C. M. (2019). Social Networks and Construction Teams: Literature Review. Journal of Construction Engineering and Management, 145(4), 03119001. doi:10.1061/(asce)co.1943-7862.0001628Kleinsmann, M., Deken, F., Dong, A., & Lauche, K. (2012). Development of design collaboration skills. Journal of Engineering Design, 23(7), 485-506. doi:10.1080/09544828.2011.619499Knotten, V., Lædre, O., & Hansen, G. K. (2017). Building design management – key success factors. Architectural Engineering and Design Management, 13(6), 479-493. doi:10.1080/17452007.2017.1345718Long D. and P. Arroyo. 2018. “Language moods and improving project performance.” In Proc. 26th Annual Conf. of the Int. Group for Lean Construction 2018 495–504. Chennai India: International Group for Lean Construction.Love, P. E. D., Irani, Z., Cheng, E., & LI, H. (2002). A model for supporting inter-organizational relations in the supply chain. Engineering Construction and Architectural Management, 9(1), 2-15. doi:10.1046/j.1365-232x.2002.00225.xMedina-Mora R. T. Winograd R. Flores and F. Flores. 1992. “The action workflow approach to workflow management technology.” In Proc. Computer Supported Cooperative Work 92 281–288. New York: Association for Computing Machinery.Ng, S. T., & Tang, Z. (2010). Labour-intensive construction sub-contractors: Their critical success factors. International Journal of Project Management, 28(7), 732-740. doi:10.1016/j.ijproman.2009.11.005Oluwatayo, A. A., & Amole, D. (2013). Ownership, structure, and performance of architectural firms. Frontiers of Architectural Research, 2(1), 94-106. doi:10.1016/j.foar.2012.12.001Oviedo-Haito, R. J., Jiménez, J., Cardoso, F. F., & Pellicer, E. (2014). Survival Factors for Subcontractors in Economic Downturns. Journal of Construction Engineering and Management, 140(3), 04013056. doi:10.1061/(asce)co.1943-7862.0000811Paris, C. R., Salas, E., & Cannon-Bowers, J. A. (2000). Teamwork in multi-person systems: a review and analysis. Ergonomics, 43(8), 1052-1075. doi:10.1080/00140130050084879Phelps A. F. 2012. “Behavioral factors influencing lean information flow in complex projects.” In Proc. 20th Annual Conf. of the Int. Group for Lean Construction 2012. San Diego: International Group for Lean Construction.Priven V. and R. Sacks. 2013. “Social network development in Last Planner System implementations.” In Proc. 21st Annual Conf. of the Int. Group for Lean Construction 2013 474–485. Fortaleza Brazil: International Group for Lean Construction.Pryke, S. (2012). Social Network Analysis in Construction. doi:10.1002/9781118443132Rahmawati Y. C. Utomo N. Anwar N. P. Negoro and C. B. Nurcahyo. 2014. “A framework of knowledge management for successful group decision in design process.” In Proc. 2014 IEEE Conf. on Open Systems 60–65. Subang Malaysia: IEEE.Rojas, M. J., Herrera, R. F., Mourgues, C., Ponz-Tienda, J. L., Alarcón, L. F., & Pellicer, E. (2019). BIM Use Assessment (BUA) Tool for Characterizing the Application Levels of BIM Uses for the Planning and Design of Construction Projects. Advances in Civil Engineering, 2019, 1-9. doi:10.1155/2019/9094254Schöttle A. S. Haghsheno and F. Gehbauer. 2014. “Defining cooperation and collaboration in the context of lean construction.” In Proc. 22nd Annual Conf. of the Int. Group for Lean Construction 1269–1280. Oslo Norway: International Group for Lean Construction.Schröpfer, V. L. M., Tah, J., & Kurul, E. (2017). Mapping the knowledge flow in sustainable construction project teams using social network analysis. Engineering, Construction and Architectural Management, 24(2), 229-259. doi:10.1108/ecam-08-2015-0124Scott, J. (2017). Social Network Analysis. doi:10.4135/9781529716597Searle, J. R. (1969). Speech Acts. doi:10.1017/cbo9781139173438Segarra L. R. F. Herrera L. F. Alarcón and E. Pellicer. 2017. “Knowledge management and information flow through social networks analysis in Chilean architecture firms.” In Proc. 25th Annual Conf. of the Int. Group for Lean Construction 413–420. Heraklion Greece: International Group for Lean Construction.Sonnenwald, D. H. (1996). Communication roles that support collaboration during the design process. Design Studies, 17(3), 277-301. doi:10.1016/0142-694x(96)00002-6Svalestuen F. K. Frøystad F. Drevland S. Ahmad J. Lohne and O. Lædre. 2015. “Key elements to an effective building design team.” In Proc. Int. Conf. on Project Management 838–843. Sapporo Japan: Elsevier.Sydow, J., & Braun, T. (2018). Projects as temporary organizations: An agenda for further theorizing the interorganizational dimension. International Journal of Project Management, 36(1), 4-11. doi:10.1016/j.ijproman.2017.04.012Turner, J. R., & Müller, R. (2003). On the nature of the project as a temporary organization. International Journal of Project Management, 21(1), 1-8. doi:10.1016/s0263-7863(02)00020-0Valentine, M. A., Nembhard, I. M., & Edmondson, A. C. (2015). Measuring Teamwork in Health Care Settings. Medical Care, 53(4), e16-e30. doi:10.1097/mlr.0b013e31827feef6Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134-152. doi:10.1108/ecam-02-2016-0045Wong, P. S. P., Demertjis, M., Hardie, M., & Lo, C. yiu. (2014). The effect of unlearning on organisational learning behaviour and performance in construction contracting organisations. International Journal of Project Organisation and Management, 6(3), 197. doi:10.1504/ijpom.2014.065256Zhang, L., & Ashuri, B. (2018). BIM log mining: Discovering social networks. Automation in Construction, 91, 31-43. doi:10.1016/j.autcon.2018.03.00

    “Saberes” en una Red Social, Conocimientos y Aprendizajes

    Get PDF
    El siguiente documento presenta un abordaje argumentativo y crítico, respecto de la investigación acción realizada durante 16 semanas con la Organización Social Participativa (OSP) Asoartefa, en el marco del Diplomado en Construcción de Redes Sociales de Comunicación, como opción de trabajo de grado del programa de Comunicación Social. La asociación Asoartefa nace en el municipio de Puerres con el proyecto del tejido de ruana en un telar artesanal, artesanía que forma parte de la cultura de un pueblo. La investigación de dividió en 6 fases, inicialmente se realizó un acercamiento con la organización, se recopiló información por medio de técnicas como la entrevista de tipo cualitativo, la observación participante, la revisión documental y el análisis de redes. A partir de los hallazgos realizados se le planteó a la Organización una estrategia de fortalecimiento comunicacional en perspectiva de red social, que diese respuesta a algunos de dichos hallazgos, especialmente a los que involucran las dinámicas comunicativas en red, propias de una organización como Asoartefa.The following document presents an argumentative and critical approach, regarding the action research carried out for 16 weeks with the Participatory Social Organization (OSP) Asoartefa, within the framework of the Diploma in Construction of Social Communication Networks, as an option of degree work of the program of Social Communication. The Asoartefa association was born in the municipality of Puerres with the ruana weaving project on an artisanal loom, a craft that is part of the culture of a town. The research was divided into 6 phases, initially an approach was made with the organization, information was collected through techniques such as qualitative interviews, participant observation, documentary review and network analysis. Based on the findings made, a communicational strengthening strategy was proposed to the Organization in a social network perspective, which would respond to some of these findings, especially those that involve the communicative dynamics in the network, typical of an organization such as Asoartefa

    A new governance approach for multi-firm projects: lessons from Olkiluoto 3 and Flamanville 3 nuclear power plant projects

    Get PDF
    We analyze governance in two contemporary nuclear power plant projects: Olkiluoto 3 (Finland) and Flamanville 3 (France). We suggest that in the governance of large multi-firm projects, any of the prevalent governance approaches that rely on market, hierarchy, or hybrid forms, is not adequate as such. This paper opens up avenues towards a novel theory of governance in large projects by adopting a project network view with multiple networked firms within a single project, and by simultaneously going beyond organizational forms that cut across the traditional firm–market dichotomy. Our analysis suggests four changes in the prevailing perspective towards the governance of large projects. First, there should be a shift from viewing multi-firm projects as hierarchical contract organizations to viewing them as supply networks characterized by a complex and networked organizational structure. Second, there should be a shift in the emphasis of the predominant modes of governance, market and hierarchy towards novel governance approaches that emphasize network-level mechanisms such as self-regulation within the project. Third, there should be a shift from viewing projects as temporary endeavors to viewing projects as short-term events or episodes embedded in the long-term sphere of shared history and expected future activities among the involved actors. Fourth, there should be a shift from the prevailing narrow view of a hierarchical project management system towards an open system view of managing in complex and challenging institutional environments
    • …
    corecore