177 research outputs found

    Novel patterning techniques for manufacturing organic and nanostructured electronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.Page 206 blank.Includes bibliographical references.Molecular organic semiconductors and nanometer size particles are two new classes of functional materials allowing fabrication of electronic devices on low-cost and large area substrates. Patterning these electronic materials requires the development of unconventional techniques, and the scientific understanding behind the manufacture processes. We introduce the first-generation Molecular Jet (MoJet) printing technique for vacuum deposition of evaporated thin films and apply it to the fabrication of high-resolution pixelated (800 ppi) molecular organic light emitting devices (OLEDs) based on aluminum tris(8-hydroxyquinoline) (Alq3), and the fabrication of pentacene based organic field effect transistors (OFETs) with narrow channel (15 gm) and asymmetric silver/gold contacts. Patterned printing of both organic and metal films is demonstrated, with the operating properties of MoJet-printed OLEDs and OFETs shown to be comparable with the performance of devices fabricated by conventional evaporative deposition through a metal stencil. This MoJet printing technique is reconfigurable for digital fabrication of arbitrary patterns with multiple material sets and a high print accuracy of better than 5gtm, and scalable to large area substrates.(cont.) Analogous to the concept of "drop-on-demand" in Inkjet printing technology, MoJet printing is a "flux-on-demand" process and we show it capable of fabricating multi-layer stacked film structures, as needed for engineered organic devices. We present the concept and the applications of the second-generation MoJet printing technique. Using this technique, we demonstrate patterned molecular organic semiconducting thin films directly printed by a three-step local evaporative deposition, in conjunction with using the HP thermal InkJet printing technology. This MoJet printing technique can be applied to pattern solution-processable molecular organic thin films, providing flux-on-demand in an ambient environment. We develop an Inkjet assisted micro-contact printing technique for the patterning of colloidal semiconductor nanoparticles. Active OLEDs incorporated with a uniform thickness layer of colloidal nanoparticles are fabricated by using this Inkjet printing plus stamp transferring technique. The material usage efficiency is largely boosted. To our knowledge, these three novel patterning techniques presented in this study provide for the first time unprecedented capabilities for manufacturing organic and nanostructured electronic devices.by Jianglong Chen.Ph.D

    ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๋งž์ถคํ˜• ๊ด‘ํ•™ ์š”์†Œ์˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ํ™์šฉํƒ.์ผ๋ฐ˜์ ์œผ๋กœ ์ œ์กฐ ๊ณต์ •์€ ์ ˆ์‚ญ ๋ฐฉ์‹๊ณผ ์ ์ธต ๋ฐฉ์‹์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ด ์ค‘์—์„œ ์ ์ธต ๋ฐฉ์‹ ๊ณต์ •์€ ์ €๋น„์šฉ ๋ฐ ๋‹จ์‹œ๊ฐ„์œผ๋กœ ๋ณต์žกํ•œ ํ˜•ํƒœ์˜ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์„œ ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์™€ ๊ฐœ๋ฐœ์ด ๊พธ์ค€ํžˆ ์ง„ํ–‰๋˜์–ด์™”๋‹ค. ํŠนํžˆ 3D ํ”„๋ฆฐํŒ…์€ ์ ์ธต ๋ฐฉ์‹ ๊ณต์ • ์ค‘์—์„œ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ธฐ๊ณ„ ๋ถ€ํ’ˆ ๋ฐ ์ƒ์ฒด ๊ธฐ๊ด€ ์ œ์กฐ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ๋Š” ์ด๋ฏธ ์ƒ์šฉํ™”๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „์ž ์†Œ์ž ๋ฐ ๊ด‘ํ•™ ์š”์†Œ ๋ถ„์•ผ์—์„œ์˜ 3D ํ”„๋ฆฐํŒ…์˜ ํ™œ์šฉ์€ ์—ฌ์ „ํžˆ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ ๋˜๋Š” ์‹œ์ œํ’ˆ ์ œ์ž‘ ๋‹จ๊ณ„์— ๋จธ๋ฌด๋ฅด๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ, ์ปฌ๋Ÿฌ ํ•„ํ„ฐ ๋“ฑ์ด 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๊ฐ€๋Šฅ์„ฑ ์žˆ๋Š” ๊ด‘ํ•™ ์š”์†Œ๋กœ์„œ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜์ง€๋งŒ ์—ฌ์ „ํžˆ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋‹ค. ๋˜ํ•œ 3D ํ”„๋ฆฐํŒ…์„ ์ด์šฉํ•œ ๊ด‘ํ•™ ์š”์†Œ์˜ ์ œ์ž‘์€ ์†Œ์žฌ, ๊ธธ์ด ์Šค์ผ€์ผ, ํ˜•์ƒ ๋ฐ ์‘์šฉ ๋ฐฉ์•ˆ ๋“ฑ์—์„œ๋„ ์ œํ•œ์ด ๋งŽ์€ ์ƒํ™ฉ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์—์„œ์˜ 3D ํ”„๋ฆฐํŒ… ๋œ ๊ด‘ํ•™ ์š”์†Œ์˜ ์œ ์šฉ์„ฑ์„ ํ™•์žฅํ•ด์•ผ ํ•˜๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•ด์•ผ ํ•œ๋‹ค. ์ฒซ์งธ, ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์˜ 3D ํ”„๋ฆฐํŒ… ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋งˆ์ดํฌ๋กœ๋ฏธํ„ฐ์—์„œ ์„ผํ‹ฐ๋ฏธํ„ฐ๊นŒ์ง€ ๊ด‘๋ฒ”์œ„์˜ ๊ธธ์ด ์Šค์ผ€์ผ์„ ๊ฐ€์ง€๋Š” ๊ตฌ์กฐ๋ฌผ์˜ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค. ๋‘˜์งธ, ์ž„์˜์˜ ๊ณก๋ฉด, ๊ณ„์ธต์  ๊ตฌ์กฐ ๋“ฑ ๋ณต์žกํ•œ ํ˜•์ƒ์˜ ๊ตฌ์กฐ๋ฌผ์„ ์‰ฝ๊ฒŒ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์…‹์งธ, ๋‹จ๋‹จํ•œ ์†Œ์žฌ ๋Œ€์‹  ํƒ„์„ฑ์ฒด์™€ ๊ฐ™์€ ์†Œํ”„ํŠธ ์†Œ์žฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ด‘ํ•™์ ์ธ ๊ธฐ๋Šฅ์„ ์šฉ์ดํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋™๊ธฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๋งž์ถคํ˜• ๊ด‘ํ•™ ์š”์†Œ์˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋ณด๊ณ ํ•œ๋‹ค. 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ๋งคํฌ๋กœ ์Šค์ผ€์ผ, ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ ๊ทธ๋ฆฌ๊ณ  ๋งคํฌ๋กœ ๋ฐ ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์ด ํ˜ผํ•ฉ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ ๋“ฑ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์‘์šฉ ๋ถ„์•ผ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋งคํฌ๋กœ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ์š”์†Œ์ธ ๋ Œ์ฆˆ์™€ ๊ฑฐ์šธ์„ ์„ ํƒํ•œ๋‹ค. ๋ Œ์ฆˆ๋Š” ๊ณต์••์‹ ๋””์ŠคํŽœ์‹ฑ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋ฆฐ๋“œ๋ฆฌ์ปฌ ์Œ ํ˜•ํƒœ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, ์‹ฌ๋ฆฌ์Šค ๋ชจ๋“ˆ๋Ÿฌ ํ‰ํŒ์‹ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ตฌํ˜„์„ ์œ„ํ•ด ์ ์šฉ๋œ๋‹ค. ๋˜ํ•œ ์šฉ์œต ์ ์ธต ๋ฐฉ์‹์˜ 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ๋ชฐ๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฑฐ์šธ์„ ์ œ์ž‘ํ•˜๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ฌ๋ฆฌ์Šค ๋ชจ๋“ˆ๋Ÿฌ ์ปค๋ธŒ๋“œ ์—ฃ์ง€ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ชจ๋“ˆ๋Ÿฌ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ด์Œ์ƒˆ ๋ถ€๋ถ„์— 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ์ œ์ž‘๋œ ๋ Œ์ฆˆ ๋˜๋Š” ๊ฑฐ์šธ์„ ๋ถ€์ฐฉํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ™”๋ฉด์„ ์‹ฌ๋ฆฌ์Šค๋กœ ํ™•์žฅํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์‹œํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋””์Šคํ”Œ๋ ˆ์ด์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ๋Š” ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์—์„œ ์ƒ‰ ๋ณ€ํ™˜๊ณผ ๊ด‘ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋™์‹œ์— ๋‚˜ํƒ€๋‚ด๋Š” ์ƒ‰ ๋ณ€ํ™˜ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ์„ ํƒํ•œ๋‹ค. ์–‘์ž ์ /๊ด‘ ๊ฒฝํ™”์„ฑ ๊ณ ๋ถ„์ž ๋ณตํ•ฉ์ฒด์˜ ์ „๊ธฐ์ˆ˜๋ ฅํ•™์  ํ”„๋ฆฐํŒ…์„ ํ†ตํ•ด ์–‘์ž ์ ์ด ๋‚ด์žฅ๋œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ƒ‰ ๋ณ€ํ™˜ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ์ œ์ž‘ํ•˜๋ฉฐ, ์ด๋ฅผ ์ฒญ์ƒ‰ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ์–ด๋ ˆ์ด์˜ ๋ฐœ๊ด‘๋ถ€ ์ƒ์— ์ ์šฉํ•˜์—ฌ ํ’€ ์ปฌ๋Ÿฌ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ์˜ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋งคํฌ๋กœ ๋ฐ ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์ด ํ˜ผํ•ฉ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ์„œ ๋””์ŠคํŽœ์‹ฑ ๋ฐ ๊ฑด์‹ ๋Ÿฌ๋น™ ๊ณผ์ •์˜ ์กฐํ•ฉ์œผ๋กœ ์ œ์ž‘๋œ ๊ฒน๋ˆˆ ํ˜•ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ๋ Œ์ฆˆ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋ฐ˜๊ตฌ ํ˜•ํƒœ์˜ ๋งคํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ๋””์ŠคํŽœ์‹ฑ์œผ๋กœ ํ˜•์„ฑํ•˜๊ณ , ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ๊ณก๋ฉด ์ƒ์— ๋‹จ์ธต์˜ ๋งˆ์ดํฌ๋กœ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ์–ป๊ธฐ ์œ„ํ•ด ๊ฑด์‹ ๋Ÿฌ๋น™ ๊ณต์ •์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์œผ๋กœ ํ˜•์„ฑ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ๊ฐ€ ์†Œํ”„ํŠธํ•œ ์†Œ์žฌ๋กœ ๋ณต์ œ๋˜์–ด์„œ ์‹ ์ถ•์„ฑ์„ ๊ฐ€์ง€๋Š” ๊ฒน๋ˆˆ ํ˜•ํƒœ ๋ชจ์‚ฌ ๊ตฌ์กฐ๊ฐ€ ์™„์„ฑ๋œ๋‹ค. ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ ์–ด๋ ˆ์ด๋Š” ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ํ‘œ๋ฉด์„ ๋”ฐ๋ผ ํ˜•์„ฑ๋˜๊ณ  ๋ฆฌ์ง€๋“œ ์•„์ผ๋žœ๋“œ๋กœ ์—ญํ• ์„ ํ•˜์—ฌ, ์ „์ฒด ๊ณ„์ธต์  ๊ตฌ์กฐ์— ๊ธฐ๊ณ„์  ๋ณ€ํ˜•์ด ๊ฐ€ํ•ด์ ธ ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ๋ชจ์–‘์ด ๋ณ€ํ˜•๋˜์–ด๋„ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋Š” ํ˜•์ƒ๊ณผ ํ•ด์ƒ๋„, ์ดˆ์  ๊ฑฐ๋ฆฌ ๋“ฑ์˜ ๊ด‘ํ•™์  ํŠน์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ 3D ํ”„๋ฆฐํŒ…์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์™€ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์—ฌ๋Ÿฌ ์‘์šฉ์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์„œ ์•ž์œผ๋กœ์˜ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐ ๊ฐœ๋ฐœ ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์„ ์ฃผ์š” ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. 3D ํ”„๋ฆฐํŒ… ์„ค๋น„์˜ ๋‹จ๊ฐ€๊ฐ€ ๋‚ฎ์•„์ง€๊ณ  ์ •๋ฐ€๋„ ๋ฐ ํ•ด์ƒ๋„๊ฐ€ ๋†’์•„์ง€๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์‰ฝ๊ฒŒ ๋งŒ๋“ค๊ณ  ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋งž์ถคํ˜• ๊ด‘ํ•™ ๋˜๋Š” ์Šค์Šค๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๊ด‘ํ•™ ๋ถ„์•ผ๊ฐ€ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•˜๊ณ  ๋ฉ€ํ‹ฐ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™๊ณ„๋กœ ์ ์ฐจ ํ™•๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ถ๊ทน์ ์œผ๋กœ๋Š” ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ์˜ ์ €๋ณ€์„ ๋„“ํžˆ๊ณ , ์ด๋ฅผ ์‚ฐ์—… ์ „๋ฐ˜์— ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•˜๊ณ ์ž ํ•œ๋‹ค.Generally, the manufacturing process is divided into the subtractive (top-down) type and additive type (bottom-up). Among them, the additive manufacturing process has attracted a lot of attention because it can manufacture products with complex shapes in a low-cost and short-time process. In particular, three-dimensional (3D) printing is a representative method, which has already been commercialized in the field of mechanical components and biomedical organ. However, it remains in the research and development step in the field of electronic devices and optical components. Especially, although 3D printed optical components including microlens and color filter are expected to be widely used in display and imaging systems, it is still under investigation for commercialized products, and there are limitations in terms of materials, length scale, shape, and practical applications of components. Therefore, to overcome these issues, it is required for investigating and expanding the potential usefulness for 3D printed optical components in display and imaging systems to achieve better performance, productivity, and usability in three aspects. First, it should be possible to manufacture structures with a wide range of length scales from micrometer to centimeter through various 3D printing methods. Second, complex shapes such as free-from curved surfaces and hierarchical structures should be easily fabricated. Third, it is necessary to add functionality by manufacturing structures in which tunable functions are introduced using soft materials like an elastomer. Based on the above motivations, 3D printing-based customized optical components for display and imaging system applications are introduced in this dissertation. 3D printed optical components are classified into three types and their applications are showed to verify the scalability of 3D printing: macro-scale, microscale, and hierarchical macro/micro-scale. As macro-scale printed optical components, lens and mirror which are the most basic optical components are selected. The lens is fabricated by a pneumatic-type dispensing method with the form of a cylindrical pair and adopted for demonstration of seamless modular flat panel display. Besides, a seamless modular curved-edge display is also demonstrated with a mirror, which is fabricated from fused deposition modeling (FDM)-type 3D printed mold. By simply attaching a printed lens or mirror onto the seam of the modular display, it is possible to secure seamless screen expansion technology with the various form factor of the display panel. In the case of micro-scale printed optical components, the color-convertible microlens is chosen, which act as a color converter and light extractor simultaneously in a light-emitting diode (LED). By electrohydrodynamic (EHD) printing of quantum dot (QD)/photocurable polymer composite, QD-embedded hemispherical lens shape structures with various sizes are fabricated by adjusting printing conditions. Furthermore, it is applied to a blue micro-LED array for full-color micro-LED display applications. Finally, a tunable bio-inspired compound (BIC) eyes structure with a combination of dispensing and a dry-phase rubbing process is suggested as a hierarchical macro/micro-scale printed optical components. A hemispherical macrolens is formed by the dispensing method, followed by a dry-phase rubbing process for arranging micro particles in monolayer onto the curved surface of the macrolens. This hierarchical structure is replicated in soft materials, which have intrinsic stretchability. Microlens array is formed on the surface of the macrolens and acts as a rigid island, thereby maintaining lens shape, resolution, and focal length even though the mechanical strain is applied to overall hierarchical structures and the shape of the macrolens is changed. The primary purposes of this dissertation are to introduce new concepts of the enabling technologies for 3D printed optical components and to shed new light on them. Optical components can be easily made as 3D printing equipment becomes cheaper and more precise, so the field of Consumer optics or Do it yourself (DIY) optics will be gradually expanded on deformable and multi-scale optics. It is expected that this dissertation can contribute to providing a guideline for utilizing and customizing 3D printed optical components in next-generation display and imaging system applications.Chapter 1. Introduction 1 1.1. Manufacturing Process 1 1.2. Additive Manufacturing 4 1.3. Printed Optical Components 8 1.4. Motivation and Organization of Dissertation 11 Chapter 2. Macro-scale Printed Optical Components 15 2.1. Introduction 15 2.2. Seamless Modular Flat Display with Printed Lens 20 2.2.1. Main Concept 20 2.2.2. Experimental Section 23 2.2.3. Results and Discussion 26 2.3. Seamless Modular Curved-edge Display with Printed Mirror 32 2.3.1. Main Concept 32 2.3.2. Experimental Section 33 2.3.3. Results and Discussion 36 2.4. Conclusion 46 Chapter 3. Micro-scale Printed Optical Components 47 3.1. Introduction 47 3.2. Full-color Micro-LED Array with Printed Color-convertible Microlens 52 3.2.1. Main Concept 52 3.2.2. Experimental Section 54 3.2.3. Results and Discussion 57 3.3. Conclusion 65 Chapter 4. Hierarchical Macro/Micro-scale Printed Optical Components 66 4.1. Introduction 66 4.2. Tunable Bio-inspired Compound Eye with Printing and Dry-phase Rubbing Process 69 4.2.1. Main Concept 69 4.2.2. Experimental Section 71 4.2.3. Results and Discussion 73 4.3. Conclusion 79 Chapter 5. Conclusion 80 5.1. Summary 80 5.2. Limitations and Suggestions for Future Researches 83 References 88 Abstract in Korean (๊ตญ๋ฌธ ์ดˆ๋ก) 107Docto

    Flexible Multifunctional Sensors for Wearable and Robotic Applications

    Get PDF
    This review provides an overview of the current state-of-the-art of the emerging field of flexible multifunctional sensors for wearable and robotic applications. In these application sectors, there is a demand for high sensitivity, accuracy, reproducibility, mechanical flexibility, and low cost. The ability to empower robots and future electronic skin (e-skin) with high resolution, high sensitivity, and rapid response sensing capabilities is of interest to a broad range of applications including wearable healthcare devices, biomedical prosthesis, and humanโ€“machine interacting robots such as service robots for the elderly and electronic skin to provide a range of diagnostic and monitoring capabilities. A range of sensory mechanisms is examined including piezoelectric, pyroelectric, piezoresistive, and there is particular emphasis on hybrid sensors that provide multifunctional sensing capability. As an alternative to the physical sensors described above, optical sensors have the potential to be used as a robot or e-skin; this includes sensory color changes using photonic crystals, liquid crystals, and mechanochromic effects. Potential future areas of research are discussed and the challenge for these exciting materials is to enhance their integration into wearables and robotic applications.</p

    Silver Nanowire Transparent Electrodes for Soft Optoelectronic and Electronic Devices

    Get PDF
    School of Energy and Chemical Engineering (Energy Engineering)Recently, with an increasing importance of human-machine interface along with the rapid growth of Internet of Things (IoT), various flexible and stretchable electronic and optoelectronic devices have been developed for the wide range of multifunctional and wearable applications such as touch screen panels, organic solar cells, organic light-emitting diodes, thin-film loudspeakers, microphones, interactive displays, and electronic skins. High mechanical flexibility/stretchability, optical transparency, and electrical conductivity are the critical properties that transparent conductive electrodes (TCEs) should possess for the realization of high-performance flexible/stretchable electronics and optoelectronics. While indium tin oxide (ITO) has been widely used in commercial TCEs, the further development and application of ITO have been limited by the high cost and inherent brittleness of the material. One promising alternative to ITO as a TCE material is silver nanowire (AgNW) networks having good flexibility and stretchability, which can provide lower sheet resistance (Rs) and higher optical transmittance (T) than other TCE candidates such as carbon nanotubes, graphene, and conducting polymers. Moreover, AgNW networks can be readily prepared by low-cost solution-based process, enabling the mass production of next-generation optoelectronic and electronic applications. The integration of AgNW networks with the flexible/stretchable substrates can provide powerful platforms to realize highly stable and high-performance soft optoelectronic and electronic devices with the superior transparency and stable supply of electrical conductivity during mechanical deformations. This thesis covers our recent studies about flexible/stretchable AgNW TCEs and their applications in various soft optoelectronic and functional electronic devices. First, chapter 1 introduces research trends in flexible/stretchable transparent electrodes and several issues of AgNW networks that should be carefully considered for their future soft optoelectronic and electronic device applications. In chapter 2, we demonstrated a simple and efficient assembly strategy for the large-area, highly cross-aligned AgNW arrays for TCE applications through a modified bar-coating assembly. As opposed to conventional solvent-evaporation-induced assemblies, which are slow and produce nonuniform conductive networks, our modified bar-coating strategy enables fast, efficient, and uniform alignment of AgNWs in a large-area by simply dragging the Meyer rod over the AgNW solution on the target substrates. For the potential applications, we demonstrated large-scale, flexible, and transparent resistive-type touch screens and force-sensitive mechanochromic touch screens using cross-aligned AgNW transparent electrodes which exhibited highly uniform and precise touch sensing performance across the entire region. In chapter 3, we introduced ultrathin, transparent, and conductive hybrid nanomembranes (NMs) with nanoscale thickness, consisting of the orthogonal AgNW arrays embedded in a polymer matrix. Here, we present a skin-attachable NM loudspeaker and wearable transparent NM microphone, which can emit thermoacoustic sound and can provide excellent acoustic sensing capabilities. In chapter 4, solution-processable, high-performance flexible alternating-current electroluminescent (ACEL) devices are developed based on high-k nanodielectrics and cross-aligned AgNW transparent electrodes. The solution-processed La-doped barium titanate (BTO:La) nanocuboids are fabricated as high dielectric constant nanodielectrics, which can enhance the dielectric constant of an ACEL devices, enabling the fabrication of high-performance flexible ACEL devices with a lower operating voltage as well as higher brightness. In chapter 5, we fabricated transparent, flexible, and self-healable thermoacoustic loudspeakers based on AgNW/poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit a great self-healing property for the surface damages by means of the dynamic reconstruction of reversible bulky urea bonds in PUHU. In chapter 6, synesthetic bimodal generation of sound and color is demonstrated by stretchable sound-in-display devices consisting of strain-insensitive stretchable AgNW electrodes and field-induced inorganic EL phosphor emissive layers. The stretchable sound-in-display devices show highly robust and reliable EL and sound generating performances that can be repeatedly stretched and released without severe performance degradation because of the use of strain-insensitive AgNW electrodes. Finally, in chapter 7, we summarize this thesis along with the future perspective of flexible/stretchable transparent electrodes that should be considered for next-generation soft electronic and optoelectronic device applications. In this thesis, studies on flexible/stretchable AgNW transparent electrodes and their device applications could be further expanded for diverse soft and wearable optoelectronic and electronic applications such as wearable sensors, healthcare monitoring devices, and human-machine interfaces with better convenience, appearance, and reusability.ope

    Fabrication of clog-free microfluidic cell isolation and solid-state light-emitting devices for biomedical applications

    Get PDF
    Over the past few decades, research and development on microfluidic devices, also referred to as lab-on-a-chip systems or microfluidic total analysis systems (TAS), have advanced quickly. There aren't many commercial success stories for microfluidic devices, despite the many advantages they offer, including improved analytical performance, decreased sample and reagent usage in the biomedical disciplines. From liquid biopsies, microfluidics has been used to filter out rare tumor cells from blood. Low flow rates and device clogs brought on by a single fluidic path function severely restrict processing. A novel technique was created employing multifunctional hybrid microposts with various features has effectively ensured high effective separation of rare cells from biological fluids. Furthermore, Solid-State perovskite material is synthesized, fabricated in 3D printed layers, and characterized for the need to be incorporated into fluorescence imaging of biological cells. Since effective imaging techniques are required to image the cells in a PDMS-based microfluidic device, the emission of the perovskite material shows positive signs as a fluorescent light source for identification of cells based on their emission of light.Includes bibliographical references

    Jetting of multiple functional materials by additive manufacturing

    Get PDF
    The rise and consolidation of Additive Manufacturing (AM) as a technology has made possible the fabrication of highly customised and complex products in almost every industry. This not only allows the creation of objects that were impossible just a few decades ago but also facilitates the production of small runs of products at a reasonable cost, which reduces the design-prototyping cycles and boosts product innovation. However, to produce truly functional parts it is desirable for these systems to be able to deposit multiple complex materials in a single process to locally embed controllable properties such as electrical conductivity or sensing capabilities into the produced geometries. Consequently, a review of current AM technologies capable of depositing conductive materials is performed in this PhD and discussed to find the most suitable approaches. Similarly, existing multi-material set-ups are studied to find limitations and common practices to create a system that is capable of fulfilling the objectives of this work. Piezo-activated inkjet printing (PIJ) is identified as an appropriate technology for multi-material applications due to its non-contact nature, high spatial resolution, capability of mixing and digitally grading materials and simple scale-up of the process. Furthermore, in the last decade it has been shown that jetting can be used for the accurate deposition of a wide range of functional materials. However, upon detailed review of this method, the limitations that it imposes on the compositions of the inks are identified as its main drawback. Specifically, the solid content and molecular weight of the fluids that can be jetted are restricted by the viscosity of the final ink, typically under 40 mPaยทs. This is problematic in the case of jetting conductive materials, since it forces the solid content to be very low, therefore yielding very thin and often inhomogeneous layers. Additionally, all the organic components on the inks added to facilitate its ejection need to be removed, which typically means longer and more aggressive post-processes before rendering the printed tracks conductive. For this reason, drop-on-demand micro-dispensing valves were chosen as a high viscosity jetting (HVJ) approach in this work, with the intention of assessing their capability as a suitable tool for multi-material AM of functional inks. However, since their resolution and speed are lower than conventional inkjet, a hybrid approach is presented including micro-dispensing valves and inkjet printheads capable of depositing a wide range of viscosities in a single process. A comprehensive description of the hybrid set-up is given, discussing its main elements including the printing heads, the custom design printer assembly, the ultraviolet (UV) and infrared (IR) lamps installed for in-situ processing, the monitoring system and the set-up to measure the evolution of the electrical resistance in printed tracks in real time during post-processing. Additionally, the printing strategy and process flow is discussed. The investigated set-up was used to study the printability and performance of several functional materials ranging from UV-curable polymers to conductive formulations such as carbon paint, a silver nanoparticle-based paste and a dispersion of PEDOT:PSS. Each material was thoroughly characterised prior to printing with a special focus on viscosity. Their drop formation and deposition processes were studied at different printing settings using high speed imaging and footprint analysis of the deposited drops. These tests were used to obtain sets of working parameters that allow reliable printing and were used to produce 2D patterns with different resolutions to find the drop spacing that results in flat homogeneous films. Later, these films were post-treated according to the requirements of each material and multilayer structures were produced and analysed with an optical profilometer. The cross-section of these 3D tracks was used together with the measured resistance to obtain the electric conductivity of the materials under the printing conditions used. Finally, the accumulated information during the previous stages of printing was used to produce 3D multi-material demonstrators with incorporated conductive tracks, electric components and electroluminescent elements. These proof-of-concept samples were used to discuss limitations of the approach and showcase future possibilities of the system

    Graphene/P(VDF-TrFE) Heterojunction Based Wearable Sensors with Integrated Piezoelectric Energy Harvester

    Get PDF
    Graphene, with its outstanding material properties, including high carrier mobility, atomically thin nature, and ability to tolerate mechanical deformation related strain up to 20% before breaking, make it very attractive for developing highly sensitive and conformable strain/pressure sensor for wearable electronics. Unfortunately, graphene by itself is not piezoresistive, so developing a strain sensor utilizing just graphene is challenging. Fortunately, graphene synthesized on Cu foil can be transferred to arbitrary substrates (preserving its high quality), including flexible polymer substrates, which will allow the overall flexibility and conformability of the sensing element, to be maintained. Furthermore, a graphene/polymer based sensor devices can be easily patterned into an array over dimensions reaching several feet, taking advantage of large area synthesis of graphene, which will make the ultimate sensor very inexpensive. If a piezo-electric polymer, such as P(VDF-TrFE), is chosen to form a heterojunction with graphene, it will strongly affect the carrier density in graphene, due to the fixed charge developing on its surface under strain or pressure. Taking advantage of the high carrier mobility in graphene, such a charge change can result in very high sensitivity to pressure and strain. Hence, these features, coupled with the flexible nature of the device and ease of fabrication, make it a very attractive candidate for use in the growing wearable technology market, especially biomedical applications and smart health monitoring system as well as virtual reality sensors. In this dissertation, various unique properties of graphene and P(VDF-TrFE), and their current applications and trends are discussed in chapter 1. Additionally, synthesis of graphene and P(VDF-TrFE) and their characterizations by various techniques are investigated in chapter 2. Based on piezoelectric property of P(VDF-TrFE), a highly flexible energy harvesters on PDMS as well as PET substrates have been developed and demonstrated their performances in chapter 3. As follow-up research, graphene/P(VDF-TrFE) heterojunction based wearable sensors with integrated piezoelectric energy harvester on flexible substrates have also been fabricated and demonstrated for practical wearable application in chapter 4. Finally, major findings and future directions of the project are discussed in chapter 5

    Jetting of multiple functional materials by additive manufacturing

    Get PDF
    The rise and consolidation of Additive Manufacturing (AM) as a technology has made possible the fabrication of highly customised and complex products in almost every industry. This not only allows the creation of objects that were impossible just a few decades ago but also facilitates the production of small runs of products at a reasonable cost, which reduces the design-prototyping cycles and boosts product innovation. However, to produce truly functional parts it is desirable for these systems to be able to deposit multiple complex materials in a single process to locally embed controllable properties such as electrical conductivity or sensing capabilities into the produced geometries. Consequently, a review of current AM technologies capable of depositing conductive materials is performed in this PhD and discussed to find the most suitable approaches. Similarly, existing multi-material set-ups are studied to find limitations and common practices to create a system that is capable of fulfilling the objectives of this work. Piezo-activated inkjet printing (PIJ) is identified as an appropriate technology for multi-material applications due to its non-contact nature, high spatial resolution, capability of mixing and digitally grading materials and simple scale-up of the process. Furthermore, in the last decade it has been shown that jetting can be used for the accurate deposition of a wide range of functional materials. However, upon detailed review of this method, the limitations that it imposes on the compositions of the inks are identified as its main drawback. Specifically, the solid content and molecular weight of the fluids that can be jetted are restricted by the viscosity of the final ink, typically under 40 mPaยทs. This is problematic in the case of jetting conductive materials, since it forces the solid content to be very low, therefore yielding very thin and often inhomogeneous layers. Additionally, all the organic components on the inks added to facilitate its ejection need to be removed, which typically means longer and more aggressive post-processes before rendering the printed tracks conductive. For this reason, drop-on-demand micro-dispensing valves were chosen as a high viscosity jetting (HVJ) approach in this work, with the intention of assessing their capability as a suitable tool for multi-material AM of functional inks. However, since their resolution and speed are lower than conventional inkjet, a hybrid approach is presented including micro-dispensing valves and inkjet printheads capable of depositing a wide range of viscosities in a single process. A comprehensive description of the hybrid set-up is given, discussing its main elements including the printing heads, the custom design printer assembly, the ultraviolet (UV) and infrared (IR) lamps installed for in-situ processing, the monitoring system and the set-up to measure the evolution of the electrical resistance in printed tracks in real time during post-processing. Additionally, the printing strategy and process flow is discussed. The investigated set-up was used to study the printability and performance of several functional materials ranging from UV-curable polymers to conductive formulations such as carbon paint, a silver nanoparticle-based paste and a dispersion of PEDOT:PSS. Each material was thoroughly characterised prior to printing with a special focus on viscosity. Their drop formation and deposition processes were studied at different printing settings using high speed imaging and footprint analysis of the deposited drops. These tests were used to obtain sets of working parameters that allow reliable printing and were used to produce 2D patterns with different resolutions to find the drop spacing that results in flat homogeneous films. Later, these films were post-treated according to the requirements of each material and multilayer structures were produced and analysed with an optical profilometer. The cross-section of these 3D tracks was used together with the measured resistance to obtain the electric conductivity of the materials under the printing conditions used. Finally, the accumulated information during the previous stages of printing was used to produce 3D multi-material demonstrators with incorporated conductive tracks, electric components and electroluminescent elements. These proof-of-concept samples were used to discuss limitations of the approach and showcase future possibilities of the system
    • โ€ฆ
    corecore