Fabrication of clog-free microfluidic cell isolation and solid-state light-emitting devices for biomedical applications

Abstract

Over the past few decades, research and development on microfluidic devices, also referred to as lab-on-a-chip systems or microfluidic total analysis systems (TAS), have advanced quickly. There aren't many commercial success stories for microfluidic devices, despite the many advantages they offer, including improved analytical performance, decreased sample and reagent usage in the biomedical disciplines. From liquid biopsies, microfluidics has been used to filter out rare tumor cells from blood. Low flow rates and device clogs brought on by a single fluidic path function severely restrict processing. A novel technique was created employing multifunctional hybrid microposts with various features has effectively ensured high effective separation of rare cells from biological fluids. Furthermore, Solid-State perovskite material is synthesized, fabricated in 3D printed layers, and characterized for the need to be incorporated into fluorescence imaging of biological cells. Since effective imaging techniques are required to image the cells in a PDMS-based microfluidic device, the emission of the perovskite material shows positive signs as a fluorescent light source for identification of cells based on their emission of light.Includes bibliographical references

    Similar works