42 research outputs found

    Embedded filter bank-based algorithm for ECG compression

    Get PDF
    In this work, two ECG compression schemes are presented using two types of filter banks to decompose the incoming signal: wavelet packets (WP) and nearly-perfect reconstruction cosine modulated filter banks. The conventional embedded zerotree wavelet (EZW) algorithm takes advantage of the hierarchical relationship among subband coefficients of the pyramidal wavelet decomposition. Nevertheless, it performs worse when used with WP as the hierarchy becomes more complex. In order to address this problem, we propose a new technique that considers no relationship among coefficients, and is therefore suitable for use with WP. Furthermore, this new approximation makes it possible to apply the quantization method toM-channel maximally decimated filter banks. In this fashion, the proposed algorithm provides two efficient and effective ECG compressors that show better ECG compression performance than the conventional EZW algorithm

    ECG data compression using a neural network model based on multi-objective optimization

    Full text link
    © 2017 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transformation is applied to the processing of signal wave for reducing computational time. For the lossless compression requirement, wavelet-transformation that is a coding algorithm can be used to avoid loss of data. In practice, compression is required to avoid storing redundant recording data that are not useful in the diagnosis platform. The obtained data can be preprocessed to remove noise by using wavelet transform, and then a multi-objective optimize neural network model is used to extract feature information. Compared with the existing traditional methods such as direct data processing method and transform method, our proposed compression model has self-learning ability to achieve high data compression ratio at 1:19 without losing important ECG information and compromising quality. Upon testing, we demonstrated that the proposed ECG data compression method based on multi-objective optimization neural network is effective and efficient in clinical practice

    Wavelet Theory and Application in Communication and Signal Processing

    Get PDF
    Wavelet analysis is the recent development in applied mathematics. For several applications, Fourier analysis fails to provide tangible results due to non-stationary behavior of signals. In such situation, wavelet transforms can be used as a potential alternative. The book chapter starts with the description about importance of frequency domain representation with the concept of Fourier series and Fourier transform for periodic, aperiodic signals in continuous and discrete domain followed by shortcoming of Fourier transform. Further, Short Time Fourier Transform (STFT) will be discussed to induce the concept of time frequency analysis. Explanation of Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) will be provided with the help of theoretical approach involving mathematical equations. Decomposition of 1D and 2D signals will be discussed suitable examples, leading to application concept. Wavelet based communication systems are becoming popular due to growing multimedia applications. Wavelet based Orthogonal Frequency Division Multiplexing (OFDM) technique and its merit also presented. Biomedical signal processing is an emerging field where wavelet provides considerable improvement in performance ranging from extraction of abnormal areas and improved feature extraction scheme for further processing. Advancement in multimedia systems together with the developments in wireless technologies demands effective data compression schemes. Wavelet transform along with EZW, SPIHT algorithms are discussed. The chapter will be a useful guide to undergraduate and post graduate who would like to conduct a research study that include wavelet transform and its usage

    DESIGN AND IMPLEMENTATION OF LIFTING BASED DAUBECHIES WAVELET TRANSFORMS USING ALGEBRAIC INTEGERS

    Get PDF
    Over the past few decades, the demand for digital information has increased drastically. This enormous demand poses serious difficulties on the storage and transmission bandwidth of the current technologies. One possible solution to overcome this approach is to compress the amount of information by discarding all the redundancies. In multimedia technology, various lossy compression techniques are used to compress the raw image data to facilitate storage and to fit the transmission bandwidth. In this thesis, we propose a new approach using algebraic integers to reduce the complexity of the Daubechies-4 (D4) and Daubechies-6 (D6) Lifting based Discrete Wavelet Transforms. The resulting architecture is completely integer based, which is free from the round-off error that is caused in floating point calculations. The filter coefficients of the two transforms of Daubechies family are individually converted to integers by multiplying it with value of 2x, where, x is a random value selected at a point where the quantity of losses is negligible. The wavelet coefficients are then quantized using the proposed iterative individual-subband coding algorithm. The proposed coding algorithm is adopted from the well-known Embedded Zerotree Wavelet (EZW) coding. The results obtained from simulation shows that the proposed coding algorithm proves to be much faster than its predecessor, and at the same time, produces good Peak Signal to Noise Ratio (PSNR) at very low bit rates. Finally, the two proposed transform architectures are implemented on Virtex-E Field Programmable Gate Array (FPGA) to test the hardware cost (in terms of multipliers, adders and registers) and throughput rate. From the synthesis results, we see that the proposed algorithm has low hardware cost and a high throughput rate

    Selection of Wavelet Basis Function for Image Compression : a Review

    Get PDF
    Wavelets are being suggested as a platform for various tasks in image processing. The advantage of wavelets lie in its time frequency resolution. The use of different basis functions in the form of different wavelets made the wavelet analysis as a destination for many applications. The performance of a particular technique depends on the wavelet coefficients arrived after applying the wavelet transform. The coefficients for a specific input signal depends on the basis functions used in the wavelet transform. Hence in this paper toward this end, different basis functions and their features are presented. As the image compression task depends on wavelet transform to large extent from few decades, the selection of basis function for image compression should be taken with care. In this paper, the factors influencing the performance of image compression are presented

    1d & 2d Signal Compression Using Discrete Wavelet Transform : A Survey

    Get PDF
    Today’s smart world with high-speed communication devices demands elegant computing systems with lightening speed. Compression technology takes a major part in developing new generation computing systems. Popular applications like multimedia and medical data processing technology desires high data transmission rate, good perceptual signal quality and high compression rates. Wavelet based data compression techniques have advantages in lossless signal reconstructions and fit in dedicated data processing field. This paper highlights some wavelet transform based compression algorithms implementation and measuring performance towards quality of reconstruction and compression rate of one and two dimensional signal
    corecore