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ABSTRACT 

Over the past few decades, the demand for digital information has increased drastically. This 

enormous demand poses serious difficulties on the storage and transmission bandwidth of the 

current technologies. One possible solution to overcome this approach is to compress the amount 

of information by discarding all the redundancies. In multimedia technology, various lossy 

compression techniques are used to compress the raw image data to facilitate storage and to fit 

the transmission bandwidth.  

In this thesis, we propose a new approach using algebraic integers to reduce the complexity of 

the Daubechies-4 (D4) and Daubechies-6 (D6) Lifting based Discrete Wavelet Transforms. The 

resulting architecture is completely integer based, which is free from the round-off error that is 

caused in floating point calculations. The filter coefficients of the two transforms of Daubechies 

family are individually converted to integers by multiplying it with value of 2x , where, x is a 

random value selected at a point where the quantity of losses is negligible. The wavelet 

coefficients are then quantized using the proposed iterative individual-subband coding algorithm. 

The proposed coding algorithm is adopted from the well-known Embedded Zerotree Wavelet 

(EZW) coding. The results obtained from simulation shows that the proposed coding algorithm 

proves to be much faster than its predecessor, and at the same time, produces good Peak Signal 

to Noise Ratio (PSNR) at very low bit rates. 

Finally, the two proposed transform architectures are implemented on Virtex-E Field 

Programmable Gate Array (FPGA) to test the hardware cost (in terms of multipliers, adders and 

registers) and throughput rate. From the synthesis results, we see that the proposed algorithm has 

low hardware cost and a high throughput rate.  
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Chapter 1 

Introduction 

1.1 Image Compression 

With the advanced development in Internet and multimedia technologies, the amount of 

information that is handled by computers has grown exponentially over the past decades. An 

image is such information represented as a positive function on a plane. The value of this 

function at each point specifies the luminance or brightness of the picture at that point. These 

values are known as pixels. The value of the luminance at each pixel is represented to a pre-

defined precision. Eight bits of precision for luminance is common in imaging applications. The 

eight-bit precision is motivated by both the existing computer memory structures (1 byte = 8 

bits) as well as the dynamic range of the human eye. So if we consider a grayscale image of size 

512 x 512, the pixels vary from 0 to 255 levels of luminance. The canonical representation 

requires 512 x 512 x 8 = 2,097,152 bits. This shows that, in order to store one grayscale image of 

size 512 x 512, we require 256MB of memory. Larger number of such image requires huge 

amount of storage space and transmission bandwidth that the current technology is unable to 

handle technically and economically. One of the possible solutions to this problem is to 

compress the information so that the storage space and transmission time can be reduced. This is 

the main function of image compression.  

A typical image compressor is comprised of transform, quantization and coding blocks. The 

transform is used to represent the image pixels into fewer coefficients without any loss of 

information. The decomposed coefficients are then compressed using quantization. The 
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quantization uses set of predefined steps to remove any redundant information from the image. 

At this stage the compression becomes irreversible. The coding stage converts the compressed 

coefficients into binary values and adds it to the bitstream for the ease of transmission. This 

method of compression is called lossy compression. The decompressor is used to perform the 

inverse operations of the encoder to get the original image.  

One such transforms is the wavelet transform [1, 2]. The Discrete Wavelet Transform (DWT) [3, 

4], with its multiresolution capability, is widely used in many applications like, image and video 

coding, biomedical signal processing for low-power pacemakers, ultra-wideband (UWB) 

wireless communication pattern recognition, etc. There are many transforms that are included in 

the Discrete Wavelet transform. Out of the many transforms, a widely used variation is the 

Daubechies wavelets (D2-D20) [23]. This thesis is limited to only two of the Daubechies 

wavelets (D4 and D6). This is because the D4 and D6 transforms offer good decomposition 

when compared to simple D2, and also the complexity of the transform architecture increases 

from D8. Due to the few problems with the conventional Discrete Wavelet transform (such as; it 

uses large number of auxiliary memory and since it is Fourier based, it cannot be applied for 

many complex real life applications), we use the lifting based Daubechies-4 (D4) and 

Daubechies-6 (D6) DWT. The lifting based architecture is primarily designed for the purpose of 

implementation. The lifting scheme is much faster than the traditional approach, less complex 

requirements for hardware, and is more suitable for real-time processing. Due to these beneficial 

features and advantages, the lifting scheme (CDF 9/7 transform; with four simple filter 

coefficients offer flexibility and practically very low computational error) is included as the core 

transform in the new JPEG2000 standard [9]. 
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1.2 Thesis Motivation 

With the development in nanotechnology, hardware size has decreased significantly and is 

packed with many functions. Due to the small size of the devices, the storage capacity and 

resources are limited. It is necessary to compress all the information before storing or 

transmitting the data. It would be ironic if the encoder takes most of the resources on the 

hardware. Hence, there is always a demand for efficient low complexity algorithms for image 

processing. 

The use of conventional floating point lifting based algorithm introduces error which degrades 

the quality of the image when reconstructed. This is due to the inability to exactly represent the 

filter coefficient values during implementation.  In order to eliminate the round-off error for 

DWT, Wahid et al. [26, 47] proposed a new integer based mapping technique, known as 

Algebraic Integer Quantization (AIQ), to compute the Daubechies-4 tap and Daubechies-6 tap 

filter coefficients. The AIQ based approach converts all the filter coefficients into integers and 

provides error free calculation of the wavelet coefficients. However, the former AIQ based 

technique is based on the conventional DWT which has a low throughput rate and high hardware 

complexity. 

In our work, we extend the AIQ algorithm for the lifting based Daubechies-4 and Daubechies-6 

DWT. We reduce the number of filter coefficients and implement complete integer based 

architecture. The algorithm uses very little hardware resources and can be used for real-time 

processing on smaller devices. In addition to this, we propose a new adaptive subband 

quantization approach to code the wavelet coefficients. Most available quantization algorithms 

do not provide efficient compression of the original image, whereas, algorithms that offer good 
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quality compression are targeted towards specific types of images. On the other hand, algorithms 

that perform both the previous functions tend to be highly complex. Embedded Zerotree Wavelet 

(EZW) [29] is one of the popular wavelet image coding algorithms that offers good reconstructed 

image quality at a very low bit rate, and handles all types of images. Despite the advantages, the 

EZW algorithm is very complex and has very slow processing time. Our proposed coding 

algorithm performs on individual subbands using iterative coding structure. This method of 

individual subband coding is much faster with good quality image compression. The output 

obtained in our case is binary values which can be directly transmitted without any extra 

conversion steps.  

1.3 Thesis Objective 

This thesis is directed towards computing efficiently the D4 and D6 forward wavelet transform 

filters using AIQ based lifting scheme. The objectives of this research can be categorized as 

follows, 

1) The integer based architecture of the two lifting based transforms should be less complex 

and the quality of reconstructed image should be similar to the floating point transform. 

The quality will be measured in terms of Peak Signal to Noise Ratio (PSNR) as given by, 

 
( )

10
2

, ,1 1

25520 log
1 'N M

m n m nn m

PSNR
x x

M N = =

= ×
−

× ∑ ∑
  (1.1) 

2) The proposed iterative coding algorithm should be much faster than EZW while 

maintaining good quality reconstructed image at high compression rates. 
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3) The two proposed transform algorithms should use very little resources when 

implemented on Field Programmable Gate Array (FPGA). 

4) To discuss the performance of our algorithm with various other techniques. 

All the details of the implementation of the two algorithms will be discussed in this thesis. All 

the results from simulation and hardware synthesis will be discussed in terms of image 

reconstruction and hardware complexity along with the architectures from many other existing 

techniques.  

1.4 Thesis Organization 

This thesis consists of six chapters. In Chapter 2 we discuss briefly about the Discrete Wavelet 

Transform. Chapter 2 also shows the most important features of using Discrete Wavelet 

Transform for image decomposition. In Chapter 3 we illustrate the disadvantages of using the 

Discrete Wavelet Transform and the use of Lifting based Discrete Wavelet Transform. We also 

discuss the advantages of using the Lifting scheme over the traditional wavelets. In Chapter 4 we 

discuss in detail about the proposed Algebraic Integer Quantization (AIQ) approach, used to 

improve the lifting scheme. We also discuss the reduced complexity of the Daubechies-6 lifting 

scheme. In Chapter 5, we propose a new quantization technique to code the wavelet coefficients. 

We also compare the processing time of the proposed algorithm with other famous coding 

techniques. In the first half of Chapter 6, we discuss performance of the two proposed algorithm 

using the simulation results. The PSNR and bit rate are determined for both encoders using 

several types of images. In the second half of Chapter 6, we discuss the complexity of the two 
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proposed transforms on hardware. Finally, in Chapter 7 we summarize the entire thesis work and 

provide recommendations for possible improvements of future work.  
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Chapter 2 

Discrete Wavelet Transform 

2.1 Introduction 

Discrete Wavelet Transform (DWT) [1][2][3][4]  is a technique used in image processing for 

compressing data. Image compression is essential to provide ease of transmission and storage. 

The discrete wavelet transform has been extensively used by many researchers in recent years 

[5][6] due to its impressive structure and time-frequency characteristics. The DWT transforms 

discrete signals from time domain to time frequency domain. Due to many interesting features, 

the discrete wavelet transform is being used in many practical applications like speech 

compression, which provides faster transmission in mobile communication. DWT is used in 

medical applications for its real-time processing capabilities. Also, in denoising, feature 

extraction, edge detection, echo cancellation, etc.  

On the other hand, many researchers have used the Discrete Cosine Transform (DCT) [7] as the 

primary transform scheme for many years and it is included in the well known JPEG [8] 

standard.   But at high compression rates the DCT produces “blocking artifacts”. The input 

image is split into blocks (8 x 8 or 16 x 16 etc) and DCT is performed on each of the blocks. At 

high compression rates, a mismatch occurs between the adjacent blocks near the boundaries. 

This mismatch causes blocks to appear in the reconstructed image. However, the DWT performs 

on an entire image in row by row fashion, thus it eliminates the possibility of producing blocking 

artifacts. Moreover, DCT requires huge number of memory buffers for storing the input blocks 

and for its transform matrix. Efficiency of the DCT relies on choosing the size of the blocks and 
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its transform matrix. DWT on the other hand works with minimum number of registers, since the 

decomposition is carried out in row by row fashion. This makes DWT less complex and more 

suitable for hardware implementation. Due to these compelling factors, the Discrete Wavelet 

Transform is integrated in the most well known standards like JPEG2000 [9], MPEG-4, etc.  

2.2 What are Wavelets? 

Wavelets [10] are sets of basis functions used in the analysis of signals and images. For many 

decades, scientists desired to use a function, more appropriate than the sine and cosine signal, to 

represent choppy signals. Wavelets are functions that are created as a superposition of some set 

of functions mainly used for approximating data. Wavelets are well suited for approximating 

data with sharp discontinuities. A wavelet is generally a portion of a complete waveform, and it 

decays quickly. The wavelet analysis uses a wavelet prototype function called the “analyzing 

wavelet” or “mother wavelet”. Temporal analysis is resolved using the high frequency version of 

the prototype wavelet, while the frequency analysis is better resolved using the low frequency 

version of the prototype wavelet. Hence the concept of wavelets is to look at the input data at 

various scales and analyze them in different resolutions.  

The concept of wavelet transform was first introduced by Jean Morlet in 1982 [11]. Morlet 

provided mathematical tool and considered that family of functions are constructed from a single 

function known as “mother wavelet” )tψ ( . These functions are given by [12], 

 ,
1( ) , , , 0a b

t bt a b R a
aa

ψ ψ − = ∈ ≠ 
 

  (2.1) 
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Figure 2.1 shows the wavelet functions of some of the popular wavelets used in image 
processing. All the figures are generated using MATLAB image processing tool.  

 

   
Daubechies-4 wavelet     Daubechies-6 wavelet 

   
Mexican Hat wavelet                            Morlet wavelet 

Figure 2.1: Wavelet functions of some of the popular wavelets.  

The parameter a represents dilation (scaling) and it corresponds to the degree of compression. 

The parameter b represents translation which determines the time location of the wavelets. If 

1a > , then the output is a compressed version of the mother wavelet and it represents the high 

frequency components. On the contrary, if 1a < then , )a b tψ ( has larger time-widths than )tψ (  

and it corresponds to the low frequency components. Thus, wavelets have their time-widths 

related to their frequencies. Also, the wavelet transform at high frequencies gives good time 

resolution but poor frequency resolution, while, at low frequencies, it gives good frequency 

resolution but poor time resolution. In other words, high frequency components do not appear for 
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a long duration, whereas, the low frequencies last for the entire duration of the signal. This time-

frequency characteristic makes the wavelets an excellent tool in the field of image processing. 

2.3 Multi-Resolution Analysis and Subband Coding 

In the Discrete Wavelet Transform, image data can be analyzed using an analysis filter bank 

followed by a decimation operation. In image compression, it is most common to use an analysis 

filter bank with a set of low pass and high pass filters at each stage. These filters are designed to 

adapt certain characteristics of data well suited for some applications. The decimation operation 

is most commonly known as subsampling [13]. Subsampling refers to removing some samples of 

the signal. For example, subsampling by two refers to dropping every other sample of the signal. 

Subsampling does not change the resolution of the signal. Resolution is a measure of detail 

information in the signal and is affected by the filtering operations. 

DWT analyses the input signal at different frequencies with different resolutions by 

decomposing the signal into approximation and detail information. The DWT uses two set of 

function called wavelet function and scaling function. The decomposition of the signal into 

different frequencies is obtained through successive low pass and high pass filtering of the time 

domain signal. The original input signal x[n] is passed through a low pass filter h[n] and a high 

pass filter g[n]. The signal now has a frequency of π /2 radians instead ofπ . Hence, according to 

the Nyquist’s rule, half of the samples can be discarded without any loss in the information. The 

signal can be therefore subsampled by 2, removing half of the redundant samples. This in turn 

doubles the scale. This constitutes a one level decomposition and can be mathematically 

expressed as, 

10 
 



 ( ) [ ]. [2 ]high
n

y k x n g k n
∞

= −∑  (2.2)  

 ( ) [ ]. [2 ]low
n
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 where n is an integer, ( )highy k  and ( )lowy k  are the outputs of high pass and low pass filters 

respectively after subsampling by 2. 

This decomposition reduces the time resolution by half, while the frequency resolution is 

doubled, since the signal now contains only half the frequencies constituting the entire signal, 

which reduces the uncertainty of the frequency by half. This procedure is commonly referred to 

as subband coding [14]. Figure 2.2 shows a one dimensional three level wavelet decomposition 

of the signal x[n] using the low pass filter h0[n] and high pass filter g0[n]. This is known as 

Mallet tree decomposition [15]. At each level, the high pass filter produces detail information 

d[n] and the low pass filter produces coarse approximation s[n].  

 

g0[n] ↓2

h0[n] ↓2

g0[n] ↓2

h0[n] ↓2
g0[n] ↓2

h0[n] ↓2

x[n]

d1[n]

d2[n]

d3[n]

s3[n]
 

Figure 2.2: Three level wavelet decomposition tree. 
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After each decomposition level, the next stage approximation and detail components are 

extracted from the low frequency information. This further reduces the frequencies by half by 

discarding 50% of the redundant samples thus improving the resolution. This multi resolution 

capability is one of the prominent features of the wavelet transform. The filtering and decimation 

process are repeated till the desired level is reached. The number of levels depends on the length 

of the input signal.  

The reconstruction of the original signal is achieved by performing the reverse process of 

decomposition. The approximation and detail components are upsampled by 2 and then passed 

through the low pass and high pass filters respectively. The low pass and high pass outputs are 

finally merged together. The process is repeated for the appropriate number of levels till the 

original signal is obtained. Figure 2.3 shows the inverse wavelet transform with the low pass 

filter h1[n] and the high pass filter g1[n].  

g1[n]↑2

h1[n]↑2
g1[n]↑2

h1[n]↑2
g1[n]↑2

h1[n]↑2

x[n]

d1[n]

d2[n]

d3[n]

s3[n]

 

Figure 2.3: Three level wavelet reconstruction tree. 

For an N x N image, the DWT is computed by processing the image using 1-D DWT in both 

horizontal and vertical direction to yield a 2-D DWT. The image is decomposed into four 

subbands, one coarse approximation LL and three detail subbands LH, HL and HH, each of size 

N/4 x N/4. The next level decomposition is continued on the LL subband. The process is 
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repeated for the desired number of levels, forming a pyramidal structure.  Figure 2.3 shows the 

three level 2-D DWT decomposition of an image. 

LL3 HL3

LH3 HH3

LH2

HL2

HH2

LH1

HL1

HH1

 

Figure 2.4: Three level 2-D DWT decomposition of an image. 

2.4 Conditions for Perfect Reconstruction 

In a Wavelet transform, it is necessary that the original signal be reconstructed perfectly from the 

wavelet coefficients. This can only be achieved by having a good combination of analysis and 

synthesis filters. The analysis and synthesis filters can be checked for perfect reconstruction by 

satisfying certain conditions. Let h0[n] and g0[n] be the analysis low pass and high pass filters 

respectively, while h1[n] and g1[n] are the synthesis low pass and high pass filters respectively. 

Then the conditions for perfect reconstruction are given by [16], 
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 0 1 0 1[ ]. [ ] [ ]. [ ] 2h n h n g n g n+ =   (2.5) 

The first condition states that the reconstruction is free of aliasing and the second condition states 

that the amplitude distortion has an amplitude of one. From the equation, it can be noted that the 

perfect reconstruction condition does not change if the analysis and synthesis filters are switched.  

It is difficult for most wavelet filter banks to produce good output coefficient values while 

satisfying the condition of perfect reconstruction. The performance of the wavelet transform 

filters can be determined by calculating the Peak Signal to noise Ratio (PSNR) between the 

reconstructed image and the original image. If the quality of the reconstructed image is closer to 

that of the original image, then the PSNR value measured between the output and the input will 

be high.  
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Chapter 3 

Lifting Based Discrete Wavelet Transform 

3.1 Introduction 

The lifting scheme [17][18] or the lifting based discrete wavelet transform (LWT) is an efficient 

approach to construct the so called ‘second generation wavelets’. These wavelets in general are 

not necessarily translations and dilations of a function. The wavelets explained in the Chapter 2 

are called first generation wavelets or classic wavelets. The lifting scheme has some additional 

advantages in comparison to the classic wavelets. The Lifting scheme allows faster 

implementation of the wavelet transform. In the classic transform, the signal is split into high 

pass and low pass signals and then subsampled, whereas the lifting scheme makes optimal use of 

the similarities between the low pass and high pass filters to speed up the calculation, sometimes 

increasing the speed by a factor of 2. The lifting scheme allows a fully in-place computation of 

the wavelet transform, so no auxiliary memory is needed.  

Another interesting feature of the lifting scheme is that all the constructions are performed in the 

spatial domain. This is in contrast to the classic approach which relies heavily on the frequency 

domain. There are two main advantages of working in the spatial domain. First, it does not 

require a Fourier transform as the prerequisite for the construction of wavelets. Secondly, most 

practical applications are not Fourier based, hence lifting can be freely applied to complex 

situations. In the traditional wavelet transform, it is not immediately clear that the inverse 

transform is an actual inverse of the forward transform. The perfect reconstruction can only be 

checked using the Fourier analysis. On the other hand, the inverse transform of the lifting 
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scheme can be found immediately by undoing the operations of the forward transform. In other 

words, just replacing a “+” with a “-” and vice versa represents the inverse transform. One of the 

major advantages of the Lifting scheme is that, it can be applied to many real life situations that 

require functions and transforms to adapt to irregularly sampled data. Also, to analyse data that 

reside on curves or surfaces and to solve equations on curves and surfaces, the lifting scheme 

plays a vital role. In short, the second generation wavelets are more advantageous to use when 

compared to the traditional wavelet transform. For many years now, the lifting scheme has been 

widely used in research [19][20][21] with many improvements. The popular JPEG2000 standard 

[9] features lifting scheme as its core transform. 

3.2 Constructing second generation wavelets 

The basic idea behind the lifting scheme is to start with an initial wavelet called the “Lazy 

Wavelet”. There is no function associated with these lazy wavelets, except that it has the 

properties of a wavelet. The lifting scheme then tries to construct new wavelets by adding new 

basis functions. The lifting scheme then improves the properties of the constructed wavelet by 

finding a close correlation between the low and high frequency components. This is the 

inspiration behind the name “lifting scheme”. 

Daubechies and Sweldon [17][18] showed that a new structure of wavelet transform can be 

constructed from any orthogonal and biorthogonal filters by employing factorization of a 

polyphase matrix. So the lifting scheme begins with a well known set of filters, say (h, g), and 

the filters are split into even and odd. The polyphase matrix is given by, 
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 ( )
he ge

P z
ho go
 

=  
 

  (3.1) 

The polyphase matrix is factorized using successive division approach (Euclidean algorithm) by 

choosing the appropriate Laurent polynomials from the filters h and g. Each step involves 

selecting the Laurent polynomials and finding the exact quotient and remainder. It is not possible 

for a set of filters to be exactly divisible by each other. But the coefficient at each division can be 

replaced by a suitable remainder that is more likely to be divisible at the next factorization. The 

suitable remainder can be obtained only by choosing the right quotient. Let ( )a z  and ( )b z ≠ 0 

with ( ) ( )a z b z≥  be any two Laurent polynomials. There always exists a quotient ( )q z  and 

remainder ( )r z , so that 

 ( ) ( ). ( ) ( )a z b z q z r z= +  (3.2)  

When ( ) 0r z = , the division by the polynomial is exact. The division of two Laurent 

polynomials is also a Laurent polynomial. The factorization of the polyphase matrix is not 

unique. There exists many possibilities for choosing the quotient and the division can proceed to 

achieve an entirely different set of lifting coefficients. The aim of the factorization is to represent 

the polyphase matrix as a set of upper and lower triangular matrices. This can be written as, 

 ( )
1

1 01 ( ) 1
( ) 10 1 1 1/

m
i

i i

s z K
P z

t z K=

    
=     

    
∏   (3.3) 
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where, K is a non-zero constant and the Laurent polynomials ( )is z  and ( )it z  make up the 

primal and dual lifting stages respectively. The polyphase matrix corresponding to the forward 

transform is now given by, 

  ( )
1

1
1

1 0 1/ 11 ( )
( ) 1 10 1

m
i

i i

Kt z
P z

s z K

−

−
=

    
=     

   

−
−

∏   (3.4) 

In the case of orthogonal filters, ( ) ( )P z P z= . Depending on the factorization, there may exist 

many primal and dual lifting steps. Figure 3.1 shows the lifting based forward and inverse 

transform with m lifting steps.  

z ↓2

↓2

s1(z) t1(z) sm(z) tm(z)

-

-

-

-

1/K

K

Low

High

Xori

 

a) Forward transform with m primal and dual lifting steps 

z-1↑2

↑2

s1(z)t1(z)sm(z)tm(z)

+

+

+

+

K

1/K

Low

High

Xrec

 

b) Inverse transform with m primal and dual lifting steps 

Figure 3.1.a) and b) are the analysis and synthesis representation of the polyphase matrix. 
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3.3 Applying lifting based transform to images 

The process of implementing lifting steps on images is very similar to using it on discrete-time 

signals, except that signals are one dimentional while images are two dimentional. First, let us 

consider a signal X with 2i  samples. The signal when decomposed gives a coarse signal 1is −  and 

a detail signal 1id − . The lifting transform generally consists of three steps: split, predict and 

update, as shown in Figure 3.2.  

Split Predict Update

-

+

Input

Even

Odd

Smooth

Detail
 

Figure 3.2: Basic steps in lifting scheme 

The input is first split into two sets of samples. One set containing the even samples 2lX  and the 

other contains all the odd samples 2 1lX + . Each set now holds exactly half the number of samples 

compared to the original. The process of splitting the input into even and odd is called the lazy 

wavelet transform. If a signal has a local correlation structure, then the even and odd subsets will 

be highly correlated. It is possible to predict one set from the other with a reasonable accuracy. 

In this case the even sample is predicted from the odd one. The difference is then propagated. 

The difference is therefore the detail component 1id − . Depending on the prediction operator, it is 

possible to represent the detail more efficiently. The even signal is then approximated by 
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selecting the suitable update operator to replace the even signal with an average. The 

computations are carried out in place: the even locations are replaced by averages and the odd 

ones with detail. This can be shown as, 

 
2 1 2

2 1 2

2

( , ) ( )
( ) ( )
( ) ( )

l l

l l l

l l l

X X Split X
Detail d X Predict X
Smooth s X Update d

+

+

=
= −
= +

  (3.5) 

The inverse transform is fairly simple. By undoing the predict and update step, it is possible to 

obtain the original signal. By just changing the signs of the predict and update steps, the original 

even and odd sample is reconstructed. Finally, the even and odd samples are merged together to 

form the original signal, this is shown in Figure 3.3. 

MergePredictUpdate

+

-

Original

Even

Odd

Smooth

Detail
 

Figure 3.3: Inverse lifting transform 

The lifting block shown in Figure 3.2 is a 1-D wavelet transform. In order to decompose an 

image, the input image is subjected to vertical and horizontal scanning using a 1-D transform. In 

the case of an image, the 2-D transform gives one coarse subband (LL) and three detail subbands 

(HL, LH and HH). Further decomposition can be achieved by applying the transform to the LL 

subband. The procedure can be extended to the desired number of decomposition levels. 
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The key dilemma is to decide upon which transform architecture to use. There are many lifting 

based transforms developed in recent years, but only a few have been found to be efficient in 

various applications. One such popular lifting scheme is the CDF 9/7 transform, which is used in 

the JPEG2000 standard. In our research, we focus on the popular Daubechies-4 tap (D4) and 6 

tap (D6) lifting based discrete wavelet transform [17]. The reason for using these two variations 

is that, when optimized, the D4 and D6 prove to be faster and less complex for real-time 

applications, which is discussed in detail in the latter part of this thesis. 

Daubechies family of orthogonal wavelets runs from D2 to D20 [23]. The complexity of the 

Daubechies wavelets increases with the order. D4 and D6 are the two most widely used wavelets 

of the entire series. One of the key features of the Daubechies wavelets is the vanishing 

moments. The vanishing moments are instances when the wavelet function becomes zero. So 

based on this, Daubechies [48] designed a type of wavelet for the given vanishing moments and 

obtained the minimum size discrete filter. The conclusion is that, for p vanishing moments, the 

minimum filter size is 2p.  D2 has one vanishing moment, D4 has two, D6 has 3 and so on. The 

vanishing moments are a necessary condition for the smoothness of the wavelet function. They 

also support the regularity and symmetry of the wavelet function. A high number of vanishing 

moments help to compress the regular parts of the signal better. However, it increases the size of 

support of the wavelets which can cause problems when the signal is discontinuous.  This is one 

of the reasons why D4 and D6 are more widely used. They are more suitable for this research 

since they can be readily converted to an integer based transform with faster processing 

capability and reduced complexity. 
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3.4 Daubechies-4 (D4) Lifting Wavelet Transform 

Daubechies-4 tap orthogonal filter is the simplest of the wavelet member in the Daubechies 

family with two vanishing moments, which is best to compress perfectly linear signals. The 4 tap 

corresponds to the number of analysis filter coefficients. The filter pairs h and g are then given 

by [22],  

 
1 2 3

0 1 2 3
2 1 1

3 2 1 0

( )

( )

h z C C z C z C z
g z C z C z C C z

− − −

−

= + + +

= − + − +
  (3.6) 

where, the four coefficients C0, C1, C2 and C3 are given by, 

 0
1 3
4 2

C +
=  , 1

3 3
4 2

C +
= , 2

3 3
4 2

C −
= and 3

1 3
4 2

C −
=  (3.7) 

Now, the polyphase matrix is, 

 ( )  ( )
1 1

0 2 3 1
1 1

1 3 2 0

( ) ( )
( ) ( )

he z ge z C C z C z C
P z P z

ho z go z C C z C z C

−

−

 + − − 
= = =    + +   

,  (3.8) 

and the factorization is given by [17], 

 ( )  ( )
1

3 1 01 0
1 3 1 2

3 3 2 0 110 1 3 104 4
2

z
P z P z
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 +
    −     = =   −     + −        

 

  (3.9) 
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Hence, on the analysis side the polyphase matrix is factored as, 

  ( ) 1

3 1 0 3 3 21 1 012
4 413 1 3 11

1
00

0
/

2

t zP z
z−

 +
   −    +        − −      



=

 


  (3.10) 

This corresponds to the forward transform implementation given by the following expressions, 

 

(1)
2 1 2

(1) (1) (1)
2 1

(2) (1) (1)
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(2)

(2)

3

3 3 2
4 4

3 1
2

3 1
2

l l l

l l l l
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  (3.11) 

The inverse transform is performed by reversing the above process and flipping the signs. The 

polyphase matrix factorization shown is not unique. This research is based on the above 

polyphase matrix, as it has simpler lifting steps and less complex coefficients. Consider 3C =  

and 2R = , Figure 3.4 shows the forward transform block of the Daubechies-4 lifting wavelet 

transform. 

 

↓2

↓2

-C C/4 + (C-2)z-1/4

+

+

z

+

z-1

(C-1)/R

(C+1)/RX X2l

X2l+1

sl

dl

 
Figure 3.4: Lifting based Daubechies-4 forward transform block. 
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3.5 Daubechies-6 (D6) Lifting Wavelet Transform 

The next member in the class of Daubechies wavelets, with three vanishing moments, is the 

Daubechies-6 transform. The three vanishing moments are best to compress quadratic signals. 

The D6 lifting has six filter coefficients. The complexity of the transform is considered to be 

higher than D4. From [22] we have the six filter coefficients as, 

 

( ) ( )
( ) ( )
( ) ( )

2 1

0 1

2 3

2 1 10 5 2 10 / 32 2 5 10 3 5 2 10 / 32

2 10 2 10 2 5 2 10 / 32 2 10 2 10 2 5 2 10 / 32

2 5 10 3 5 2 10 / 32 2 1 10 5 2 10 / 32

C C

C C

C C

− −= + + + = + + +

= − + + = − − +

= + − + = + − +

  (3.12) 

The polyphase matrix is now given by [17], 

 ( )  ( )
1 1

2 0 2 3 1 1
1 1

1 1 3 2 0 2

( ) ( )
( ) ( )

he z ge z C z C C z C z C C z
P z P z

ho z go z C z C C z C z C C z

− −
− − −

− −
− − −

 + + − − − 
= = =    + + + +   

 (3.13) 

The factorisation of the polyphase matrix gives six lifting coefficients as shown below,  

 ( )  ( )
11 0 1 0 1 01

1 1 0 1 0 1/0 1
z

P z P z
z

δ ςβ β
α γ γ ζ

− ′ +       
= =         ′ +        

 (3.14) 
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where,   

 

0.4122865950,
1.5651362796,

0.3523876576,
0.0284590896,
0.4921518449,
0.3896203900,

1.9182029462

α
β
β
γ
γ
δ
ζ

= −
= −
′ =
=
′ =
= −
=

  (3.15) 

This leads to the forward transform factorization of the polyphase matrix, by reversing the steps 

and transposing the matrix, given by, 

  ( )
10 1 0 1 0 11

1/
0 1/ 1 1 0 10 1

t z
P z

z
ς αγ γ

ζ δ β β

− ′ +       
=         ′ +        

  (3.16) 

The implementation of the forward transform matrix can be expressed as, 
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  (3.17) 

The above expression can be represented in the form of lifting step as shown in Figure 3.5 

below, 
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Figure 3.5: Lifting based Daubechies-6 forward transform block. 

Now in this work, we apply integer mapping, known as Algebraic Integer Quantization (AIQ), to 

error-freely map the filter coefficients with integers. The mapping technique is described in the 

following chapter. 

3.6 Previous Works 

The architecture proposed by Q.Dai et al [34] is a multidimensional m-D DWT with multistage 

pipelining, hardware is tested using Daubechies-4 tap filter. The main drawback of the design is 

the huge RAM module which increases the hardware cost. The design adds to more number of 

multipliers and adders, and does not provide efficient implementation of the wavelet filter 

coefficients. On the other hand, the wavelet processing core proposed by S.W. Lee et al [35] is 

based on the fast-lifting based 9/7 DWT. The design uses a complex control circuitry and large 

kernel size to perform multiplication. The folded 9/7 DWT architecture proposed by M. Martina 

et al [36] gives a multiplierless implementation of the 9/7 DWT, but has low throughput rate. 

Also, the design is based on the floating point implementation of the filter coefficients, that 

introduces round-off error at the output. Similarly, the folded lifting based 9/7 architecture 

proposed by G. Shi [37] possesses low critical path latency, but at the cost of low throughput 
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rate, more intermediate registers and high control complexity, compared to the direct lifting 

approach. The architecture of Y.K. Lai [38] is based on pipelined lifting based 9/7 transform 

which uses register array to perform the scanning operation. This increases the number of 

memory buffers used in the design. The other drawback of the design is the use of 12 bit absolute 

values to represent the filter coefficients.  This is also true in the architecture proposed by C.T. 

Huang et al [39] and B.F. Wu [40]. Both the design follows a multistage pipelining of lifting 

based 9/7 filter based on flipping structure. The drawback of the design includes implementation 

of the filters using 12 bit precision. The design [40] has low throughput rate and high number of 

memory buffers. The architecture proposed by Y.H. Seo et al [41] is a combination of lifting 

based 5/3 and lifting based 9/7 transform. The input bit length is 8 bits, however, the output 

coefficients bit length is 17. Out of the 17 bits, 10 bits are allocated for whole number and 7 bits 

are allocated for partial number. The architecture uses a large number of logic cells and has high 

control complexity. S.K. Paek et al [42] proposed an architecture based on semi-recursive D4 

DWT. The main noticeable disadvantage of the design is the huge hardware cost. This is because 

the design uses twelve 16 bit adders, four 8 x 16 multipliers and twelve 16 x 16 multipliers. Also, 

DWT filter coefficients and DWT input data should be 16 bit. K.K. Parhi et al [43] introduced 

two architectures for 1D DWT: folded and digit serial. The architecture has several drawbacks 

such as complex routing, large silicon area and high power consumption. 

The architectures proposed by M. Ali et al [45] and K. Benkrid et al [46] are based on the D8 

DWT filter. Despite the performance of D8, the design has large area (hardware cost) and 

complex calculations. Recently, K. Wahid [47] proposed the integer based implementation of D4 

and D6 DWT which eliminates the round-off error that is caused in the floating point 

implementation. Despite the many advantages of the AIQ design, the transform used is the 
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conventional DWT, which uses large number of memory buffers and uses large area on 

hardware. So in this thesis, we concentrate on using the lifting based D4 and D6 and propose an 

integer based lifting architecture.  
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Chapter 4 

Proposed Lifting-Based Algorithm 

4.1 Introduction 

A more efficient approach to lossless compression is the use of integer transforms. The transform 

coefficients exhibit the feature of being exactly represented by finite precision numbers, and this 

allows for truly lossless coding. The lifting scheme has been introduced for the efficient 

computation of DWT. Its main advantage with respect to filter bank structure lies in its better 

computational efficiency and in fact it enables a new method for filter design. Moreover, the 

integer wavelet transform (IWT) can be computed from any real valued wavelet filter by simply 

modifying the lifting scheme. Therefore the lifting scheme represents a distinguished choice for 

the implementation of encoders with lossy or lossless compression capabilities, providing a 

common core for computing both DWT and IWT [24]. 

Moreover, integer based transforms are much faster than the floating point arithmetic in almost 

all general purpose computers because the floating point wavelet transform demands for longer 

data length than the integer wavelet transform. Another benefit of using integer wavelet is the 

reversibility, that is, the image can be reconstructed losslessly because all the coefficients are 

integers and can be stored without rounding off errors [17]. This research is focused on deriving 

a completely lossless integer based lifting scheme for the Daubechies-4 tap and Daubechies-6 tap 

transforms in the form of algebraic integers.  
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4.2 Algebraic Integer Quantization (AIQ) 

The idea of using algebraic integers in signal processing applications was first explored by 

Cozzens and Finkelstein [25]. Later, Wahid et al. proposed a more generalized version of it, 

named as Algebraic Integer Quantization (AIQ), and showed its application to Discrete Wavelet 

Transforms [26][47]. The AIQ is a lossless mapping technique which is used to reduce the round 

off error when implementing a transform. This error is due to the lack of exact representation of 

the irrational numbers which forms the basis of the filter coefficients. The error propagates 

through the decomposition stage and degrades the quality of the image during reconstruction. 

Using AIQ technique, it is possible to minimize the approximation error and efficiently compute 

the Daubechies-4 and Daubechies-6 discrete wavelet transform [26]. The AIQ technique was 

never applied to lifting based wavelets; as a result, in this thesis work, we propose AIQ scheme 

to compute the lifting based Daubechies-4 and Daubechies-6. The lifting based D4 and D6 are 

faster and more efficient than the conventional ones. AIQ can be readily implemented for both 

the transforms without increasing the complexity of the lifting transform, while maintaining the 

precise representation of the irrational coefficients by an equivalent AIQ based transformed 

coefficients.  

A complete integer based lifting wavelet transform is created by performing scaling of the lifting 

filter coefficients [27]. The scaling parameter is chosen as the factor of 2. The scaling is 

restricted to the factor of 2 for the ease of implementation. This is because multiplication by 2 is 

just shifting the bits. Since multiplications are costly operations on hardware, measures are taken 

to reduce the complexity. Scaling constants other than 2 could add to the increase in hardware 

complexity. Let the scaling factor of the filter coefficients be 2x. The value of x can be calculated 
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where the coefficients are completely lossless. The value of x can vary with the type of the 

transform. The filter coefficients are scaled and rounded to integer values. The inverse scaling 2-x 

is also performed in each of the lifting step. This is to ensure that the bit lengths of coefficients 

are kept unaltered when performing a 2-D multiresolution transform. But multiplying and 

dividing at the same step can produce a floating point output at each stage. To ascertain that the 

intermediate values be kept as integers, the input image is also scaled by a factor of 2. This keeps 

the resolution of the coefficients as integer. Let the input scaling be denoted as 2y. Also, the 

scaling coefficients at the end of the transform can be removed and implemented together with 

the inverse scaling step 2-y at the quantization stage [28]. 

The proposed integer based transform does not change the structure of the lifting scheme, instead 

the values are changed to integers using scaling factors and finally reverted back to original 

values at the end of the transform. This is same as multiplying and dividing by the same number. 

All the lifting filter coefficients share the same scaling parameter. The coefficients obtained after 

decomposition are same as the one obtained using conventional lifting transform. The best value 

of x and y are found by calculating the average PSNRs of an image at different bit rates such as 

4, 2, 1, 0.5 and 0.25bpp. The PSNRs are plotted for various values of x and y. The minimum 

value of x and y where the PSNR is at maximum is chosen for scaling, this is shown in Figure 

4.2. The AIQ technique also explores the possibility of reducing the number of filter coefficients. 

By selecting the right scaling factor, one or more filter coefficients can be converted to a factor 

of 2. This reduces the number of multiplications in a transform which in turn reduces the area 

and power on hardware. 
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4.3 AIQ based Daubechies-4 lifting scheme 

The Daubechies-4 (D4) lifting scheme contains three coefficients which constitutes three 

multiplication operations. All the three coefficients are irrational, that is, the value 3  has 

infinite number of decimal (as well as binary) bits. Truncating the decimal bits leads to error 

which accumulates at each stage of decomposition. To avoid this, both the input and the 

irrational coefficients are scaled and replaced by integers with greater value. Let the D4 lifting 

scheme scaling parameter for filter coefficients be 2µ , while the input scaling parameter be 2τ . 

The new polyphase of the AIQ based D4 lifting scheme can be factored as, 

 1

1 0 11 / 2
'( )

( ) / 2 1 0 10 1
zA

P z
B Cz

µ

µ−

     
=      +    

 (4.1) 

where, 

 3 3 22 * 3 , 2 * 2 *
4 4

A B and Cµ µ µ   − = − = =    
   

  (4.2) 

The above polyphase matrix corresponds to the inverse lifting operation. The lifting step on the 

encoding side is shown in Figure 4.1. The output low pass and high pass shown are the new 

decomposed coefficients obtained prior to the inverse scaling stage. 
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Figure 4.1: AIQ model of the Lifting based D4 DWT 

here, 
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The selected range for µ  and τ  is [4, 25]µ∈  and [1,15]τ ∈  respectively. To evaluate the 

performance, we have used benchmark images used in image processing, such as, ‘Lena’. The 

image is a grayscale image of size 512 x 512. The image is decomposed and reconstructed for 

various bit rates such as 4, 2, 1, 0.5 and 0.25bpp. To achieve the required bit rate we used the 

proposed quantization approach (will be discussed further in the next chapter).  Figure 4.2 shows 

the MATLAB mesh plot of average PSNRs against values of  µ  and τ . 
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Figure 4.2: Average PSNRs plotted against values of τ and μ for the image ‘Lena’. 

The maximum value occurs at 33.31dB after which the value of PSNRs at constant. The constant 

PSNR value shows that the new integer coefficients are lossless. The minimum value of  µ  and 

τ at which the maximum PSNR occurs is 8 and 11 respectively. We use these values for scaling. 

The new integer based lifting D4 filter coefficients are formulated as, 
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The forward transform implementation is now given by, 
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The above integer model of the D4 lifting scheme contains three multiplications and four 

additions.  

Finally, the error introduced in the process is determined by calculating the difference between 

the two decomposed images (of the image ‘Lena’) obtained by using the conventional lifting 

based D4 and the proposed integer based D4 algorithm. Figure 4.3 shows the histogram levels of 

the error image. 
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Figure 4.3: Error added to the output coefficient values using the proposed integer based D4 architecture. 

4.4 AIQ based Daubechies-6 lifting scheme 

The lifting based Daubechies-6 (D6) forward transform contains six filter coefficients excluding 

the final scaling coefficient. The complexity of D6 is higher than D4. With more number of 

lifting steps there is a high risk of error accumulation. Moreover, all the D6 lifting coefficients 

are irrational numbers. A slightest decimal truncation can result in big difference in the output 

coefficient values, which is crucial at high compression rates. D6 gives very little choice for 

modifications. This is because, adding many improvements to the D6 transform may end up 

increasing its complexity. Based on similar AIQ technique to the one used in lifting based D4, 
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the proposed D6 lifting scheme has both lossless and reduced complexity. Consider the filter 

scaling parameter as 2η and the input scaling parameter as 2ϕ . The new polyphase matrix with 

new transformed coefficients are given by, 

 
11 0 1 01 ( ') / 2 1 / 2

'( )
/ 2 1 ( ' ) / 2 10 1 0 1
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P z

a c c z

η η
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where, 

 2 * , 2 * , ' 2 * ' , 2 * , ' 2 * ' 2 *a b b c c and dη η η η η ηα β β γ γ δ           = = = = = =              (4.7) 

Figure 4.4 corresponds to the block diagram of the polyphase matrix on the analysis side. The 

scaling coefficients at the end of the transform are removed and are implemented together with 

the inverse scaling at the quantization step.  
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Figure 4.4: AIQ model of the Lifting based D6 DWT 
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here, 
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The values of η  and ϕ  are chosen in the range of [4, 25]η∈  and [0,15]ϕ∈ . The average 

PSNRS are plotted for bit rates 4,2,1,0.5 and 0.25bpp. The standard grayscale image ‘Lena’ of 

size 512 x 512 is used to plot the average PSNRs against the range of values of η  and ϕ . The 

values of η  and ϕ are found to be 7 and 1 respectively. The filter coefficients are multiplied by 

the new scaling factor. The new integer based lifting D6 filter coefficients are formulated as, 
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  (4.9) 

The above integer coefficient give a lossless implementation of the D6 lifting scheme. The above 

equation shows six filter coefficients technically representing six multiplication operations. But, 

the coefficients 4 and 64 are multiples of 2. This is merely shifting the bits, and does not cost as 

much as multiplication operation on hardware. According to the AIQ technique, we reduce 2 

coefficients, but the lifting step stays true. The modified forward implementation of the integer 

based D6 LWT is, 
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The final forward transform expression shown above has 4 multiplications and 6 additions. This 

brings the complexity of the transform closer to the well known CDF 9/7 lifting scheme. The bit 

length of the input increase by 1, since ϕ is 1. The most common bit length of a grayscale image 

is 8 bits per pixel for an input image. The above proposed Daubechies-6 lifting is less complex 

and faster compared to the conventional lifting based D6.  The perfect reconstruction function 

stays true for both AIQ based D4 and D6. This is because the steps of scaling are repeated in the 

inverse transform, which is evident from the polyphase matrix.  

Now, the error added to the output coefficient values are calculated for the image ‘Lena’ by 

calculating the difference between the decomposed images of the conventional and the proposed 

technique. Figure 4.5 shows the histogram levels of the error image. 
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Figure 4.5: Error added to the output coefficient values using the proposed integer based D6 architecture. 
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Chapter 5 

Proposed Quantization Scheme 

5.1 Introduction 

Quantization refers to the process of approximating a continuous set of values in the image with 

finite set of values. The input to the quantizer is always the original data and the output is always 

one amongst those finite set of values. This is similar to throwing away the samples by sampling 

operation. A good quantizer represents the original data with minimum loss and distortion. 

Hence quantization process is lossy and irreversible. It uses statistical analysis or mathematical 

expressions to remove most of the redundant information. This is crucial in applications where 

the storage area in limited. The amount of compression achieved through quantization is 

measured in terms of bit rate or compression ratio. Figure 5.1 shows the block diagram of an 

image compressor. 

Transform Quantization CodingOriginal data Compressed data
 

Figure 5.1: General diagram of an image processing algorithm. 

5.2 Quantization in Wavelet Transforms 

There are two types of quantization; Scalar quantization and vector quantization. In scalar 

quantization, each coefficient is treated separately in producing the output. But in vector 

quantization, the coefficients are group together as vectors and are processed together to produce 

the output. The use of scalar quantization is simple and fast, whereas vector quantization is 
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advantageous in case of optimality, but at the cost of increase in computational complexity. So, 

the most effective technique is the use of scalar quantization, which quantizes the wavelet 

coefficients individually. Scalar quantization uses step size to better approximate the wavelet 

coefficients. This is as simple as using a threshold value to remove all the data below that value, 

which is not so effective at high compression rates. The low pass coefficients carry the actual 

information, hence neglecting some values can result in loss of quality. Whereas, the high pass 

coefficients carry the details, and so it can be heavily quantized to achieve high compression 

rates. The problem with the wavelet transform is that the wavelet coefficient levels vary 

depending on type of image. The idea of using a fixed quantization matrix or step size proves to 

be ineffective in wavelets when the human visual system (HVS) is considered. This is because 

the significant coefficients appear at random in the high pass subbands depending on the amount 

of details in an image.  Removing the significant coefficients from the high pass subband causes 

the intensities of the pixels to change after reconstruction. In order to preserve the visual quality 

of the image and to achieve the required bit rate, an adaptive quantization technique is needed.  

5.3 Embedded Coding 

When coding the wavelet coefficients into a bit stream, it is important not only to code the 

magnitude of the significant data but also its spacial location. For many years embedded coding 

is used to compress the wavelet coefficients. Embedded coding compresses the coefficients and 

codes its magnitude as a binary value, along with the information about its location. One of the 

most widely known embedded coding techniques is the Embedded Zerotree Wavelet (EZW). 

The EZW encoder was first developed by Shapiro [29] to use with the wavelet transforms. 

Unlike the Discrete cosine transform (DCT) which uses fixed quantization table, the EZW 
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encoder is based on progressive encoding which compresses the data into bitstream with 

increasing accuracy. Lossless compression can also be achieved with the EZW technique.  

To begin with, EZW is a significance mapping algorithm that uses series of iterations to code the 

transform coefficients in the order of importance. EZW works on the principle that “An 

insignificant coefficient very likely has its descendants in the next finer scale as insignificant” 

[29]. The coefficients are encoded depending on the parent-child relationship. A low coefficient 

has four descendants in the next higher scale. Each of those four individual coefficients can be 

related to four descendants in the next higher subband forming a quad tree structure. Thus each 

parent has four children. So a zerotree is a quad tree of which values of all the nodes are equal to 

or smaller than the root. Figure 5.2 shows how the coefficients are linked to its descendants in 

the next scale and its scanning order.  

 

Figure 5.2: Wavelet coefficients relationship in the different subbands (left) and the scanning order (right) 
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The scanning order is generally called Morton scanning order. It is selected based on the 

importance of the subband, which are LL, HL, LH and finally HH. The coefficients are coded 

into the bitstream in this order. Let the wavelet coefficients be C(x,y). The initial threshold is 

found using the following expression, 

 2log ( ( ( , ) )
0 2 MAX C x yt   =   (5.1) 

The EZW encoder uses two passes to code the coefficients. In the first pass (dominant pass), the 

wavelet coefficients are scanned progressively using the initial threshold and a symbol is 

outputted for every coefficient. If the coefficient is larger than the threshold, then P (positive) is 

coded, if the coefficient is smaller than minus the threshold an N (negative) is coded. If the 

coefficient is the root of a zerotree then a ZRT (zerotree root) is coded, if the coefficient is 

smaller than the threshold but it is not the root of a zerotree, then an IZ (isolated zero) is coded 

and finally if the coefficient has no children then Z (zero) is coded. The process is repeated for 

all the subbands in the order. Finally, all the coefficients that are found significant are placed in 

the subordinate list and their positions in the image are made zero to prevent them from being 

coded again. At the end of each dominant pass the threshold is halved and the above process is 

repeated again.  

The second pass (subordinate pass) codes all the values in the subordinate list into binary data. 

The subordinate pass is also called as refinement. After every dominant pass the subordinate list 

is scanned. For the first subordinate pass, the two intervals are selected between initial threshold 

t0 and 2t0. The first interval is t0 to t0+ t0/2 and the second interval is (t0+ t0/2)+1 to 2t0. If the 

coefficient in the subordinate list is inside the first interval, then 0 is coded. If the coefficient 
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belongs to the upper interval, then 1 is coded. At the each subordinate pass, the intervals are 

halved and the sub upper and lower intervals are assigned 1 and 0, respectively. The dominant 

pass and subordinate pass are repeated till the threshold value reaches the minimum threshold. 

The minimum threshold value is selected depending on the desired bit rate. If the minimum 

threshold value is 0, then EZW becomes completely lossless. 

Finally, the symbols coded in the dominant pass are converted to binary using separate coding 

techniques like arithmetic coding or Huffman coding. The final bitstream is the compressed data 

in binary format. The header of the bitstream contains information needed for reconstruction 

such as initial threshold, image size and the number of decomposition levels. The coding 

structure of EZW shows that it strictly neglects all the floating point information and considers 

all the coefficients as integers. The decoder follows the exact opposite steps of the encoder. In 

the inverse quantization, the decoder traces the every step back to produce the actual coefficient 

values. The EZW decoder uses successive approximation technique to reconstruct the exact 

coefficient values. 

The EZW technique is considered to be computationally complex. In addition to the use of many 

symbols, the EZW relies on additional coding techniques to code its final results. The EZW 

algorithm was later replaced by a much faster and computationally superior coding technique 

known as Set Partitioning in Hierarchical trees (SPIHT) [30]. The SPIHT has amazing features 

which uses transform characteristics to find groups with similar MSBs. It uses the concept of bit-

plane ordering, to code the magnitudes. Binary representations of the magnitude–ordered 

coefficients are transmitted first. This is found to be extremely advantageous over EZW because 

those significant coefficients that have descendants as significant in the next spatial orientations 
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are coded together. No extra coding step is necessary since the final output is a stream containing 

binary data of the coefficients. The SPIHT technique produces reconstructed images with 

exceptionally visual quality than EZW. 

5.4 Proposed Quantization by Adaptive-Iterative Coding 

Despite all the advantages, EZW and SPIHT are computationally very complex. This is because 

the coding scheme stores the entire image to perform the iterations. In addition, for each 

coefficient that is checked for significance, its corresponding descendants are also scanned. This 

is done for all the nodes till the last descendants. This is really time consuming and occupies a lot 

of the storage area. Though SPIHT performs this scan faster than EZW, it stores three huge lists 

to code the data directly in binary values.  

To eliminate the disadvantages of both EZW an SPIHT, we propose an adaptive-iterative coding 

scheme based on the EZW technique. The idea is to code the subbands separately. By this way, 

the subband once it is coded can be made readily available for transmission. But the coding order 

of the subband is same as the importance of the subband. Instead of using various symbols to 

denote the coefficients, the proposed method uses only three symbols of binary values. If the 

coefficient is above the particular threshold, then ‘0’ is coded. If the coefficient is below negative 

threshold, then ‘10’ is coded. If the coefficients are not significant, then ‘1’ is coded. There is 

more number of insignificant coefficients than significant coefficients.  Hence the symbols are 

selected particular way to reduce the bit rate. Similar to EZW, the proposed coding scheme uses 

two passes to code the coefficients. The coefficients that are coded in the two passes are all in 

binary format. To reduce the bit rate further, the proposed method uses Run-Length Encoding 

(RLE) (section 5.5) followed by binary bit allocation for all the run-lengths. The header of the 
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bitstream contains information about the maximum allocated bit size of the run-lengths, initial 

threshold, image size and number of decomposition levels. 

The proposed technique is very effective and fast when compared to EZW and SPIHT. The 

former coding scheme does not require entire image to start the coding operation. All the values 

are in binary format which makes it easier for transmission. In addition, separate minimum 

threshold values are selected for each subbands, which makes it more flexible for different types 

of images. The decoder uses reverse steps of the encoder to reconstruct the actual coefficients. 

The successive approximation function ensures that all the coefficients are reconstructed 

precisely. Table 5.2 shows the processing time and PSNR performance of the proposed 

technique with the other two techniques. The values are found using MATLAB image processing 

software. The system configuration used for this experiment is given in Table 6.2. The image 

used is a 512 x 512 grayscale image processing standard image ‘Lena’. The PSNR value between 

the original and reconstructed image is calculated at the bit rate of 1.0bpp (at 87.5% 

compression). From Table 5.2, it is evident that the proposed quantization algorithm is much 

faster than EZW and SPIHT, but with a small loss in PSNR. 

Table 5.1: System Configuration 

Processor Intel Core i3 @ 2.27GHz 

Memory 4GB RAM 

GPU 1GB ATI Radeon Graphics 

Operating System Windows 7 

Simulation Software Matlab Professional (version 7.14) 
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Table 5.2: Performance of the proposed coding algorithm compared with other algorithms. 

Integer D6 LWT Proposed EZW SPIHT 

Processing time (secs) 4.16 641.21 16.08 

PSNR (dB) 31.35 31.41 31.86 
 

5.5 Run-Length Encoding (RLE) 

Run length encoding is based on the idea of encoding a consecutive occurrence of the same 

symbol. This is achieved by replacing a series of repeated symbols with a count and the symbol. 

In the case of the proposed quantization, there will be a lot of zeros and ones that can be 

exploited with RLE. The following example illustrates the concept of using RLE to encode input 

data with frequent runs of zeros or ones. 

Illustration 

Original (Random) data 

1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

Encoded data 

2 1 3 0 3 1 6 0 5 1 21 0 4 1 

In general, the run length encoding can be written as: (run, value). RLE is a simple technique that 

is used to represent the redundant symbols. If the data contains large number of zeros or ones 

consecutively occurring in the bitstream, then it can be greatly reduced using the RLE. All the 

run values are then directly converted to their corresponding binary values and transmitted across 

the channel. 
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Chapter 6 

Experimental Results and Discussion 

6.1 Introduction 

In this chapter, we discuss the results of the AIQ based Daubechies-4 and Daubechies-6 lifting 

wavelet transform along with the proposed quantization and compare its performance with other 

existing methods. Then, we will proceed with the hardware implementation of the proposed 

transform algorithm. Moreover, the result obtained from FPGA synthesis is compared with other 

transform schemes to measure the complexity of the proposed AIQ architecture. 

6.2 Analysis of Image Using Wavelet Transform 

The multi-resolution decomposition technique allows wavelets to decorrelate an image and 

concentrate the energy in few coefficients. The energy distribution changes with the number of 

decomposition levels. As the decomposition level increases, the number of approximation 

coefficients decreases, but energy of the coefficients in the low pass subband also decreases. 

Therefore, energy compaction in an image is the amount of information that is self-contained in 

the transform coefficients. 

To select the right decomposition levels to be used in this research, we use the most commonly 

used standard image processing grayscale image ‘Lena’. The grayscale image is of size 512 x 

512 and constitutes 8 bit per pixels. The transform used for calculating energy is the Daubechies-

4 wavelet transform. The wavelet transform analyzes the image in Figure 6.1(a) by decorrelating 

the high pass in the image from the low pass. In doing so, the wavelet transform is able to 
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concentrate most of the information about the image to a few coefficients. Figure 6.1(b) shows 

the output of the image after first-level decomposition. This image is divided into 4 subbands, 

mainly, LL (top-left), HL (top-right), LH (bottom-left) and HH (bottom-right). The 

approximated version of the image is found in the LL subband while the details of the image are 

found in the rest of the subbands. Table 6.1 shows that the LL region contains the most 

information about the image having the energy of 99% while the remaining 1% is distributed in 

the LH, HL and HH subbands for the first level decomposition. This energy distribution suggests 

that the values of the coefficients in the LL region are significant while the values of the 

coefficients in the other detail subbands are insignificant. 

In order to contain so much information in a small region (LL), the magnitudes of the wavelet 

coefficients increase. This can be shown by the increase in the range of the wavelet coefficients 

in Figure 6.1(f). Besides that, a large number of insignificant coefficients in the detailed 

subbands are found in the zero or near the zero region. 

Table 6.1: Energy compaction of the subbands at various decomposition levels 

Daubechies-4 
DWT 

LL Subband 
(energy in %) 

HL Subband 
(energy in %) 

LH Subband 
(energy in %) 

HH Subband 
(energy in %) 

1-Level 99.8545 0.0386 0.0905 0.0164 

2-Level 99.5258 0.1244 0.2911 0.0588 

3-Level 98.8852 0.2611 0.7026 0.1510 

4-Level 97.8704 0.4658 1.3842 0.2795 

5-Level 96.2421 0.7333 2.5170 0.5077 
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a)                          b) 

 
c)                          d) 

 
e)                          f) 

 
g)                          h) 

 

Figure 6.1: Analysis of decomposed image at different levels: a) original image, b) 1-level decomposed image, c) 2-
level decomposed image, d) 3-level decomposed image, e) histogram of original image f) histogram of 1-level 

decomposed image, g) histogram of 2-level decomposed image and h) histogram of 3-level decomposed image. 
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As the decomposition level increases, the range of the wavelet coefficients increases and a larger 

number of insignificant coefficients are formed near the zero regions, as shown in Figure 6.1(h). 

However, there is a drop in the energy level for the LL sub-images as shown in Table 6.1. But in 

the case of HL, LH and HH subbands, the energy levels increase steadily. The total energy for 

each decomposition decreases with increase in decomposition level. This is significant especially 

for level 4 onwards.  

However, the reason for the drop in the total energy is due to the Heisenberg Inequality, which 

states that, it is impossible to localize a fixed amount of energy to an arbitrary small time interval 

[31]. This explains the leaks in the energy as the decomposition level increases. Thus, we choose 

3-level decomposition for our proposed AIQ architecture. This is to ensures that the image has 

sufficient decorrelation and at the same time to preserve as much energy as possible. 

6.3 Simulation Results 

The performance of the proposed AIQ algorithm is analyzed by simulating the algorithm in 

MATLAB 7.14. The algorithm is tested for compression efficiency and quality of reconstructed 

image. The images used for this analysis are shown in Figure 6.2 (5 Standard images (size 512 x 

512)), Figure 6.3 (2 CT images (size 256 x 256)) and Figure 6.4 (10 Endoscopic images (size 

256 x 256)). 
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Figure 6.2: Standard Images. 

 

   
CT image 1   CT image 2 

Figure 6.3: CT Images. 
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Figure 6.4: Endoscopic Images 
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The images are decomposed to three levels using AIQ based Daubechies-4 and AIQ based 

Daubechies-6 transform. The image is compressed using the proposed quantization technique 

and the bit rate is calculated to see the compression performance. The percentage of compression 

can be calculated in terms of Compression Ratio as given by, 

 

 
( )

1 100%
8

acquired bit rateCompression Ratio
original bit rate bpp

 
= − ×  
 

  (6.1) 

 

 
 

Table 6.2 and Table 6.3 shows the PSNR comparison for the two transforms. Also, Figure 6.5 

shows the comparison of image ‘Lena’ for the proposed two architectures at various bit rates. 

The proposed integer based algorithm is no different from the conventional floating point 

algorithm in terms of visual quality.  The objective is to analyze the performance of the proposed 

algorithm with the conventional lifting based transform. From Table 6.2, it is clear that the 

performance of the integer based architecture is almost similar to the conventional lifting 

scheme. In some case, the proposed algorithm out performs the conventional lifting transform. 

Overall, the proposed AIQ based Daubechies-6 LWT performs better than proposed AIQ based 

Daubechies-4 LWT.  

From Table 6.3 we can note that, the algorithm works really well for endoscopic images. For the 

bit rate 1.0bpp (Compression ratio of 87.5%) the average PSNR of all the images is >35dB 

which is more than the satisfactory value needed for endoscopic images [32]. The proposed 

algorithm is well suited to handle wide range of images.  
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Table 6.2: PSNR (dB) results for standard and CT images 

Bit rate (bpp) 4 2 1 0.5 0.25 
 Barbara 

Proposed AIQ D4 35.28 30.45 26.96 24.71 23.07 
Proposed AIQ D6 35.94 31.19 27.48 25.1 23.13 
Conventional D6 36.09 31.21 27.55 25.08 23.19 

Lena 
Proposed AIQ D4 39.03 35.83 32.55 29.36 26.29 
Proposed AIQ D6 39.02 36.43 33.19 29.96 26.84 
Conventional D6 39.1 36.46 33.16 29.92 26.7 

Mandrill 
Proposed AIQ D4 32.37 28.38 25.46 23.45 22.04 
Proposed AIQ D6 33.22 29.01 25.94 23.71 22.08 
Conventional D6 33.27 28.98 25.93 23.66 22.06 

Peppers 
Proposed AIQ D4 37.02 34.21 32.1 29.59 26.64 
Proposed AIQ D6 37.29 34.33 32.48 29.95 27.11 
Conventional D6 37.23 34.34 32.39 29.97 27.08 

Camera Man 
Proposed AIQ D4 41.51 38.26 33.79 30.06 26.7 
Proposed AIQ D6 40.91 38.5 34.29 30.58 27.22 
Conventional D6 42.03 39.15 34.42 30.67 27.26 

CT image 1 
Proposed AIQ D4 35.63 30.77 26.91 23.66 20.73 
Proposed AIQ D6 35.31 31.02 27.3 24.05 21.44 
Conventional D6 35.99 31.31 27.44 24.19 21.33 

CT image 2 
Proposed AIQ D4 34.98 30.22 26.32 23.26 20.58 
Proposed AIQ D6 35.24 30.75 27.05 23.8 21.02 
Conventional D6 35.28 30.73 27.11 23.84 20.97 
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Original Image 
 
 

         
 

4.0bpp, 39.03dB 2.0bpp, 35.83dB 1.0bpp, 32.55dB 0.5bpp, 29.36dB 0.25bpp, 26.29dB 
 
 

         
 

4.0bpp, 39.02 dB 2.0bpp, 36.43 dB 1.0bpp, 33.19 dB 0.5bpp, 29.96 dB 0.25bpp, 26.84dB 
     

 

                 
 

4.0bpp, 39.1 dB 2.0bpp, 36.46 dB 1.0bpp, 33.16 dB 0.5bpp, 29.92 dB 0.25bpp, 26.7dB 
 

 
Figure 6.5: Comparison of image ‘Lena’ at different bitrates and their corresponding PSNRs. The images are 

arranged according to results as seen in Table 6.2. 
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Table 6.3: Resulting PSNR (dB) for Endoscopic images 

Bit rate (bpp) 4 2 1 0.5 0.25 
Image 1 

Proposed AIQ D4 42.28 40.11 37.36 33.93 30.1 
Proposed AIQ D6 43.05 41.13 38.23 34.2 30.18 

Image 2 
Proposed AIQ D4 40.89 40.03 37.76 35.05 31.42 
Proposed AIQ D6 41.91 40.17 37.97 35.36 31.81 

Image 3 
Proposed AIQ D4 38.3 37.25 35.44 33.07 30.5 
Proposed AIQ D6 38.83 37.32 35.49 33.4 30.44 

Image 4 
Proposed AIQ D4 37.74 36.83 34.51 31.7 29.53 
Proposed AIQ D6 39.06 36.91 34.6 32.14 29.6 

Image 5 
Proposed AIQ D4 38.19 37.18 35.45 33.55 31.65 
Proposed AIQ D6 39.12 37.42 35.52 33.61 31.71 

Image 6 
Proposed AIQ D4 39.79 39.07 36.51 33.68 30.56 
Proposed AIQ D6 40.83 39.44 36.69 34.22 30.55 

Image 7 
Proposed AIQ D4 38.28 36.94 35.46 34.02 32.45 
Proposed AIQ D6 38.51 37.02 35.47 34.18 32.47 

Image 8 
Proposed AIQ D4 41.28 40.18 37.63 34.76 32.41 
Proposed AIQ D6 42.67 40.44 38.01 35.02 32.62 

Image 9 
Proposed AIQ D4 40.79 40.05 37.39 34.91 32.19 
Proposed AIQ D6 42.04 40.18 37.73 35.13 32.48 

Image 10 
Proposed AIQ D4 40.84 39.93 37.45 35.18 32.24 
Proposed AIQ D6 42.91 40.2 38 35.54 32.96 
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From Table 6.4, it is evident that the proposed algorithm is faster than EZW and SPIHT with 

almost similar PSNRs. Though our quantization method is adopted from EZW, the processing 

time is greatly reduced with minimal loss of quality. In addition, we use a multistage replicate 

function which plays a major role in the improvement of PSNR and visual quality. 

Table 6.4: Performance of the proposed quantization calculated for the image ‘Lena’. 

Integer D6 LWT Proposed EZW SPIHT 

Processing time (secs) 4.16 641.21 16.08 

PSNR (dB) 31.35 31.41 31.86 
 

The use of the replicate function is to improve the quality of the image edges. The addition of the 

redundant bits does not cause huge difference in the calculated bit rate because the run length 

coding codes all the redundant bits into fewer bits. Let us compare the PSNR values for image 

‘Lena’ from Table 6.2 (calculated with replicate function) with Table 6.4 (calculated without 

replicate function). So, the PSNR for the proposed AIQ based D6 LWT with replicate is 33.40dB 

while the PSNR for the one without using replicate is 31.35dB. The loss of quality can be seen 

from Figure 6.6. The images are reconstructed at 1.0 bpp using AIQ based D6 LWT. Figure 

6.6(b) shows the image reconstructed using replicate function and Figure 6.6(c) shows the image 

reconstructed without using replicate function. It is clear that, the image edges are not 

reconstructed properly, which explains the decrease in PSNR. 
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a) 

 
b) 

 
c) 

Figure 6.6: a) Original Image ‘Lena’, b) Reconstructed Image using AIQ D6 LWT with replicate, and c) 
Reconstructed Image using AIQ D6 LWT without replicate 

 

 
Now that we have a perfect integer based lifting algorithm, the next step is to analyze the 

complexity of the proposed algorithm on hardware. The implementation of the proposed 

algorithm provides an estimate of the area and resource utilization on hardware. The next section 
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explains in detail, the implementation and performance of the proposed transform algorithm 

compared to other well known architectures.  

6.4 FPGA Synthesis Results 

Field Programmable Gate Arrays [33] popularly known as FPGAs is an alternative for 

implementation of digital logic in systems. They are prefabricated silicon chips that can be 

programmed electrically to implement any digital design.  

The proposed implementation is done on Xilinx ISE using Verilog as the HDL. The reason for 

selecting Xilinx is to provide the ease of comparison with other research methods. The design is 

synthesized on a high performance FPGA: Chip family: Virtex-E, Device name: XCV300E, 

Model: PQ240. Initially, the Verilog HDL code generated for the proposed transform algorithm 

is simulated using the Xilinx ISE’s simulation tool. The output decomposed coefficient values 

are compared to the output from the MATLAB simulation. This ensures that the HDL code 

created produces correct results.  

Figure 6.7 shows the output waveform obtained by extracting the HDL code using a test bench. 

xe and xo are the two inputs to the transform, while x_0 and x_1 are the corresponding low pass 

and high pass output.  
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a) 

 
b) 

Figure 6.7: Output waveform: a) the proposed AIQ D4 LWT, b) the proposed AIQ D6 LWT. 

Table 6.5 shows the comparison of our results with other architectures in terms of hardware cost 

(multipliers, adders, registers) and throughput. Compared to the other methods, the proposed two 

transform algorithms have the lowest hardware cost. When compared to the conventional D6 

lifting scheme, having 6 multipliers, the proposed AIQ D6 has only 4 multipliers. Also, the 

proposed algorithm has high throughput rate. This is mainly due to the nature of the discrete 

wavelet transform. Registers are used to store the input values and then processed together. But 

in of case of the lifting scheme the calculations are in-place, i.e., it takes two inputs and outputs 

two coefficients (approximation and detail). So, from Table 6.5 we can note that the proposed 

lifting scheme only uses 4 registers. The inputs are not delayed as in other methods, but 

propagated immediately to the predict and update steps. This is real time processing capability of 

the lifting scheme.  

In addition, most architectures use kernel sizes (8 x 8, 16 x 16 and so on) to multiply the input 

with the filter coefficients. In the case of [35], multiplication of large kernel size is required 
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which makes the control circuitry complicated. The architecture in [42] uses 16 bit data for DWT 

coefficients and DWT input. The hardware cost comprises of twelve 16 bit adders, four 8 x 16 

multipliers and twelve 16 x 16 multipliers. The hardware cost of our lifting based D4 and D6 is 

better than the more famous conventional 9/7 lifting based transform [44]. Despite the 

advantageous of the folded architecture of [37] and [38], both the transforms are based on 

floating point implementation which is well known to cause errors that are propagated to the 

output.  The control complexity of the architecture in [37] is more than the traditional lifting 

scheme. The algorithm in [38] uses a 12 bit floating point value to represent the filter 

coefficients. Compared to these techniques, our AIQ based lifting scheme is purely integer 

based.  

Table 6.5: Hardware comparison of the proposed AIQ architecture with other techniques.  

Method Scheme Transform Multipliers Adders Registers Throughput 
Input/Output 

[34] DWT D4, D6 8/12 6/10 -- -- 

[35] Lifting CDF-9/7 4 12 -- -- 

[36] DWT CDF-9/7 0 19 9 1/1 

[37] Lifting CDF-9/7 2 4 10 1/1 

[38] Lifting CDF-9/7 4 8 22 2/1 

[39] Lifting CDF-9/7 4 8 4 2/1 

[40] Lifting CDF-9/7 2 4 20 1/1 

[41] Lifting CDF-9/7 4 8 28 2/1 

[42] DWT D4 14 12 72 2/1 

[43] DWT D4 16 12 164 2/1 

[44] Lifting CDF-9/7 4 8 6 2/1 
Proposed AIQ 

D4 Lifting D4 3 4 4 2/1 

Proposed AIQ 
D6 Lifting D6 4 6 4 2/1 
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Table 6.6 shows the logic cell utilization of the proposed lifting based architecture on Virtex-E 

FPGA. The architecture in [41] is implemented on Stratix chip of Altera for FPGA. The 

architecture is a combination of lifting based 5/3 and 9/7. The output coefficient length is made 

long for the purpose of precision. Out of the 17 bits, 10 bits are allocated for whole number and 7 

bits are allocated for partial number. The architecture in [45] and [46] are based on different 

transform. It is implemented on the Virtex-E family with the device name XCV300E. This gives 

a rough estimate of where our architecture stands in terms of resource utilization. The AIQ based 

architecture in [47] is based on the discrete wavelet transform of Daubechies-4 and Daubechies-6 

transform. Compared to the previous works, our lifting based AIQ offers good performance and 

has very low hardware complexity. The Virtex-E XCV300E FPGA is comprised of a total of 

6,912 logic cells, of which only 212 is occupied, constituting only about 3% of the total.  

Table 6.6: Comparison of logic utilization of the proposed algorithm on hardware.  

Method Scheme Transform Logic Cells Input Bit 
Length 

Output 
Coefficient 

Length 

[41] Lifting Processor for 
JPEG2000 

CDF-9/7 
LWT 5820 8 17 

[45] 
Conventional D8 DWT 1120 9 9 

Distributed Arithmetic D8 DWT 748 9 9 

[46] 
Hard Router D8 DWT 900 9 8 

Benkrid Architecture D8 DWT 632 9 8 

[47] 

D4-FP D4 DWT 603 8 9 

D4-AIQ D4 DWT 279 8 8 

D6-FP D6 DWT 819 8 8 

D6-AIQ-1 D6 DWT 857 8 8 

D6-AIQ-2 D6 DWT 765 8 8 

Proposed 
AIQ D4 LWT D4 LWT 282 8 8 

AIQ D6 LWT D6 LWT 212 8 8 
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Finally, from Table 6.6, we see that the proposed AIQ D4 lifting scheme, with a much simpler 

structure, occupies more number of logic cells than the D6. This is mainly due to bit lengths of 

the filter coefficients and intermediate values in the proposed D4 lifting.  Also, the AIQ based 

D4 uses more 4-input LUTs than D6. Table 6.7 shows the detailed synthesis report comparison 

of the proposed two transforms. It is evident that the D4 uses slightly more resources than D6.  

Table 6.7: Comparison between two proposed architectures based on advanced HDL synthesis report. 

Resources Proposed AIQ D4 LWT Proposed AIQ D6 LWT 

Multipliers  8x9-bit(1), 9x8-bit(1), 
9x9-bit(1) 

8x6-bit(2), 8x7-bit(1), 
8x9-bit(1) 

Adders 17-bit(1), 19-bit(2),         
9-bit(1) 

13-bit(2), 15-bit(1),        
16-bit(3) 

Comparators 2-bit(1) -- 

4-input LUTs 234 174 

Maximum Frequency 163.292MHz 32.368MHz 
 

Furthermore, the conventional lifting based D6 has a greater hardware cost, but the performance 

is better in terms of PSNR and visual quality. However, the AIQ based D6 uses lesser resources 

on hardware yet performs better in terms of PSNR. When compared to the proposed D4 

transform, the proposed D6 lifting scheme has a superior architecture. The AIQ based D6 lifting 

scheme can reconstruct images with finer details. So, it can be used for applications that requires 

high accuracy (e.g., fingerprint recognition, ECG signal denoising) and high visual quality (e.g., 

Medical Endoscopic Imaging). 
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Chapter 7 

Conclusion and Future Work 

7.1 Summary and Accomplishments 

In this thesis, we have presented algebraic integer based computation of Daubechies-4 (D4) and 

Daubechies-6 (D6) lifting scheme. The AIQ based D6 has lesser number of filter coefficients 

than the conventional approach. Later, we have also proposed an adaptive quantization technique 

to compress the wavelet coefficients. The proposed quantizer has an iterative coding structure 

and has a high compression performance at faster processing time, due to individual subband 

coding. The quantization followed by the Run Length Encoding (RLE) ensures that the desired 

low bit rate is achieved while maintaining good image reconstruction. The image compressor 

(transform, quantization and coding) codes the input image into series of binary values and 

inserts the data into the bitstream. The image compressor was simulated in Matlab image 

processing tool. Three-level wavelet decomposition was used on various images to determine the 

performance of the two algorithms. Overall, the proposed D6 handled all the images effectively 

and reconstructed images with good PSNR and visual quality at high compression rates (at 

87.5% compression rate, the PSNR of the endoscopic images are >35dB, while the PSNR of the 

benchmark image ‘Lena’ is 33.40dB). 

Next, the two proposed algorithms were tested for the complexity on hardware. The HDL code 

of the two transform architectures were implemented on Virtex-E XCV300E PQ240 FPGA using 

the Xilinx ISE tool. The synthesized results were compared with the other existing methods in 

terms of hardware cost and resource utilization. Overall, the two proposed techniques proved to 
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be better than the other techniques.  Moreover, the proposed AIQ based D6 LWT used less 

hardware resources (logic cells: 212 and LUTs: 174) than the proposed D4 transform (logic cells: 

282 and LUTs: 234).  

To summarize, the proposed AIQ based Daubechies-6 lifting wavelet transform is less complex 

on hardware and also efficient in handling detailed images. Even at high compression rates, the 

quality of the reconstructed images is excellent when compared to other integer based transform 

algorithms. Compared to the conventional lifting based 9/7 transform (the one used in JPEG2000 

standard), the proposed AIQ based D6 uses very little resources on the hardware.  

7.2 Recommendations for future work 

The future work needs to be targeted towards reducing the critical path delay and VLSI 

fabrication of the proposed AIQ based Daubechies-6 Lifting wavelet transform. Some 

recommendations for improvements include, 

• If the latency due to multiplication is Tm and the latency due to addition is Ta, then the 

critical path latency of the proposed AIQ based D4 LWT is 3Tm+4Ta, while that of the 

proposed AIQ based D6 is 4Tm+6Ta.  

• The critical path delay can be reduced by implementing a folded lifting structure and 

using pipelining to improve the flow.  

• The folded architecture also reduces the number of multipliers by switching between two 

multipliers.  
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• Also, it would be very useful to investigate different factorizations of the polyphase 

matrix to implement the transforms.  
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