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Abstract 

Wavelets are being suggested as a platform for various tasks in image processing. The advantage of wavelets 

lie in its time frequency resolution. The use of different basis functions in the form of different wavelets made 

the wavelet analysis a destination for many applications. The performance of a particular technique depends on 

the wavelet coefficients arrived after applying the wavelet transform. The coefficients for a specific input signal 

depends on the basis functions used in the wavelet transform. Hence, in this paper toward this end, different 

basis functions and their features are presented. As many image comprssion algorithms base on wavelet 

transform, selection of basis function for image compression should be taken with care. In this paper, the factors 

influencing the performance of image compression are presented. In addition to this, a broad review of wavelets 

in image processing applications and selection of basis function for different image processing tasks are 

presented. 
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1 Introduction 

A computer is becoming more and more influential day by day. As a consequence of this, the use of 

digital images is growing briskly. Along with this increasing usage of digital images raises the serious 

concern of storing and transferring the gigantic volume of data representing the images. The reason behind 

this is that the uncompressed multimedia data entails substantial storage capacity and transmission 

bandwidth. Although there is a rapid progress in mass storage density, speed of the processor and the concert 

of the digital communication systems, the demand for data storage capacity and data transmission bandwidth 

remains to exceed the capabilities of on-hand technologies. Above and beyond, the latest growth of data 

intensive multimedia based web applications has placed much gravity on the researchers to discover the 

methods for using the images in the web applications more effectually. Internet teleconferencing, high 

definition television, satellite communications and digital storage of movies are unrealistic without a high 

degree of compression. Such applications are far from realizing their full potential largely due to the 

limitations of common image compression techniques [1]. The image is essentially a kind of redundant data 

i.e. it comprises the same information from certain perception of view. By using data compression 

techniques, it is conceivable to eliminate some of the redundant information confined in images. Image 

compression diminishes the size in bytes of a graphics file without corrupting the quality of the image to an 

intolerable level. The lessening in file size permits more images to be deposited in a certain amount of disk.  
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It also lessens the time required for images to be sent over the Internet or downloaded from web. The 

system of image compression is not new at all. The innovation of Discrete Cosine Transform (DCT) in 1974 

is really an important achievement for those who work on image compression [2]. The DCT can be 

considered as a discrete time version of the Fourier Cosine series. It is a close relative of Discrete Fourier 

Transform, a system for transforming a signal into fundamental frequency components.  

Thus, DCT can be calculated with a Fast Fourier Transform like algorithm of complexity O(nlog2 n). 

Unlike DFT, DCT is real valued and offers a better estimate of a signal with less coefficients. There are a 

number of means in which images can be compressed. There are two common compressed image formats 

namely Joint Photographic Experts Group (JPEG) [3] and Graphic Interchange Format (GIF) for the use in 

the Internet. The JPEG method established by ISO (International Standards Organization) and IEC 

(International Electro-technical Commission) is more commonly used for photographs, while the GIF 

method is commonly used for line art and other images in which geometric shapes are quite simple. 

In 1992, JPEG established the first international standard for still image compression where the encoders 

and decoders are based on DCT. The JPEG standard specifies three modes namely sequential, progressive, 

and hierarchical for lossy coding, and one mode for lossless coding. The concert of the coders of JPEG 

commonly cut down at low bit-rates mainly because of the underlying block-based DCT [4]. The baseline 

JPEG coder is the sequential encoding in its simplest form [5]. More recently, the wavelet transform has 

emerged as a cutting edge technology, in the arena of image analysis. Wavelets are a mathematical tool for 

hierarchically decomposing functions. Although rooted in approximation theory, signal processing, and 

physics, wavelets have also been applied to many difficulties in Computer Graphics including image editing 

and compression, automatic level-of detail control for editing and rendering curves and surfaces, surface 

reconstruction from contours and fast methods for solving simulation problems in 3D modeling, global 

illumination, and animation [6]. Wavelet-based coding offers significant progresses in picture superiority at 

higher compression ratios [7]. Over the past few years, a variety of commanding and sophisticated wavelet-

based schemes for image compression have been developed and realized. 

The performance of wavelet based image compression standards completely lie on the wavelet domain of 

the input image. Though the basis function is not a sinusoidal signal, the basis signal will be some other 

signal supposed to be the same for any application and/or any input image. Out of some standard wavelets at 

a time one wavelet is arbitrarily chosen for a specific application. This may not yield good results for all the 

problem at hand. The wavelet basis function should be chosen based on the problem at hand. Hence a 

methodology has to be framed to find out the wavelet function for a specific application. Towards this end a 

number of works are proposed in the literature including [8]-[11]. In a specific application, for example, 

image compression the input images can be of different kind, hence depending on the input signal the 

wavelet bases have to be adapted to the input signal. Towards this end as well, a number of works are 

proposed [12]-[16]. In this paper review of wavelet based image compression, review of optimum wavelet 

selection, commonly used basis functions, factors to consider in choosing the basis functions are presented. 

2 Wavelet-based Image Compression 

a. Fundamentals of Image Compression 

There are two types of image compression; lossy and lossless. With lossless compression, the original 

image is recovered exactly after decompression. Unfortunately, with images of natural scenes it is rarely 

possible to obtain error-free compression at a rate beyond 2:1. Much higher compression ratios can be 

obtained if some error, which is usually difficult to perceive, is allowed between the decompressed image 

and the original image. This is lossy compression. In many cases, it is not necessary or even desirable that 

there be error-free reproduction of the original image. For example, if some noise is present, then the error 

due to that noise will usually be significantly reduced via some denoising method. In such a case, the small 

amount of error introduced by lossy compression may be acceptable. Another application where lossy 

compression is acceptable is in fast transmission of still images over the Internet. The paper concentrates on 

the design of better wavelets for image compression, hence though there exists a wide variety of compression 

techniques; here, only wavelet based image compression standards are considered. The methods of 

compression that are considered are: the Embedded Zerotree Wavelet (EZW) algorithm, the Set Partitioning 

in Hierarchical Tree (SPIHT) algorithm, the Spatial-oriented Tree Wavelet (STW) algorithm, the Wavelet 
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Difference Reduction (WDR) algorithm, and the Adaptively Scanned Wavelet Difference Reduction 

(ASWDR) algorithm. These are relatively recent algorithms which achieve some of the lowest errors per 

compression rate and highest perceptual quality yet reported. Before examining these algorithms, we shall 

outline the basic steps that are common to all wavelet-based image compression algorithms. The five stages 

of compression and decompression are shown in Fig.1 and 2. All of the steps shown in the compression 

diagram are invertible, hence lossless, except for the Quantize step. Quantizing refers to a reduction of the 

precision of the floating point values of the wavelet transform, which are typically either 32-bit or 64-bit 

floating point numbers. This leads to rounding error. These approximate, quantized, wavelet transforms will 

produce approximations to the images when an inverse transform is performed thus creating the error 

inherent in lossy compression. 

 
Fig. 1 Compression of an image 

 
Fig. 2 Decompression of an image 

 

The relationship between the Quantize and the Encode steps is the crucial aspect of wavelet transform 

compression. Each of the algorithms described below takes a different approach to this relationship. The 

purpose served by the Wavelet Transform is that it produces a large number of values having zeroed or near 

zeroed, magnitudes. 

b. Methods of Image Compression 

 The EZW coder was introduced by Shapiro [17]. It is a quantization and coding strategy that 

incorporates some characteristics of the wavelet decomposition. Just as the quantization and coding approach 

used in JPEG standard [18], which was motivated by the characteristics of the coefficients, were superior to 

the generic zonal coding algorithms, the EZW approach and its descendants significantly outperform some of 

the generic approaches. The particular characteristic possessed by the EZW algorithm is that there are 

wavelet coefficients in different sub bands that represent the same spatial location in the image. If the 

decomposition is such that the size of the different sub bands is different, then a single coefficient in the 

smaller sub band may represent the same spatial location as multiple coefficients in the other sub bands. 

Given a threshold T, if a given coefficient has a magnitude greater than T, it is called a significant 

coefficient. If the magnitude of the coefficient is less than T, it is insignificant and all its descendants have 

magnitudes less than T, then the coefficients is called a zero tree root. If the coefficient is insignificant but 

some of its descendants have a value greater than T, then the coefficient is called an isolated zero. The EZW 

algorithm is a multi-pass algorithm, with each pass consisting of two steps: significant map encoding or the 

dominant pass, and refinement or the subordinate pass. 

The SPIHT algorithm is a generalization of the EZW algorithm and was proposed by Amir Said and 

William Pearlman [19]. Recall that in EZW we transmit a lot of information for little cost when we declare 

an entire sub tree to be insignificant and represent all the coefficients in it with a zerotree root label zr. The 

SPIHT algorithm uses a partitioning of the trees in a manner that tends to keep insignificant coefficients 

together in larger subsets. The partitioning decisions are binary that are transmitted to the decoder, providing 

a significance map encoding that is more efficient than EZW.  

In fact, the efficiency of the significance map encoding in SPIHT is such that arithmetic coding of binary 

decisions provides very little gain. The thresholds used for checking significance are powers of two, so in 

essence the SPIHT algorithm sends the binary representation of the integer value of the wavelet coefficients. 

As in EZW, the significance map encoding, or the set partitioning and ordering step, is followed by a 

refinement step in which the representations of the significant coefficients are refined. The data structure 

used by the SPIHT algorithm is similar to that used by the EZW algorithm – although not the same. The 

wavelet coefficients are again divided into trees originating from the lowest resolution band.  
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The coefficients are grouped into 2x2 arrays that, except for the coefficients in band I, are offspring of a 

coefficient of a lower resolution band. The coefficients in the lowest resolution band are also divided into 

2x2 arrays. However, unlike the EZW case, all but one of them are root nodes. The coefficient in the top-left 

corner of the array does not have any offspring. The Fig. 3 shows the data structure for seven-band 

decomposition. 

The trees are further partitioned into four types of sets, which are sets of coordinates of the coefficients: 

 O(I,j): This is the set of coordinates of the offspring of the wavelet coefficient at location (i,j). As 

each node can either have four offspring or non, the size of O(i,j) is either zero or four. For example, 

in Fig. 3 the set O(0,1) consists of the coordinates of the coefficients b1, b2, b3 and b4. 

 D(i,j): This is the set of all descendants of the coefficient at location (i,j). Descendants include the 

offspring, the offspring of the offspring, and so on. For example, in Fig. 3, the set D(0,1) consists of 

the coordinates of the coefficients b1, …., b4, b11, …., b14, …., b44. Because the number of offspring 

can either be zero or four, the size of D(i,j) is either zero or a sum of powers of four. 

 H: This is the set of all root nodes – essentially band I in the case of Fig. 3. 

 L(i,j): This is the set of coordinates of all the descendants of the coefficient at location (i,j) except for 

the immediate offspring of the coefficient at location (i,j).  

 A set D(i,j) or L(i,j) is said to be significant if any coefficient in the set has a magnitude greater than the 

threshold. Finally, thresholds used for checking significance are powers of two, so in essence the SPIHT 

algorithm sends the binary representation of the integer value of the wavelet coefficients. The bits are 

numbered with the least significant bit being the zeroth bit, the next bit being the first significant bit, and the 

kth bit being referred to as the k-1 most significant bit. The algorithm makes use of three lists: the list of 

insignificant pixels (LIP), the list of significant pixels (LSP), and the list of insignificant sets (LIS). The LSP 

and LIS lists will contain the coordinates of coefficients, while the LIS will contain the coordinates of the 

roots of sets of type D or L.  

 
Fig. 3 Data Structure used in SPIHT coding 

 

STW employs a various approach in coding the information of zero trees [20]. It is additional open eyed 

in its group of coding outputs than the EZW and SPIHT algorithm. EZW has the root location is marked by 

encoding only one symbol for the output R or I. In EZW consequently, the zerotrees offer slender 

descriptions of the locations of irrelevant values. The use of a state transition model is the various approach 

utilized in STW. From one threshold to consequent the locations of transform values undertake state 

transitions. So the number of bits required for encoding is thus condensed in STW with this design of state 

transitions. State transition model uses states IR, IV, SR and SV to score the locations rather than code for 

the outputs R and I. Hence the states concerned are outline once knowing the import function S(m) and the 

descendent indices D(m). 
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WDR technique combines run-length coding of the significance map with a well-organized illustration of 

the run-length symbols to produce relates embedded image coder [21]. SPIHT and WDR both have 

techniques, the zerotree data structure is precluded, but the embedding principles of lossless bit plane coding 

and set partitioning are sealed. Rather than using the zero trees, each coefficient during a off wavelet 

pyramid is appointed a linear position index in the WDR algorithm. Output of the WDR encoding can be 

arithmetically compressed. One of the defects of SPIHT is that it only implicitly locates the position of 

significant coefficients. This makes it difficult to perform operations, such as region selection on compressed 

data, which depend on the exact position of significant transform values. By region selection, also known as 

region of interest (ROI), we mean selecting a portion of a compressed image which requires increased 

resolution. This can occur, for example, with a portion of a low resolution medical image that has been sent 

at a low bpp rate in order to arrive quickly. 

ASWDR is one of the leading enhanced image compression algorithms proposed by Walker [22]. This 

algorithm aims to get better the subjective perceptual qualities of compressed images and improve the results 

of objective alteration measures. ASWDR algorithm is a simple adaptation of the Wavelet Difference 

Reduction (WDR) algorithm. WDR algorithm employs a hard and fast ordering of the positions of wavelet 

coefficients, so ASWDR method employs a various order that aims to adapt itself to specific image features. 

The ASWDR adjusts the scanning order therefore as to predict locations of latest significant values. 

Scanning order of ASWDR dynamically adapts to the locations of edge details in an image, and this 

increases the declaration of these edges in ASWDR compressed images. Hence, ASWDR shows better 

perceptual qualities, especially at low bit rates, than WDR and SPIHT compressed images preserving all the 

features of WDR. One of the most recent image compression algorithms is the ASWDR algorithm. The 

adjective adaptively scanned refers to the fact that this algorithm modifies the scanning order used by WDR 

in order to achieve better performance. ASWDR adapts the scanning order so as to predict locations of new 

significant values. If a prediction is correct, then the output specifying that location will just be the sign of 

the new significant value the reduced binary expansion of the number of steps will be empty. Therefore a 

good prediction scheme will significantly reduce the coding output of WDR. 

c. Review of Image Compression Algorithms 

In 1985, image data compression arrangement by means of discrete transform is proposed [23]. 

Exploiting a cosine transform in image data compression has several standard performance profits, ensuing 

in the ability to achieve large compression ratios with small quality cost. Similarly, integration of a model of 

the human visual system (HVS) into an image data compression or eminence valuation method instinctively 

should and has often demonstrated to increase the performance. Evidently it should verify highly useful to 

pool the image cosine transform with a graphical model. In past, joining these two has been stuck by an 

essential problem resultant from the sight modification that is essential for proper cosine transform usage. A 

novel logical solution to this tricky, compelling the form of a straightforward multiplicative weighting 

function, is established in this effort. This clarification is eagerly appropriate to image data compression and 

quality valuation in combination with a pictorial model and the image data cosine transform. In the growth, 

relevant features of a HVS model are discoursed, and a superior version of the MSE quality valuation 

measure is set which would raise this degree's usefulness.  

Gregory K. Wallace, in [18] proposed the JPEG Still picture compression standard. The evolving Joint 

Photographic Expert Group – JPEG image data compression standard is not a remedy that will resolve the 

myriad disquiets which must be solved before images specifically digital images combined in different 

applications that will eventually profit from them. For instance, if two applications can’t carry a conversation 

of uncompressed images since they may use different aspect ratios, mismatched colour spaces, dissimilar 

dimensions, etc. then a common compression scheme will not assist. Though, numerous applications are held 

as storage or transmission costs, because of the argument over which compression technique to utilize, or 

since VLSI codecs are costly due to low bulks. For this kind of applications, the systematic practical 

assessment, selection, testing, justification and documentation work which JPEG committee have 

accomplished is anticipated to return an accepted international standard which endure the tests of excellence 

and time. As various imaging and image processing applications turned out to be progressively applied on 

open networked computing organizations the decisive measure of the committees’ success will be when 

JPEG compressed images come to be considered and even taken for approved as just one more data type, as 

text and graphics are in 1990’s, which turned absolutely true nowadays. 
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In 1999, Sergio D. Servetto presented an investigational study of the statistical stuffs of wavelet 

coefficients of image data, as well as the strategy of two different morphology based image coding 

procedures that make use of these indications [24]. A striking property of the suggested approaches is that, 

by a humble variation of quantizer, the same basic process profits high performance entrenched or 

immovable rate coders. Additional significant property is that the shape data of morphological sets used in 

this coder is coded indirectly by the values of wavelet coefficients; therefore evading the use of obvious and 

rate expensive shape descriptors. These systems, despite the fact attaining nearly the same objective 

performance of state of the art zero tree approaches, are able to yield reconstructions of a somewhat higher 

perceptual quality, because of a property of joint compression and noise reduction they exhibit.  

In 2005, Bushra K. Al-Abudi and Loay A. George designated a colour image compression system based 

on Haar wavelet transform [25]. The vertical and horizontal Haar filters are composed to build four 2D 

filters, such filters smeared straightforward to the image data to speed up the execution of the Haar wavelet. 

Haar wavelet was used to map the image to frequency groups; each group was allotted a weighting aspect 

bestowing to its subjective importance. Such weighting issues were comprised over and done with the 

computation method of the amount of bits essential to present the quantized indices of the wavelet 

coefficients. Transmission progressive and Zero tree mechanism were considered and realized using the 

encoding and decoding method. The examination results have shown that the concert of the proposed 

technique is much superior, where the built images are less distorted and compressed with high factor.  

In 2007, Kamrul Hasan Talukder and Koichi Harada presented a low complex two dimensional image 

data compression technique by wavelet transforms as the basis functions and the approach to measure the 

quality of the compressed image data [26]. The specific wavelet chosen and used here is the humblest 

wavelet form namely the Haar Wavelet. The 2D DWT has been applied and the detail matrices from the data 

matrix of the image have been estimated. The rebuilt image is manufactured by the expected detail matrices 

and data matrix provided by the wavelet. The quality of the compressed images has been assessed using 

some design metrics. 

In 2008, V. Bruni, B. Piccoli and D. Vitulano proposed a wavelet based denoising model [27]. The model 

described the wavelet transform of a general signal as a superimposition of predefined basic atoms. In 2008, 

V. M. Mankar, T. S. Das, S. Sarkar and S. K. Sarkar analysed the performance of a blind watermarking 

scheme based on discrete wavelet frame as compared to the traditional orthogonal wavelet expansion [28]. 

The over complete representation offered by the redundant frame facilitates the identification of significant 

image features via a simple correlation operation across scales.  

In 2010, Raja S.P, Suruliandi A presented a comparison of different compression schemes on wavelet 

decomposed image data [29]. The schemes involved in the comparison are SPIHT, SOFM and EZW. These 

methods are more effective and deliver an enhanced quality. These work emphases significant feature of 

wavelet in compression of still images, comprising the extent to which the quality of image is corrupted by 

the process of wavelet compression and de-compression. The above methods have been efficaciously utilized 

in many fields. The methods are compared using the design metrics MSE and PSNR. 

In 2010, an effective and fast image compression system based on all level curvelet coefficients with 

SPIHT was proposed [30]. In 2010, a new lossless image compression technique is proposed in [31]. For 

continuous and discrete cases, wavelet transforms and wavelet packet transform (WPT) has arose as popular 

methods. Although integer wavelet utilizing the lifting scheme significantly decreases the computation time, 

the authors have proposed a totally new methodology for additional speeding up the computation of 

transform. First, wavelet packet transform and lifting schemes are presented.  

Then an application of the lifting scheme to wavelet packet transform is presented which clues to the 

generation of integer wavelet packet transform (IWPT). The IWPT yields an illustration which can be 

lossless, as it maps integer valued series onto the integer valued coefficients. The idea of WPT is utilized to 

transform the still and colour images. Integer WPT tree can be constructed by repeating the 

single wavelet decomposition step on both the low pass and high pass twigs, with rounding off in order to 

attain the integer transforms. Therefore, the proposed method offers good compression ratio CR.  

In 2011, a novel near lossless compression system is proposed in [32] and which yields considerably 

enhanced compression rates. In this method, base points, direction images and D-value images are acquired 

from RGB colour space image by conversion. Base points, direction images are determined by binary 

coding, dispersed arithmetic coding. Wavelet coefficients of D-value images are encoded by adaptive 

Huffman coding (AHC).  
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As a consequence, high over all compression rates, superior diagnostic image quality and enhanced 

performance parameters are attained. The procedure is verified on investigational medical images from 

diverse modalities and diverse body districts and results are described. 

In 2011, an effective image coding process Fast SPIHT has been proposed in [33]. The process presents 

the lifting wavelet and a wavelet basis based on HVS, the classification of the List of Insignificant Sets (LIS) 

is removed in the new compression process, the hierarchical trees in wavelet decomposition are coded in the 

same way from son generation to grandson generation. The investigational outcome demonstrates that the 

reconstructed image of this algorithm has superior visual effect and furthermore increases coding speed. 

In 2012, Leni, P.E, et al, present a new method for image data coding based on an exceptional 

representation of image data [34]. The proposed method is different from the most of the methods in the 

literature till that time because the compression is not straightaway accomplished on the image pixels, but is 

applied to a corresponding mono-variate representation of the wavelet domain of image data. More 

accurately, an adaptation of Kolmogorov superposition theorem proposed by Igelnik and known as the 

Kolmogorov spline network where the image is estimated by sums and compositions of specific mono-

variate functions was deliberated. By using this representation, the authors trade the local connectivity and 

the traditional line per line scanning, in exchange of a more adjustable and uni-variate representation of 

image data, which permits tackling the compression jobs in a primarily different representation. The 

contributions lie in the numerous policies offered to adapt the Kolmogorov spline network algorithm, 

including the mono-variate structure, numerous simplification policies, and the proposal of a more 

appropriate representation of the new image using wavelets and the incorporation of this system as an added 

layer in the JPEG 2000 compression machine, demonstrated for many images at diverse bit rates. 

In 2012, Hong-jun Li. et al, use the character of wavelet coefficients, and apply the grey relational theory 

in coefficients relational narration, and then propose an image data compression scheme through grey 

relational theory [35]. The authors have classified the coefficients with respect to their characters in diverse 

domains and build the sparse representation technique under diverse types of coefficients. The algorithm 

decreases the computational difficulty and increases the ability of image sparse representation. It attains an 

effective way of image data compression. The simulation results demonstrate that the proposed compression 

process based on grey relational theory is better than the other procedures both in the pictorial quality and 

PSNR.  

In 2013, Jaya Krishna Sunkara, E Navaneethasagari et al. presented a video compression algorithm using 

wavelet transform [36]. The method involves conversion of 3D signal into 2D signal using accordion 

representation. Then, a wavelet based compression technique is utilized. In 2013, easy path 

wavelets transform (EPWT), a wavelet domain image data compression standard that means in adaptive 

vicinities of image intensity points, is used in [37], for the sparse representation of 2D data. In [38], an image 

compression standard based on DWT along with a security tool was proposed. A probabilistic triangular 

shuffling scheme was sued to improve the security of the image. The proposed algorithm tends to achieve 

67-70% compression ratio wit high security. Probability of security breach was utilized as a measure of 

image security. 

In 2015, iris image compression using wavelet transformed image was considered in [39]. The spatial 

oriented tree wavelet coding techniques such as EZW and SPIHT are used. The basic Haar wavelet was used 

in this work. PSNR, MSE, and CRs are calculated. In 2016, probability distribution estimation was proposed 

which is supposed to be used for autoregressive pixel predictive image coding [40]. This work is focused on 

mean intensity prediction of the pixel to be transmitted.  

Miguel Hernandez-Cabronero et al. proposed compression of DNA microarray images [41][42]. First, the 

consistent structure of the Relative Quantizer intervals is oppressed to define a lossy-to-lossless coding 

algorithm referred as Progressive Relative Quantizer (PRQ) coder. Second, a superior version that prioritizes 

a region of interest, called the PRQ-region of interest (ROI) coder, is described. 

In 2016, Karthik. R and Menaka. R analysed the characteristics of ischemic stroke injuries using wavelets 

[43]. Four different wavelet functions namely Daubechies, Symlet, Coiflet and De-Meyer were applied to the 

different datasets and the resulting observations were examined based on their feature statistics. The 

characteristics of normal brain tissues and abnormal lesion structures using a 3-level wavelet decomposition. 

In 2019, Chuxi Yang, Yan Zhao and Shigang Wang proposed to use deep neural networks for image 

compression in the wavelet transform domain [44]. The wavelet decomposition of digital image was done. 

But only the low frequency band is cried to the receiver yielding higher compression ratio.  
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At the decompression, the three high frequency bands were estimated using the low frequency band. 

Many compression variants were proposed in the literature based on wavelets [45][46]. 
Transform based image compression schemes, first involve the transformation of spatial information in to 

another domain. For example, the DCT transforms an image into the frequency domain. The goal of the 

transformation is a compact, complete representation of the image. The transform should decorrelate the 

spatially distributed energy into fewer data samples such that no information is lost. Orthogonal transforms 

have the feature of eliminating redundancy in the transformed image. Compression take place in the second 

step when the transformed image is quantized. The inverse transform reconstructs the compressed image in 

the spatial domain. Since the quantization process is not invertible, the reconstruction cannot perfectly 

recreate the original image. This type of compression is called lossy. In transform based image compression, 

entropy coding normally follows the quantization stage.  

Entropy coding diminishes the redundancy in the bit stream and is fully invertible at the decoding end. 

So, it is lossless and usually gives about 0.4-0.6 dB gain in the PSNR. As previously mentioned in wavelet-

based image coding, the coding performance depends on the choice of wavelets. Several wavelets which 

provide suboptimal coding performance have been proposed in the literature. Recently, a few approaches for 

selecting the optimal filter bank in an image coder have been proposed in the literature [47][48]. Generally, a 

wavelet providing optimal performance for the whole image is selected. However, a few cases have been 

reported where spatially adapted filter banks were employed.  

We note that finding the optimal wavelet for a particular image is a computationally intensive task. 

Tewfik, et al. [48] have proposed a technique to find the best wavelet basis by maximizing the L2-norm of 

the wavelet approximated signal. Caglar, et al. [47] have proposed techniques for designing wavelets which 

are optimal in the statistical sense. The complexity of these algorithms increases considerably with the filter 

order. The performance of wavelet-based coding also depends on the wavelet decomposition structure. 

Ramchandran, et al. [49] have proposed a technique, based on Lagrangian optimization, to find the best basis 

subtree. This technique minimizes the global distortion for a given bit-rate. However, this algorithm is 

computationally expensive. Before employing a computationally intensive procedure for finding the optimal 

basis, it will be helpful to know, a priori, if appreciable gain can be achieved by using the optimal basis over 

known “good” wavelets.  

3 Example Scaling and Wavelet Functions 

In this section different wavelet functions routinely used in image processing are revealed. The effect of 

the basis function on the performance of a particular task depends on various properties of the basis 

functions. The properties include vanishing moments, symmetry, compact support and etc.    

a. Piecewise Constant 

The simplest example of scaling function is the Haar scaling function given in equation (1). 



 


elsewhere

t
t

0

101
)(                                                                    (1) 

The scaling functions satisfies the scaling equation given in equation (2). 
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Most of the times, the coefficients pj vanish outside the range Jj 0 . Hence, the generalized scaling 

equation becomes  





J

j

j jtpt
0

)2()(            (3) 

and its symbol polynomial is given in equation (4). 
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The value of the scaling function at the integers satisfy the infinite system of linear equations given in 

equation (5). 
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When   has the compact support [0, J], it reduces to finite system and is given in equation (6). 
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In the case of Haar scaling function p0 = p1 = 1 and 
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Its Fourier transform is  
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The scaling and wavelet functions are shown in the Fig. 4. 

 
  Fig. 4 Piecewise constant scaling and wavelet functions 

 

V0 is then the space of piecewise – constant functions with discontinuous at the integers, which 

reproduces all constants. P is the 2 x 2 unit matrix. 
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whose repeated Eigenvalue of 1 reflects the fact that )0( and )1( are indeterminate. The Eigenvalues 

are 1 . 

b. Piecewise Linear 

A more interesting example of a scaling function is the hat function given in equation (10). 
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satisfying the scaling equation 

)22(
2

1
)12()2(

2

1
)(  tttt          (11) 

So that p0 = p2 = ½,  p1 = 1 and  
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Its Fourier transform is  
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The scaling and wavelet functions are shown in the Fig. 5. 

 
Fig. 5 Piecewise linear scaling and wavelet functions 

c. Biorthogonal Scaling Functions and Wavelets 

It is somewhat inconvenient that if   and   have compact support then their duals 
~

and~  must have 

infinite support. It is often possible to avoid this difficulty by going over to biorthogonal multiresolution 

[50]. Starting with the nested sequence of subspaces 
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and their associated scaling function  , let us define the sequences of subspaces  
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More precisely,  
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As well as the scaling equations for   and  with symbols P(z) and Q(z), here will again be further 

scaling equations with symbols )(
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Given any P such that P(1) = 1, P(-1) = 0, then there may be many possible P
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then it is easy to see that all the four equations will hold. For example, consider the piecewise linear (Hat) 

scaling function with the following symbol 
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Then to satisfy the above equations one way is to take  
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The corresponding scaling and wavelet functions are shown in Fig. 6. 

 
Fig. 6 Biorthogonal scaling and wavelet functions 

4  Selection of Wavelet Bases 

The most important aspect of wavelet analysis is the possibility to construct wavelet bases of L2 [51][52]. 

The wavelet basis is generally given by the set of detailed and translated versions of the mother wavelet. 

Hence it is possible to represent a signal through its wavelet expression  





i Zk

kikicf ,,            (22) 

where the wavelet coefficients ci,k are obtained through the inner product 
kiki fc ,, ,  

The function   is the dual analysis wavelet; in the orthogonal case  and   are identical. The 

important point is that, in the discrete case, the above decomposition provides a one-to-one representation of 

the signal in terms of its wavelet coefficients. Data compression as well as noise reduction can be achieved 

by quantization in wavelet domain or by simply discarding certain coefficients that are insignificant. 

This form of orthogonal wavelet decomposition was found to be very useful for image coding [53]. There 

have also been specific applications of wavelet compression to medical images, including MR images, 

digital mammograms, as well as 3D data sets. Most applications of wavelet bases exploit their ability to 

efficiently approximate particular classes of functions with few non-zero wavelet coefficients. This is true 

not only for data compression but also for noise removal and fast calculations. The design of  must 

therefore be optimized to produce a maximum number of wavelet coefficients 
njf ,,  that are close to 

zero. A function f has few non-negligible wavelet coefficients if most of the fine-scale (high-resolution) 

wavelet coefficients are small.  This depends mostly on the regularity of f, the number of vanishing moments 

of   and the size of its support. To construct an appropriate wavelet from a conjugate mirror filter h[n], we 

relate these properties to conditions on )(ˆ wh . 
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a. Vanishing Moments 

The wavelet function   has p vanishing moments if  

  pkfordttt k 00)(         (23) 

This means that   is orthogonal to any polynomial of degree p − 1. If f is regular and   has enough 

vanishing moments then the wavelet coefficients 
njf ,,  are small at fine scales 2j.  

Indeed, if f is locally Ck, then over a small interval it is well approximated by a Taylor polynomial of 

degree k. If k < p, then wavelets are orthogonal to this Taylor polynomial and thus produce small amplitude 

coefficients at fine scales.  

b. Size of Support 

If f has an isolated singularity at t0 and if t0 is inside the support of )2(2)( 2/

, ntt jj

nj     then 

njf ,,  may have a large amplitude. If   has a compact support of size K, at each scale 2j there are K 

wavelets nj , whose support includes t0. To minimize the number of high amplitude coefficients we must 

reduce the support size of  . The following theorem relates the support size of h to the support of   and 

 .The scaling function & has a compact support if and only if h has a compact support and their support are 

equal. If the support of h and   is [N1, N2] then the support of   is [(N1 − N2 + 1)/2, (N2 − N1 + 1)/2]. 

c. Support versus Moments 

The support size of a function and the number of vanishing moments are a priori independent. The 

constraints imposed on orthogonal wavelets imply that if   has p vanishing moments then its support is at 

least of size 2p − 1. Daubechies wavelets are optimal in the sense that they have a minimum size support for 

a given number of vanishing moments. When choosing a particular wavelet, we thus face a trade-off between 

the number of vanishing moments and the support size. If f has few isolated singularities and is very regular 

between singularities, we must choose a wavelet with many vanishing moments to produce a large number of 

small wavelet coefficients
njf ,, . If the density of singularities increases, it might be better to decrease the 

size of its support at the cost of reducing the number of vanishing moments. Indeed, wavelets that overlap 

the singularities create high amplitude coefficients. The multiwavelet construction of Geronimo, Hardin and 

Massupust offers more design flexibility by introducing several scaling functions and wavelets. However, 

multiwavelet decompositions are implemented with a slightly more complicated filter bank algorithm than a 

standard orthogonal wavelet transform.  

d. Regularity 

The regularity of   has mostly a cosmetic influence on the error introduced by thresholding or 

quantizing the wavelet coefficients. When reconstructing a signal from its wavelet coefficients 

,, ,, nj

j n

njff  








          (24) 

an error   added to a coefficient 
njf ,,  will add the wavelet component 

nj , to the reconstructed 

signal. If   is smooth, then nj , is a smooth error. For image coding applications, a smooth error is often 

less visible than an irregular error, even though they have the same energy. Better quality images are 

obtained with wavelets that are continuously differentiable than with the discontinuous Haar wavelet. 

In 1994, Ronald A. DeVore proposed adaptive bases for image compression [54]. The analysis of 

performance of compression algorithm was based on the number of coefficients that need to be retained to 

achieve a given error tolerance. It was identified that the number of coefficients is not a completely fair 

assessment. Also it is stated that what really count is the number of bits that must be transmitted in order to 

reconstruct the compressed image. New problems arise when applying the adaptive wavelet basis algorithms. 

In this case the total number of potential coefficients is 4N rather than N. Even though the number of 
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nonzero entries will be less than in the fixed basis case reflecting better performance of adaptive basis 

selection, the encoded file may be larger. 

In 1995, Yan Zhuang and John S. Baras studied the problem of choosing an image based optimal wavelet 

basis with compact support for image data compression and provided a general algorithm for computing the 

optimal wavelet basis [55]. The authors parameterized the mother wavelet and scaling function of the 

wavelet systems through a set of real coefficients of the relevant quadrature mirror filter banks. They also 

introduced the concept of decomposition entropy as an information measure to describe the distance between 

a given digital image and its projection into the subspace spanned by the wavelet basis. The optimal basis for 

the given image is obtained through minimizing this information measure. The resulting subspace is used for 

image analysis and synthesis. A gradient based optimization algorithm is developed for computing the image 

based optimal wavelet basis. Experiments show improved compression ratios due to the application of the 

optimal wavelet basis and demonstrate the potential applications of the methodology in image compression. 

This method is also useful for constructing efficient wavelet based image coding systems.  

In 1996, Michael G. Strintzis proposed optimal biorthogonal wavelet bases for signal decomposition [56]. 

The selection of scaling functions for optimal signal representation by general multidimensional 

biorthogonal wavelet bases is investigated. Criterion for optimality is the minimization of the mean-square 

approximation error at each level of the decomposition. Conditions are given under which the approximation 

error of the decomposition approaches zero as the level increases. Given arbitrary synthesis filters, the 

optimal corresponding analysis filters are determined. Globally optimal families of filters are also found, and 

suboptimal linear and nonlinear-phase filters for the realization of the optimal scaling functions are explicitly 

determined. 

In 2000, Mojsilovic, Popovic and Rackov proposed the selection of optimal wavelet basis for texture 

classification [57]. The scope of this work was to investigate whether the properties of decomposition filters 

play an important role in texture description, and which feature is dominant in the selection of an optimal 

filter bank. Classification experiments with 23 Brodatz textures were performed. The investigation shows 

that the selection of the decomposition filters has a significant influence on the result of texture 

characterization. Finally, the paper ranks 19 orthogonal and biorthogonal filters, and establishes the most 

relevant criteria for choice of decomposition filters in wavelet-based texture characterization algorithms.  

In 2003, Rajpoot, Wilson, Meyer, Coifman proposed adaptive wavelet packet basis selection for zerotree 

image coding [58]. A general zerotree structure for arbitrary wavelet packet geometry in an image coding 

framework was presented. A fast basis selection algorithm which uses a Markov chain based cost estimate of 

encoding the image using this structure is developed. As a result, the adaptive wavelet zerotree image coder 

has a relatively low computational complexity, performs comparably to the state-of-the-art image coders, and 

is capable of progressively encoding images. In 2005, Mandal, Panchanathan and Aboulnasr elaborated on 

choice of wavelets for image compression [59]. The authors show that searching for optimal wavelet does 

not always offer a substantial improvement in coding performance over "good" standard wavelets.  

Some guidelines for determining the need to search for the "optimal" wavelets based on the statistics of 

the image to be coded are proposed. In addition, an adaptive wavelet packet decomposition algorithm based 

on the local transform gain of each stage of the decomposition was proposed. The proposed algorithm 

provides a good coding performance at a substantially reduced complexity.  In 2007, Kharate, Patil and 

Bhale compared the performance image coding scheme when different wavelet bases are used [60]. This 

paper compares compression performance of Daubechies, Biorthogonal, Coiflets and other wavelets for 

different frequency images. Based on the result, it is proposed that proper selection of mother wavelet on the 

basis of nature of images, improve the quality as well as compression ratio remarkably. 

In 2015, Maria Rehman, Imran Touqir, Wajiha Batool presented the performance of several wavelet bases 

in SPIHT coding [61]. Two types of wavelet bases are tested for SPIHT algorithm i.e. orthogonal and 

biorthogonal wavelet bases. The results of using coefficients of these bases are compared on the basis of 

Compression Ratio and Peak Signal to Noise Ratio. The paper shows that the use of biorthogonal wavelets 

bases is better than orthogonal wavelet bases. Out of biorthogonal wavelets, bior4.4 shows good results in 

SPIHT coding. 

In 2015, Noor Kamal, Mohd Ali, Ahmad, Shabiul Islam and Escudero proposed selection of mother 

wavelet functions for multi-channel EEG signal analysis during a working memory task [62]. A comparative 

study to select the efficient mother wavelet basis functions that optimally represent the signal characteristics 

of the electrical activity of the human brain during a working memory task recorded through electro-
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encephalography was performed. Nineteen EEG electrodes were placed on the scalp following the 10–20 

system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the 

cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis 

functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), 

Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, authors determined the MWT basis 

functions with the most significant differences in the ability of the five scalp regions to maximize their cross-

correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. 

Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, 

decomposition, reconstruction, and sub-band feature extraction. 

In 2016, Girisha Garg proposed a signal invariant wavelet function selection algorithm [63]. The author 

addresses the problem of mother wavelet selection for wavelet signal processing in feature extraction and 

pattern recognition. The problem is formulated as an optimization criterion, where a wavelet library is 

defined using a set of parameters to find the best mother wavelet function. For estimating the fitness 

function, adopted to evaluate the performance of the wavelet function, analysis of variance is used. Genetic 

algorithm is exploited to optimize the determination of the best mother wavelet function. For experimental 

evaluation, solutions for best mother wavelet selection are evaluated on various biomedical signal 

classification problems, where the solutions of the proposed algorithm are assessed and compared with 

manual hit-and-trial methods. The results show that the solutions of automated mother wavelet selection 

algorithm are consistent with the manual selection of wavelet functions. The algorithm is found to be 

invariant to the type of signals used for classification. 

In 2018, Jiajia Liu, W.H. Siew, John J. Soraghan and Euan A. Morris proposed a new wavelet selection 

scheme for partial discharge signal detection [64]. Correlation-based wavelet selection scheme and energy-

based wavelet selection scheme are applied to select an appropriate wavelet basis function. A novel wavelet 

selection scheme, wavelet entropy-based wavelet selection scheme is proposed to provide an alternative to 

the above schemes for partial discharge denoising. In 2019, Sushree Satvatee Swain and Dipti Patra 

considered 12 leads to view the cardiac condition from various angles in ECG signal for accurate detection 

of Myocardial Infarction [65]. Various wavelet basis functions, i.e. Haar, Daubechies, Symlet, Coiflet and 

biorthogonal basis filters of different order were investigated for selecting the most suitable one for the 

detection of Myocardial Infarction. Consider the following simulation results obtained using various wavelet 

functions along with SPIHT given in Table I.  

 

TABLE I: Compression performance of SPIHT with different wavelets 

Images Board Coins Aerial 

 CR PSNR (dB) CR PSNR (dB) CR PSNR (dB) 

Haar 1.94 35.55 2.74 38.40 2.15 35.89 

db5 1.74 35.20 2.50 38.35 2.01 36.06 

db10 1.61 22.56 2.33 36.20 1.87 32.86 

bior1.3 1.78 19.11 2.47 31.87 1.97 28.81 

bior2.2 1.83 20.52 2.64 32.41 2.12 31.80 

coif1 1.89 19.76 2.74 34.13 2.16 31.11 

coif3 1.73 35.10 2.38 38.40 1.90 36.08 

sym2 1.82 21.85 2.57 31.17 2.06 24.72 

sym3 1.79 19.89 2.56 34.63 2.06 31.67 

Dmey 0.96 19.84 1.41 35.61 1.11 32.71 

The table shows compression results of SPIHT coding technique with different wavelets on three 

different images. The first image is a circuit board where the adjacent pixel redundancy is limited to few 

pixels, the second image is coins image where the adjacent pixel redundancy is very high. The last image is 

an Aerial survey image. The adjacent pixel redundancy in this case is present diagonally. The following are 

observed from the table. The wavelet ‘db10’ has shown poor performance compared to that of ‘db5’and 

‘haar’. The wavelet ‘bior1.3’ has shown poor performance compared to that of ‘bior2.2’. In the case of 
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Coiflets, the compression ratio is better in case of ‘coif1’, but PSNR is better with ‘coif3’. In the case of 

Symlets the compression ratio is almost similar, but except for ‘board’ image the PSNR is better with 

‘sym3’. 

5 Discussion 

In the last section, simulation results of image compression with SPIHT coding are presented. In SPIHT 

coding, the wavelet coefficients are compared with a threshold to place the coefficients in a respective lists. 

If the coefficient is less than the threshold, it is treated as insignificant otherwise as significant. The coding 

will be done in iteration wise. In each iteration, a new threshold value will be evaluated. Hence, a coefficient 

which treated as insignificant may become significant in further iterations.  

For instance, if k = 4, 5 coefficients can be obtained. They are 1/8, 4/8, 6/8, 4/8 and 1/8. After 

normalizing, these values can be used as coefficients of one of the basis function. Remember that 

biorthogonal wavelet involves four basis function. They are scaling and wavelet functions at decomposition 

and reconstruction. When the coefficients of spline function are used as coefficients of one of the basis 

function, another basis function’s coefficients can also be found from orthogonality. Then, from the 

properties the intended wavelet should possess gives sufficient number of relations, solving which the 

remaining basis functions can be formed. Wavelets based on standard spline function were designed and 

used on image compression with different wavelet based image coding schemes like EZW, SPIHT, STW, 

WDR and ASWDR. The coefficients from standard spline function follows that of binomial coefficients. 

Now, a modification is proposed by setting the centre coefficients a more weight than that in spline function. 

The modified spline is shown below. 
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Using this modification two new biorthogonal wavelets were defined by taking different lengths. For 

instance consider the compression performance with ASWDR using the biorthogonal wavelets with standard 

spline function and modified spline function as given in Table II. 

From the Table II, it is evident that the improvement in the performance is less. The input image set considered is 

the standard test images used frequently in different image processing tasks. The images are high contrast, good 

dynamic range and clear images. On these set of test images the performance of the new wavelets is nominal. But the 

same new wavelets show a remarkable compression results on a slight darker images. The results are given in Table III. 

From Table III, it can be seen a real betterment in compression results as both compression ratio and PSNR got 

increased. The new wavelet 1 and 2 are of different length. The second wavelet is of more length than the first. When 

the length is increased it can be observed that the compression ratio got increased drastically and noticeable 

improvement is observed in PSNR. The weight modification to the center coefficients of spline function has resulted in 

better compression performance with same coding technique for darker images. This kind of correspondences need to 

be revealed, so that an adaptive wavelet mechanism can be developed. Also, this kind of correspondence need to be 

identified for different image processing tasks as well. 
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TABLE II: Compression performance of Biorthogonal wavelet with Standard and modified Spline function  

  BIORS – 1 BIORS – 2 NBIOR - 1 NBIOR – 2 

Lena 
CR 6.8 8.8 6.4 9.8 

PSNR 32.2 27.8 30.7 27.8 

Cameraman 
CR 10.4 7.0 4.9 15.4 

PSNR 30.3 22.1 25.8 27.6 

CT 
CR 16.8 1.5 24.7 22.9 

PSNR 49.0 19.3 46.7 36.6 

Pepper 
CR 7.7 17.1 7.9 12.4 

PSNR 31.5 17.1 30.2 27.6 

Rice 
CR 7.7 5.2 7.8 12.1 

PSNR 32.9 24.9 30.4 27.2 

Barbara 
CR 9.6 1.3 9.8 15.4 

PSNR 29.6 14.2 28.6 25.4 

Mandrill 
CR 5.4 5.4 13.3 5.3 

PSNR 24.2 17.9 26.6 21.5 

MRI 
CR 11.9 3.2 22.5 20.8 

PSNR 42.6 27.4 46.2 37.9 

 

TABLE III: Compression performance of Biorthogonal wavelet with Standard and modified Spline function on dark 

images  

Image  BIORS – 1 BIORS – 2 NBIOR - 1 NBIOR – 2 

1 

CR 5.6 3.9 10.5 7.6 

PSNR 26.9 19.7 28.7 22.4 

2 

CR 13.3 2.8 25.8 18.7 

PSNR 29.1 15.7 33.2 27.2 

3 

CR 10.4 14.3 24.0 13.1 

PSNR 22.4 18.1 26.2 20.2 

4 

CR 7.1 5.6 13.9 9.1 

PSNR 31.1 23.9 33.6 28.2 

5 

CR 8.5 1.3 15.4 20.3 

PSNR 38.1 20.1 41.5 39.9 

6 

CR 27.1 4.4 39.0 50.2 

PSNR 47.3 26.4 49.5 44.9 

6  Conclusions 

Wavelet based image compression schemes like EZW and SPIHT codes the wavelet coefficients in 

different manners so as to yield better compression performance. The accomplishment of any wavelet 

technique depends on the nature of wavelet coefficients resulted from the wavelet decomposition. To get 

good compression performance the coefficients should be formed in such a way that they can be coded easily 

and effectively. To get that sort of coefficients the basis function should be chosen properly. The basis 

function has to satisfy certain properties. This paper deals the basic properties of wavelets in terms of basis 

functions. Different basis functions along with important factors to consider in choosing a basis function are 

presented. The need of adaptive basis function selection is mentioned. 
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