24,397 research outputs found

    Recursive internetwork architecture, investigating RINA as an alternative to TCP/IP (IRATI)

    Get PDF
    Driven by the requirements of the emerging applications and networks, the Internet has become an architectural patchwork of growing complexity which strains to cope with the changes. Moore’s law prevented us from recognising that the problem does not hide in the high demands of today’s applications but lies in the flaws of the Internet’s original design. The Internet needs to move beyond TCP/IP to prosper in the long term, TCP/IP has outlived its usefulness. The Recursive InterNetwork Architecture (RINA) is a new Internetwork architecture whose fundamental principle is that networking is only interprocess communication (IPC). RINA reconstructs the overall structure of the Internet, forming a model that comprises a single repeating layer, the DIF (Distributed IPC Facility), which is the minimal set of components required to allow distributed IPC between application processes. RINA supports inherently and without the need of extra mechanisms mobility, multi-homing and Quality of Service, provides a secure and configurable environment, motivates for a more competitive marketplace and allows for a seamless adoption. RINA is the best choice for the next generation networks due to its sound theory, simplicity and the features it enables. IRATI’s goal is to achieve further exploration of this new architecture. IRATI will advance the state of the art of RINA towards an architecture reference model and specifcations that are closer to enable implementations deployable in production scenarios. The design and implemention of a RINA prototype on top of Ethernet will permit the experimentation and evaluation of RINA in comparison to TCP/IP. IRATI will use the OFELIA testbed to carry on its experimental activities. Both projects will benefit from the collaboration. IRATI will gain access to a large-scale testbed with a controlled network while OFELIA will get a unique use-case to validate the facility: experimentation of a non-IP based Internet

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Wellness Protocol: An Integrated Framework for Ambient Assisted Living : A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy In Electronics, Information and Communication Systems At School of Engineering and Advanced Technology, Massey University, Manawatu Campus, New Zealand

    Get PDF
    Listed in 2016 Dean's List of Exceptional ThesesSmart and intelligent homes of today and tomorrow are committed to enhancing the security, safety and comfort of the occupants. In the present scenario, most of the smart homes Protocols are limited to controlled activities environments for Ambient Assisted Living (AAL) of the elderly and the convalescents. The aim of this research is to develop a Wellness Protocol that forecasts the wellness of any individual living in the AAL environment. This is based on wireless sensors and networks that are applied to data mining and machine learning to monitor the activities of daily living. The heterogeneous sensor and actuator nodes, based on WSNs are deployed into the home environment. These nodes generate the real-time data related to the object usage and other movements inside the home, to forecast the wellness of an individual. The new Protocol has been designed and developed to be suitable especially for the smart home system. The Protocol is reliable, efficient, flexible, and economical for wireless sensor networks based AAL. According to consumer demand, the Wellness Protocol based smart home systems can be easily installed with existing households without any significant changes and with a user-friendly interface. Additionally, the Wellness Protocol has extended to designing a smart building environment for an apartment. In the endeavour of smart home design and implementation, the Wellness Protocol deals with large data handling and interference mitigation. A Wellness based smart home monitoring system is the application of automation with integral systems of accommodation facilities to boost and progress the everyday life of an occupant

    A contrasting look at self-organization in the Internet and next-generation communication networks

    Get PDF
    This article examines contrasting notions of self-organization in the Internet and next-generation communication networks, by reviewing in some detail recent evidence regarding several of the more popular attempts to explain prominent features of Internet structure and behavior as "emergent phenomena." In these examples, what might appear to the nonexpert as "emergent self-organization" in the Internet actually results from well conceived (albeit perhaps ad hoc) design, with explanations that are mathematically rigorous, in agreement with engineering reality, and fully consistent with network measurements. These examples serve as concrete starting points from which networking researchers can assess whether or not explanations involving self-organization are relevant or appropriate in the context of next-generation communication networks, while also highlighting the main differences between approaches to self-organization that are rooted in engineering design vs. those inspired by statistical physics

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning
    • …
    corecore