Wellness Protocol: An Integrated Framework for Ambient Assisted Living

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Electronics, Information and Communication Systems

At

School of Engineering and Advanced Technology,

Massey University,

Manawatu Campus,

New Zealand

HEMANT GHAYVAT

2016

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Abstract

Smart and intelligent homes of today and tomorrow are committed to enhancing the security, safety and comfort of the occupants. In the present scenario, most of the smart homes Protocols are limited to controlled activities environments for Ambient Assisted Living (AAL) of the elderly and the convalescents. The aim of this research is to develop a Wellness Protocol that forecasts the wellness of any individual living in the AAL environment. This is based on wireless sensors and networks that are applied to data mining and machine learning to monitor the activities of daily living. The heterogeneous sensor and actuator nodes, based on WSNs are deployed into the home environment. These nodes generate the real-time data related to the object usage and other movements inside the home, to forecast the wellness of an individual. The new Protocol has been designed and developed to be suitable especially for the smart home system. The Protocol is reliable, efficient, flexible, and economical for wireless sensor networks based AAL.

According to consumer demand, the Wellness Protocol based smart home systems can be easily installed with existing households without any significant changes and with a userfriendly interface. Additionally, the Wellness Protocol has extended to designing a smart building environment for an apartment. In the endeavour of smart home design and implementation, the Wellness Protocol deals with large data handling and interference mitigation. A Wellness based smart home monitoring system is the application of automation with integral systems of accommodation facilities to boost and progress the everyday life of an occupant.

Dedication

I primarily dedicate this research work to the occupants living alone.

To my parents

Late.Shri.Bhaskar Rao Ghayvat Shrimati. Sadhana Ghayvat

To my brother

Basant Ghayvat

Acknowledgements

Words can never describe my sense of gratitude to my supervisor Professor Subhas Mukhopadhyay. Prof. Subhas has not only been my Ph.D. supervisor but also a mentor who supported me all the way from my home country India to New Zealand for higher studies. In the course of research, there were some difficult days, in those days, he inspired me to be focused and sincere to the research. This work would not have been possible without his kind support, expert guidance, the trenchant critiques, and most of all his remarkable patience. My sincere thanks to my co-supervisor Dr. Xiang Gui, for his guidance and support throughout the academic program.

I thank School of Engineering and Advanced Technology, Massey University for the resources and infrastructure for research. I acknowledge the efforts of Mr. Ken Mercer, Mr. Colin Plaw, and Mr. Anthony Wade.

I would like to express my sincere thanks to my research colleagues Dr. Nagender Suryadevara, Dr. Asif Iqbal Zia, Mr. Anindya Nag, Mr. Arun Babu, Mr. Md Eshrat E Alahi and Mrs. Afsari Manesh Nasrin.

My special gratitude to my beloved parents, Late Shri Bhaskar Rao Ghayvat and Mrs.Sadhna Ghayvat and sibling Basant Ghayvat for their constant encouragement, support and prayers for my success. I dedicate this thesis to my father who passed away recently, in the course of this research, who greatly longed to see me with a doctorate.

Table of Contents

AbstractII
DedicationIII
AcknowledgementsIV
Table of ContentsV
List of FiguresIX
List of TablesXV
List of Publications, Contributions and Achievements during the PhD
study(2014-2016)XVII
GlossaryXXI
Chapter 1. Introduction1
1.1 Introduction1
1.2 Motivation of Designing Homes for Tomorrow1
1.2.1 Independent Living1
1.2.2 Enhance the Comfort and Lifetime
1.2.3 Health Services4
1.2.4 Efficient Use of Electricity4
1.2.5 Safety and Security5
1.3 Problem Formulation5
1.4 Problem Solution7
1.5 Reasoning of Wellness Protocol and Approach
1.6 Scope of Thesis
1.7 Novel Contribution

1.8 Thesis Overview1	0
Chapter 2. Literature Survey	13
2.1 Introduction1	13
2.2 Smart Home for Wellness	15
2.3 Entities of Smart Home Systems	6
2.3.1 Sensors and Actuators1	7
2.3.2 Controller and Processing Unit	19
2.3.3 Defined Wireless Networking Protocols1	19
2.3.4 Local Home Gateway and Server	23
2.4 Smart Home Around the World	3
2.5 Activity Recognition Algorithms and Approaches	36
2.6 Issues of Deployment4	1
2.7 Large Data Handling	.4
2.8 Introducing Internet of Things and Cloud Computing45	5
2.9 Conclusion	6
Chapter 3. Wellness Protocol Development and Implementation4	17
3.1 Introduction	7
3.2 A Brief About Wellness Protocol System	7
3.3 Wellness Approach to Protocol Development	8
3.3.1 Intelligent Sampling and Transmission Control Algorithm52	2
3.3.2 Interference Mitigation5	58
3.3.3 Wellness Dynamic Key Generation for Security	0
3.4 Wellness Sensing Units for Home Monitoring and Control	4
3.5 Wireless Topology, Network Formation for Smart Home System	0
3.6 Deployment of Heteregeneous Wireless Sensing Units in a Home7	'1
3.7 Healthcare7	14

3.7.1 Software Description	
3.7.2 Angle Calculation Algorithm	76
3.8 Desired Number of Wireless Sensing Units for AAL	76
3.9 Software Data Extraction, Storage and User Interface	76
3.10 Evaluation of Wellness Protocol Data Reliability	82
3.11 Software Required for Wellness system	
3.12 Comparison of Wellness over ZigBee	87
3.13 Conclusion	
Chapter 4. Issues and Mitigation of Wireless Sensor and Networ Based Smart Building System	
4.1 Introduction	
4.2 Description of Smart Building System	90
4.3 Methodology to Measure Interference and Attenuation Loss	92
4.3.1 Latency	93
4.3.2 Data-Packet Delivery Parameters4.3.3 Link Quality Metrics	
4.4 Experimental Observations, Analysis, and Mitigation	
4.4.1 Fundamental Tests	
4.4.2 Analytical and parametric tests	102
4.4.3 Signal Attenuation inside Smart Building	104
4.4.4 Direction of arrival (DOA)	109
4.4.5 Mitigation of Interference and Suggestions	117
4.5 Conclusion	125
Chapter 5. Activity Detection and Wellness Pattern Generation	127
5.1 Introduction	
5.2 Classification of Events and Activities	128

5.3 Activity Annotation
5.4 Wellness Belief Model134
5.4.1 Methodology1355.4.2 Modelling the wellness belief
5.5 Wellness Determination of An Occupant
5.5.1 Old Wellness Function1395.5.2 Modified Wellness Function139
5.5.3 Measurement of Maximum Active and Inactive Object Usage Duration
5.6 Experimental Analysis, Observation, and Results143
5.7 Web-Based results150
5.8 Conclusion152
Chapter 6. Wellness Pattern Generation and Forecasting153
6.1 Introduction
6.2 Modelling Trends and Forecasting153
6.3 Behavioural Pattern Generation and Forecasting155
6.4 Comparative Results160
6.5 Conclusion164
Chapter 7. Conclusion and Future Works165
References167

List of Figures

Figure 1-1 Single-person households	2
Figure 1-2 One person households by Age and Sex, 1970 to 2012 in the US	3
Figure 1-3 Trend of living alone in the US	4
Figure 2-1 General functioning block diagram of smart home system	17
Figure 2-2 (a) Iron Press heating system attached to the context aware arrangement,	(b)
Medicine dosage and time reminder machine "Tabsafe"	26
Figure 2-3 Mum's Wine Cellar	27
Figure 2-4 Camera based monitoring	27
Figure 2-5 Sensor deployment and activity recognition layout	29
Figure 2-6 Block diagram representation smart home for assisted living and care	30
Figure 2-7 Camera installed at Tiger place Missouri	30
Figure 2-8 (a) Force sensor deployed below the mattress and (b) Appliances are	
connected to usage monitoring logic	30
Figure 2-9 Sensing technology applied in home monitoring	31
Figure 2-10 Home Care Lab Bedroom (5th October 2012, Stirling)	32
Figure 2-11 Home Care Lab Kitchen (5th October 2012, Stirling)	32
Figure 2-12 Home Care Lab Lounge (5th October 2012, Stirling)	32
Figure 2-13(a)User is evaluating gestural input via a watch-like device (6th November	er
2008, Glasgow, © University of Glasgow and (b) Front of the 'MATCH Box' develop	ped
by the University of Glasgow team (27th September 2007, Glasgow)	
Figure 2-14 The Ubiquitous Communicator (UC) is used as remote control all over the	he
home	33
Figure 2-15 Toyota PAPI house at Japan	34
Figure 2-16 Green car charger and power supply in the home if needed	34
Figure 2-17 Wide open window space for natural light and a big fireplace	35
Figure 2-18 Fireplace in the room	35
Figure 2-19 Fire hazard control caused by the fireplace	36
Figure 3-1 Representation of Wellness Protocol Based Home System.	48
Figure 3-2 Functional Description of the Developed Smart home Monitoring System	49
Figure 3-3 Representation of IEEE 802.15.5.ZigBee Stack Fields and Auxiliary Secu	rity
Header in Detail	49

Figure 3-4 Representation of IEEE 802.15.5.ZigBee Stack Fields and Data Payload in
Detail
Figure 3-5 Event-priority based packet creation for WSNs for smart home solution 52
Figure 3-6 Snapshot of XCTU to show the periodic sampling rate selection
Figure 3-7 Snapshot of XCTU to show the cyclic sleep period
Figure 3-8 Intelligent sampling and transmission control algorithm
Figure 3-9 Comparative graph on data collection between Zigbee and Wellness protocol
for E & E sensing unit
Figure 3-10 Comparative graph on data collection of Smart Home system for House 157
Figure 3-11 Comparative graph on data collection of Smart Home system for House 2
Figure 3-12 XCTU snapshot for channel selection
Figure 3-13 Other household device functioning over the same channel where zigbee
device is operating
Figure 3-14 XCTU snapshot to show the ZigBee encryption
Figure 3-15 Wellness Dynamic Key Generation based Security Algorithm
Figure 3-16 Performance benchmark according to CPU cycles
Figure 3-17 Performance benchmark according to Execution time
Figure 3-18 Prototype of Wireless Sensing Unit design
Figure 3-19 Image of a real house where smart home monitoring and control system are
installed71
Figure 3-20 Layout structure of the house with sensor deployment and household objects
Figure 3-21 Outdoor sensing unit for outside temperature measurement
Figure 3-22 E & E sensing unit, which is monitoring and controlling (a) Water kettle, (b)
Washing machine, (c) Microwave and (d) Television73
Figure 3-23 Represents the force sensing unit deployment to monitor (a)Sofa, (b) Dining
Chair, (c) Bed and (d) Toilet seat73
Figure 3-24 CRespresents the PIR sensing unit deployment to monitor (a) Living room
and (b) Entry door
Figure 3-25 : (a) Contact sensing unit connected to fridge door and (b) Manual push
button indicator
Figure 3-26 The MPU-60X 0 Motion Processing Units75
Figure 3-27 Block diagram of software system

Figure 3-28 Tthe steps of low-level sensor data analysis	7
Figure 3-29 Local home gateway for Intel Galileo Coordinator	'8
Figure 3-30 Wellness protocol system architecture	'8
Figure 3-31 Hierarchical representation of WellnessSF (Wellness standard format) tree	
diagrams for smart home system, (S-UNIT: SENSING UNIT)7	'9
Figure 3-32 Snapshot of Home Monitoring Website which presents the sub-sections of	
monitoring	32
Figure 3-33 Packet error rate of Wellness protocol Vs ZigBee with change in spacing	
between Tx and Rx	33
Figure 3-34 Packet delivery ratio of Wellness protocol Vs ZigBee with change in spacin	g
between Tx and Rx	34
Figure 3-35 Packet loss rate of Wellness protocol Vs ZigBee with change in spacing	
between Tx and Rx	35
Figure 3-36 Packet success rate of Wellness protocol Vs ZigBee with change in spacing	
between Tx and Rx	35
Figure 3-37 : Average Delay of Wellness protocol Vs ZigBee with change in spacing	
between Tx and Rx	36
Figure 4-1 Layout of big building heterogeneous sensing system)1
Figure 4-2 Arrangement of sensor nodes for experimental investigation)()
Figure 4-3 Delay as a function of hopping distance)1
Figure 4-4 PDR as a function of hopping distance 10)1
Figure 4-5 PER as a function of hopping distance 10)2
Figure 4-6 (a) Layout of attenuation loss test)5
Figure 4-6 (b) RSSI as a function of different building materials, where STx-AS is varied	d
from .5 m to 6 m 10)6
Figure 4-7 (a) PDR as a function of different building materials, where STx-AS is varied	ł
from 0.5 m to 6 m, 10)7
Figure 4-7 (b) Close-up view PDR as a function of different building materials, where	
STx-AS is varied from 0.5 m to 6 m 10)7
Figure 4-8 (a) PSR as a function of different building materials, where STx-AS is varied	
from 0.5 m to 6 m, 10)8
Figure 4-8 (b) Close-up view PSR as a function of various building materials, where	
STx-AS is varied from .5 to 6m 10)8
Figure 4-9 Schematic setup for IS location for DOA11	0

Figure 4.10: RSSI as a function of the angle between Rx and IS in the line of sight, STx-
Rx=3m111
Figure 4.11: PDR as a function of the angle between Rx and IS in the line of sight, STx- Rx=3 m
Figure 4.12: PSR as a function of the angle between Rx and IS in the line of sight, STx- Rx=3 m
Figure 4.13: RSSI as a function of the angle between Tx and IS in the line of sight, STx- Rx=3m
KA-3III
Figure 4.14: PDR as a function of the angle between Tx and IS in the line of sight, STx- Rx=3 m
Figure 4.15: PSR as a function of the angle between Tx and IS in the line of sight, STx- Rx=3 m
Figure 4.16: RSSI as a function of angle between Rx and IS in multipath fading, STx-
Rx=5m114
Figure 4.17: PDR as a function of angle between Rx and IS in multipath fading, STx-Rx=5 m
Figure 4.18: PSR as a function of angle between Rx and IS in multipath fading, STx- Rx=5 m
Figure 4.19: RSSI as a function of angle between Tx and IS in multipath fading, STx- Rx=5 m
Figure 4.20; DDD as a function of angle between Ty and IS in multipath fading. STy
Figure 4.20: PDR as a function of angle between Tx and IS in multipath fading, STx- Rx=5 m
Figure 4.21: PSR as a function of angle between Tx and IS in multipath fading, STx-Rx=5
m117
Figure 4.22: The XBee smart building system is operating at frequency 2.430
MHz
Figure 4.23: Shows the Wi-Fi functioning over the same frequency 2.430 MHz, which
degraded the XBee RF link quality

Figure 4.24: Shows the Bluetooth functioning over the same frequency 2.430 MHz, which
degraded the XBee RF link quality121
Figure 4.25: Microwave oven distributed all ZigBee channels, and the microwave signal
are dissipated across the whole ZigBee spectrum122
Figure 4.26: PSR as a function of the distance between IS and Rx , SIS- $Rx = 1m$ to
16m123
Figure 4.27: PDR as a function of distance between Tx and Rx, $SIS-Rx = 1m$ to
16123
Figure 4.28: Difference in average RSSI between the highest and lowest levels of each
factor
Figure 4.29: Difference in average packet delivery parameter between the maximum and
minimum levels for each factor124
Figure 4.30: Offset frequency measurement by RF spectrometer125
Figure 5.1:Activities of daily living
Figure 5.2: Modeling sub-activity for ADLs129
Figure 5.3: Sample of Sensor activation logged132
Figure 5.4: Representation of sensor activation, object usage, and activity133
Figure 5.5: Smart home room temperature actual and expected for 24 hours137
Figure 5.6: Probability of movement in different locations of home based on PIR sensing
unit138
Figure 5.7: Probability of occupancy in different locations of home based on Force
sensing unit
Figure 5.8: Comparison of β 1,old and β 1,new wellness functions (with two cases with
wellness belief and without wellness belief)140
Figure 5.9: Comparison of β 2,old and β 2,new wellness functions (with two cases with
wellness belief and without wellness belief)141
Figure 5.10: Object usage for one day for house-1144
Figure 5.11: Object usage for one day for house-2145
Figure 5.12: Object usage for one day for house-3145
Figure 5.13: Object usage for one day for house-4146
Figure 5.14: β1,old at four different elderly houses147
Figure 5.15: Wellness Indices for sleeping activity for four different houses up to one
week148
Figure 5.16: The ADLs throughout the day151

Figure 5.17: The ADLs of having medicine and meal throughout the day	151
Figure 6.1: Functional block diagram of Wellness learning algorithm for time set	eries
analysis	154
Figure 6.2: Actual shower usage and its trend	155
Figure 6.3: Actual dining chair usage and its trend	156
Figure 6.4: Actual dining bed usage and its trend	156
Figure 6.5: Actual dining toilet usage and its trend	157
Figure 6.6: Shower usage duration and forecasting for upcoming week	157
Figure 6.7: Dining chair usage duration and forecasting for upcoming week	158
Figure 6.8: Bed usage duration and forecasting for upcoming week	158
Figure 6.9: Toilet usage duration and forecasting for upcoming week	159

List of Tables

Table 1-1: The statistic of householders living alone; it includes all age groups	2
Table 2-1: The criteria filter for selecting the research in literature survey	14
Table 2-2: The keyword used on google scholar and other research article search e	ngine to
find research studies	14
Table 2-3: Ambient Sensors to Smart Environment Monitoring	18
Table 2.4: Wireless Network based on IEEE standard	20
Table 2-5: Wireless Network Standards Not Based on IEEE Standards	22
Table 2-6: represents limitations and drawbacks of the recent and current research	on the
smart home protocol development	25
Table 2.7: General classification of anomaly detection techniques	
Table 1.8: Traditional Activity Classification (modeling) approaches	38
Table 3.1: Priority of events in descending order	51
Table 3.2: The layer features and functions are presented	65
Table 3.3: Technical description and functioning of Sensing units	66
Table 3.4: The reasons to select Intel board on the top of RPI	69
Table 3.5: ZigBee device modes and their functions	70
Table 3.6. More description of user, location unit, mobile unit and annotation of tra	ee
diagram of WSL (Wellness Standard format)	80
Table 4.1: The issues and their range in the experiments	103
Table 4.2: Obstruction-material details of building environment	104
Table 4.3: Optimum value recorded at STx-AS=6 m	109
Table 5.1: Selection and deployment location of sensing units	130
Table 5.2: Activity Annotation process at different portion of the day	134
Table 5.3: Number of sensor activation and activity detection for four different how	uses
equipped with hydrogenous sensing units	146
Table 5.4: Improved Wellness indices for different activities to four different	
houses	149
Table 6.1: Wellness function indices of object usage and forecast of the ADLs	159

Table 6.2: Annotation used in confusion matrix table 16	51
Table 6.3: Confusion matrix to show the accuracy of ADLs detection for different object	t
usage by Naïve Bayes method16	52
Table 6.4: Confusion matrix to show the accuracy of ADLs detection for different object	t
usage by HMM method16	52
Table 6.5: Confusion matrix to show the accuracy of ADLs detection for different object	t
usage by CRF method10	63
Table 6.6: Confusion matrix to show the accuracy of ADLs detection for different object	t
usage by Wellness method1	63
Table 6.7: Accuracy of different machine learning methods 1	64

List of Publications, Contributions and Achievements during the PhD study (2013-2016)

Journal papers: 6 (Published only)

- Ghayvat, H., Mukhopadhyay, S., and Gui, X.: 'Issues and mitigation of interference, attenuation and direction of arrival in IEEE 802.15. 4/ZigBee to wireless sensors and networks based smart building', Elsevier: Measurement, 2016, 86, pp. 209-226.
- Ghayvat, H., Mukhopadhyay, S., Liu, J., and Gui, X.: 'Wellness Sensors Networks: A Proposal and Implementation for Smart Home to Assisted Living' IEEE Sensors Journal, 2015, Volume: 15, Issue: 12, pp.7341 – 7348.
- 3) **H. Ghayvat**, S. Mukhopadhyay, X. Gui, and N. Suryadevara, "WSN-and IOT-Based Smart Homes and Their Extension to Smart Buildings," **MDPI:** Sensors, vol. 15, pp. 10350-10379, 2015.
- 4) **Ghayvat, H**., Liu, J., Alahi, M., Mukhopadhyay, S., and Gui, X.: 'Internet of Things for smart homes and buildings: Opportunities and Challenges', **Australian Journal** of Telecommunications and the Digital Economy, 2015, 3, (4), pp. 33-47
- 5) **H. Ghayvat,** A. Nag, N. Suryadevara, S. Mukhopadhyay, X. Gui, and J. Liu, "SHARING RESEARCH EXPERIENCES OF WSN BASED SMART HOME," International Journal on Smart Sensing & Intelligent Systems, vol. 7, 2014, pp. 1997-2013.
- M. Khan, S. Din, S. Jabbar, M. Gohar, H. Ghayvat, and S. Mukhopadhyay, "Context-aware low power intelligent SmartHome based on the Internet of things," Elsevier: Computers & Electrical Engineering, ISSN No. 0045-79062016, pp.1-15.(Early access)

Book Chapter

- 7) U. Bakar, **H. Ghayvat**, F. Hasan, and S. Mukhopadhyay, "Activity and anomaly detection in smart home: A survey," in Next Generation Sensors and Systems, ed: Springer, 2016, pp. 191-220.
- 8) **H. Ghayvat**, S. C. Mukhopadhyay, and X. Gui, "Sensing Technologies for Intelligent Environments: A Review," in Intelligent Environmental Sensing, ed: Springer, 2015, pp. 1-31.

Refereed conference papers: 7 (published only)

- 9) H. Ghayvat, S. Mukhopadhyay, X. Gui, and J. Liu "Enhancement of WSN Based Smart Home to a Smart Building for Assisted Living: Design Issues," in Communication Systems and Network Technologies (CSNT), 2015 Fifth International Conference on, Gwalior India, 4-6 April 2015, pp. 219-224.
- J. Liu H. Ghayvat, and S. Mukhopadhyay, "Introducing Intel Galileo as a development platform of smart sensor: Evolution, opportunities and challenges," in Industrial Electronics and Applications (ICIEA), 2015 IEEE 10th Conference on, Auckland NZ, 15-17 June 2015, pp. 1797 - 1802.
- 11) **H. Ghayvat**, S. Mukhopadhyay, and X. Gui, "Addressing Interference issues in a WSN based smart home for ambient assisted living," in Industrial Electronics and Applications (ICIEA), 2015 IEEE 10th Conference on, Auckland NZ, 15-17 June 2015, pp. 1661 1666.
- 12) Md. E. E Alahi, S. C. Mukhopadhyay, H. Ghayvat, R. Wang, L. Jie, "Comparative Studies of Embedded Platform For IoT Based Implementation," in International Conference on Sensing Technology (ICST), 2015 IEEE 9th Conference on, Auckland NZ, 8-10 Dec 2015. pp. 748-752.
- 13) H.Ghayvat, Liu.Jie, A.Babu, M.E.Alahi, U.A.B.U.A.Bakar, S.C.Mukhopadhyay and X.Gui, "Simulation and Evaluation of ZigBee-based Smart Home using Qualnet Simulator," in International Conference on Sensing Technology (ICST), 2015 IEEE 9th Conference on, Auckland NZ, 8-10 Dec 2015. pp. 579-585.
- 14) Sadia Din, Hemant Ghayvat, Anand Paul, Awais Ahmad, M. Mazhar Rathore, Imran Shafi, " An Architecture to Analyze Big data in the Internet of Things," in International Conference on Sensing Technology (ICST), 2015 IEEE 9th Conference on, Auckland NZ, 8-10 Dec 2015. pp. 677-682.
- 15) David Morton, H. Ghayvat, S. C. Mukhopadhyay, Steve Green. "Sensors and Instrumentation to Measure sap Flow in Small Stem Plants". Proceeding of the IEEE: International Instrumentation and Measurement Technology Conference (I²MTC) 2016, Taipei, Taiwan, 23-26 May 2016. pp. 1088- 1093.

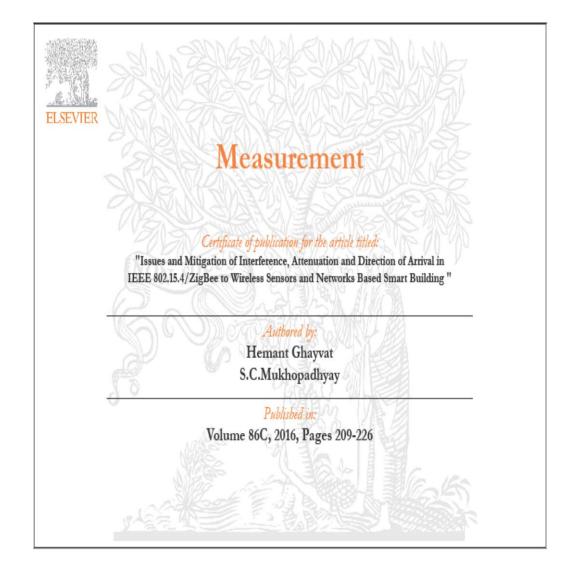
IEEE Sensors Council

November 24, 2015

TO: Mr. Hemant Ghayvat, Massey University Mr. Jie Liu, Massey University Prof. Subhas Chandra Mukhopadhyay, Massey University Mr. Xiang Gui, Massey University

Dear Mr. Ghayvat, Mr. Liu, Prof. Mukhopadhyay, Mr. Gui,

On behalf of the IEEE Sensors Council I am pleased to congratulate you as a coauthor of the paper Wellness Sensor Networks: A Proposal and Implementation for Smart Home for Assisted Living, IEEE Sensors Journal, Vol. 15, No. 12, December 2015, for your paper being one of the 50 most downloaded Sensors Journal papers in the month of September 2015. It is exciting to note that included in this count are all Sensors Journal papers published since the Journal's foundation, about 4500 papers in total, and that last year, 439,609 Sensors Journal papers were downloaded from IEEE Xplore. You can view the latest Top 50 papers at:


http://ieeexplore.ieee.org/xpl/topAccessedArticles.jsp?punumber=7361

Thank you for your contribution to the IEEE Sensors Journal!

Best regards,

H. Juy Magle

H. Troy Nagle President, IEEE Sensors Council

Glossary

-	
AAL	Ambient Assisted Living
ADL	(Basic) Activities of Daily Living
WSN	Wireless Sensor Network
IoT	Internet of Things
HMS	Home Monitoring System
ISM	Industrial Scientific and Medical
DOA	Direction of Arrival
RSSI	Received Signal Strength Indicator
SNR	Signal to Noise Ratio
WDKG	Wellness Dynamic Key Generation