1,075 research outputs found

    Formal verification of an autonomous personal robotic assistant

    Get PDF
    Human–robot teams are likely to be used in a variety of situations wherever humans require the assistance of robotic systems. Obvious examples include healthcare and manufacturing, in which people need the assistance of machines to perform key tasks. It is essential for robots working in close proximity to people to be both safe and trustworthy. In this paper we examine formal verification of a high-level planner/scheduler for autonomous personal robotic assistants such as Care-O-bot ℱ . We describe how a model of Care-O-bot and its environment was developed using Brahms, a multiagent workflow language. Formal verification was then carried out by translating this to the input language of an existing model checker. Finally we present some formal verification results and describe how these could be complemented by simulation-based testing and realworld end-user validation in order to increase the practical and perceived safety and trustworthiness of robotic assistants

    Interfaces for Modular Surgical Planning and Assistance Systems

    Get PDF
    Modern surgery of the 21st century relies in many aspects on computers or, in a wider sense, digital data processing. Department administration, OR scheduling, billing, and - with increasing pervasion - patient data management are performed with the aid of so called Surgical Information Systems (SIS) or, more general, Hospital Information Systems (HIS). Computer Assisted Surgery (CAS) summarizes techniques which assist a surgeon in the preparation and conduction of surgical interventions. Today still predominantly based on radiology images, these techniques include the preoperative determination of an optimal surgical strategy and intraoperative systems which aim at increasing the accuracy of surgical manipulations. CAS is a relatively young field of computer science. One of the unsolved "teething troubles" of CAS is the absence of technical standards for the interconnectivity of CAS system. Current CAS systems are usually "islands of information" with no connection to other devices within the operating room or hospital-wide information systems. Several workshop reports and individual publications point out that this situation leads to ergonomic, logistic, and economic limitations in hospital work. Perioperative processes are prolonged by the manual installation and configuration of an increasing amount of technical devices. Intraoperatively, a large amount of the surgeons'' attention is absorbed by the requirement to monitor and operate systems. The need for open infrastructures which enable the integration of CAS devices from different vendors in order to exchange information as well as commands among these devices through a network has been identified by numerous experts with backgrounds in medicine as well as engineering. This thesis contains two approaches to the integration of CAS systems: - For perioperative data exchange, the specification of new data structures as an amendment to the existing DICOM standard for radiology image management is presented. The extension of DICOM towards surgical application allows for the seamless integration of surgical planning and reporting systems into DICOM-based Picture Archiving and Communication Systems (PACS) as they are installed in most hospitals for the exchange and long-term archival of patient images and image-related patient data. - For the integration of intraoperatively used CAS devices, such as, e.g., navigation systems, video image sources, or biosensors, the concept of a surgical middleware is presented. A c++ class library, the TiCoLi, is presented which facilitates the configuration of ad-hoc networks among the modules of a distributed CAS system as well as the exchange of data streams, singular data objects, and commands between these modules. The TiCoLi is the first software library for a surgical field of application to implement all of these services. To demonstrate the suitability of the presented specifications and their implementation, two modular CAS applications are presented which utilize the proposed DICOM extensions for perioperative exchange of surgical planning data as well as the TiCoLi for establishing an intraoperative network of autonomous, yet not independent, CAS modules.Die moderne Hochleistungschirurgie des 21. Jahrhunderts ist auf vielerlei Weise abhĂ€ngig von Computern oder, im weiteren Sinne, der digitalen Datenverarbeitung. Administrative AblĂ€ufe, wie die Erstellung von NutzungsplĂ€nen fĂŒr die verfĂŒgbaren technischen, rĂ€umlichen und personellen Ressourcen, die Rechnungsstellung und - in zunehmendem Maße - die Verwaltung und Archivierung von Patientendaten werden mit Hilfe von digitalen Informationssystemen rationell und effizient durchgefĂŒhrt. Innerhalb der Krankenhausinformationssysteme (KIS, oder englisch HIS) stehen fĂŒr die speziellen BedĂŒrfnisse der einzelnen Fachabteilungen oft spezifische Informationssysteme zur VerfĂŒgung. Chirurgieinformationssysteme (CIS, oder englisch SIS) decken hierbei vor allen Dingen die Bereiche Operationsplanung sowie Materialwirtschaft fĂŒr spezifisch chirurgische Verbrauchsmaterialien ab. WĂ€hrend die genannten HIS und SIS vornehmlich der Optimierung administrativer Aufgaben dienen, stehen die Systeme der Computerassistierten Chirugie (CAS) wesentlich direkter im Dienste der eigentlichen chirugischen Behandlungsplanung und Therapie. Die CAS verwendet Methoden der Robotik, digitalen Bild- und Signalverarbeitung, kĂŒnstlichen Intelligenz, numerischen Simulation, um nur einige zu nennen, zur patientenspezifischen Behandlungsplanung und zur intraoperativen UnterstĂŒtzung des OP-Teams, allen voran des Chirurgen. Vor allen Dingen Fortschritte in der rĂ€umlichen Verfolgung von Werkzeugen und Patienten ("Tracking"), die VerfĂŒgbarkeit dreidimensionaler radiologischer Aufnahmen (CT, MRT, ...) und der Einsatz verschiedener Robotersysteme haben in den vergangenen Jahrzehnten den Einzug des Computers in den Operationssaal - medienwirksam - ermöglicht. Weniger prominent, jedoch keinesfalls von untergeordnetem praktischen Nutzen, sind Beispiele zur automatisierten Überwachung klinischer Messwerte, wie etwa Blutdruck oder SauerstoffsĂ€ttigung. Im Gegensatz zu den meist hochgradig verteilten und gut miteinander verwobenen Informationssystemen fĂŒr die Krankenhausadministration und Patientendatenverwaltung, sind die Systeme der CAS heutzutage meist wenig oder ĂŒberhaupt nicht miteinander und mit Hintergrundsdatenspeichern vernetzt. Eine Reihe wissenschaftlicher Publikationen und interdisziplinĂ€rer Workshops hat sich in den vergangen ein bis zwei Jahrzehnten mit den Problemen des Alltagseinsatzes von CAS Systemen befasst. Mit steigender IntensitĂ€t wurde hierbei auf den Mangel an infrastrukturiellen Grundlagen fĂŒr die Vernetzung intraoperativ eingesetzter CAS Systeme miteinander und mit den perioperativ eingesetzten Planungs-, Dokumentations- und Archivierungssystemen hingewiesen. Die sich daraus ergebenden negativen EinflĂŒsse auf die Effizienz perioperativer AblĂ€ufe - jedes GerĂ€t muss manuell in Betrieb genommen und mit den spezifischen Daten des nĂ€chsten Patienten gefĂŒttert werden - sowie die zunehmende Aufmerksamkeit, welche der Operateur und sein Team auf die Überwachung und dem Betrieb der einzelnen GerĂ€te verwenden muss, werden als eine der "Kinderkrankheiten" dieser relativ jungen Technologie betrachtet und stehen einer Verbreitung ĂŒber die Grenzen einer engagierten technophilen Nutzergruppe hinaus im Wege. Die vorliegende Arbeit zeigt zwei parallel von einander (jedoch, im Sinne der SchnittstellenkompatibilitĂ€t, nicht gĂ€nzlich unabhĂ€ngig voneinander) zu betreibende AnsĂ€tze zur Integration von CAS Systemen. - FĂŒr den perioperativen Datenaustausch wird die Spezifikation zusĂ€tzlicher Datenstrukturen zum Transfer chirurgischer Planungsdaten im Rahmen des in radiologischen Bildverarbeitungssystemen weit verbreiteten DICOM Standards vorgeschlagen und an zwei Beispielen vorgefĂŒhrt. Die Erweiterung des DICOM Standards fĂŒr den perioperativen Einsatz ermöglicht hierbei die nahtlose Integration chirurgischer Planungssysteme in existierende "Picture Archiving and Communication Systems" (PACS), welche in den meisten FĂ€llen auf dem DICOM Standard basieren oder zumindest damit kompatibel sind. Dadurch ist einerseits der Tatsache Rechnung getragen, dass die patientenspezifische OP-Planung in hohem Masse auf radiologischen Bildern basiert und andererseits sicher gestellt, dass die Planungsergebnisse entsprechend der geltenden Bestimmungen langfristig archiviert und gegen unbefugten Zugriff geschĂŒtzt sind - PACS Server liefern hier bereits wohlerprobte Lösungen. - FĂŒr die integration intraoperativer CAS Systeme, wie etwa Navigationssysteme, Videobildquellen oder Sensoren zur Überwachung der Vitalparameter, wird das Konzept einer "chirurgischen Middleware" vorgestellt. Unter dem Namen TiCoLi wurde eine c++ Klassenbibliothek entwickelt, auf deren Grundlage die Konfiguration von ad-hoc Netzwerken wĂ€hrend der OP-Vorbereitung mittels plug-and-play Mechanismen erleichtert wird. Nach erfolgter Konfiguration ermöglicht die TiCoLi den Austausch kontinuierlicher Datenströme sowie einzelner Datenpakete und Kommandos zwischen den Modulen einer verteilten CAS Anwendung durch ein Ethernet-basiertes Netzwerk. Die TiCoLi ist die erste frei verfĂŒgbare Klassenbibliothek welche diese FunktionalitĂ€ten dediziert fĂŒr einen Einsatz im chirurgischen Umfeld vereinigt. Zum Nachweis der Tauglichkeit der gezeigten Spezifikationen und deren Implementierungen, werden zwei modulare CAS Anwendungen prĂ€sentiert, welche die vorgeschlagenen DICOM Erweiterungen zum perioperativen Austausch von Planungsergebnissen sowie die TiCoLi zum intraoperativen Datenaustausch von Messdaten unter echzeitnahen Anforderungen verwenden

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Formal Verification of an Autonomous Personal Robotic Assistant

    Get PDF
    Human–robot teams are likely to be used in a variety of situations wherever humans require the assistance of robotic systems. Obvious examples include healthcare and manufacturing, in which people need the assistance of machines to perform key tasks. It is essential for robots working in close proximity to people to be both safe and trustworthy. In this paper we examine formal verification of a high-level planner/scheduler for autonomous personal robotic assistants such as CareO-bot. We describe how a model of Care-O-bot and its environment was developed using Brahms, a multiagent workflow language. Formal verification was then carried out by translating this to the input language of an existing model checker. Finally we present some formal verification results and describe how these could be complemented by simulation-based testing and realworld end-user validation in order to increase the practical and perceived safety and trustworthiness of robotic assistants

    Dynamic checklists:design, implementation and clinical validation

    Get PDF

    Grid Analysis of Radiological Data

    Get PDF
    IGI-Global Medical Information Science Discoveries Research Award 2009International audienceGrid technologies and infrastructures can contribute to harnessing the full power of computer-aided image analysis into clinical research and practice. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. This chapter reports on the goals, achievements and lessons learned from the AGIR (Grid Analysis of Radiological Data) project. AGIR addresses this challenge through a combined approach. On one hand, leveraging the grid middleware through core grid medical services (data management, responsiveness, compression, and workflows) targets the requirements of medical data processing applications. On the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical use cases both exploits and drives the development of the services

    Dynamic checklists:design, implementation and clinical validation

    Get PDF

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling
    • 

    corecore