12 research outputs found

    A Dynamic Continuation-Passing Style for Dynamic Delimited Continuations (Preliminary Version)

    Get PDF
    We present a new abstract machine that accounts for dynamic delimited continuations. We prove the correctness of this new abstract machine with respect to a definitional abstract machine. Unlike this definitional abstract machine, the new abstract machine is in defunctionalized form, which makes it possible to state the corresponding higher-order evaluator. This evaluator is in continuation+state passing style, and threads a trail of delimited continuations and a meta-continuation. Since this style accounts for dynamic delimited continuations, we refer to it as `dynamic continuation-passing style.' We illustrate that the new machine is more efficient than the definitional one, and we show that the notion of computation induced by the corresponding evaluator takes the form of a monad

    Formalizing Implementation Strategies for First-Class Continuations

    Get PDF
    We present the first formalization of implementation strategies for first-class continuations. The formalization hinges on abstractmachines for continuation-passing style (CPS) programs with a specialtreatment for the current continuation, accounting for the essence offirst-class continuations. These abstract machines are proven equivalentto a standard, substitution-based abstract machine. The proof techniqueswork uniformly for various representations of continuations. As a byproduct, we also present a formal proof of the two folklore theorems that onecontinuation identifier is enough for second-class continuations and thatsecond-class continuations are stackable.A large body of work exists on implementing continuations, but it is predominantly empirical and implementation-oriented. In contrast, our formalization abstracts the essence of first-class continuations and providesa uniform setting for specifying and formalizing their representation

    A Dynamic Continuation-Passing Style for Dynamic Delimited Continuations

    Get PDF
    We present a new abstract machine that accounts for dynamic delimited continuations. We prove the correctness of this new abstract machine with respect to a pre-existing, definitional abstract machine. Unlike this definitional abstract machine, the new abstract machine is in defunctionalized form, which makes it possible to state the corresponding higher-order evaluator. This evaluator is in continuation+state passing style and threads a trail of delimited continuations and a meta-continuation. Since this style accounts for dynamic delimited continuations, we refer to it as `dynamic continuation-passing style.' We show that the new machine operates more efficiently than the definitional one and that the notion of computation induced by the corresponding evaluator takes the form of a monad. We also present new examples and a new simulation of dynamic delimited continuations in terms of static ones

    Continuations and transducer composition

    Full text link

    An Analytical Approach to Programs as Data Objects

    Get PDF
    This essay accompanies a selection of 32 articles (referred to in bold face in the text and marginally marked in the bibliographic references) submitted to Aarhus University towards a Doctor Scientiarum degree in Computer Science.The author's previous academic degree, beyond a doctoral degree in June 1986, is an "Habilitation à diriger les recherches" from the Université Pierre et Marie Curie (Paris VI) in France; the corresponding material was submitted in September 1992 and the degree was obtained in January 1993.The present 32 articles have all been written since 1993 and while at DAIMI.Except for one other PhD student, all co-authors are or have been the author's students here in Aarhus

    An Architecture for the Compilation of Persistent Polymorphic Reflective Higher-Order Languages

    Get PDF
    Persistent Application Systems are potentially very large and long-lived application systems which use information technology: computers, communications, networks, software and databases. They are vital to the organisations that depend on them and have to be adaptable to organisational and technological changes and evolvable without serious interruption of service. Persistent Programming Languages are a promising technology that facilitate the task of incrementally building and maintaining persistent application systems. This thesis identifies a number of technical challenges in making persistent programming languages scalable, with adequate performance and sufficient longevity and in amortising costs by providing general services. A new architecture to support the compilation of long-lived, large-scale applications is proposed. This architecture comprises an intermediate language to be used by front-ends, high-level and machine independent optimisers, low-level optimisers and code generators of target machine code. The intermediate target language, TPL, has been designed to allow compiler writers to utilise common technology for several different orthogonally persistent higher-order reflective languages. The goal is to reuse optimisation and code-generation or interpretation technology with a variety of front-ends. A subsidiary goal is to provide an experimental framework for those investigating optimisation and code generation. TPL has a simple, clean type system and will support orthogonally persistent, reflective, higher-order, polymorphic languages. TPL allows code generation and the abstraction over details of the underlying software and hardware layers. An experiment to build a prototype of the proposed architecture was designed, developed and evaluated. The experimental work includes a language processor and examples of its use are presented in this dissertation. The design space was covered by describing the implications of the goals of supporting the class of languages anticipated while ensuring long-term persistence of data and programs, and sufficient efficiency. For each of the goals, the design decisions were evaluated in face of the results

    Representing control in the presence of first-class continuations

    No full text
    corecore