VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

UNIVERSITY
of
‘GLASGOW

An Architecture for the Compilation of
Persistent Polymorphic Reflective
Higher-order Languages

Jodo Anténio Correia Lopes

Department of Computing Science

Submitted for the degree of

Doctor of Philosophy

© Jodo Correia Lopes, 1997



ProQuest Number: 10992225

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10992225

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



Thesio
10813

Cq@ |

GLASGOW

l hﬁcmw




An Architecture for the Compilation of
Persistent Polymorphic Reflective
Higher-order Languages
by
Jodo Anténio Correia Lopes

Submitted to the Department of Computing Science
UNIVERSITY OF GLASGOW
for the degree of
Doctor of Philosophy
February 1997

Abstract

Persistent Application Systems are potentially very large and long-lived application sys-
tems which use information technology: computers, communications, networks, software and
databases. They are vital to the organisations that depend on them and have to be adapt-
able to organisational and technological changes and evolvable without serious interruption
of service.

Persistent Programming Languages are a promising technology that facilitate the task of
incrementally building and maintaining persistent application systems. This thesis identifies
anumber of technical challenges in making persistent programming languages scalable, with
adequate performance and sufficient longevity and in amortising costs by providing general
services.

A new architecture to support the compilation of long-lived, large-scale applications is
proposed. This architecture comprises an intermediate language to be used by front-ends,
high-level and machine independent optimisers, low-level optimisers and code generators of
target machine code.

The intermediate target language, TPL, has been designed to allow compiler writers to
utilise common technology for several different orthogonally persistent higher-order reflective
languages. The goal is to reuse optimisation and code-generation or interpretation technol-
ogy with a variety of front-ends. A subsidiary goal is to provide an experimental framework
for those investigating optimisation and code generation. TPL has a simple, clean type sys-
tem and will support orthogonally persistent, reflective, higher-order, polymorphic languages.
TPL allows code generation and the abstraction over details of the underlying software and
hardware layers.

An experiment to build a prototype of the proposed architecture was designed, developed
and evaluated. The experimental work includes a language processor and examples of its use
are presented in this dissertation. The design space was covered by describing the implica-
tions of the goals of supporting the'class of languages anticipated while ensuring long-term
persistence of data and programs, and sufficient efficiency. For each of the goals, the design
decisions were evaluated in face of the results.

Thesis Supervisor: Professor Malcolm Atkinson

ii



Acknowledgements

This work would not have been possible without the help and encouragement of many people and
the support of various organisations.

I am most indebted to my supervisor, Malcolm Atkinson, for proposing the research project that
leaded to this thesis, for his guidance and enthusiasm, his many ideas and all the suggestions that
gave shape to it. His comments on how to do research were greatly appreciated and his example of
how to combine teaching and research proved to me that it is possible and worthwhile to pursue this
career. Professor Atkinson is a model researcher and teacher who knows how to balance theory with
engineering work. I would like to thank him again for the many comments, suggestions and corrections
that greatly improved this dissertation.

Peter Dickman in his rdle as second supervisor during the final part of the research, helped in fo-
cusing the implementation and we had many discussions that helped clarify the research. His encour-
agement and cheerful approach were a great help. He made several helpful suggestions and corrections
which greatly improved this dissertation.

Paul Philbrow was a patient listener to my half-baked ideas and gave comments and suggestions
that helped to debug them. He was always ready to help me with my misunderstandings related to
the usage of the Napier88 language and the associated technology. He also supported the computer
programs that form the persistent programming environment used in the implementation. He is a
model of consistency in following sound principles in life that most of us do not have enough energy to
pursue.

Ron Morrison and the persistent research group at the University of St Andrews provided the
Napier88 persistent programming environment used in the implementation and useful discussions.

I had the pleasure to discuss functional programming and other matters with Phil Trinder and
Gebreselassie Baraki. Both of them always demonstrated their friendship and introduced me to the
difficult problems of cricket rules, local politics and the idiosyncrasies of the English language.

Discussions with Paul Wilson, Dag Sjgberg, Graham Kirby, Quintin Cutts and Laurent Daynés
helped to clarify issues related to this research.

Anne Philbrow did gud job in proof-reading this dissertation.

Gordon Russell provided the software to cross-reference citations.

My PhD colleagues and all the staff of the Computing Science Department made my stay in the
Department a pleasant time.

Hermano Moura and the rest of the “Portuguese speaking community” provided the intense social
life that gave the right balance to the hard and, not always immediately rewarding, research work.

My colleagues in Porto, Cristina Ribeiro, Jodo Canas Ferreira, Jodo Pascoal de Faria and Gabriel
David, were patient listeners to my grumbles during the writing of this dissertation.

JNICT, National Board of Science and Technological Research in Portugal, provided extensive fi-
nancial support for my stay in Glasgow, through “Programa Ciéncia”, scholarship BD/1310/91-IA, and
“Programa PRAXIS XXI”, scholarship BD/3173/94.

The FIDE, ESPRIT BRA, project number 6309, provided part of the research environment and
introduced me to the world leading research groups in the area.

And last but not least, I would like to thank my wife, Ana Ventura and all my family, for their love,
support and encouragement at all times.

Jodo Correia Lopes

iii



“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel

iv



Contents

Abstract
Acknowledgements
1 Introduction
1.1 Persistent Application Systems . . . . . ... ... ... ... ... .
1.2 Historical Background . . . . . .. ... .. . ... ... e
1.3 Persistence . . . . .. . . . e e e e e
1.3.1 Definition of Persistence . . .. .. ... ... ... ... ... . . ...
1.3.2 The Traditional Approach to Persistence . . . . . . ... ... ... ...
1.3.3 Orthogonal Persistence . . . .. ... ... ... .. ... uuee....
1.4 The Need for New Architectures . . . ... ... ... .. .............
1.4.1 Common Object Request Broker Architecture . . . ... ... ... ...
1.5 Contributionsof ThisWork . . . .. ... ... ... ... .. ... ...,
1.6 ThesisStructure . . . . . . .. ... ... . e
2 An Architecture for Compilation
2.1 Introduction. .. . .. . . . . . . .. e
2.2 New Architectures to Support PAS . . . . ... ... ... .. .. . . . ..
2.2.1 Scalable Persistent'Foundations . . . . .. ... ..............
2.2.2 Other Approaches . .. .. ... .. ... .. ... . ...
2.3 Target Persistent Language . ... ... ... .... ... ... ..
2.3.1 Generality. . . .. . . . .. e
2.3.2 LanguageFeatures ............ ... ... . ...
2.3.3 Interoperability ... ... .. ... ... . ... .. i
2.3.4 Longer-term Persistence ... ... ... . ... ... ... . . ... ...
23,5 Efficiency . .. ... . . . . e e e e
2.4 Interpretation or Machine Code Generation . .. ... ... ... ........
2.4.1 Compiler Complexity . .. ... .. ... . ...
242 Qualityof Code. . ... ... . .. e
2.4.3 Interpretative Overhead . ... ................... . ...
2.4.4 Portability. . . .. ... ... . .. e
245 Conclusions . . . . . . . . . 0 ittt e e
2.5 An Architecture for Compilation . . . . . ... ... .. ... .. .. ... ...
251 Thelevelof TPL . . . . .. . . . . . i
2.8 Conclusions . . . . .. .. . i e e e e e e e
2.7 ThesisStatement . ......... ... . ... .. e
3 Persistent Programming Languages
3.1 Introduction. ... .. .... ... .. ... e
3.2 Persistent Higher-order Reflective Languages . . . . . ... ...........
3.3 Persistence . ... .. ... e

ii

iii



CONTENTS vi
3.3.1 Higher-order Procedures . ... ....................... 32

3.3.2 Polymorphism . . ... ... .. ... ... e 33

3.3.3 Reflection . . . . . ... .. . . e e 34

3.34 Conclusions . . . . . v v it e e e e e e e e e e e e 35

3.4 Language Featurestobe Supported . . . . ... ... ... ... ... ...... 35
3.5 Constructs for First-class Procedures . . . .. ... .. ... ... ........ 37
3.6 Constructs for Polymorphism . . . . . ... ... .. ... ... .. ... 39
3.6.1 Parametric Universal Polymorphism . .. ... ... ........... 39

3.6.2 Inclusion Polymorphism . .......................... 40

3.7 ConstructsforReflection ... ... .. .. ... ... ... .. ... . ... . ... 41
3.8 Constructs for Stable Store Management . . . . . .. ... ............ 42
3.9  Summary . . ... e e e e e e e e e e e e e 43
4 Intermediate Representations 45
4.1 Introduction . . . .. ... . . it i e e e e 45
42 Three-addressCode . . . ... ... .. . it 46
4.3 Continuation-passing Style . . . . . . . .. .. .. ... e 47
4.3.1 Appel’s Continuation-passing Style (CPS) . .. ... .. ... ...... 48

4.3.2 Tycoon MachineLanguage . .. ... .. .. .. ... ........... 49

44 A-calculus . . ... .. e e e e e e 50
4.4.1 Spineless Tagless G-machine . . . . ... ... . ... ... ...... .. 50

45 AmnormalForms ... .. ... . ... e e 51
4.6 Static Single AssignmentForms . . . ... ... ... ... ... ... ... 52
4.7 Program DependenceGraph . ... .. .. ... .. ..., 52
4.7.1 Guarded Single-AssignmentForms . . .. ... ... ........... 53

4.8 OtherApproaches .. .. ... ... ... .. ... 54
4.8.1 P-code . .. ... e e e e e 54

4.8.2 FAM . .. . . e e e 54

4883 PAM . ... e e e e e e 55

4.8.4 DIANA . . . . e e e e e 55

4.85 PAIL . . . . . . e e e e e e 56

4.9 Discussion of Intermediate Representations . . . ... ... ... ........ 57
410 Conclusions . . . . . . . . . it e e e e e e e e e 58
5 Target Languages 60
5.1 Introduction .. ... ... .. .. ... e 60
5.2 TenDRA Distribution Format(TDF) . . . ... ... .. .. ... ... . .... 61
5.3 Code-generatorGenerators . . . . . .. .. .. ..t 62
5.4 GNU Register Transfer Language(RTL) . . . .. ... ... ........... 63
55 AssemblyC . . . . . . .. e e e 64
5.6 Discussion of Target Languages . . .. .. ... ... ... ... ... 65
5.7 Conclusions . ... .. .. P 66
6 Experimental Design 68
6.1 Introduction. ... .. ... . . . . . e e 68
6.2 LanguageFramework . . . . ... ... . ... ... 69
6.3 ComponentstoBuild ... ........... .. ... . ... ... ... 70
6.4 CoreLanguage (COREL) . . . . .. . . . . . i i it 71
6.5 Possible Compilation Strategies . . .. ... .. .. ... ... ... ....... 71
6.5.1 Allocation of ActivationRecords . . . . .. ... ... ... ........ 72

6.5.2 ParameterPassing . .. .. ... .. ... ... ... e 73

6.5.3 Mapping Locals and ParameterstoaUMC . . . .. ... ... ... ... 73

6.5.4 Identifyingthe DecisionSpace . . . . ... ... ... ... . ... .... 74

6.6 Enabling Technology. . . . .. ... .. . . ... i i 75



CONTENTS vii

6.7 Internal Data Structures ... ... ... ... ... . .. ... ... . 76
6.8 SUmMmMAary . . . . . . o e e e e e e e e e e e e e 78
7 Target Persistent Language 79
7.1 Introduction. .. . .. . .. .. .. . . e 79
7.2 TPLProgramsand Scope . .. .. ... ...t 80
7.3 Constancy . . ....... e e e e e e e e e e e 81
74 Equality . . . .. . .. e e 82
7.5 Persistence . ... .. . . ... e e 82
7.6 TypeSystem . . . .. .. . i e e e 82
7.7 First-Class Citizenship . ... ... .. ... ... ... ... . . ... 83
7.8 TPLTypesandOperations .. .......... ... ... ... 84
7.8.1 Universal Operations . ... .. .. ... ..., 84

7.82 IntegerOperations. . . ... .. .. ... ... .. ... 84

7.83 RealOperations .. ....... ... ... 0. 85

7.84 BooleanOperations . . .. ... ... ... ... 86

785 OperationsonBits . . ... ... .. ... ... . .. ... . . . ... 87

786 PixelOperations . ... ... .. ... ... ... .. . .. .. 88

7.8.7 Operations on Strings of Characters . . .................. 89

7.8.8 OperationsonRecords . ............. .. ... ... ... 90

7.8.9 OperationsonVectors . . . . ... ... .. ... ... 91
7.8.10 Operationson Procedures. . . . . ... ... ... ... ... ... ... 91
7.8.11 Operationson INF . . . . . . .. . .. .. ittt 92
7.8.12 Operationson MAP . . . . . . . . . ittt e 93
7.8.13 Miscellaneous Operations and Statements . . . . ... ... ... .... 94
7.8.14 Type Conversions . . . . . . . . . v v v v i i ittt e e e e e 96
7.8.15 Standard Library . . ... ... . ... . . ... e 97

7.9 Conclusions . . . . . . . . . e e e e e e e e 97
8 Compiling to TPL ) 98
8.1 Introduction. .. . ... .. . ... .. .. e 98
8.2 General LanguageFeatures . .. ... ... ........ .. .. ... . ..., 99
8.2.1 Declaration, Assignment and Arithmetic Expressions . . . ... .. .. 99

8.2.2 Control Structures and Boolean Expressions . . . ... ... ... ... 100

823 Recursion ... ... ... .. .. . . . . e 102

8.2.4 AggregateTypes . . .. .. . .. .« . . e 103

8.3 First-class Higher-order Procedures . . . . .. ... ... ............. 105
8.3.1 NestedProcedures . . ... . ... ... .. .. ... 105

8.3.2 First-class Procedures . . . .. ... ... ... . ... ... . ... ... 107

8.4 Collectionsof Bindings . . .. ... ... ... ... . 108
85 Standard Library. . . . . . . . . . . . . e 112
8.6 Orthogonal Persistence and Incremental System Construction . . . ... ... 113
8.7 Polymorphism . .. ... .. ... ... e 115
8.8 UnionTypes . . . . . . . i i e e e e 116
89 InfiniteUnionTypes. . . . . . . . . . i i ettt 118
8.10 The CompilerFront-end. . .. ... ... ... ... .. .. . . ... ... 119
8.10.1 Parsing . . . . . . . . . e e e e 120
8.10.2 Internal Data Structures . . .. .. ... .... ... . .. ... 120
8.10.3 Collecting Blackboard Information . .................... 121

8.11 Bootstrapping the Compilation Framework . ... ....... ... ... ... 121

8.12 ConclusSions . . . . . . v i e e e e e e e e e e e e e e e e 121



CONTENTS

9 High-level Machine Independent Optimisations

9.1 Introduction. . . ... .. .. . .. . ... e e e e
9.2 Optimising TPL Program Representations (OPT) . .. ... ... . ... ....
9.3 PartialEvaluation . ... ... ... ... ... . . ... ... . . ..
9.3.1 Constant Propagation . . . ... .. ... ............. . ...,
9.32 ConstantFolding . . . ... ... ... ... . . .. ...
9.3.3 CopyPropagation . ............. ... .. . . ... ... ...
9.3.4 Algebraic Manipulations . . .........................
9.3.5 StrengthReduction ......................... .. ....
9.3.6 Putting It All Together —FOLD . . . ... ... ... ... .........
9.4 Redundancy Elimination .. ...... ... ... ... ... . ... .. ...,
9.4.1 Unreachable-code Elimination . . . . ... ... ..............
9.4.2 Useless-code Elimination . . . . ... ... ... ..............
9.4.3 Common-subexpression Elimination .. ..................
9.5 Procedure Call Transformations . . . . ... ....................
9.5.1 Inlining . . . . . . . . . . e e e e e e e
9.5.2 ProceduresCalledOnlyOnce . ... ....................
9.5.3 DropUnused Arguments . . .. .. ... .. ... 0o
9.54 TailRecursion ... ..... ... ... ...
9.6 UsingContinuations. . . . . . . ... . .. .. . . i
9.6.1 CPSTransformation. . ... .. .. ... 0.
9.6.2 Consequences of CPS Transformation .. .................
9.6.3 Implementation—CPSt . ... ............... .. ......
9.7 TPLkandtheChangesto TPL ... .. ... ... .. . .. ..o
9.8 Conclusions . . . . . . . . . .. e e e e e e

10 Abstract Machine and Object Store

10.1 Introduction. . . . . . . .. . . . . . . e e e
10.2 Low-level Abstract Machine . .. ... ... ... ... . .. ... . .. . ...
10.3 Environment Analysis and Closure Conversion . . .. ... ... .. ... ...
10.4 Putting It All Together — CLOSE . . . . . . . ... ... . ... . ...,
10.5 cTPLand the Changesto TPL . .. .. .. .. ... ... . . ... ... ...
10.5.1 Operationson Code Vectors . . . . ... .. ... ... .. ... ....
10.6 The Runtime System . . . . . . . . . . . . . .. it
10.6.1 Runtime SupportforcTPL . .. .. ... .. ... ... ... ... ...
10.7 The Persistent ObjectStore . . . . . . . . . . .. ... ... . .. o ..
10.7.1 Store Object Formats . .. ... .. ... ... ... .. ... . .. .. ..
10.7.2 Persistent Values . . . ... .. .. ... .. ... . ... o0
10.7.3 Garbage Collection. . . . . ... .. ... ... . ... .
10.7.4 Implementation —STORE . . ... ... ... ... ... .. ... .. ..
10.7.5 DISCUSSION . . . . . . v e e e e e e e e e e
10.8 Code Generation . . . . .. .. ... .. . ittt
10.8.1 Using C-- . . . . . e e e e e e
10.8.2 Code for TPLk Programs . . . ... .. .. ... ..
10.8.3 Machine Dependent Optimisations . . . . ... ... ... ........
10.9 Constructing an Executable —JUICE . . . ... ... ... ... .. ... ...
10.9.1 Dynamic Bindingand Linking . . . . . .. ... ... ... ... ...,
10.10 Summary and Conclusions . . . ... ... .. ... ...



CONTENTS ix

11 Evaluation and Discussion 170
11.1 Introduction. . . . . . . . . . . . e e e e e e e 170
11.2 LanguageFeatures ... ... ... . . ... . ... e 171

11.2.1 Orthogonal Persistence . . . .. .. ... .... .. ............ 171
11.2.2 First-class Procedures . . . . . . . . .. . . . i ie 172
11.2.3 Polymorphism . . . . . ... .. ... .. e 172
11.24 Reflection . . . . . . . . .. . .. . . e e 173
11.3 Longevity . . . . . . o o e e e e e e e e 173
11.3.1 Architecture-independence . . . . ... ... ... .. ... .. 174
11.3.2 Extensibility . ... .. ... ... . ... .. 174
11.3.3 Generality and Portability . ..................... ..., 175
11.3.4 Recent Work . . . . . . . . . . . e e e 176
114 Efficiency . . . . . .. i vttt e e e e e e e e e e e e e 176
11.4.1 High-level Optimisations . . . . .. ... ... ... ... ... .... 176
11.4.2 CodeGeneration . . . . .. . .. .. .. e 177
11.5 TPLDesign ChoiCes . . . . v v v v v it e e e e et e e e e e e e e 178
11.5.1 TPLProperties . . . . . . . . .. e 178
11.52 TPLSet of Types . . . . v v v vt e e e e e e e e e e e e e 179
11.5.3 TPLInstructionSet . . ... .. ... ... ... ... ... . ... 181
1154 Conclusions . . . . . . . . . . . . e e e e e e 181
11.6 The Abstract Machine and Runtime System . . . . . ... ... ......... 182
11.6.1 The Allocation of Activation Records . . . . .. ... ... ... ..... 182
11.6.2 Parameter-Passing Strategies . . ... ... ... ... ... ....... 183
11.6.3 The Level of the Store Interface . . . ... ... ... ... ........ 183
11.6.4 Useof CasaTarget Language . . . . ... ... ... ... .. ..... 184
11.6.5 Measurements and Conclusions . . . . ... ... ... .......... 186
11.7 Enabling Technology and Internal Representation ... ... .......... 187
11.8 Limitations of the Experimental Work . . ... .................. 188
119 Conclusions . . . . . . v i vttt e e e e e e e e e e e e 190

12 Conclusions and Future Work 191
12.1 Summary . . . . . o o e e e e e e e e e e e e e e e e e 191
122 Future Work . . . . . . . . . . e e e e 192
12.3 Conclusion . . . . . . . . . i i e e e e e e e e 193

Appendixes 194

A TPL 194
Al TPLAbstractSyntax . .. . . . ... .. .. ittt 194
A2 TPLMICro-syntax . . . . . v v vttt et e e e e e e e e e e e e e 196
A3 Changesfor TPLk . . . . . . . . . . . e 197
A4 ChangesforcTPL. . . . . . . . . . . e 197

B COREL 198
B.1 CORELAbstractSyntax . . . . .. ... . ... 198
B2 CORELTypeRules . . .. ... .. . . . . it iei e 199

C Using the Language Framework Prototype 201
C.1 Proceduresas Parameters . ... ... ...... ... ... ... 201
C2 Mutual Recursion .. .. ... .. . . .. . e e 202
C.3 Fibonacci Numbers . . .. .. .. . .. . . . . e 203
C4 Acompleteexample . .. . . . . . . .. . . e 204

C4.1 TheCORELProgram . . ... ... ... ... ... 204

C.4.2 The TPLRepresentation . ............. ..., 205



CONTENTS X
C.4.3 Optimisationsin TPL . . . ... .. ... . .. ... . .. . . . ..... 205
C.4.4 Closed TPL(cTPL) . . . . . o o v i e e e e e e e e e 206
C.4.5 Blackboard Information . . . .. .. ... ... . . . ... 207
C46 TheC--CodeGenerated . . . . .. ... ... . . . .. .. ... 207
C4.7 ExecutingaC--Program . ... ... ... ... .00, 209
C.4.8 CPS Transformation to Produce TPLk. . . . .. ... ... . ... .... 209
Bibliography 211
Abbreviations 229
Index 230



List of Figures

11
1.2
1.3
14
1.5

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

8.1
9.1

Conceptual Mapping in the Traditional Approach to the Provision of Persistence 6

Conceptual Mapping Simplification by UsingaPPL . . .. ... ... ..... 6
Complex Mappings to be Maintained in a Typical PAS . . . . ... ... .. .. 9
Common Object Request Broker Architecture . . . ... ... .......... 10
Interface Definition Language . . . .. .. ... .. ... ... ... . ..., 10
Scalable Persistent Foundation Architecture . . . . . ... ... ... ...... 16
The Goalof aSimpler PAS . . . . ... ... ... ... . ... ... . . ... 17
Interoperability in the ContextonanSPF . . ... ... ... .......... 19
Interpretation Versus Machine Code Generation . ... ............. 22
Program interpretation . . .. ... ... .. .. . .. ... ... .. 24
An Architecture for Compilation . . . . ... ... ... ... ... ... . ... 26
PHOL Family Tree . . . . . . . . . . o it e i e e e i e e 31
Escaping Procedure . . ... ... ... ... . ... . . . e 32
Parametric Polymorphic Procedure . . .. ... .. ... ... .. ........ 33
Runtime Linguistic Reflectionin Napier88 . . . . . . ... ... ... .. .... 35
Block Retention Mechanisminthe PAM . . .. .. ... ............. 38
Implementation of Subtype Inheritance on Static Typed Languages . . . . . . 40
Implementation of Subtype Inheritance on Dynamic Typed Languages . ... 41
Closure Representationin STG .. ......... ... ... .. . ... ... 51
SSA Internal Representation . . . . .. .. ... .. ... ... . ....... 52
GSARepresentation . . . . . .. .. .. . ... .. . e 53
Procedure Definitionin PAIL . . . . . ... ... ... .. ... ... 57
Comparing Different Internal Representations . . ... ............. 59
Distribution of Applications Using TDF . ... ... ............... 61
Code-generator Generator Using BURG . . ... . ... ............. 63
Comparison of UMC Languages . ... .. ... ..... ... .. ..., 65
The Three-stage Architecture . . ... ... .. .. ... .. ... ... ..., 69
TPL Language Framework . ... ... ... ... ... .. ... . .. .. ... 70
An Example ofa CORELProgram . .. ... ... . ... ... . . ...... 71
Possible Compilation Strategies . . . ... ... .. ... ... .......... 75
TPL RepresentationasaTree . . ... .. ... ... ... oo, 76
TPL Representationas Quadruples . . . ... ... ... ... ... ....... 77
3-addressand TPLSyntaxes . . ... ... ... ... .. 77
TPL Internal Representation . . . . .. .. ... .. ... ... ...... 78
Persistent Store Graph . . . . . . . . . . . ... .. .. e 113
Sequence of Transformations Implementedin OPT . . . .. .. ... .. .... 126

xi



LIST OF FIGURES xii

9.2 Unreachable-code Elimination . . . .. ... ...... ... ... ........ 133
10.1 cTPLAbstract Machine . . .. .. ... ... ... . .. . . . 148
10.2 ClosuresincTPL . . . . . . . . e e e e e e e 150
10.3 Possible Closure Representations . . ... ... .................. 151
104 CLOSESymbolTable . . . . .. .. . ... . . e 152
10.5 cTPLAccessPaths . ... ... ... ... . . . .. .. i 154
10.6 Example of Value Creation and AccessincTPL . ... .............. 156
10.7 StoreObjectFormat . . . . .. .. ... . .. .. . e 159
10.8 Store Objects . . . . . . . . . . e e e 160
10.9 Closures and Code Array Objects . . . . . ... .. ... ... ... ...... 161
10.10 Support for Persistent Values . . . .. ... ... ... ... .. ... . ..... 162
10.11 Memory Mapped Store . . . . . . . . . . ... e 163
11.1 A NewcTPL Abstract Machine . . . ... ...................... 183



List of Tables

1.1 Examples of Persistent Languagesand Systems . . .. . ... ... ... .... 8
1.2 Vocabulary of Equivalences between Programming Languages and Databases 8
4.1 Types of Objects Supportedbythe PAM . ... ... ... ... .......... 55
4.2 Attributes of Intermediate Representations . . . . . ... ........ ... .. 58
6.1 Possible Choices in the Compilation Strategies . . . ... .. ... ... ..... 74
7.1 AddressingModesin TPL . . . .. . ... . . . .. nnene.. 81
7.2 Coercion Operationsin TPL . . ... .. .. . ... . ... 96
9.1 Algebraic Rules Used in Optimisations. . . . ... ... ... .. ......... 129
10.1 Addressing Modesin cTPL . . . . . . . . . . . . i i it it i i 148
10.2 Runtime Object Formats . . . . .. .. ... ... ... ... ... . ....... 157
111 Measurements . . . . . .. . . ... e 187

xiii



Chapter 1

Introduction

There is an increasing demand for capacity to store, process and distribute information. This
demand is being further increased by the rapid deployment of applications using interna-
tional digital networks, such as the World Wide Web [Berners-Lee et al., 1992]. Recently
there has been a growing interest in programming representations independent of the soft-
ware and hardware platform [Gosling, 1995].

Despite the day to day hardware performance improvements, Software Engineering re-
search is still striving to reduce the large amount of effort needed to produce and maintain
the information systems [Ramamoorthy et al., 1984]. It is possible to identify a class of
these information systems that are of general importance. These, which involve both com-
plex data and sophisticated software, are invariably long-lived in response to organisational
needs. These persistent application systems are built and evolve using a disparate mix of
technologies: database systems, communication systems, user interface systems, operating
systems, compilers, etc. Persistence is an active area of research in the operating system,
programming language and database communities.

To deal with persistent application systems, many technologies and methodologies have
been proposed: Database Management Systems, Database Programming Languages, Persis-
tent Programming Languages, 4GLs and other CASE tools, Structured Analysis and Design,
Object-Oriented methodologies and Object-Oriented Database Management Systems. This
thesis is concerned with one promising technology, Persistent Programming Languages, that
facilitate the task of incrementally building and maintaining persistent application systems.
This dissertation identifies a number of technical challenges: making Persistent Program-
ming Languages scalable, with adequate performance, with sufficient longevity and in amor-
tising costs by providing general services. These challenges are met by a proposal for a new
architecture that accommodates architecture-independent optimisations, evolution of sup-
porting technology and interoperability between different languages. The viability of this
approach is demonstrated and the following specific issues are investigated: a new archi-
tecture for compilation with a context for high-level machine independent optimisations and
code generation, the design of an intermediate language to support the class of languages of



Introduction 2

interest, the use of the continuation-passing style program transformation, the use of C as a
portable target language and the interaction with a persistent object store.

This introductory chapter proceeds by a definition of the kind of applications of concern
to this thesis, a survey of some approaches tried in the last decades to solve the problem of
building and maintaining those applications and the introduction to the new and promising
approach known as orthogonal persistence.

1.1 Persistent Application Systems

The class of information systems that concern this work are defined and their attributes
characterised in this section. Persistent Application Systems (PAS) [Atkinson and Morri-
son, 1995] are potentially very large, long-lived application systems which use information
technology: computers, communications, networks, software and databases. Examples of
such PAS are integrated information systems in organisations such as government and pub-
lic administration or hospitals, geographical information systems, CAD/CAM systems, office
automation systems and CASE tools.

PAS are characterised by having a size that may range from a small personal database
to large amount of data in organisation’s information systems. PAS are usually required
for long periods of time to support the human and organisational time scales. They are
frequently used to support people in cooperative tasks such as caring for a patient. The
cooperation spans time (the patient’s life) and space (hospitals, surgeries, laboratories, etc.).
A particular PAS may need to scale in order to cope with new organisational needs or merely
as a consequence of the longevity of data it maintains.

These PAS are, most of the time, vital for the survival of the organisation that depends
on them. Being so crucial, these long-lived systems have to adapt to organisational changes
and evolve without serious interruption of service. This is the well known and pressing prob-
lem of maintenance. Maintenance is absorbing most of the effort in the software industry
[Ramamoorthy et al., 1984]. Improvements in the development and maintainability of PAS
will have economic impacts. Technical limitations mean that: PAS are difficult to build, are
too expensive to maintain and adapt and are, as yet, unachievable to the desired standards.
Consequently it is worthwhile seeking improved technology to support them.

1.2 Historical Background

In the past, several approaches have been tried to deal with the problem of building and
maintaining persistent application systems. The technologies and methodologies proposed
are reviewed here.

During the last two decades many technologies aimed at reducing software engineering
costs have been proposed:

1. Data Base Management Systems (DBMS) assuring the storage of data in a physical
layer and providing a high level view (Logical Model) [Codasyl Committee on Data



1.2 Historical Background 3

System Languages, 1971, Taylor and Frank, 1976]. These DBMS provide data inde-
pendence together with a Data Definition Language, a Data Manipulation Language, a
Query Language and a host language interface (C, PASCAL or COBOL) [Ullman, 1988].

2. Logical Data Models [Tsichritzis and Lochovsky, 1982] with better characteristics, sup-
porting implementations with better performance and providing easier to use query
languages, e.g. the Relational Model [Codd, 1970].

3. Semantic Models providing a higher-level description (conceptual model), independent
of the implementation and aiming at supporting the usage of a design methodology for
software development; the entity-relationship model [Chen, 1976], RM/T [Codd, 1979],
TAXIS [Mylopoulos et al., 1980], SDM [Hammer and McLeod, 1981], and IFO [Abiteboul
and Hull, 1987].

4. The ODMG model based on objects, more complex and powerful than the Relational
Model [Cattell, 1994]. This norm comprises the data model, a data definition language
(ODL), a query language (OQL), a mapping to C++ and Smalltalk and leaves unspecified
the data manipulation language (OML).

5. Other data models [Brodie, 1984] based on different data manipulation paradigms;
functional models, e.g. Daplex [Shipman, 1981] or logical, e.g. LDL [Beeri et al., 1987].

6. Database Programming Languages which integrate a data model in an existent pro-
gramming language, e.g. Pascal/R [Schmidt, 1977].

7. Persistent Programming Languages, e.g. PS-algol [Atkinson et al., 1982], or Napier88
[Morrison et al., 1989].

8. Extensions to Relational DBMS, to incorporate objects, versions, historical data, pro-
cedures and a powerful extended relational query language, as in POSTGRES [Stone-
braker and Rowe, 1986] or to allow user-defined extensions and a query language that
extends the relational algebra, as in STARBUST [Schwartz et al., 1986].

9. DBMS generators like EXODUS [Carey et al., 1988].

10. Object-Oriented Data Base Management Systems (ODBMS) [Cattell, 1991a, Cattell,
1991b], concerned with more complex data structures that arise in CAD, CASE or Office
Systems: Og [Bancilhon et al.; 19881, ONTOS [Andrews et al., 1989], GemStone [Maier
and Stein, 1987], ObjectStore [Lamb et al., 1991], IRIS [Fishman et al., 1987].

11. Higher-level languages and packages usually focus on specific application domains:
4GLs [Carson, 1989], form-oriented tools oriented to business database applications
[Bor, 19901, or products targeted at simplifying development of user interfaces in win-
dow systems [Mic, 1992].

Over the same period, several methodologies have been proposed to tackle the difficul-
ties encountered in building and maintaining persistent application systems. These make
effective use of both data models to design the database and programming languages to code
the processes dealing with data. The following methodologies have been widely used:



Introduction 4

¢ Relational Normalisation [Codd, 1970, Codd, 1972].

e Entity Relationship Modelling [Chen, 1976].

e Structured Analysis [DeMarco, 1978].

o Structured Design [Yourdon and Constantine, 1978].

e Structured Systems Design [Gane and Sarson, 1982].

¢ Jackson System Development (JSD) [Jackson, 1983].

¢ Object-Oriented methodologies [Booch, 1991, Coad and Yourdon, 1990, Rumbaugh, 1991].

CASE (computer-aided software engineering) tools are used to support the use of method-
ologies and assist in the development and maintenance of application systems [Davelaar and
van Kooten, 1996]. These tools provide support for: specification, design, development, main-
tenance, project coordination, multiple version handling and support for simultaneous access.

The most recent proposals involve object-orientation concepts. The intention of these ap-
proaches is that both the design and implementation depend on the same concepts: encap-
sulation, inheritance, information hiding, modularity, etc. This identification of design and
implementation concepts should facilitate the software production. Indeed, a great deal of ef-
fort has been put into providing Object-Oriented Database Management Systems (ODBMS)
with the sort of theoretical framework [Atkinson et al., 1989], capabilities and performance
that the Relational technology has reached [Lécluse et al., 1990, Benzaken and Delobel, 1990,
Delobel et al., 1995]. ODBMS are supported by Object Stores!.

One last approach to minimise the difficulties encountered in building and maintaining
persistent application systems, lies in the field of formal specifications. Formal specifications
and automatic code generation from specifications have been subject to extensive research
and several languages exist: Z [Spivey, 1989, Dilles, 19901, VDM [Jones, 1990], or LOTOS
[Bolognesi and Brinksma, 1989]. As yet, these formal approaches do not appear to scale up
to large persistent application systems. In any case, the use of formal specifications can still
benefit from improvements in their target technology.

Until now none of these approaches is sufficient to effectively support the development
and maintenance of Persistent Application Systems.

1.3 Persistence

This section provides background information in persistence for the benefit of readers that
are not familiar with the subject. The work on persistent languages was initiated by Malcolm
Atkinson in 1978 [Atkinson, 1978]. The text presented here draws heavily on the work of
the research groups from the University of Glasgow and the University of St Andrews in
Scotland.

10bject stores are also used to support persistent programming languages introduced in Section 3.2.




1.3 Persistence 5

1.3.1 Definition of Persistence

Persistence of a data object is defined as the length of time that the object exists and is
usable ([Atkinson et al., 1983a, Atkinson and Morrison, 1985]). A spectrum of persistent
values exist [Atkinson and Morrison, 1995]:

¢ transient results in expression evaluation;
¢ local variables in procedure activations;
o global variables, heap items;

¢ data that lasts a whole execution of a program;

data that lasts for several executions of several programs;

data that lasts during the life ofa program;

data that outlives a version of a program;

data that outlives versions of the persistent system.

Traditionally, programming languages have supported short-lived data and file systems or
DBMSs have been used to support the other categories of data.

1.3.2 The Traditional Approach to Persistence

The traditional approach to the provision of persistence of data is to store it in operating sys-
tem files or databases. Procedures are held in libraries and can be reused by linking them
to programs. Traditionally, a programming language is used to manipulate transient values
and a DBMS or file system is used to manipulate persistent values. DBMSs usually have an
interface to an embedded programming language that overcomes the lack of computational
completeness that characterises the DBMS’s data manipulation languages. To build user
interfaces and perform complex calculations, programmers usually had to use this program-
ming language interface.

Data used inside programs are usually organised in some structured way (e.g. lists or
trees) that must be flattened and explicitly transferred to some secondary storage. To be
reused, these data are reread into memory and the structure must be rebuilt. With proce-
dures in libraries, type information such as the signatures of the procedures does not usually
go with the procedure and, therefore, types cannot be verified on each procedure’s usage.
In the traditional approach to the provision of persistence the mappings represented in Fig-
ure 1.1 must be maintained.

Within this approach an “impedance mismatch” exists between data in memory when
the program is running and the same data made persistent; the fact that there are two views
of data has some important disadvantages [Atkinson et al., 1983al:

e programming is considerably more difficult because the programmer has to maintain
the three mappings between the database model, the programming language model
and the real world model;



Introduction 6

DBMS (File System)
Data Model
interface enterprise
program/DBMS : modelling
Program Real System
simulation

(normal programming activity)
Figure 1.1: Conceptual Mapping in the Traditional Approach to the Provision of Persistence
¢ usually 30% of the code deals with the transfer of data to and from files or DBMS[IBM,
1978];

data protection offered by programming language’s type systems is lost across this map-
ping;

o referential integrity of objects may be lost across store operations; and

computational costs may be increased as the programming language runtime system
system, operating system and DBMS vie for common resources.

To avoid these unnecessary complications which are illustrated by Figure 1.1, a different
approach to the provision of persistence must be used.

1.3.3 Orthogonal Persistence

The need for orthogonal persistence was first identified in [Atkinson, 1978l. A single model
for data of all ranges of persistence was proposed [Atkinson et al., 1982, Atkinson et al.,
1983al. That model applies to data with the full spectrum of persistence: from data that only
lives during a program activation (or even a block in the program) to data that outlives the
program. Using the model, the simplification represented in Figure 1.2 is achieved.

Such a language is said to be a persistent programming language (PPL) if the pro-
grammer does not need to explicitly order the movement of data to or from a persistent store.
If values of all the types of the language have the right to persist then the language displays
orthogonal persistence [Atkinson and Buneman, 1987].

It has been observed that parsimony of concepts allied with the use of powerful composi-
tion rules could achieve expressive programming languages: “power through simplicity and
simplicity through generality”. Strachey and Tennent quantified these ideas in principles
that should guide the design of programming languages: the principle of correspondence, the
principle of abstraction and the principle of data type completeness [Tennent, 1977]. The
last principle states that when a type may be used in a constructor, any type is legal without

Program Real World
Figure 1.2: Conceptual Mapping Simplification by Using a PPL



1.3 Persistence 7

exception, that is, every type has the same “civil rights” () in the language [Tennent, 1977,
Morrison, 1979]. Languages obeying these principles are more powerful and less complex as
they have few defining rules allowing no exceptions.

These general principles lead to specific principles identified in [Atkinson et al., 1983al as
yielding orthogonal persistence and stated in [Atkinson and Morrison, 1995] as:

¢ principle of persistence independence — the form of a program is independent of
the longevity of the data that it manipulates, that is, programs look exactly the same
whether they are manipulating short-term or long-term data;

¢ principle of data type orthogonality — all data values should be allowed the full
range of persistence irrespective of their type; and

¢ principle of persistence identification — the choice of how to identify and provide
persistent objects is orthogonal to the universe of discourse of the system, that is, the
mechanism for identifying persistent objects is not related to the type system.

The first principle requires, for example, that a procedure may be applied with persistent
or transient parameters. One important consequence of the second principle is that it al-
lows programs to be incrementally developed and simplifies maintenance by component re-
placement. Languages which conform with these principles avoid the impedance mismatch
problem and its associated disadvantages and greatly simplify the work of programmers in
coding PAS systems. The advantages of orthogonal persistence are described in [Morrison
and Atkinson, 1990]. The use of orthogonal persistence and flexible binding mechanisms
were identified as contribution to the possibility of software reuse and system evolution
[Connor, 1991]. Different methodologies for system composition are possible [Dearle, 1988,
Connor, 1991, Cutts, 1993, Sjgberg, 1993].

Based on the hypothesis that the provision of persistence should be independent of all the
other language design aspects, one would expect to find persistent languages arising from all
programming paradigms. That is indeed the case and some known persistent languages are
enumerated in Table 1.1.

Persistent programming languages and database programming languages (DBPL) are
aimed at dealing with large amounts of long-lived data. While PPLs start from a language
and use its type system to provide a data model, a DBPL starts from a data model and aims
to provide a general-purpose algebra over it. Recent research in type systems has led to
a repertoire of constructs that “would appear to offer similar descriptive power to that in
data models” and the correspondence presented in Table 1.2 may then be drawn between
programming languages and databases [Atkinson, 1992al.

Due to its advantages in coding and maintaining PAS, languages which display orthogonal
persistence are identified as the most promising approach to be followed in seeking improved
technology for PAS support. As pointed out in [Carey and DeWitt, 1996], this technology
failed to emerge in commercial products so far despite the fact that research in the area
generated a number of interesting results.



Introduction

Language

Paradigm

Pascal-R [Schmidt, 1977]

PS-algol [Atkinson et al., 1982]
Napier88 [Morrison et al., 1989]
DBPL [Matthes and Schmidt, 1989]

Daplex [Shipman, 1981] applicative
Poly [Matthews, 1985] applicative
Amber [Cardelli, 1986] applicative, parametric and inclusion polym.
Staple [Davie and McNally, 1990b] applicative
P-Quest [Matthes, 1991] applicative
Tycoon [Matthes et al., 1994] applicative
Fibonacci [Albano et al., 1994] applicative
Galileo [Albano et al., 1985] object, inclusion polymorphism
Leibniz [Evered, 1985] object
Persistent Smalltalk [Hosking et al., 1990] object

O, [Bancilhon et al., 1988] object

Shore [Carey et al., 1994] object

Theta [Liskov et al., 1994] object

E [Richardson, 1989] C++ based
ObjectStore [Lamb et al., 1991] C++ based
ONTOS [Ontologic Inc., 1991] C++ based
GemStone [Maier and Stein, 1987] Smalltalk based
ORION [Kim et al., 1988] LISP based
Persistent PROLOG [Gray et al., 1988] logic

LDL [Tsur and Zaniolo, 1986] logic

TAXIS [Mylopoulos et al., 1980] semantic

x [Hurst and Sajeev, 1989] capability

imperative, relational
imperative, Algol types
imperative, polymorphic types
imperative, relational

Table 1.1; Examples of Persistent Languages and Systems

Programming languages Databases

Type system Data model

Type Schema

Variable Database

Value Instantaneous DB extent

Table 1.2: Vocabulary of Equivalences between Programming Languages and Databases



1.4 The Need for New Architectures 9

Operating System

Communication System

Programmer

Programs Real System

Figure 1.3: Complex Mappings to be Maintained in a Typical PAS

1.4 The Need for New Architectures

In order to construct PAS, programmers have to use a multitude of different construction
components such as: operating systems, user interface management systems, DBMS, pro-
gramming languages, communication systems, etc. Instead of the triangle of Figure 1.1, a
more realistic representation is shown in Figure 1.3 [Atkinson, 1992al. Heavy arrows de-
note mappings that have to be maintained by programmers and the light arrows denote the
components each class of person has to understand. The dashed arrows denote undesirable
awareness by users of construction components. Keeping all these mappings consistent is a
difficult task and erroneous behaviour may occur in the PAS functioning, due to differences
in semantics of the different views over common concepts.

Facilities like: persistence?, stability®, recovery?, concurrency®, etc. are provided simul-
taneously by the operating system and DBMS but not always with a consistent model and
sometimes conflicting with each other in those tasks. It was pointed out in [Atkinson, 1992al
that:

“It is marginal differences in the behaviour of subcomponents that purport to pro-
vide the same service that cause the problems when systems are under stress,
whereas differences in the special part of each construction component are pre-
cisely those that are useful.”

A widely accepted approach to 'enable interoperability is to build a standard interface
between heterogeneous sub-systems. This approach is surveyed in next section.

2The support for data values during their full life times.

3Being conceptually failure free.

4The ability to recover from transaction, system or media failures to a consistent state.

5The ability to have more than one program or different version of the same program running simultaneously.



Introduction 10

ORB layer
Word
UIMS DBMS processor
0S1 0S2
hardware hardware

LAI - local application interface

Figure 1.4: Common Object Request Broker Architecture

1.4.1 Common Object Request Broker Architecture

The “Common Object Request Broker Architecture” (CORBA), a proposal by the Object Man-
agement Group (OMG), is aimed at achieving interoperability between standard components
using standard protocols [Schaffert, 1992]. As depicted in Figure 1.4, a layer is overlaid on
top of the different service providers in order to hide inconsistencies, thereby enabling in-
teroperability between heterogeneous environments and allowing the integration of a wide
variety of object systems.

An architecture is presented in [OMG, 19911, by specifying a concrete object model and an
Interface Definition Language (IDL), that can be used to describe the interfaces that client
objects call and object implementations provide. The Object Request Broker (ORB) layer
provides message passing (an object request) between objects and clients, as represented in
Figure 1.5. In this way, objects may be implemented using different languages and then
mapped to IDL with the aid of stub generators.

Using this approach some uniformity of behaviour can be obtained with relatively little

client object
implementation
\ object request
ORB

Figure 1.5: Interface Definition Language



1.5 Contributions of This Work 11

effort. As applications are fully responsible for the management of their CORBA objects,
application performance and the programmer’s productivity may be affected. The impedance
mismatch between persistent and transient data referred to in Section 1.3.2 may again be
present. Although the objects themselves may be mapped to a common model, as yet, failure
behaviour, recovery, resource management, etc. cannot. To achieve this end, the semantics of
an acceptable common model will first have to be developed and validated.

CORBA does not solve the problem of keeping the mappings of Figure 1.3 consistent.

1.5 Contributions of This Work

The research presented in this dissertation concerns the support of persistent higher-order
and reflective languages. These languages are used in coding and maintaining long-lived and
potentially large application systems.

The technical challenges in making persistent programming languages scalable, with ad-
equate performance and sufficient longevity and in amortising costs by providing general
services are identified and an architecture is proposed. As will be demonstrated later, some
of the crucial components of the architecture are: the use of a persistent object store and a
means to identify the longevity of data items, an incremental binding mechanism to allow
existing data and new data to be combined, an identity mechanism stable for long-lived data,
management of closures in order to provide a form of block retention and management of
space in order to find pointers during garbage collection. The architecture must provide ade-
quate constructs to support uniform polymorphism, a type-checking mechanism working for
data of all spectra of persistence and a naming mechanism oriented to incremental construc-
tion and change.

The novelty of the approach presented in this dissertation resides in the use of an indepen-
dent representation for programs written in persistent higher-order and reflective languages,
and the introduction of machine independent optimisations and code generation into the con-
text of the support for this class of languages.

The following contributions are made in the field of support for persistent applications
and languages:

1. the proposal of a new architecture for compilation, comprising three-stages, with a con-
text for high-level machine independent optimisations, machine dependent optimisa-
tions and code generation;

2. the identification of the constructs needed to support persistent higher-order and reflec-
tive languages;

3. the design of an intermediate language incorporating those constructs and which can
serve as a target for parsers for different high-level languages;

4. the study of high-level and machine independent optimisations in the persistent pro-
gramming language context which can be accomplished by transforming the internal
representation proposed,;



Introduction 12

5. an investigation of the usage of the continuation-passing style transformation in this
context, as a means to achieve performance and to simplify the runtime system;

6. an investigation of time and space efficient management of closures in the context of
persistent programming;

7. an investigation of the use of C as a portable representation of programs expressed in
the intermediate representation; and

8. a compilation framework which can be used to experiment further in the context of the
support for long-lived and potentially large application systems.

1.6 Thesis Structure.

The remainder of this dissertation comprises eleven further chapters. Chapters 2 to 5 propose
a new architecture for compilation of the persistent programming languages of interest for
this work. After the identification of the needed constructs, for each component of the archi-
tecture the possible techniques to be used are described and compared. Chapter 6 presents
the experiment to be conducted in order to help in identifying the technical challenges in-
volved in the task of making support for persistent languages of adequate performance and
of sufficient longevity, and in the task of providing for reuse of components. Chapters 7 to 11
present and evaluate the results of this experiment and chapter 12 draws the conclusions for
the work presented in this dissertation.

The remainder of this chapter presents a brief description for each chapter of this disser-
tation.

Part I: Introduction

This chapter introduces the problem of building and maintaining persistent application sys-
tems and indicates traditional and new solutions to the provision of persistence. The use of
orthogonally persistent languages is recognised as a promising technology. This chapter also
identifies the need for new architectures in order to simplify the usage of the multitude of
different construction mechanisms which are in use today.

Part II: An Architecture for Compilation

Chapter 2 concentrates on an intermediate language which can support the compilation and
execution of programs written in persistent higher-order and reflective languages. The mo-
tives to investigate the facilities to be provided by this language are enumerated. A compari-
son of interpretation and machine code generation or combinations of both is presented. This
leads to a new architecture for compilation. This architecture has two intermediate repre-
sentations: the first representation is an internal language at a higher-level and the second
is a target language closer to the hardware machine.

Chapter 3 describes the characteristics of the source languages which the proposed archi-
tecture needs to support and identifies the constructs which must be included in the internal



1.6 Thesis Structure 13

language. These persistent higher-order reflective languages (PHOLSs) are recognised to facil-
itate the task of incrementally building and maintaining persistent application systems. The
requirements for the underlying layers of the architecture in order to support persistence and
stability are also identified.

Chapter 4 surveys possible technologies which can be used to achieve a concrete high-
level intermediate representation to be used by front-ends for the high-level languages an-
ticipated. Existing examples of possible techniques are compared with respect to space effi-
ciency, simplicity of optimisation, simplicity of code generation and generality with respect
to the high-level language and the hardware machine. The chapter concludes by choosing a
representation suitable to be used in an experiment that builds a prototype of the proposed
architecture.

Chapter 5 surveys possible techniques for target languages needed at the lower-level end
of the proposed architecture. These candidate technologies are compared with respect to
their adequacy for store management; their support for persistence, stability, recovery and
concurrency; their support for dynamic binding and linking; their independence of the target
machine. For each target language, the quality of the generated code, in terms of volume and
execution speed, and the compilation speed are also discussed.

Part III: Design of an Experiment

In Chapter 6 an experiment to build a prototype for the proposed architecture which can
prove the thesis, prove the architecture feasible and worthwhile and lead to the identifica-
tion and validation of its crucial features, is presented. The components of the prototype
language framework to be built are also enumerated. A suitable PHOL to be used in the
experiment is described and the strategies which can be used to transform the high-level in-
ternal representation into the other internal representations at a lower-level are enumerated
and compared. Finally, this chapter concludes by choosing and justifying the enabling tech-
nology and describing briefly the internal data structures which can be used to support the
high-level internal representation and the transformations performed.

Part IV: Implementation and Evaluation

Chapter 7 presents the language design of the internal representation intended to be used by
all front-ends of the language compilation framework. The characteristics of this language
(called TPL) are enumerated, together with the complete set of data types and corresponding
instructions. A concrete syntax is presented in order to be used later to illustrate the use of
this language.

Chapter 8 continues the description of the experiment by showing how TPL can be used by
front-ends in compiling the PHOL anticipated. This is demonstrated by presenting examples
for relevant language constructs extracted from the compilation of complete programs. For
each construct, the translation rules involved in the process are enumerated. Finally, the
front-end used in the prototype is briefly described.

Chapter 9 illustrates the support for high-level and machine independent optimisations



Introduction 14

on TPL internal representations of programs. The transformations described in this chap-
ter include partial evaluation techniques, such as constant folding and constant propaga-
tion; redundancy elimination techniques, such as unreachable-code elimination, useless-code
elimination, common-subexpression elimination; and procedure call transformations, such
as inlining, procedures called only once, dropping unused arguments and tail recursion. The
components of the language framework which implement some of these transformations are
described. This chapter finishes by describing the use of continuations as a vehicle for optimi-
sation, the implementation of this transformation in TPL and the properties of TPL changed
by this transformation.

Chapter 10 presents the design of a low-level abstract machine and discusses how it can
be used to support TPL. The transformations which must be performed in TPL in order to
achieve a representation suitable for execution are described and illustrated by fragments of
programs. The runtime system, which supports object creation and access and the interaction
with the underlying layers, is presented. Finally, the use of a garbage-collected object store
to achieve persistence, target machine code generation and program execution with dynamic
binding are discussed.

Chapter 11 evaluates the architecture proposed, presents the findings from the exper-
iment conducted and concludes by presenting design changes. Together with the achieve-
ments, the limitations of the prototype and of the experimental work are presented. The
design space is covered by describing the implications of the goals of supporting this class of
languages while ensuring longer-term persistence of data and sufficient efficiency. For each
of the goals, the design decisions are evaluated in the face of the results.

Part V: Conclusions

Chapter 12 presents a survey of the conclusions drawn in Chapter 11 and presents proposals
for future work. It concludes that the architecture presented in this thesis proved to be
appropriate in the construction of supporting technology for persistence.



Chapter 2

An Architecture for Compilation

The previous chapter identified the need to support persistent application systems with a
coherent set of construction components. This chapter refers to the SPF architecture as the
solution to this problem and concentrates in its interface low-level language. This interme-
diate language can support the compilation and execution of programs written in persistent
higher-order and reflective languages. The motives to investigate the facilities to be pro-
vided by this language are enumerated. A comparison of interpretation and machine code
generation, or combinations of both, is presented. These techniques can be used to achieve
the above-mentioned compilation. Finally, a new architecture for compilation is presented.
This architecture has two intermediate representations: the first representation is an inter-
nal language at a higher-level and the second is a target language closer to the hardware
machine.

2.1 Introduction

The motivation for starting this research on architectures to support persistent program-
ming languages (PPL) was due to the observation that the current technology did not perform
adequately. The currently available persistent environments are comparatively slow in re-
sponse time and sometimes greedy in space. More efficient implementations are needed.

As there is not an agreed interface to object stores, a lot of research is going on in dupli-
cating store implementation. The cost of building stores could be amortised if the same store
can be used in all applications that use a common architecture. This possibility introduces
greater flexibility as applications can move unchanged to new stores as their load evolves, by
the use of a program designed to perform that task.

The provision of an intermediate representation stable over changes in the underlying
machine architecture, may allow future language implementations to take advantage of the
underlying features, with only a small effort in porting the back-end to generate the inter-
nal representation. On the other hand, the dramatic changes that are taking place in the

15



An Architecture for Compilation ' 16

i PAS

Operating system: | | PPL: Relational DBMS: | | ODMS: specialising
files, directories, types, values, relations, schemata, | | objects, sets, s:;xpert-
shells, processes operations QLs 0-0QLs structures
B LLPL

Scalable Persistent Foundations:

Persistence, stability, recovery, concurrency, scheduling, space administration,
protection, accounting, logging, resource allocation & control, naming, binding
programs with data SPF
(efficient, scalable & high performance implementations required)

“standard” micro-kernel operating system (e.g. Mach or Chorus)

conventional hardware specialised hardware

Figure 2.1: Scalable Persistent Foundation Architecture

support technology (e.g. hardware or store implementations) will be isolated from the appli-
cations that use this technology!. In this way, the introduction of this technology will have an
impact on the efficient use of languages and systems incorporating persistent programming
principles and on the adaptation to hardware changes. That efficiency will later be reflected
in PAS development and maintenance.

2.2 New Architectures to Support PAS

The need for new architectures which can provide construction components with consistent
semantics was identified in the introductory chapter. The CORBA approach was referred to
as a common proposal to solve the problem. It was concluded that this approach does not
solve it satisfactorily.

2.2.1 Scalable Persistent Foundations

A different approach to achieve interoperability has been proposed in [Atkinson, 1992a,
Gruber and Valduriez, 1994]. These proposals advocate a two level architecture. Such an
architecture is represented in Figure 2.1; it is called a Scalable Persistent Foundation
(SPF) in [Atkinson, 1991]. A common substrate provides the most critical functionality of
construction components not normally used directly by application programmers. This com-
mon substrate includes the support technology, SPF, and its interface language, called LLPL
(Low-Level Programming Language). LLPL is a stable, or at least easily evolved, interface.

IThe introduction of this intermediate representation may introduce inefficiencies which will be dealt by the use
of program analysis and transformations in order to achieve more efficient representations and by generating target
machine code.



2.2 New Architectures to Support PAS 17

Persistent
Support UIMS -« User

System \
Program / /

Programmer —— > Real System

Figure 2.2: The Goal of a Simpler PAS

Using LLPL, specialising superstructures can be built taking advantage of the common foun-
dation and concentrating on the differences. These special parts include facilities tradition-
ally provided by operating systems, persistent programming languages or DBMS. The cost
of building the support technology and its interface will be amortised over all specialising
superstructures and PASs.

The SPF architecture would:

1. give a common model to all such components including their behaviour under stress;
2. provide economy of scale and reuse;

3. reduce the code required to support individual components like PPLs and DBMSs;
4. provide efficient scalability.

This architecture could potentially achieve high performance because it could, for example,
make direct use of the memory management hardware for data movement, protection and
stability.

Taking the simplification in the computational context referred to in Section 1.3.3 further,
the research experiment proposed in [Atkinson, 1992al is aimed at enabling the construction,
maintenance and operation of PAS and presenting to users and programmers of the supported
PASs a simpler set of mappings, as depicted in Figure 2.2.

Research is needed to identify the facilities to be provided by SPF via LLPL and to ensure
that these facilities are sufficiently independent of particular technologies that they can be
kept operational for many decades.

2.2.2 Other Approaches

In order to obtain consistent behaviour and efficiency there are other approaches under in-
vestigation.

Researchers developing persistent operating systems are also approaching the delivery of
similar support functionality starting from a conventional hardware platform [Dearle et al.,
1994]. They are designing an operating system that directly supports orthogonal persistence
and a capability-based protection mechanism. Within this operating system, processes are



An Architecture for Compilation 18

integrated with the object space. On top of these operating systems all languages will achieve
persistence automatically.

A design study of a hardware architecture to support object addressing at instruction level
was undertaken in DAIS [Russell et al., 1994] as part of a proposed object-oriented persistent
environment [Russell, 1995]. The DAIS approach uses a cache structure based directly on ob-
ject descriptors and offsets aiming at providing both security and speed. The virtual memory
architecture allows for position and media independence of data. DAIS achieves efficiency by
providing a RISC-like architecture with only a minimum of object-access instructions. Ear-
lier experiments on hardware support for persistence were made in the development of the
MONADS architecture [Rosenberg and Keedy, 1987].

These operating systems or hardware architectures may substitute the lower layers of
SPF but they still need a sort of LLPL as well in order to enable interoperability.

2.3 Target Persistent Language

This work presents an instance of the LLPL, the interface language to SPF and a workbench
for future experiments towards a SPF. This intermediate representation is called TPL, which
stands for Target Persistent Language and is pronounced “tipple” 2. Some of LLPL's intended
features will be covered by TPL, namely the facilities related with support for more than one
language and the use of possible different object stores to achieve persistence, stability and
recovery. Inter-language interoperability and object store independence are depicted in Fig-
ure 2.3. TPL resembles the idea introduced in the UNCOL (UNiversal COmpiler-oriented
Language) [Strong et al., 1958] but with similar high-level languages above it and similar
object stores below it. UNCOL was proposed as a universal internal representation enabling
the construction of compilers for [ programming languages producing code for m target ma-
chines by using [ front-ends plus m code generators, as opposed to the otherwise [xm distinct
compilers needed. UNCOL was an ambitious effort that failed because it was too general (as
it would be applied to all the languages), because the machines at that time had insufficient
capacity and because language and compiler technology were not yet mature3.

The new architecture should take account of recent proposed improvements in compiler
technology such as: advances in functional programming language implementations, new
intermediate representations, new classes of optimisations and new code generation tech-
niques. This research investigates the application of these new techniques in order to achieve
a high performance target language for persistent systems.

This target language is an intermediate representation intended to:

1. be general purpose, allowing:

(a) a means of isolating the work of system writers (e.g. compiler writers) from the
underlying object store implementations;

2Take the habit of taking alcoholic drinks specially in small quantities; alcoholic drink; device to help unload
trucks [Makins, 1991].

3In more recent times, ANDF was developed with similar intentions and JAVA bytecodes are now offering again
the idea of universal code portability.



2.8 Target Persistent Language 19

=

Napier88 TL Fibonacci vee

Figure 2.3: Interoperability in the Context on an SPF

(b) an easy way of experimenting with stores, languages and other systems (e.g. DBMS);

2. provide adequate support to high-level languages with first-class procedures, polymor-
phism and reflection;

3. provide inter-language interoperability (enabling protection and distribution across dif-
ferent machines);

4. provide longer-term persistence of data which in this context always includes code as in
the representation of procedure closures, abstract data types and methods;

5. enable high performance implementations; and
6. ultimately, the full range of facilities needed for building PASs.

The goals to be achieved in the long run by this intermediate representation will be detailed
in the following sections. The work described in this dissertation focuses on the support of
persistent higher-order and reflective languages and the ability to perform optimisations and
code generation in this context.

2.3.1 Generality

TPL will allow writers of compilers for persistent versions of languages like C, C++, Pascal,
ML, or PPLs like Napier88, Fibonacci and TL to experiment with using it as a target lan-
guage (see Figure 2.3). To achieve this generality, the TPL language processor? will accept a

4The term language processor is used to encompass the software and hardware combination which handles all
aspects of compilation and runtime management.



An Architecture for Compilation 20

compiled form of TPL. Store writers may also use this language as a way of experimenting
and tuning their implementations to a wider range of languages. For that, they may provide
a “Store Library”, a set of procedures covering the store functionality. This way, TPL may
establish a standard interface b