
BRICS
Basic Research in Computer Science

A Dynamic Continuation-Passing Style
for Dynamic Delimited Continuations

Dariusz Biernacki
Olivier Danvy
Kevin Millikin

BRICS Report Series RS-05-16

ISSN 0909-0878 May 2005

B
R

IC
S

R
S

-05-16
B

iernackietal.:
A

D
ynam

ic
C

ontinuation-P
assing

S
tyle

for
D

ynam
ic

D
elim

ited
C

ontinuations

Copyright c© 2005, Dariusz Biernacki & Olivier Danvy & Kevin
Millikin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/16/

A Dynamic Continuation-Passing Style

for Dynamic Delimited Continuations

Dariusz Biernacki, Olivier Danvy, and Kevin Millikin

BRICS∗

Department of Computer Science
University of Aarhus†

May 2005

Abstract

We present a new abstract machine that accounts for dynamic delimited continua-
tions. We prove the correctness of this new abstract machine with respect to a pre-
existing, definitional abstract machine. Unlike this definitional abstract machine, the
new abstract machine is in defunctionalized form, which makes it possible to state the
corresponding higher-order evaluator. This evaluator is in continuation+state passing
style and threads a trail of delimited continuations and a meta-continuation. Since
this style accounts for dynamic delimited continuations, we refer to it as ‘dynamic
continuation-passing style.’

We show that the new machine operates more efficiently than the definitional one
and that the notion of computation induced by the corresponding evaluator takes the
form of a monad. We also present new examples and a new simulation of dynamic
delimited continuations in terms of static ones.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {dabi,danvy,kmillikin}@brics.dk

i

Contents

1 Introduction 1

2 The definitional abstract machine 1

3 The new abstract machine 2

4 Equivalence of the definitional machine and of the new machine 5

5 Efficiency issues 8

6 The evaluator corresponding to the new abstract machine 9

7 The CPS transformer corresponding to the new evaluator 9

8 The direct-style evaluator corresponding to the new evaluator 11

9 Static and dynamic continuation-passing style 12
9.1 Static continuation-passing style . 13
9.2 Dynamic continuation-passing style . 13
9.3 A generalization . 15
9.4 Further examples . 15

10 A monad for dynamic continuation-passing style 16

11 A new implementation of control and prompt 17

12 Related work 19

13 Conclusion and issues 20

List of Figures

1 The definitional call-by-value abstract machine for the λ-calculus extended
with F and # . 3

2 A new call-by-value abstract machine for the λ-calculus extended with F
and # . 4

3 A call-by-value evaluator for the λ-calculus extended with F and # 10
4 A direct-style evaluator for the λ-calculus extended with F and # 12
5 A monadic evaluator for the λ-calculus extended with F and # 18

ii

1 Introduction

The control operator call/cc [9, 26, 32, 39], by now, is an accepted component in the
landscape of eager functional programming, where it provides the expressive power of
CPS (continuation-passing style) in direct-style programs. An integral part of its success
is its surrounding array of computational artifacts: simple motivating examples as well as
more complex ones, a functional encoding in the form of a continuation-passing evaluator,
the corresponding continuation-passing style and CPS transformation, their first-order
counterparts (e.g., the corresponding abstract machine), and the continuation monad.

The delimited-control operators control (alias F) and prompt (alias #) [20, 23, 41]
were designed to go ‘beyond continuations’ [22]. This vision was investigated in the early
1990’s [25,28,29,36,38,42] and today it is receiving renewed attention: Shan and Kiselyov
are studying its simulation properties [33, 40], and Dybvig, Peyton Jones, and Sabry are
proposing a general framework where multiple control delimiters can coexist [19], on the
basis of Hieb, Dybvig, and Anderson’s earlier work on ‘subcontinuations’ [29].

We observe, though, that none of these recent works on control and prompt uses the
entire array of artifacts that organically surrounds call/cc. Our goal here is to fill this
vacuum.

This work: We present a new abstract machine that accounts for dynamic delimited con-
tinuations and that is in defunctionalized form [18,39], and we prove its equivalence with a
definitional abstract machine that is not in defunctionalized form. We also present the cor-
responding higher-order evaluator from which one can obtain the corresponding new CPS
transformer. The resulting ‘dynamic continuation-passing style’ (dynamic CPS) threads a
list of trailing delimited continuations, i.e., it is a continuation+state-passing style. This
style is equivalent to, but simpler than the one recently proposed by Shan [40], and struc-
turally related to the one recently proposed by Dybvig, Peyton Jones, and Sabry [19].
We also show that it corresponds to a computational monad, and we present some new
examples.

Overview: We first present the definitional machine for dynamic delimited continua-
tions in Section 2. We then present the new machine in Section 3, we establish their
equivalence in Section 4, and we compare their efficiency in Section 5. The new machine is
in defunctionalized form and we present the corresponding higher-order evaluator in Sec-
tion 6. This evaluator is expressed in a dynamic continuation-passing style and we present
the corresponding dynamic CPS transformer in Section 7 and the corresponding direct-
style evaluator in Section 8. We illustrate dynamic continuation-passing style in Section 9
and in Section 10, we show that it can be characterized with a computational monad. In
Section 11, we present a new simulation of control and prompt based on dynamic CPS.
Finally, we address related work and conclude.

Prerequisites and notation: We assume some basic familiarity with operational se-
mantics, abstract machines, eager functional programming in (Standard) ML, defunction-
alization, and continuations.

2 The definitional abstract machine

In our earlier work [4], we obtained an abstract machine for the static delimited-control op-
erators shift and reset by defunctionalizing a definitional evaluator that had two layered
continuations [14, 15]. In this abstract machine, the first continuation takes the form of

1

an evaluation context and the second takes the form of a stack of evaluation contexts. By
construction, this abstract machine is an extension of Felleisen et al.’s CEK machine [21],
which has one evaluation context and is itself a defunctionalized evaluator with one con-
tinuation [1, 2, 12, 39].

The abstract machine for static delimited continuations implements the application
of a delimited continuation (represented as a captured context) by pushing the current
context onto the stack of contexts and installing the captured context as the new current
context [4]. In contrast, the abstract machine for dynamic delimited continuations imple-
ments the application of a delimited continuation (also represented as a captured context)
by concatenating the captured context to the current context [23]. As a result, static and
dynamic delimited continuations differ because a subsequent control operation will capture
either the remainder of the reinstated context (in the static case) or the remainder of the
reinstated context together with the then-current context (in the dynamic case). An ab-
stract machine implementing dynamic delimited continuations therefore requires defining
an operation to concatenate contexts.

Figure 1 displays the definitional abstract machine for dynamic delimited continua-
tions, including the operation to concatenate contexts. It only differs from our earlier
abstract machine for static delimited continuations [4, Figure 7 and Section 4.5] in the
way captured delimited continuations are applied, by concatenating their representation
with the representation of the current continuation (the shaded transition in Figure 1).1

Contexts form a monoid:

Proposition 1. The operation ? defined in Figure 1 satisfies the following properties:

(1) C1 ? END = C1 = END ? C1,

(2) (C1 ? C′
1) ? C′′

1 = C1 ? (C′
1 ? C′′

1).

Proof. By induction on the structure of C1.

In the definitional machine, the constructors of contexts are not solely consumed in the
cont1 transitions, but also by ?. Therefore, the definitional abstract machine is not in the
range of defunctionalization [18,39]: it does not correspond to a higher-order evaluator. In
the next section, we present a new abstract machine that implements dynamic delimited
continuations and is in the range of defunctionalization.

3 The new abstract machine

The definitional machine is not in the range of defunctionalization because of the con-
catenation of contexts. We therefore introduce a new component in the machine to avoid
this concatenation. This new component, the trail of contexts, holds the then-current
contexts that would have been concatenated to the captured context in the definitional
machine. These then-current contexts are then reinstated in turn when the captured
context completes. Together, the current context and the trail of contexts represent the
current dynamic context. The final component of the machine holds a stack of dynamic
contexts (represented as a list: nil denotes the empty list, the infix operator :: denotes list
construction, and the infix operator @ denotes list concatenation, as in ML).

1In contrast, static delimited continuations are applied as follows:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒def 〈C′

1, v, C1 :: C2〉cont1

2

• Terms: e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values (closures and captured continuations): v ::= [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{x 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1)

• Concatenation of contexts:

END ? C′
1

def= C′
1

(ARG ((e, ρ), C1)) ? C′
1

def= ARG ((e, ρ), C1 ? C′
1)

(FUN (v, C1)) ? C′
1

def= FUN (v, C1 ? C′
1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒def 〈e, ρmt , END, nil〉eval
〈x , ρ, C1, C2〉eval ⇒def 〈C1, ρ(x), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒def 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒def 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval
〈#e, ρ, C1, C2〉eval ⇒def 〈e, ρ, END, C1 :: C2〉eval

〈Fx .e, ρ, C1, C2〉eval ⇒def 〈e, ρ{x 7→ C1}, END, C2〉eval
〈END, v, C2〉cont1 ⇒def 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒def 〈e, ρ, FUN (v, C1), C2〉eval
〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒def 〈e, ρ{x 7→ v}, C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒def 〈C′

1 ? C1, v, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒def 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒def v

Figure 1: The definitional call-by-value abstract machine
for the λ-calculus extended with F and #

Figure 2 displays the new abstract machine for dynamic delimited continuations. It
only differs from the definitional abstract machine in the way dynamic contexts are repre-
sented (a context and a trail of contexts (represented as a list) instead of one concatenated
context). In Section 4, we establish the equivalence of the two machines.

In the new machine, the constructors of contexts are solely consumed in the cont1
transitions. Therefore the new machine, unlike the definitional machine, is in the range
of defunctionalization: it can be refunctionalized into a higher-order evaluator, which we
present in Section 6.

3

• Terms: e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values (closures and captured continuations): v ::= [x , e, ρ] | [C1, T1]

• Environments: ρ ::= ρmt | ρ{x 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1)

• Trail of contexts: T1 ::= nil | C1 :: T1

• Meta-contexts: C2 ::= nil | (C1, T1) :: C2

• Initial transition, transition rules, and final transition:

e ⇒new 〈e, ρmt , END, nil, nil〉eval
〈x , ρ, C1, T1, C2〉eval ⇒new 〈C1, ρ(x), T1, C2〉cont1

〈λx .e, ρ, C1, T1, C2〉eval ⇒new 〈C1, [x , e, ρ], T1, C2〉cont1

〈e0 e1, ρ, C1, T1, C2〉eval ⇒new 〈e0, ρ, ARG ((e1, ρ), C1), T1, C2〉eval
〈#e, ρ, C1, T1, C2〉eval ⇒new 〈e, ρ, END, nil, (C1, T1) :: C2〉eval

〈Fx .e, ρ, C1, T1, C2〉eval ⇒new 〈e, ρ{x 7→ [C1, T1]}, END, nil, C2〉eval
〈END, v, T1, C2〉cont1 ⇒new 〈T1, v, C2〉trail1

〈ARG ((e, ρ), C1), v, T1, C2〉cont1 ⇒new 〈e, ρ, FUN (v, C1), T1, C2〉eval
〈FUN ([x , e, ρ], C1), v, T1, C2〉cont1 ⇒new 〈e, ρ{x 7→ v}, C1, T1, C2〉eval
〈FUN ([C′

1, T ′
1], C1), v, T1, C2〉cont1 ⇒new 〈C′

1, v, T ′
1 @ (C1 :: T1), C2〉cont1

〈nil, v, C2〉trail1 ⇒new 〈C2, v〉cont2

〈C1 :: T1, v, C2〉trail1 ⇒new 〈C1, v, T1, C2〉cont1

〈(C1, T1) :: C2, v〉cont2 ⇒new 〈C1, v, T1, C2〉cont1

〈nil, v〉cont2 ⇒new v

Figure 2: A new call-by-value abstract machine
for the λ-calculus extended with F and #

N.B.: The trail concatenation, in Figure 2, could be avoided by adding a new com-
ponent to the machine—a meta-trail of pairs of contexts and trails, managed last-in,
first-out—and the corresponding new transitions. A captured continuation would then
be a triple of context, trail, and meta-trail, and applying it would require this meta-trail
to be concatenated to the current trail. In turn, this concatenation could be avoided by
adding a meta-meta-trail, etc. Because each of the metan-trails (for n ≥ 1) but the last
one has one point of consumption, they all are in defunctionalized form except the last
one. Adding metan-trails amounts to trading space for time.

4

4 Equivalence of the definitional machine and of the

new machine

We relate the configurations and transitions of the definitional abstract machine to those of
the new abstract machine. As a diacritical convention [34], we annotate the components,
configurations, and transitions of the definitional machine with a tilde (·̃). In order to
relate a dynamic context of the new machine (a context and a trail of contexts) to a context
of the definitional machine, we convert it into a context of the new machine:

Definition 1. We define an operation ?̂, concatenating a new context and a trail of new
contexts, by induction on its second argument:

C1 ?̂ nil
def= C1

C1 ?̂ (C′
1 :: T1) def= C1 ? (C′

1 ?̂ T1)

Proposition 2. C1 ?̂ (C′
1 :: T1) = (C1 ? C′

1) ?̂ T1,

Proof. Follows from Definition 1 and from the associativity of ? (Proposition 1(2)).

Proposition 3. (C1 ?̂ T1) ?̂ T ′
1 = C1 ?̂ (T1 @ T ′

1).

Proof. By induction on the structure of T1.

Definition 2. We relate the definitional abstract machine and the new abstract machine
with the following family of relations ':

(1) Terms: ẽ 'e e iff ẽ = e

(2) Values:

(a) [x̃ , ẽ, ρ̃] 'v [x , e, ρ] iff x̃ = x , ẽ 'e e and ρ̃ 'env ρ

(b) C̃1 'v [C1, T1] iff C̃1 'c C1 ?̂ T1

(3) Environments:

(a) ρ̃mt 'env ρmt

(b) ρ̃{x 7→ ṽ} 'env ρ{x 7→ v} iff ṽ 'v v and ρ̃ \ {x} 'env ρ \ {x},
where ρ \ {x} denotes the restriction of ρ to its domain excluding x

(4) Contexts:

(a) ẼND 'c END

(b) ÃRG ((ẽ, ρ̃), C̃1) 'c ARG ((e, ρ), C1) iff ẽ 'e e, ρ̃ 'env ρ, and C̃1 'c C1

(c) F̃UN (ṽ, C̃1) 'c FUN (v, C1) iff ṽ 'v v and C̃1 'c C1

(5) Meta-contexts:

(a) ñil 'mc nil

(b) C̃1 :: C̃2 'mc (C1, T1) :: C2 iff C̃1 'c C1 ?̂ T1 and C̃2 'mc C2

5

(6) Configurations:

(a) 〈ẽ, ρ̃, C̃1, C̃2〉geval
' 〈e, ρ, C1, T1, C2〉eval iff

ẽ 'e e, ρ̃ 'env ρ, C̃1 'c C1 ?̂ T1, and C̃2 'mc C2

(b) 〈C̃1, ṽ, C̃2〉c̃ont1
' 〈C1, v, T1, C2〉cont1 iff

C̃1 'c C1 ?̂ T1, ṽ 'v v, and C̃2 'mc C2

(c) 〈C̃2, ṽ〉
c̃ont2

' 〈C2, v〉cont2 iff

C̃2 'mc C2 and ṽ 'v v

By writing δ ⇒∗ δ′, δ ⇒+ δ′ and δ ⇒1 δ′, we mean that there is respectively zero
or more, one or more, and at most one transition leading from the configuration δ to the
configuration δ′.

Definition 3. The partial evaluation functions evaldef and evalnew mapping terms to
values are defined as follows:

(1) evaldef (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+
def 〈nil, v〉cont2 ,

(2) evalnew (e) = v if and only if 〈e, ρmt , END, nil, nil〉eval ⇒+
new 〈nil, v〉cont2 .

We want to prove that evaldef and evalnew are defined on the same programs (i.e.,
closed terms), and that for any given program, they yield equivalent values.

Theorem 1 (Equivalence). For any program e, evaldef (e) = ṽ if and only if evalnew (e) =
v and ṽ 'v v.

Proving Theorem 1 requires proving the following lemmas.

Lemma 1. If C̃1 'c C1 and C̃′
1 'c C′

1 then C̃1 ?̃ C̃′
1 'c C1 ? C′

1.

Proof. By induction on the structure of C̃1.

The following lemma addresses the configurations of the new abstract machine that
break the one-to-one correspondence with the definitional abstract machine.

Lemma 2. Let δ = 〈END, v, T1, C2〉cont1 .

(1) If T1 = END :: . . . :: END︸ ︷︷ ︸
n

:: nil, where n ≥ 0, then δ ⇒+
new 〈C2, v〉cont2 .

(2) If T1 = END :: . . . :: END︸ ︷︷ ︸
n

:: C1 :: T ′
1, where n ≥ 0 and C1 6= END, then δ ⇒+

new

〈C1, v, T ′
1, C2〉cont1 .

Proof. By induction on n.

The following key lemma relates single transitions of the two abstract machines.

Lemma 3. If δ̃ ' δ then

(1) if δ̃ ⇒def δ̃′ then there exists a configuration δ′ such that δ ⇒+
new δ′ and δ̃′ ' δ′;

(2) if δ ⇒new δ′ then there exist configurations δ̃′ and δ′′ such that δ̃ ⇒1
def δ̃′, δ′ ⇒∗

new

δ′′ and δ̃′ ' δ′′.

6

Proof. By case analysis of δ̃ ' δ. Most of the cases follow directly from the definition of
the relation '. We show the proof of one such case:

Case: δ̃ = 〈x̃ , ρ̃, C̃1, C̃2〉geval
and δ = 〈x , ρ, C1, T1, C2〉eval .

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where
δ̃′ = 〈C̃1, ρ̃(x̃), C̃2〉c̃ont1

.
From the definition of the new abstract machine, δ ⇒new δ′, where
δ′ = 〈C1, ρ(x), T1, C2〉cont1 .
By assumption, ρ̃(x̃) 'v ρ(x), C̃1 'c C1 ?̂ T1 and C̃2 'mc C2. Hence, δ̃′ ' δ′ and both di-
rections of Lemma 3 are proved in this case.

There are only three interesting cases. One of them arises when a captured continuation
is applied, and the remaining two explain why the two abstract machines do not operate
in lockstep:

Case: δ̃ = 〈F̃UN (C̃′
1, C̃1), ṽ, C̃2〉c̃ont1

and δ = 〈FUN ([C′
1, T ′

1], C1), v, T1, C2〉cont1

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where
δ̃′ = 〈C̃′

1 ?̃ C̃1, ṽ, C̃2〉c̃ont1
.

From the definition of the new abstract machine, δ ⇒new δ′, where
δ′ = 〈C′

1, v, T ′
1 @ (C1 :: T1), C2〉cont1 .

By assumption, C̃′
1 'c C′

1 ?̂ T ′
1 and C̃1 'c C1 ?̂ T1.

By Lemma 1, we have C̃′
1 ?̃ C̃1 'c (C′

1 ?̂ T ′
1) ? (C1 ?̂ T1).

By the definition of ?̂, (C′
1 ?̂ T ′

1) ? (C1 ?̂ T1) = (C′
1 ?̂ T ′

1) ?̂ (C1 :: T1).
By Proposition 3, (C′

1 ?̂ T ′
1) ?̂ (C1 :: T1) = C′

1 ?̂ (T ′
1 @ (C1 :: T1)).

Since ṽ 'v v and C̃2 'mc C2, we infer that δ̃′ ' δ′ and both directions of Lemma 3 are
proved in this case.

Case: δ̃ = 〈ẼND, ṽ, C̃2〉c̃ont1
and δ = 〈END, v, T1, C2〉cont1

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where δ̃′ = 〈C̃2, ṽ〉
c̃ont2

.

By the definition of ', ṽ 'v v, C̃2 'mc C2, and ẼND 'c END ?̂ T1. Hence, it follows
from the definition of 'c that END ?̂ T1 = END, which is possible only when T1 =
END :: . . . :: END︸ ︷︷ ︸

n

:: nil for some n ≥ 0.

Then by Lemma 2(1), δ ⇒+
new δ′, where δ′ = 〈C2, v〉cont2 and δ̃′ ' δ′, and both directions

of the lemma are proved in this case.

Case: δ̃ = 〈C̃1, ṽ, C̃2〉c̃ont1
and δ = 〈END, v, T1, C2〉cont1 , where C̃1 6= ẼND.

By the definition of ', ṽ 'v v, C̃2 'mc C2, and C̃1 'c END ?̂ T1. Hence, it follows from the
definition of 'c that END ?̂ T1 6= END, which is possible only when T1 = END :: . . . :: END︸ ︷︷ ︸

n

::

C1 :: T ′
1 for some n ≥ 0 and C1 6= END. Then by Lemma 2(2), δ ⇒+

new δ′, where
δ′ = 〈C1, v, T ′

1, C2〉cont1 , C1 6= END, and since END ?̂ T1 = C1 ?̂ T ′
1, we have δ̃ ' δ′. There-

fore, we have proved part (2) of Lemma 3 and reduced the proof of part (1) to one of the
trivial cases (not shown in the proof), where δ̃ ' δ′.

Given the relation between single-step transitions of the two abstract machines, it is
straightforward to generalize it to the relation between their multi-step transitions.

7

Lemma 4. If δ̃ ' δ then

(1) if δ̃ ⇒+
def δ̃′ then there exists a configuration δ′ such that δ ⇒+

new δ′ and δ̃′ ' δ′;

(2) if δ ⇒+
new δ′ then there exist configurations δ̃′ and δ′′ such that δ̃ ⇒∗

def δ̃′, δ′ ⇒∗
new

δ′′ and δ̃′ ' δ′′.

Proof. Both directions follow from Lemma 3 by induction on the number of transitions.

We are now in position to prove the equivalence theorem.

Proof of Theorem 1. The initial configuration of the definitional abstract machine, i.e.,
〈e, ρ̃mt , ẼND, ñil〉geval

, and that of the new abstract machine, i.e., 〈e, ρmt , END, nil, nil〉eval ,
are in the relation '. Therefore, if the definitional abstract machine reaches the final con-
figuration 〈ñil, ṽ〉

c̃ont2
, then by Lemma 4(1), there is a configuration δ′ such that δ ⇒+

new δ′

and δ̃′ ' δ′. By the definition of ', δ′ must be 〈nil, v〉cont2 , with ṽ 'v v. The proof of the
converse direction follows similar steps.

5 Efficiency issues

The new abstract machine implements the dynamic delimited control operators F and #
more efficiently than the definitional abstract machine. The efficiency gain comes from
allowing continuations to be implemented as lists of stack segments—which is generally
agreed to be the most efficient implementation for first-class continuations [10, 11, 30]—
without imposing a choice of representation on the stack segments.

In particular, when the definitional abstract machine applies a captured context C′
1

in a current context C1, the new context is C′
1 ? C1, and constructing it requires work

proportional to the length of C′
1. In contrast, when the new abstract machine applies a

captured context [C′
1, T ′

1] in a current context C1 with a current trail of contexts T1, the
new trail is T ′

1 @ (C1 :: T1), and constructing it requires work proportional to the number of
contexts (i.e., stack segments) in T ′

1, independently of the length of each of these contexts.
In the worst case, each context in the trail has length one and the new abstract machine
does the same amount of work as the definitional machine. In all other cases it does less.

The following implementation of a list copy function (written in the syntax of ML)
illustrates the situation:

fun list_copy1 xs

= let fun visit nil

= control (fn k => k nil)

| visit (x :: xs)

= x :: (visit xs)

in prompt (fn () => visit xs)

end

The initial call to visit is delimited by prompt (alias #), and in the base case, the (de-
limited) continuation is captured with control (alias F). This delimited continuation is
represented by a context whose size is proportional to the length of the list. In the defi-
nitional abstract machine, the entire context must be traversed and copied when invoked
(i.e., immediately). In the new machine, only the (empty) trail of contexts is traversed
and copied. Therefore, the definitional abstract machine does work proportional to the
length of the input list, whereas the new abstract machine does the same work in constant
time.

8

A small variation on the function above causes the definitional machine to perform an
amount of work which is quadratic in the length of the input list, by copying contexts
whose size is proportional to the length of the list on every recursive call:

fun list_copy2 xs

= let fun visit nil

= control (fn k => k nil)

| visit (x :: xs)

= x :: (control (fn k => k (visit xs)))

in prompt (fn () => visit xs)

end

In contrast to this quadratic behavior, the new abstract machine performs an amount of
work that is linear in the length of the input list since it performs a constant amount of
work at each application of a continuation (i.e., once per recursive call).

Implementing the composition of delimited continuations by concatenating their repre-
sentations incurs an overhead proportional to the size of one of the delimited continuations,
and is therefore subject to pathological situations such as the one illustrated in this section.

6 The evaluator corresponding to the new abstract
machine

The raison d’être of the new abstract machine is that it is in defunctionalized form. Refunc-
tionalizing the contexts and meta-contexts of the new abstract machine yields the higher-
order evaluator of Figure 3. This evaluator is expressed in a continuation+state-passing
style where the state consists of a trail of continuations and a meta-continuation, and
defunctionalizing it gives the abstract machine of Figure 2. Since this continuation+state-
passing style came into being to account for dynamic delimited continuations, we refer to
it as a ‘dynamic continuation-passing style’ (dynamic CPS).

7 The CPS transformer corresponding to the new eval-

uator

The dynamic CPS transformer corresponding to the evaluator of Figure 3 can be imme-
diately obtained as the associated syntax-directed encoding into the term model of the
meta-language (using fresh variables):

Jx K = λ(k1, t1, k2).k1 (x , t1, k2)
Jλx .eK = λ(k1, t1, k2).k1 (λ(x , k1, t1, k2). JeK (k1, t1, k2), t1, k2)
Je0 e1K = λ(k1, t1, k2).Je0K (λ(v0, t1, k2). Je1K (λ(v1, t1, k2). v0 (v1, k1, t1, k2), t1, k2), t1, k2)

J#eK = λ(k1, t1, k2).JeK (θ1, nil, λv. k1 (v, t1, k2))
JFx .eK = λ(k1, t1, k2).let x = λ(v, k′

1, t
′
1, k2). k1 (v, t1 @ (k′

1 :: t′1), k2)
in JeK (θ1, nil, k2)

It is straightforward to write a one-pass version of the dynamic CPS transformer [15], and
we have implemented it. For example, transforming list copy1 (in Section 5) yields the
following program, which we write in the syntax of ML:

datatype ’a cont1 = CONT1 of ’a * ’a trail1 * ’a cont2 -> ’a

withtype ’a trail1 = ’a cont1 list

and ’a cont2 = ’a -> ’a

9

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e

• Answers, meta-continuations, continuations, values, and trails of continuations:

Ans = Val
θ2, k2 ∈ Cont2 = Val → Ans
θ1, k1 ∈ Cont1 = Val × Trail1 × Cont2 → Ans

v ∈ Val = Val × Cont1 × Trail1 × Cont2 → Ans
t1 ∈ Trail1 = List(Cont1)

• Initial meta-continuation: θ2 = λv. v

• Initial continuation: θ1 = λ(v, t1, k2). case t1
of nil ⇒ k2 v
| k1 :: t′1 ⇒ k1 (v, t′1, k2)

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Evaluation function: eval : Exp × Env × Cont1 × Trail1 × Cont2 → Ans

evaldcps (x , ρ, k1, t1, k2) = k1 (ρ(x), t1, k2)
evaldcps (λx .e, ρ, k1, t1, k2) = k1 (λ(v, k1, t1, k2). evaldcps (e, ρ{x 7→ v}, k1, t1, k2), t1, k2)
evaldcps (e0 e1, ρ, k1, t1, k2) = evaldcps (e0, ρ, λ(v0, t1, k2). evaldcps (e1, ρ, λ(v1, t1, k2). v0 (v1, k1, t1, k2), t1, k2), t1, k2)

evaldcps (#e, ρ, k1, t1, k2) = evaldcps (e, ρ, θ1, nil, λv. k1 (v, t1, k2))
evaldcps (Fx .e, ρ, k1, t1, k2) = evaldcps (e, ρ{x 7→ λ(v, k′

1, t
′
1, k2). k1 (v, t1 @ (k′

1 :: t′1), k2)}, θ1, nil, k2)

• Main function: evaluate : Exp → Val

evaluatedcps (e) = evaldcps (e, ρmt , θ1, nil, θ2)

Figure 3: A call-by-value evaluator for the λ-calculus extended with F and #

10

(* theta1 : ’a * ’a trail1 * ’a cont2 -> ’a *)

fun theta1 (v, nil, k2)

= k2 v

| theta1 (v, (CONT1 k1) :: t1, k2)

= k1 (v, t1, k2)

(* theta2 : ’a -> ’a *)

fun theta2 v

= v

(* list_copy1_dcps : ’b list -> ’b list *)

fun list_copy1_dcps xs

= let (* visit : ’b list * ’b list trail1 * ’b list cont2 -> ’b list *)

fun visit (nil, k1, t1, k2)

= let fun k (v, k1’, t1’, k2)

= k1 (v, t1 @ ((CONT1 k1’) :: t1’), k2)

in k (nil, theta1, nil, k2)

end

| visit (x :: xs, k1, t1, k2)

= visit (xs, fn (r, t1’, k2’) => k1 (x :: r, t1’, k2’), t1, k2)

in visit (xs, theta1, nil, theta2)

end

or again, unfolding the inner let expression:

fun list_copy1_dcps_simplified xs

= let fun visit (nil, k1, t1, k2)

= k1 (nil, t1 @ ((CONT1 theta1) :: nil), k2)

| visit (x :: xs, k1, t1, k2)

= visit (xs, fn (r, t1’, k2’) => k1 (x :: r, t1’, k2’), t1, k2)

in visit (xs, theta1, nil, theta2)

end

In our experience, out-of-the-box dynamic CPS programs are rarely enlightening the way
normal CPS programs tend to be (at least after some practice). However, again in our
experience, a combination of simplifications (e.g., inlining k2 and k init in the example just
above) and defunctionalization often clarifies the intent and the behavior of the original
direct-style program. We illustrate this point in Section 9.

8 The direct-style evaluator corresponding to the new

evaluator

Figure 4 shows a direct-style evaluator for the λ-calculus extended with F and # written
in a meta-language enriched with F and #. Transforming this direct-style evaluator
into dynamic continuation-passing style, using the one-pass version of the dynamic CPS
transformer of Section 7, yields the evaluator of Figure 3. This experiment is an adaptation
of Danvy and Filinski’s experiment [14], where a direct-style evaluator for the λ-calculus
extended with shift and reset written in a meta-language extended with shift and reset
was CPS-transformed into the definitional interpreter for the λ-calculus extended with
shift and reset. (In the same spirit, Danvy and Lawall have transformed into direct style a
continuation-passing evaluator for the λ-calculus extended with callcc, obtaining a direct-
style evaluator interpreting callcc with callcc [16].)

11

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values: v ∈ Val = Val → Val

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Evaluation function: eval : Exp × Env → Ans

evalds (x , ρ) = ρ(x)
evalds (λx .e, ρ) = λv. evalds (e, ρ{x 7→ v})
evalds (e0 e1, ρ) = evalds (e0, ρ) (evalds (e1, ρ))

evalds (#e, ρ) = #(evalds (e, ρ))
evalds (Fx .e, ρ) = Fv.evalds (e, ρ{x 7→ v})

• Main function: evaluate : Exp → Val

evaluateds (e) = evalds (e, ρmt)

Figure 4: A direct-style evaluator for the λ-calculus extended with F and #

9 Static and dynamic continuation-passing style

Biernacka, Biernacki, and Danvy have recently presented the following simple example to
contrast the effects of shift and of control [4, Section 4.5]. We write it below in ML,
using Filinski’s implementation of shift and reset [24], and using the implementation of
control and prompt presented in Section 11. In both cases, the type of the intermediate
answers is int list:

(* foo : int list -> int list *)

fun foo xs

= let fun visit nil

= nil

| visit (x :: xs)

= visit (shift (fn k => x :: (k xs)))

in reset (fn () => visit xs)

end

(* bar : int list -> int list *)

fun bar xs

= let fun visit nil

= nil

| visit (x :: xs)

= visit (control (fn k => x :: (k xs)))

in prompt (fn () => visit xs)

end

The two functions traverse their input list recursively, and construct an output list. They
only differ in that to abstract the recursive call to visit into a delimited continuation,
foo uses shift and reset whereas bar uses control and prompt. This seemingly minor
difference has a major effect since it makes foo behave as a list-copying function and bar

as a list-reversing function.

12

To illustrate this difference of behavior, Biernacka, Biernacki, and Danvy have used
contexts and meta-contexts [4, Section 4.5], and Biernacki and Danvy have used an intu-
itive source representation of the successive contexts [5, Section 2.3]. In this section, we
use static and dynamic continuation-passing style to illustrate the difference of behavior.

9.1 Static continuation-passing style

Applying the canonical CPS transformation for shift and reset [14] to the definition of
foo yields the following purely functional program:

fun foo_scps xs

= let fun visit (nil, k1, k2)

= k1 (nil, k2)

| visit (x :: xs, k1, k2)

= let fun k (v, k1’, k2’)

= visit (v, k1, fn v => k1’ (v, k2’))

in k (xs, fn (v, k2) => k2 (x :: v), k2)

end

in visit (xs, fn (v, k2) => k2 v, fn v => v)

end

Inlining k, k1’, and k1 yields the following simpler program:

fun foo_scps_simplified xs

= let fun visit (nil, k2)

= k2 nil

| visit (x :: xs, k2)

= visit (xs, fn v => k2 (x :: v))

in visit (xs, fn v => v)

end

Defunctionalizing k2 yields the following first-order program:

fun foo_scps_defunct xs

= let fun visit (nil, k2)

= continue (k2, nil)

| visit (x :: xs, k2)

= visit (xs, x :: k2)

and continue (nil, v)

= v

| continue (x :: k2, v)

= continue (k2, x :: v)

in visit (xs, nil)

end

These equivalent views make it clearer that the program copies its input list by first
reversing it using the meta-continuation as an accumulator, and then by reversing the
accumulator.

9.2 Dynamic continuation-passing style

Applying the dynamic CPS transformation for control and prompt (Section 7) to the
definition of bar yields the following purely functional program:

13

datatype ’a cont1 = CONT1 of ’a * ’a trail1 * ’a cont2 -> ’a

withtype ’a trail1 = ’a cont1 list

and ’a cont2 = ’a -> ’a

fun theta1 (v, nil, k2)

= k2 v

| theta1 (v, (CONT1 k1) :: t1, k2)

= k1 (v, t1, k2)

fun theta2 v

= v

fun bar_dcps xs

= let fun visit (nil, k1, t1, k2)

= k1 (nil, t1, k2)

| visit (x :: xs, k1, t1, k2)

= let fun k (v, k1’, t1’, k2)

= visit (v, k1, t1 @ (k1’ :: t1’), k2)

in k (xs, CONT1 (fn (v, t1, k2) => theta1 (x :: v, t1, k2)),

nil, k2)

end

in visit (xs, theta1, nil, theta2)

end

Inlining k, k1’, k1, and k2, defunctionalizing the continuation into the ML option type,
and using an auxiliary function continue aux to interpret the trail, yields the following
first-order program:

fun bar_dcps_defunct xs

= let fun visit (nil, t1)

= continue (NONE, nil, t1)

| visit (x :: xs, t1)

= visit (xs, t1 @ ((SOME x) :: nil))

and continue (NONE, v, t1)

= continue_aux (t1, v)

| continue (SOME x, v, t1)

= continue (NONE, x :: v, t1)

and continue_aux (nil, v)

= v

| continue_aux (k1 :: t1, v)

= continue (k1, v, t1)

in visit (xs, nil)

end

Further simplifications lead one to the following program:

fun bar_dcps_defunct_simplified xs

= let fun visit (nil, t1)

= continue_aux (t1, nil)

| visit (x :: xs, t1)

= visit (xs, t1 @ (x :: nil))

and continue_aux (nil, v)

= v

| continue_aux (k1 :: t1, v)

= continue_aux (t1, k1 :: v)

in visit (xs, nil)

end

14

These equivalent views make it clearer that the program reverses its input list by first
copying it to the trail through a series of concatenations, and then by reversing the trail.

9.3 A generalization

Let us briefly generalize the programming pattern above from lists to binary trees:

datatype tree = EMPTY

| NODE of tree * int * tree

In the following two definitions, the type of the intermediate answers is int list:

• Here, the two recursive calls to visit are abstracted into a static delimited continu-
ation using shift and reset:

fun traverse_sr t

= let fun visit (EMPTY, a)

= a

| visit (NODE (t1, i, t2), a)

= visit (t1, visit (t2, shift (fn k => i :: (k a))))

in reset (fn () => visit (t, nil))

end

• Here, the two recursive calls to visit are abstracted into a dynamic delimited con-
tinuation using control and prompt:

fun traverse_cp t

= let fun visit (EMPTY, a)

= a

| visit (NODE (t1, i, t2), a)

= visit (t1, visit (t2, control (fn k => i :: (k a))))

in prompt (fn () => visit (t, nil))

end

The static delimited continuations yield a preorder and right-to-left traversal, whereas the
dynamic delimited continuation yield a postorder and left-to-right traversal. The resulting
two lists are reverse of each other.

Again, CPS transformation and defunctionalization yield first-order programs whose
behavior is more patent.

9.4 Further examples

We now turn to the lazy depth-first and breadth-first traversals recently presented by
Biernacki, Danvy, and Shan [6]. To support laziness, they used the following signature of
generators:

signature GENERATOR

= sig

type ’a computation

datatype sequence = END

| NEXT of int * sequence computation

val make_sequence : tree -> sequence

val compute : sequence computation -> sequence

end

15

The following generator is parameterized by a scheduler that is given four thunks to be
applied in turn:

structure Lazy_generator : GENERATOR

= struct

datatype sequence = END

| NEXT of int * sequence computation

withtype ’a computation = unit -> ’a

structure CP = Control_and_Prompt (type intermediate_answer = sequence)

fun visit EMPTY

= ()

| visit (NODE (t1, i, t2))

= CP.control (fn k => (schedule

(fn () => visit t1,

fn () => CP.control (fn k’ => NEXT (i, k’)),

fn () => visit t2,

k);

END))

fun make_sequence t

= CP.prompt (fn () => let val () = visit t

in END

end)

fun compute k

= CP.prompt (fn () => k ())

end

The relative scheduling of the first and third thunks determines whether the traversal of
the input tree is from left to right or from right to left. The relative scheduling of the
second thunk with respect to the first and the third determines whether the traversal is
preorder, inorder, or postorder. The relative scheduling of the fourth thunk determines
whether the traversal is depth-first, breadth-first, or a mix of both.

In each case, dynamic CPS transformation and defunctionalization yield first-order
programs whose behavior is patent in that the depth-first traversal uses a stack, the
breadth-first traversal uses a queue, and the mixed traversal uses a queue to hold the
right (respectively the left) subtrees while visiting the left (respectively the right) ones.

10 A monad for dynamic continuation-passing style

The evaluator of Figure 3 is compositional, and has the following type:

Exp × Env × Cont1 × Trail1 × Cont2 → Ans

Let us curry it to exhibit its notion of computation [35]:

Exp × Env → Cont1 → Trail1 × Cont2 → Ans

Proposition 4. The type constructor

D(Val) = Cont1 → Trail1 × Cont2 → Ans

16

where Ans = Val
Cont2 = Val → Ans
Cont1 = Val → Trail1 × Cont2 → Ans

Val = Val → Cont1 → Trail1 × Cont2 → Ans
Trail1 = List(Cont1)

together with the functions

unit : Val → D(Val)
unit (v) = λk1. λ(t1, k2). k1 v (t1, k2)

bind : D(Val) × (Val → D(Val)) → D(Val)
bind (c, f) = λk1. λ(t1, k2). c (λv. λ(t′1, k

′
2). f v k1 (t′1, k

′
2)) (t1, k2)

form a continuation+state monad, where the state pairs the trail of continuations and
the meta-continuation. (The state could be η-reduced in the definitions of unit and bind,
yielding the definition of the continuation monad.)

Proof. A simple equational verification of the three monad laws [35].

As in Wadler’s study of monads and static delimited continuations [44], the type of bind,
instead of the usual D(α) × (α → D(β)) → D(β), has α = β = Val, making the triple
(D, unit, bind) more specific than a monad. As in Wadler’s work, this extra specificity is
coincidental here since we consider only one type, Val.

Having identified the monad for dynamic continuation-passing style, we are now in
position to define control and prompt as operations in this monad:

Definition 4. We define the monad operations control, prompt and compute as follows:

prompt : D(Val) → D(Val)
prompt (c) = λk1. λ(t1, k2). c θ1 (nil, λv. k1 v (t1, k2))

control : ((Val → D(Val)) → D(Val)) → D(Val)
control (e) = λk1. λ(t1, k2). e k θ1 (nil, k2)

where k = λv. λk′
1. λ(t′1, k

′
2). k1 v (t1 @ (k′

1 :: t′1), k′
2)

compute : D(Val) → Val
compute (c) = c θ1 (nil, θ2)

We can now extend the usual call-by-value monadic evaluator for the λ-calculus to
F and # (see Figure 5). Inlining the abstraction layer provided by the monad yields
the evaluator of Figure 3. Dynamic continuation-passing style therefore fits the func-
tional correspondence between evaluators and abstract machines advocated by the first
two authors [1,2,13]. Furthermore, and as has been observed before for other CPS trans-
formations and for the continuation monad [27,43], the dynamic CPS transformation itself
can be factored through Moggi’s monadic metalanguage and the monad above.

11 A new implementation of control and prompt

As pointed out in Section 10, if one curries the evaluator of Figure 3 and η-reduces the
parameters t1 and k2 in the first three clauses interpreting the λ-calculus, one can observe
that dynamic CPS conservatively extends CPS. Therefore, since the continuations k1 live
in the continuation monad, it is straightforward to express control and prompt in terms of
shift and reset, essentially, by

17

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values: v ∈ Val = Val → D(Val)

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Evaluation function: eval : Exp × Env → D(Val)

evalmon (x , ρ) = unit (ρ(x))
evalmon (λx .e, ρ) = unit (λv. evalmon (e, ρ{x 7→ v}))
evalmon (e0 e1, ρ) = bind (evalmon (e0, ρ), λv0. bind (evalmon (e1, ρ), λv1. v0 v1))

evalmon (#e, ρ) = prompt (evalmon (e, ρ))
evalmon (Fx .e, ρ) = control (λv. evalmon (e, ρ{x 7→ v}))

• Main function: evaluate : Exp → Val

evaluatemon (e) = compute (evalmon (e, ρmt))

Figure 5: A monadic evaluator for the λ-calculus extended with F and #

(1) transforming the evaluator of Figure 3 into direct style with respect to k2 (the result
is in continuation-composing style [14]), and

(2) transforming the resulting evaluator into direct style with respect to k1 (as opposed
to Section 8, where in order to obtain the direct-style evaluator written with control

and prompt, we transformed the resulting evaluator into direct style with respect to
both k1 and t1).

Building on this observation, we present below an implementation of control and prompt

in Standard ML of New Jersey, based on Filinski’s implementation of shift and reset [24].
The implementation takes the form of a functor mapping a type of intermediate answers
to an instance of control and prompt at that type:

signature CONTROL_AND_PROMPT

= sig

type intermediate_answer

val control : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a

val prompt : (unit -> intermediate_answer) -> intermediate_answer

end

functor Control_and_Prompt (type intermediate_answer) : CONTROL_AND_PROMPT

= struct

datatype (’a, ’b) cont1 = CONT1 of ’a -> ’b trail1 -> ’b

withtype ’b trail1 = (’b, ’b) cont1 list

structure SR

= Shift_and_Reset

(type intermediate_answer

= intermediate_answer trail1 -> intermediate_answer)

type intermediate_answer = intermediate_answer

18

fun theta1 v nil

= v

| theta1 v ((CONT1 k) :: t)

= k v t

fun prompt thunk

= SR.reset (fn () => theta1 (thunk ())) nil

exception MISSING_PROMPT

fun control function

= SR.shift

(fn k1 =>

fn t1 =>

let val f = fn v =>

SR.shift

(fn k1’ =>

fn t1’ =>

k1 v (t1 @ (CONT1 k1’ :: t1’)))

in SR.reset (fn () => theta1 (function f)) nil

end) handle MISSING_RESET => raise MISSING_PROMPT

end

In the definition of prompt, the expression delayed in thunk is computed with the initial
continuation theta1 and with an empty trail of continuations.

In the definition of control, the continuations k1 and k1’ are captured with shift, the
function f is constructed according to its definition in the evaluator, and the application
function f is computed with the initial continuation theta1 and with an empty trail of
continuations.

Hence, the standard continuation semantics of the definitions above coincides with the
dynamic continuation semantics of prompt and control given by the evaluator. A more
formal justification, however, is out of scope here.

12 Related work

The concept of meta-continuation and its representation as a function originates in Wand
and Friedman’s formalization of reflective towers [46], and its representation as a list in
Danvy and Malmkjær’s followup study [17]. Danvy and Filinski then realized that a meta-
continuation naturally arises by “one more” CPS transformation, giving rise to success and
failure continuations [14], and later Danvy and Nielsen observed that the list represen-
tation naturally arises by defunctionalization [18]. Just as repeated CPS transformations
give rise to a static CPS hierarchy [4, 14, 31, 37], repeated dynamic CPS transformations
should give rise to a dynamic CPS hierarchy—a future work.

The original approaches to delimited continuations were split between composing con-
tinuations dynamically by concatenating their representations [23] and composing them
statically using continuation-passing function composition [14]. Recently, Shan [40] and
Dybvig, Peyton Jones, and Sabry [19] each have proposed an account of dynamic delimited
continuations using a continuation+state-passing style:

• Shan’s development extends Wand et al.’s idea of an algebra of contexts [23] (the
state represents the prefix of a meta-continuation and is equipped with algebraic

19

operators Send and Compose to propagate intermediate results and compose the
representation of delimited continuations). Like our dynamic continuation-passing
style, Shan’s continuation-passing style hinges on the requirement that the answer
type of continuations be recursive. Our dynamic continuation-passing style also uses
a state, namely a trail of contexts and a meta-continuation. This representation,
however, only requires the usual list operations, instead of the dedicated algebraic
operations provided by Send and Compose. Consequently, the abstract machine of
Section 3 is simpler than the abstract machine corresponding to Shan’s continuation-
passing style. (We have constructed this abstract machine.) Shan’s transformation
can account for two other variations on F . Our continuation-passing style can be
adapted to account for these as well, by defunctionalizing the meta-continuation.

• Dybvig, Peyton Jones, and Sabry’s continuation+state-passing style threads a state
which is a list of continuations annotated with multiple control delimiters. This state
is structurally similar to ours in the sense that defunctionalizing and flattening our
meta-continuation and appending it to our trail of continuations yields their state
without annotations. We find this coincidence of result remarkable considering the
difference of motivation and methodology:

– Dybvig, Peyton Jones, and Sabry sought “a typed monadic framework in which
one can define and experiment with arbitrary [delimited] control operators” [19,
Section 7], using Hieb, Dybvig, and Anderson’s control operators for subcon-
tinuations [29] as a common basis, whereas

– we wanted an abstract machine for dynamic delimited continuations that is
in the range of Reynolds’s defunctionalization in order to provide a consistent
spectrum of tools for programming with and reasoning about delimited contin-
uations, both in direct style and in continuation-passing style.

Finally, as an alternative to Wand and Friedman’s use of a meta-continuation [46], Baw-
den has used trampolining to investigate reflective towers [3]. Recently, Kiselyov has revis-
ited trampolining to study the expressivity of static and dynamic delimited-continuation
operators [33].

13 Conclusion and issues

In our earlier work [6], we argued that dynamic delimited continuations need examples,
reasoning tools, and meaning-preserving program transformations, not only new varia-
tions, new formalizations, or new implementations. The present work partly fulfills these
wishes by providing, in a concerted way, an abstract machine that is in defunctionalized
form, the corresponding evaluator, the corresponding continuation-passing style and CPS
transformer, a monadic account of this continuation-passing style, a new simulation of a
dynamic delimited-control operator in terms of a static one, and several new examples.

Compared to static delimited continuations, and despite recent implementation ad-
vances, the topic of dynamic delimited continuations still remains largely unexplored. We
believe that the spectrum of compatible computational artifacts presented here—abstract
machine, evaluator, computational monad, and dynamic continuation-passing style—puts
one in a better position to assess them.

Acknowledgments: We are grateful to Mads Sig Ager, Ma lgorzata Biernacka, Julia
Lawall, Kristian Støvring, and the anonymous reviewers of MFPS XXI for their comments.

20

This work is supported by the ESPRIT Working Group APPSEM (http://www.appsem.
org) and by the Danish Natural Science Research Council, Grant no. 21-03-0545.

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM-SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’03), pages 8–19. ACM Press, August
2003.

[2] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with computational
effects. Theoretical Computer Science, 2005. To appear. Extended version available
as the technical report BRICS RS-04-28.

[3] Alan Bawden. Reification without evaluation. In Cartwright [8], pages 342–351.

[4] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foun-
dation for delimited continuations in the CPS hierarchy (revised version). Research
Report BRICS RS-05-11, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, March 2005. A preliminary version was presented at the
Fourth ACM SIGPLAN Workshop on Continuations (CW 2004).

[5] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem about de-
limited control. Research Report BRICS RS-05-10, DAIMI, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, March 2005.

[6] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the dynamic extent of
delimited continuations. Research Report BRICS RS-05-13, DAIMI, Department of
Computer Science, University of Aarhus, Aarhus, Denmark, April 2005. Extended
version of an article to appear in Information Processing Letters.

[7] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Symposium on
Principles of Programming Languages, Portland, Oregon, January 1994. ACM Press.

[8] Robert (Corky) Cartwright, editor. Proceedings of the 1988 ACM Conference on Lisp
and Functional Programming, Snowbird, Utah, July 1988. ACM Press.

[9] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level
semantic algebra. In John Reynolds and Maurice Nivat, editors, Algebraic Methods
in Semantics, pages 237–250. Cambridge University Press, 1985.

[10] William Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation strategies for
first-class continuations. Higher-Order and Symbolic Computation, 12(1):7–45, 1999.

[11] Olivier Danvy. Formalizing implementation strategies for first-class continuations. In
Gert Smolka, editor, Proceedings of the Ninth European Symposium on Programming,
number 1782 in Lecture Notes in Computer Science, pages 88–103, Berlin, Germany,
March 2000. Springer-Verlag.

21

[12] Olivier Danvy. On evaluation contexts, continuations, and the rest of the computation.
In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN Workshop on
Continuations, Technical report CSR-04-1, Department of Computer Science, Queen
Mary’s College, pages 13–23, Venice, Italy, January 2004. Invited talk.

[13] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck and Frank Huch, editors, Implementation and Application of Functional Lan-
guages, 16th International Workshop, IFL’04, number 3474 in Lecture Notes in Com-
puter Science, pages 52–71, Lübeck, Germany, September 2004. Springer-Verlag. Re-
cipient of the 2004 Peter Landin price. Extended version available as the technical
report BRICS-RS-03-33.

[14] Olivier Danvy and Andrzej Filinski. Abstracting control. In Wand [45], pages 151–160.

[15] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS trans-
formation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[16] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations.
In William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco,
California, June 1992. ACM Press.

[17] Olivier Danvy and Karoline Malmkjær. Intensions and extensions in a reflective tower.
In Cartwright [8], pages 327–341.

[18] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP’01), pages
162–174, Firenze, Italy, September 2001. ACM Press. Extended version available as
the technical report BRICS RS-01-23.

[19] R. Kent Dybvig, Simon Peyton-Jones, and Amr Sabry. A monadic framework for sub-
continuations. Available at http://www.cs.indiana.edu/~sabry/research.html, Febru-
ary 2005.

[20] Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne Ferrante
and Peter Mager, editors, Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, pages 180–190, San Diego, California, January
1988. ACM Press.

[21] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine,
and the λ-calculus. In Martin Wirsing, editor, Formal Description of Programming
Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland), Am-
sterdam, 1986.

[22] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond con-
tinuations. Technical Report 216, Computer Science Department, Indiana University,
Bloomington, Indiana, February 1987.

[23] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Ab-
stract continuations: A mathematical semantics for handling full functional jumps.
In Cartwright [8], pages 52–62.

[24] Andrzej Filinski. Representing monads. In Boehm [7], pages 446–457.

22

[25] Carl Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and
control in ML-like languages. In Simon Peyton Jones, editor, Proceedings of the
Seventh ACM Conference on Functional Programming and Computer Architecture,
pages 12–23, La Jolla, California, June 1995. ACM Press.

[26] Robert Harper, Bruce F. Duba, and David MacQueen. Typing first-class continuations
in ML. Journal of Functional Programming, 3(4):465–484, October 1993.

[27] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles. In
Boehm [7], pages 458–471.

[28] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In Proceedings
of the Second ACM SIGPLAN Symposium on Principles & Practice of Parallel Pro-
gramming, SIGPLAN Notices, Vol. 25, No. 3, pages 128–136, Seattle, Washington,
March 1990. ACM Press.

[29] Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinuations. Lisp
and Symbolic Computation, 5(4):295–326, December 1993.

[30] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the
presence of first-class continuations. In Bernard Lang, editor, Proceedings of the ACM
SIGPLAN’90 Conference on Programming Languages Design and Implementation,
SIGPLAN Notices, Vol. 25, No 6, pages 66–77, White Plains, New York, June 1990.
ACM Press.

[31] Yukiyoshi Kameyama. Axioms for delimited continuations in the CPS hierarchy.
In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th
International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Proceed-
ings, volume 3210 of Lecture Notes in Computer Science, pages 442–457, Karpacz,
Poland, September 2004. Springer.

[32] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 report on the
algorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105,
1998.

[33] Oleg Kiselyov. How to remove a dynamic prompt: Static and dynamic delimited con-
tinuation operators are equally expressible. Technical Report 611, Computer Science
Department, Indiana University, Bloomington, Indiana, March 2005.

[34] Robert E. Milne and Christopher Strachey. A Theory of Programming Language
Semantics. Chapman and Hall, London, and John Wiley, New York, 1976.

[35] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93:55–92, 1991.

[36] Luc Moreau and Christian Queinnec. Partial continuations as the difference of con-
tinuations, a duumvirate of control operators. In Manuel Hermenegildo and Jaan
Penjam, editors, Sixth International Symposium on Programming Language Imple-
mentation and Logic Programming, number 844 in Lecture Notes in Computer Sci-
ence, pages 182–197, Madrid, Spain, September 1994. Springer-Verlag.

[37] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems:
A-translation at work. In Olivier Danvy and Carolyn L. Talcott, editors, Proceedings

23

of the First ACM SIGPLAN Workshop on Continuations (CW 1992), Technical re-
port STAN-CS-92-1426, Stanford University, pages 49–72, San Francisco, California,
June 1992.

[38] Christian Queinnec and Bernard Serpette. A dynamic extent control operator for par-
tial continuations. In Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages 174–184,
Orlando, Florida, January 1991. ACM Press.

[39] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted from the
proceedings of the 25th ACM National Conference (1972), with a foreword.

[40] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell, editors,
Proceedings of the 2004 ACM SIGPLAN Workshop on Scheme and Functional Pro-
gramming, Snowbird, Utah, September 2004.

[41] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp
and Symbolic Computation, 3(1):67–99, January 1990.

[42] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: Full abstrac-
tion for models of control. In Wand [45], pages 161–175.

[43] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2(4):461–493, 1992.

[44] Philip Wadler. Monads and composable continuations. LISP and Symbolic Compu-
tation, 7(1):39–55, January 1994.

[45] Mitchell Wand, editor. Proceedings of the 1990 ACM Conference on Lisp and Func-
tional Programming, Nice, France, June 1990. ACM Press.

[46] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A non-
reflective description of the reflective tower. In William L. Scherlis and John H.
Williams, editors, Proceedings of the 1986 ACM Conference on Lisp and Functional
Programming, pages 298–307, Cambridge, Massachusetts, August 1986. ACM Press.

24

Recent BRICS Report Series Publications

RS-05-16 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A Dy-
namic Continuation-Passing Style for Dynamic Delimited Con-
tinuations. May 2005. ii+24 pp.

RS-05-15 Małgorzata Biernacka and Olivier Danvy.A Concrete Frame-
work for Environment Machines. May 2005. ii+25 pp.

RS-05-14 Olivier Danvy and Henning Korsholm Rohde. On Obtaining
the Boyer-Moore String-Matching Algorithm by Partial Evalua-
tion. April 2005. ii+8 pp.

RS-05-13 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan.On
the Dynamic Extent of Delimited Continuations. April 2005.
ii+32 pp. Extended version of an article to appear inInforma-
tion Processing Letters. Subsumes BRICS RS-05-2.

RS-05-12 Małgorzata Biernacka, Olivier Danvy, and Kristian Støvring.
Program Extraction from Proofs of Weak Head Normalization.
April 2005. 19 pp. Extended version of an article to appear in
the preliminary proceedings of MFPS XXI, Birmingham, UK,
May 2005.

RS-05-11 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. March 2005. iii+42 pp. A preliminary version
appeared in Thielecke, editor,4th ACM SIGPLAN Workshop on
Continuations, CW ’04 Proceedings, Association for Comput-
ing Machinery (ACM) SIGPLAN Technical Reports CSR-04-1,
2004, pages 25–33. This version supersedes BRICS RS-04-29.

RS-05-10 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. March 2005. ii+11 pp.

RS-05-9 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen.Re-
viewing Bounds on the Circuit Size of the Hardest Functions.
March 2005. 6 pp. To appear inInformation Processing Let-
ters.

RS-05-8 Peter D. Mosses.Exploiting Labels in Structural Operational
Semantics. February 2005. 15 pp. Appears inFundamenta
Informaticae, 60:17–31, 2004.

RS-05-7 Peter D. Mosses.Modular Structural Operational Semantics.
February 2005. 46 pp. Appears inJournal of Logic and Alge-
braic Programming, 60–61:195–228, 2004.

