5,984 research outputs found

    The effect of vegetation patterns on Aeolian mass flux at regional scale: a wind tunnel study

    Get PDF
    Although insight on the effect of vegetation pattern on Aeolian mass transport is essential for re-planting degraded land, only limited knowledge on this effect is available. The objective of this research was to understand the effect of vegetation design on the Aeolian mass flux inside a single land unit and at the borders among land units. A simulation of Atriplex halimus shrubs inside a wind tunnel was made, and sand redistribution was measured after the application of 200-230 seconds wind at a speed of 11 ms-1. The study showed that: 1) sediment maximum transport inside a single land unit is related to the neighboring land units and to the vegetation pattern within both the unit itself and the neighboring land units; 2) the effect of neighboring land units includes the protection effect and the ruling of sediment crossing from one land unit to the neighboring land units; 3) for the designing of re-planting of degraded land the ‘streets’ (zones of erosion areas similar to streets) effect need to be considered; and 4) in addition to the general knowledge needed on the effect of vegetation pattern on the erosion and deposition within an area, it is important to have insight on the redistribution of sediment at small scales upon the aim of the project

    Numerical modeling of the wind flow over a transverse dune

    Get PDF
    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, uu_{\ast}: it is nearly independent of uu_{\ast} for shear velocities within the range between 0.20.2\,ms and $0.8\,$ms but increases linearly with uu_{\ast} for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if uu_{\ast} is larger than approximately 0.390.39\,ms, whereas a larger value of $u_{\ast}$ (about $0.49\,$ms) is required to initiate this reverse transport.Comment: 11 pages, 8 figure

    The physics of wind-blown sand and dust

    Full text link
    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.Comment: 72 journal pagers, 49 figure

    A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics

    Get PDF
    Since the pioneering work of Bagnold in the 1940s, aeolian research has grown to become an integral part of earth-system science. Many individuals have contributed to this development, and Dr. Michael R. Raupach (1950–2015) has played a pivotal role. Raupach worked intensively on wind erosion problems for about a decade (1985–1995), during which time he applied his deep knowledge of turbulence to aeolian research problems and made profound contributions with far-reaching impact. The beauty of Raupach’s work lies in his clear conceptual thinking and his ability to reduce complex problems to their bare essentials. The results of his work are fundamentally important and have many practical applications. In this review we reflect on Raupach’s contribution to a number of important aspects of aeolian research, summarise developments since his inspirational work and place Raupach’s efforts in the context of aeolian science. We also demonstrate how Raupach’s work provided a foundation for new developments in aeolian research. In this tribute, we concentrate on five areas of research: (1) drag partition theory; (2) saltation roughness length; (3) saltation bombardment; (4) threshold friction velocity and (5) the carbon cycl

    Elucidating Hidden and Enduring Weaknesses in Dust Emission Modeling

    Get PDF
    Large-scale classical dust cycle models, developed more than two decades ago, assume for simplicity that the Earth's land surface is devoid of vegetation, reduce dust emission estimates using a vegetation cover complement, and calibrate estimates to observed atmospheric dust optical depth (DOD). Consequently, these models are expected to be valid for use with dust-climate projections in Earth System Models. We reveal little spatial relation between DOD frequency and satellite observed dust emission from point sources (DPS) and a difference of up to 2 orders of magnitude. We compared DPS data to an exemplar traditional dust emission model (TEM) and the albedo-based dust emission model (AEM) which represents aerodynamic roughness over space and time. Both models overestimated dust emission probability but showed strong spatial relations to DPS, suitable for calibration. Relative to the AEM calibrated to the DPS, the TEM overestimated large dust emission over vast vegetated areas and produced considerable false change in dust emission. It is difficult to avoid the conclusion that calibrating dust cycle models to DOD has hidden for more than two decades, these TEM modeling weaknesses. The AEM overcomes these weaknesses without using masks or vegetation cover data. Considerable potential therefore exists for ESMs driven by prognostic albedo, to reveal new insights of aerosol effects on, and responses to, contemporary and environmental change projections

    Assessing landscape dust emission potential using combined ground‐based measurements and remote sensing data

    Get PDF
    Modeled estimates of aeolian dust emission can vary by an order of magnitude due to the spatiotemporal heterogeneity of emissions. To better constrain location and magnitude of emissions, a surface erodibility factor is typically employed in models. Several landscape-scale schemes representing surface dust-emission potential for use in models have recently been proposed, but validation of such schemes has only been attempted indirectly with medium-resolution remote sensing of mineral aerosol loadings and high-resolution land-surface mapping. In this study, we used dust-emission source points identified in Namibia with Landsat imagery together with field-based dust-emission measurements using a Portable In-situ Wind Erosion Laboratory (PI-SWERL) wind tunnel to assess the performance of schemes aiming to represent erodibility in global dust-cycle modeling. From analyses of the surface and samples taken at the time of wind tunnel testing, a Boosted Regression Tree analysis identified the significant factors controlling erodibility based on PI-SWERL dust flux measurements and various surface characteristics, such as soil moisture, particle size, crusting degree and mineralogy. Despite recent attention to improving the characterisation of surface dust-emission potential, our assessment indicates a high level of variability in the measured fluxes within similar geomorphologic classes. This variability poses challenges to dust modelling attempts based on geomorphology and/or spectral-defined classes. Our approach using high-resolution identification of dust sources to guide ground-based testing of emissivity offers a valuable means to help constrain and validate dust-emission schemes. Detailed determination of the relative strength of factors controlling emission can provide further improvement to regional and global dust-cycle modeling

    Satellites reveal Earth's seasonally shifting dust emission sources

    Get PDF
    Establishing mineral dust impacts on Earth's systems requires numerical models of the dust cycle. Differences between dust optical depth (DOD) measurements and modelling the cycle of dust emission, atmospheric transport, and deposition of dust indicate large model uncertainty due partially to unrealistic model assumptions about dust emission frequency. Calibrating dust cycle models to DOD measurements typically in North Africa, are routinely used to reduce dust model magnitude. This calibration forces modelled dust emissions to match atmospheric DOD but may hide the correct magnitude and frequency of dust emission events at source, compensating biases in other modelled processes of the dust cycle. Therefore, it is essential to improve physically based dust emission modules. Here we use a global collation of satellite observations from previous studies of dust emission point source (DPS) dichotomous frequency data. We show that these DPS data have little-to-no relation with MODIS DOD frequency. We calibrate the albedo-based dust emission model using the frequency distribution of those DPS data. The global dust emission uncertainty constrained by DPS data (±3.8 kg m−2 y−1) provides a benchmark for dust emission model development. Our calibrated model results reveal much less global dust emission (29.1 ± 14.9 Tg y−1) than previous estimates, and show seasonally shifting dust emission predominance within and between hemispheres, as opposed to a persistent North African dust emission primacy widely interpreted from DOD measurements. Earth's largest dust emissions, proceed seasonally from East Asian deserts in boreal spring, to Middle Eastern and North African deserts in boreal summer and then Australian shrublands in boreal autumn-winter. This new analysis of dust emissions, from global sources of varying geochemical properties, have far-reaching implications for current and future dust-climate effects. For more reliable coupled representation of dust-climate projections, our findings suggest the need to re-evaluate dust cycle modelling and benefit from the albedo-based parameterisation
    corecore