5,191 research outputs found

    Representation of uncertain occupancy maps with high level feature vectors

    Full text link
    © 2019 IEEE. This paper presents a novel method for representing an uncertain occupancy map using a 'feature vector' and an associated covariance matrix. Input required is a point cloud generated using observations from a sensor captured at different locations in the environment. Both the sensor locations and the measurements themselves may have an associated uncertainty. The output is a set of coefficients and their uncertainties of a cubic spline approximation to the distance function of the environment, thereby resulting in a compact parametric representation of the environment geometry. Cubic spline coefficients are computed by solving a non-linear least squares problem that enforces the Eikonal equation over the space in which the environment geometry is defined, and zero boundary condition at each observation in the point cloud. It is argued that a feature based representation of point cloud maps acquired from uncertain locations using noisy sensors has the potential to open up a new direction in robot mapping, localisation and SLAM. Numerical examples are presented to illustrate the proposed technique

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Learning to represent surroundings, anticipate motion and take informed actions in unstructured environments

    Get PDF
    Contemporary robots have become exceptionally skilled at achieving specific tasks in structured environments. However, they often fail when faced with the limitless permutations of real-world unstructured environments. This motivates robotics methods which learn from experience, rather than follow a pre-defined set of rules. In this thesis, we present a range of learning-based methods aimed at enabling robots, operating in dynamic and unstructured environments, to better understand their surroundings, anticipate the actions of others, and take informed actions accordingly

    Robust Dense Mapping for Large-Scale Dynamic Environments

    Full text link
    We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work. The source code is available from the project website (http://andreibarsan.github.io/dynslam).Comment: Presented at IEEE International Conference on Robotics and Automation (ICRA), 201

    A Drift-Resilient and Degeneracy-Aware Loop Closure Detection Method for Localization and Mapping In Perceptually-Degraded Environments

    Get PDF
    Enabling fully autonomous robots capable of navigating and exploring unknown and complex environments has been at the core of robotics research for several decades. Mobile robots rely on a model of the environment for functions like manipulation, collision avoidance and path planning. In GPS-denied and unknown environments where a prior map of the environment is not available, robots need to rely on the onboard sensing to obtain locally accurate maps to operate in their local environment. A global map of an unknown environment can be constructed from fusion of local maps of temporally or spatially distributed mobile robots in the environment. Loop closure detection, the ability to assert that a robot has returned to a previously visited location, is crucial for consistent mapping as it reduces the drift caused by error accumulation in the estimated robot trajectory. Moreover, in multi-robot systems, loop closure detection enables finding the correspondences between the local maps obtained by individual robots and merging them into a consistent global map of the environment. In ambiguous and perceptually-degraded environments, robust detection of intra- and inter-robot loop closures is especially challenging. This is due to poor illumination or lack-thereof, self-similarity, and sparsity of distinctive perceptual landmarks and features sufficient for establishing global position. Overcoming these challenges enables a wide range of terrestrial and planetary applications, ranging from search and rescue, and disaster relief in hostile environments, to robotic exploration of lunar and Martian surfaces, caves and lava tubes that are of particular interest as they can provide potential habitats for future manned space missions. In this dissertation, methods and metrics are developed for resolving location ambiguities to significantly improve loop closures in perceptually-degraded environments with sparse or undifferentiated features. The first contribution of this dissertation is development of a degeneracy-aware SLAM front-end capable of determining the level of geometric degeneracy in an unknown environment based on computing the Hessian associated with the computed optimal transformation from lidar scan matching. Using this crucial capability, featureless areas that could lead to data association ambiguity and spurious loop closures are determined and excluded from the search for loop closures. This significantly improves the quality and accuracy of localization and mapping, because the search space for loop closures can be expanded as needed to account for drift while decreasing rather than increasing the probability of false loop closure detections. The second contribution of this dissertation is development of a drift-resilient loop closure detection method that relies on the 2D semantic and 3D geometric features extracted from lidar point cloud data to enable detection of loop closures with increased robustness and accuracy as compared to traditional geometric methods. The proposed method achieves higher performance by exploiting the spatial configuration of the local scenes embedded in 2D occupancy grid maps commonly used in robot navigation, to search for putative loop closures in a pre-matching step before using a geometric verification. The third contribution of this dissertation is an extensive evaluation and analysis of performance and comparison with the state-of-the-art methods in simulation and in real-world, including six challenging underground mines across the United States

    Parametric POMDPs for planning in continuous state spaces

    Get PDF
    This thesis is concerned with planning and acting under uncertainty in partially-observable continuous domains. In particular, it focusses on the problem of mobile robot navigation given a known map. The dominant paradigm for robot localisation is to use Bayesian estimation to maintain a probability distribution over possible robot poses. In contrast, control algorithms often base their decisions on the assumption that a single state, such as the mode of this distribution, is correct. In scenarios involving significant uncertainty, this can lead to serious control errors. It is generally agreed that the reliability of navigation in uncertain environments would be greatly improved by the ability to consider the entire distribution when acting, rather than the single most likely state. The framework adopted in this thesis for modelling navigation problems mathematically is the Partially Observable Markov Decision Process (POMDP). An exact solution to a POMDP problem provides the optimal balance between reward-seeking behaviour and information-seeking behaviour, in the presence of sensor and actuation noise. Unfortunately, previous exact and approximate solution methods have had difficulty scaling to real applications. The contribution of this thesis is the formulation of an approach to planning in the space of continuous parameterised approximations to probability distributions. Theoretical and practical results are presented which show that, when compared with similar methods from the literature, this approach is capable of scaling to larger and more realistic problems. In order to apply the solution algorithm to real-world problems, a number of novel improvements are proposed. Specifically, Monte Carlo methods are employed to estimate distributions over future parameterised beliefs, improving planning accuracy without a loss of efficiency. Conditional independence assumptions are exploited to simplify the problem, reducing computational requirements. Scalability is further increased by focussing computation on likely beliefs, using metric indexing structures for efficient function approximation. Local online planning is incorporated to assist global offline planning, allowing the precision of the latter to be decreased without adversely affecting solution quality. Finally, the algorithm is implemented and demonstrated during real-time control of a mobile robot in a challenging navigation task. We argue that this task is substantially more challenging and realistic than previous problems to which POMDP solution methods have been applied. Results show that POMDP planning, which considers the evolution of the entire probability distribution over robot poses, produces significantly more robust behaviour when compared with a heuristic planner which considers only the most likely states and outcomes
    • …
    corecore