12,434 research outputs found

    Molecular Exploration of the First-Century Tomb of the Shroud in Akeldama, Jerusalem

    Get PDF
    The Tomb of the Shroud is a first-century C. E. tomb discovered in Akeldama, Jerusalem, Israel that had been illegally entered and looted. The investigation of this tomb by an interdisciplinary team of researchers began in 2000. More than twenty stone ossuaries for collecting human bones were found, along with textiles from a burial shroud, hair and skeletal remains. The research presented here focuses on genetic analysis of the bioarchaeological remains from the tomb using mitochondrial DNA to examine familial relationships of the individuals within the tomb and molecular screening for the presence of disease. There are three mitochondrial haplotypes shared between a number of the remains analyzed suggesting a possible family tomb. There were two pathogens genetically detected within the collection of osteological samples, these were Mycobacterium tuberculosis and Mycobacterium leprae. The Tomb of the Shroud is one of very few examples of a preserved shrouded human burial and the only example of a plaster sealed loculus with remains genetically confirmed to have belonged to a shrouded male individual that suffered from tuberculosis and leprosy dating to the first-century C.E. This is the earliest case of leprosy with a confirmed date in which M. leprae DNA was detected

    Independent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region

    Get PDF
    Mycobacterium tuberculosis, the causative agent of most human tuberculosis, infects one third of the world's population and kills an estimated 1.7 million people a year. With the world-wide emergence of drug resistance, and the finding of more functional genetic diversity than previously expected, there is a renewed interest in understanding the forces driving genome evolution of this important pathogen. Genetic diversity in M. tuberculosis is dominated by single nucleotide polymorphisms and small scale gene deletion, with little or no evidence for large scale genome rearrangements seen in other bacteria. Recently, a single report described a large scale genome duplication that was suggested to be specific to the Beijing lineage. We report here multiple independent large-scale duplications of the same genomic region of M. tuberculosis detected through whole-genome sequencing. The duplications occur in strains belonging to both M. tuberculosis lineage 2 and 4, and are thus not limited to Beijing strains. The duplications occur in both drug-resistant and drug susceptible strains. The duplicated regions also have substantially different boundaries in different strains, indicating different originating duplication events. We further identify a smaller segmental duplication of a different genomic region of a lab strain of H37Rv. The presence of multiple independent duplications of the same genomic region suggests either instability in this region, a selective advantage conferred by the duplication, or both. The identified duplications suggest that large-scale gene duplication may be more common in M. tuberculosis than previously considere

    Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians

    Get PDF
    The naturally mummified remains of a mother and two daughters found in an 18th century Hungarian crypt were analysed, using multiple molecular genetic techniques to examine the epidemiology and evolution of tuberculosis. DNA was amplified from a number of targets on the Mycobacterium tuberculosis genome, including DNA from IS6110, gyrA, katG codon 463, oxyR, dnaA–dnaN, mtp40, plcD and the direct repeat (DR) region. The strains present in the mummified remains were identified as M. tuberculosis and not Mycobacterium bovis, from katG and gyrA genotyping, PCR from the oxyR and mtp40 loci, and spoligotyping. Spoligotyping divided the samples into two strain types, and screening for a deletion in the MT1801–plcD region initially divided the strains into three types. Further investigation showed, however, that an apparent deletion was due to poor DNA preservation. By comparing the effect of PCR target size on the yield of amplicon, a clear difference was shown between 18th century and modern M. tuberculosis DNA. A two-centre system was used to confirm the findings of this study, which clearly demonstrate the value of using molecular genetic techniques to study historical cases of tuberculosis and the care required in drawing conclusions. The genotyping and spoligotyping results are consistent with the most recent theory of the evolution and spread of the modern tuberculosis epidemic

    Reference genome and comparative genome analysis for the WHO reference strain for Mycobacterium bovis BCG Danish, the present tuberculosis vaccine

    Get PDF
    Background: Mycobacterium bovis bacillus Calmette-Guerin (M. bovis BCG) is the only vaccine available against tuberculosis (TB). In an effort to standardize the vaccine production, three substrains, i.e. BCG Danish 1331, Tokyo 172-1 and Russia BCG-1 were established as the WHO reference strains. Both for BCG Tokyo 172-1 as Russia BCG-1, reference genomes exist, not for BCG Danish. In this study, we set out to determine the completely assembled genome sequence for BCG Danish and to establish a workflow for genome characterization of engineering-derived vaccine candidate strains.ResultsBy combining second (Illumina) and third (PacBio) generation sequencing in an integrated genome analysis workflow for BCG, we could construct the completely assembled genome sequence of BCG Danish 1331 (07/270) (and an engineered derivative that is studied as an improved vaccine candidate, a SapM KO), including the resolution of the analytically challenging long duplication regions. We report the presence of a DU1-like duplication in BCG Danish 1331, while this tandem duplication was previously thought to be exclusively restricted to BCG Pasteur. Furthermore, comparative genome analyses of publicly available data for BCG substrains showed the absence of a DU1 in certain BCG Pasteur substrains and the presence of a DU1-like duplication in some BCG China substrains. By integrating publicly available data, we provide an update to the genome features of the commonly used BCG strains. Conclusions: We demonstrate how this analysis workflow enables the resolution of genome duplications and of the genome of engineered derivatives of the BCG Danish vaccine strain. The BCG Danish WHO reference genome will serve as a reference for future engineered strains and the established workflow can be used to enhance BCG vaccine standardization

    Discriminatory ability of hypervariable variable number tandem repeat loci in population-based analysis of Mycobacterium tuberculosis strains, London, UK

    Get PDF
    To address conflicting results about the stability of variable number tandem repeat (VNTR) loci and their value in prospective molecular epidemiology of Mycobacterium tuberculosis, we conducted a large prospective population-based analysis of all M. tuberculosis strains in a metropolitan setting. Optimal and reproducible conditions for reliable PCR and fragment analysis, comprising enzymes, denaturing conditions, and capillary temperature, were identified for a panel of hypervariable loci, including 3232, 2163a, 1982, and 4052. A total of 2,261 individual M. tuberculosis isolates and 265 sets of serial isolates were analyzed by using a standardized 15-loci VNTR panel, then an optimized hypervariable loci panel. The discriminative ability of loci varied substantially; locus VNTR 3232 varied the most, with 19 allelic variants and Hunter-Gaston index value of 0.909 . Hypervariable loci should be included in standardized panels because they can provide consistent comparable results at multiple settings, provided the proposed conditions are adhered to

    Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level

    Get PDF
    Background: Mycobacterium avium subsp. paratuberculosis (MAP), the causative bacterium of Johne’s disease in dairy cattle, is widespread in the Canadian dairy industry and has significant economic and animal welfare implications. An understanding of the population dynamics of MAP can be used to identify introduction events, improve control efforts and target transmission pathways, although this requires an adequate understanding of MAP diversity and distribution between herds and across the country. Whole genome sequencing (WGS) offers a detailed assessment of the SNP-level diversity and genetic relationship of isolates, whereas several molecular typing techniques used to investigate the molecular epidemiology of MAP, such as variable number of tandem repeat (VNTR) typing, target relatively unstable repetitive elements in the genome that may be too unpredictable to draw accurate conclusions. The objective of this study was to evaluate the diversity of bovine MAP isolates in Canadian dairy herds using WGS and then determine if VNTR typing can distinguish truly related and unrelated isolates.<p></p> Results: Phylogenetic analysis based on 3,039 SNPs identified through WGS of 124 MAP isolates identified eight genetically distinct subtypes in dairy herds from seven Canadian provinces, with the dominant type including over 80% of MAP isolates. VNTR typing of 527 MAP isolates identified 12 types, including “bison type” isolates, from seven different herds. At a national level, MAP isolates differed from each other by 1–2 to 239–240 SNPs, regardless of whether they belonged to the same or different VNTR types. A herd-level analysis of MAP isolates demonstrated that VNTR typing may both over-estimate and under-estimate the relatedness of MAP isolates found within a single herd.<p></p> Conclusions: The presence of multiple MAP subtypes in Canada suggests multiple introductions into the country including what has now become one dominant type, an important finding for Johne’s disease control. VNTR typing often failed to identify closely and distantly related isolates, limiting the applicability of using this typing scheme to study the molecular epidemiology of MAP at a national and herd-level.<p></p&gt

    Protection efficacy of Argentinian isolates of Mycobacterium avium subsp. paratuberculosis with different genotypes and virulence in a murine model

    Get PDF
    Paratuberculosis is a chronic disease caused by Mycobacterium avium subsp. paratuberculosis (Map). The disease causes economic losses and, therefore, it is imperative to follow proper control strategies, which should include an effective vaccine. Several strategies have assessed the virulence and immune response of Map strains that could be used as a vaccine. This study evaluates the degree of virulence, immune response, and protection of Argentinian strains of Map with different genotype in a murine model. Four local isolates (Cattle type) with different genotypes (analyzed by MIRU-VNTR and SSRs) were selected and evaluated in a virulence assay in BALB/c mice. This assay allowed us to differentiate virulent and low-virulence Map strains. The less virulent strains (1543/481 and A162) failed to induce a significant production of the proinflammatory cytokine IFNg, whereas the virulent strain 6611 established infection along with a proinflammatory immune response. On the other hand, the virulent strain 1347/498 was efficient in establishing a persistent infection, but failed to promote an important Th1 response compared with 6611 at the evaluated time. We selected the low-virulence strain 1543/498 as a live vaccine and the virulent strain 6611 as a live and inactivated vaccine in a protection assay in mice. Strain 1543/481 failed to protect the animals from challenge, whereas strain 6611, in its live and inactivated form, significantly reduced the CFUs count in the infected mice, although they had different immunological response profiles. The inactivated virulent strain 6611 is a potential vaccine candidate against paratuberculosis to be tested in cattle.Fil: Colombatti Olivieri, María Alejandra. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moyano, Roberto Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Travería, Gabriel Eduardo. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Clínica. Centro de Diagnóstico e Investigaciones Veterinarias; ArgentinaFil: Alvarado Pinedo, María Fiorella. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Clínica. Centro de Diagnóstico e Investigaciones Veterinarias; ArgentinaFil: Mon, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Gravisaco, Maria Jose Federica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Delgado, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Santangelo, María de la Paz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Romano, Maria Isabel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Molecular biology techniques as a tool for detection and characterisation of Mycobacterium avium subsp. paratuberculosis

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) is the causative agent of paratuberculosis, also known as Johne’s disease, a chronic intestinal infection in cattle and other ruminants. Paratuberculosis is characterised by diarrhea and weight loss that occurs after a period of a few months up to several years without any clinical signs. The considerable economic losses to dairy and beef cattle producers are caused by reduced milk production and poor reproduction performance in subclinically infected animals. Early diagnosis of infected cattle is essential to prevent the spread of the disease. Efforts have been made to eradicate paratuberculosis by using a detection and cull strategy, but eradication is hampered by the lack of suitable and sensitive diagnostic methods. This thesis, based on five scientific investigations, describes the development of different DNA amplification strategies for detection and characterisation of M. paratuberculosis. Various ways to pre-treat bacterial cultures, tissue specimens and fecal samples prior to PCR analysis were investigated. Internal positive PCR control molecules were developed and used in PCR analyses to improve the reliability and to facilitate the interpretation of the results. The sensitivity of the ultimate methods was found to be approximate that of culture and allowed detection of low numbers of M. paratuberculosis expected to be found in subclinically infected animals. Genomic DNA of a Swedish mycobacterial isolate, incorrectly identified by PCR as M. paratuberculosis was characterised. The isolate was closely related to M. cookii and harboured one copy of a DNA segment with 94% similarity to IS900, the target sequence used in diagnostic PCR for detection of M. paratuberculosis. This finding highlighted the urgency of developing or evaluating PCR systems based on genes other than IS900. A PCR-based fingerprinting method using primers targeting the enterobacterial intergenic consensus sequence (ERIC) and the IS900 sequence was developed and successfully used to distinguish M. paratuberculosis from closely related mycobacteria, including the above mentioned mycobacterial isolate. In conclusion, the molecular biology techniques developed in these studies have proved useful for accelerating the diagnostic detection and characterisation of M. paratuberculosis

    First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal

    Get PDF
    BACKGROUND: Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. METHODS AND FINDINGS: We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42-4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43-5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. CONCLUSIONS: We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian reg
    corecore