1,538 research outputs found

    Grasping, Perching, And Visual Servoing For Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs) have seen a dramatic growth in the consumer market because of their ability to provide new vantage points for aerial photography and videography. However, there is little consideration for physical interaction with the environment surrounding them. Onboard manipulators are absent, and onboard perception, if existent, is used to avoid obstacles and maintain a minimum distance from them. There are many applications, however, which would benefit greatly from aerial manipulation or flight in close proximity to structures. This work is focused on facilitating these types of close interactions between quadrotors and surrounding objects. We first explore high-speed grasping, enabling a quadrotor to quickly grasp an object while moving at a high relative velocity. Next, we discuss planning and control strategies, empowering a quadrotor to perch on vertical surfaces using a downward-facing gripper. Then, we demonstrate that such interactions can be achieved using only onboard sensors by incorporating vision-based control and vision-based planning. In particular, we show how a quadrotor can use a single camera and an Inertial Measurement Unit (IMU) to perch on a cylinder. Finally, we generalize our approach to consider objects in motion, and we present relative pose estimation and planning, enabling tracking of a moving sphere using only an onboard camera and IMU

    Apollo-Soyuz pamphlet no. 5: The earth from orbit

    Get PDF
    Astronaut training in the recognition of various geological features from space is described as well as the cameras, lenses and film used in experiment MA-136 to measure their effectiveness in photographing earth structural features from orbit. Aerosols that affect climate and weather are discussed in relation to experiment Ma-007 which relied on infrared observations of the setting or rising sun, as seen from Apollo, to measure the amount of dust and droplets in the lower 150 km of earth's atmosphere. The line spectra of atomic oxygen and nitrogen and their densities at 22 km above the earth's surface are examined along with experiment MA-059 which measured ultraviolet absorption at that altitude

    Hyperspectral benthic mapping from underwater robotic platforms

    Get PDF
    We live on a planet of vast oceans; 70% of the Earth's surface is covered in water. They are integral to supporting life, providing 99% of the inhabitable space on Earth. Our oceans and the habitats within them are under threat due to a variety of factors. To understand the impacts and possible solutions, the monitoring of marine habitats is critically important. Optical imaging as a method for monitoring can provide a vast array of information however imaging through water is complex. To compensate for the selective attenuation of light in water, this thesis presents a novel light propagation model and illustrates how it can improve optical imaging performance. An in-situ hyperspectral system is designed which comprised of two upward looking spectrometers at different positions in the water column. The downwelling light in the water column is continuously sampled by the system which allows for the generation of a dynamic water model. In addition to the two upward looking spectrometers the in-situ system contains an imaging module which can be used for imaging of the seafloor. It consists of a hyperspectral sensor and a trichromatic stereo camera. New calibration methods are presented for the spatial and spectral co-registration of the two optical sensors. The water model is used to create image data which is invariant to the changing optical properties of the water and changing environmental conditions. In this thesis the in-situ optical system is mounted onboard an Autonomous Underwater Vehicle. Data from the imaging module is also used to classify seafloor materials. The classified seafloor patches are integrated into a high resolution 3D benthic map of the surveyed site. Given the limited imaging resolution of the hyperspectral sensor used in this work, a new method is also presented that uses information from the co-registered colour images to inform a new spectral unmixing method to resolve subpixel materials

    Demonstrating Optothermal Actuators for an Autonomous MEMS Microrobot

    Get PDF
    There are numerous applications for microrobots which are beneficial to the Air Force. However, the microrobotics field is still in its infancy, and will require extensive basic research before these applications can be fielded. The biggest hurdle to be solved, in order to create autonomous microrobots, is generating power for their actuator engines. Most present actuators require orders of magnitude more power than is presently available from micropower sources. To enable smaller microrobots, this research proposed a simplified power concept that eliminates the need for on-board power supplies and control circuitry by using actuators powered wirelessly from the environment. This research extended the basic knowledge of methods required to power Micro-Electro-Mechanical Systems (MEMS) devices and reduce MEMS microrobot size. This research demonstrated optothermal actuators designed for use in a wirelessly propelled autonomous MEMS microrobot, without the need of an onboard power supply, through the use of lasers to directly power micrometer scale silicon thermal actuators. Optothermal actuators, intended for use on a small MEMS microrobot, were modeled, designed, fabricated and tested, using the PolyMUMPs silicon-metal chip fabrication process. Prototype design of a MEMS polysilicon-based microrobot, using optothermal actuators, was designed, fabricated and tested. Each of its parts was demonstrated to provide actuation using energy from an external laser. The optothermal actuators provided 2 m of deflection to the microrobot drive shaft, with 60 mW of pulsed laser power. The results of these experiments demonstrated the validity of a new class of wireless silicon actuators for MEMS devices, which are not directly dependant on electrical power for actuation

    Spatial Centering of a Quadcopter in an Underground Coal Mine

    Get PDF
    The recent proliferation of smaller and more affordable sensing and computing has contributed to an increased availability of unmanned aerial vehicles, UAV\u27s. Specifically, quadrotor platforms have become popular due to their low cost, versatility, and relative ease of operation. There are a variety of applications for this type of aerial vehicle, ranging from hobbyist photography to search and rescue operations. This thesis documents the feasibility of using a quadrotor UAV within the confined space of an underground coal mine during an emergency. Additionally, this paper notes in the Appendix an experiment to remotely operate a quadcopter that is located underground. This work specifies the equipment used to operate down an eight inch borehole in terms of radios, fiber optic cables, and video hardware. The operator and quadcopter were located 50 feet apart in the experiment.;One of the most significant challenges of operating a quadcopter in an underground coal mine is collision avoidance. The automation of basic spatial centering in the underground coal mine would lessen the burden on the operator and help prevent collisions. Many spatially aware quadcopter systems already exist, but widely rely on GPS signals as a way to determine position. GPS signals are very weak radio signals that cannot penetrate into the earth. The below-ground nature of an underground coal mine precludes the use of GPS for positioning the craft. Due to this limitation, it became necessary to explore unique sensing solutions that would allow for the spatial centering of the quadcopter while operating in an underground environment.;The ability for the craft to maintain a distance from its surroundings through the use of a light-based sensor was analyzed. Sensors were placed on the bottom and side of the quadcopter, and the performance of the control system was observed. Altitude was maintained with a steady state error of 4%, and the response to a step change in ground height resulted in a 10% lower overshoot than simulation. Simultaneously, distance was maintained from the side with a steady state error of 7.8%. The work presented in this document serves as validation for the basic spatial awareness and crash avoidance capability of a quadcopter operating without GPS in an underground coal mine while controlled remotely down an eight inch borehole

    Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    Get PDF
    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report

    Modeling and simulation of adaptive multimodal optical sensors for target tracking in the visible to near infrared

    Get PDF
    This work investigates an integrated aerial remote sensor design approach to address moving target detection and tracking problems within highly cluttered, dynamic ground-based scenes. Sophisticated simulation methodologies and scene phenomenology validations have resulted in advancements in artificial multimodal truth video synthesis. Complex modeling of novel micro-opto-electro-mechanical systems (MOEMS) devices, optical systems, and detector arrays has resulted in a proof of concept for a state-of-the-art imaging spectropolarimeter sensor model that does not suffer from typical multimodal image registration problems. Test methodology developed for this work provides the ability to quantify performance of a target tracking application with varying ground scenery, flight characteristics, or sensor specifications. The culmination of this research is an end-to-end simulated demonstration of multimodal aerial remote sensing and target tracking. Deeply hidden target recognition is shown to be enhanced through the fusing of panchromatic, hyperspectral, and polarimetric image modalities. The Digital Imaging and Remote Sensing Image Generation model was leveraged to synthesize truth spectropolarimetric sensor-reaching radiance image cubes comprised of coregistered Stokes vector bands in the visible to near-infrared. An intricate synthetic urban scene containing numerous moving vehicular targets was imaged from a virtual sensor aboard an aerial platform encircling a stare point. An adaptive sensor model was designed with a superpixel array of MOEMS devices fabricated atop a division of focal plane detector. Degree of linear polarization (DoLP) imagery is acquired by combining three adjacent micropolarizer outputs within each 2x2 superpixel whose respective transmissions vary with wavelength, relative angle of polarization, and wire-grid spacing. A novel micromirror within each superpixel adaptively relays light between a panchromatic imaging channel and a hyperspectral spectrometer channel. All optical and detector sensor effects were radiometrically modeled using MATLAB and optical lens design software. Orthorectification of all sensor outputs yields multimodal pseudonadir observation video at a fixed ground sampled distance across an area of responsibility. A proprietary MATLAB-based target tracker accomplishes change detection between sequential panchromatic or DoLP observation frames, and queries the sensor for hyperspectral pixels to aid in track initialization and maintenance. Image quality, spectral quality, and tracking performance metrics are reported for varying scenario parameters including target occlusions within the scene, declination angle and jitter of the aerial platform, micropolarizer diattenuation, and spectral/spatial resolution of the adaptive sensor outputs. DoLP observations were found to track moving vehicles better than panchromatic observations at high oblique angles when facing the sensor generally toward the sun. Vehicular occlusions due to tree canopies and parallax effects of tall buildings significantly reduced tracking performance as expected. Smaller MOEMS pixel sizes drastically improved track performance, but also generated a significant number of false tracks. Atmospheric haze from urban aerosols eliminated the tracking utility of DoLP observations, while aerial platform jitter without image stabilization eliminated tracking utility in both modalities. Wire-grid micropolarizers with very low VNIR diattenuation were found to still extinguish enough cross-polarized light to successfully distinguish and track moving vehicles from their urban background. Thus, state-of-the-art lithographic techniques to create finer wire-grid spacings that exhibit high VNIR diattenuation may not be required

    12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume

    Get PDF
    The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements

    Development Of A Quadrotor Testbed For Control And Sensor Development

    Get PDF
    A quadrotor is an under actuated unmanned aerial vehicle (UAV) which uses thrust from four rotors to provide six degrees of freedom. This thesis outlines the development of a general purpose test bed that can be used for sensor and control algorithm development. The system includes the means to simulate a proposed controller and then a hardware in the loop implementation using the same software. The test bed was assembled and verified with a linear controller for both attitude and position control using feedback from an IMU (Inertial measurement Unit) and a Global Position System (GPS) sensor. The linear controller was first implemented as a PID controller which attempts to control the attitude of the quadrotor. The controller was simulated successfully and then experiments were conducted on a DraganFlyer X-Pro quadrotor to verify the closed loop control. The experiments conducted checked the response of the quadrotor angles to the commanded angles. The controller gains were tuned to provide stable hover in all three angles. The Videre stereo vision system was investigated as a sensor to estimate height of the UAV above the ground. Experiments were performed that show that show static (no motion of the camera) estimates over the range 0.5 - 4 meters. The accuracy of these measurements suggest that the system may provide improved height estimation, over WAAS corrected GPS. A means to add this sensor into the UAV test bed is discussed

    Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology

    Get PDF
    The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire
    corecore