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Abstract

Daniel L. Bongiorno Doctor of Philosophy
The University of Sydney May 2015

Hyperspectral Benthic Mapping
From Underwater Robotic

Platforms

We live on a planet of vast oceans; 70% of the Earth’s surface is covered in water. They are

integral to supporting life, providing 99% of the inhabitable space on Earth. Our oceans

and the habitats within them are under threat due to a variety of factors, including climate

change, over-fishing, habitat destruction, pollution and bio-invasion. To understand the

impacts and possible solutions, the monitoring of marine habitats is critically important.

Methods for monitoring can include physical sampling, sonar imaging and optical imaging

with cameras. Optical imaging can provide a vast array of information. The types of infor-

mation which can be obtained through optical imaging include the biological constituents

living within a water body, the seafloor coverage types such as sand, coral, seagrass and

various health indices of marine habitats such as the severity of coral bleaching. Imaging

through water however is complex, with selective attenuation effects occurring as a result

of the atomic nature of water as well as the constituents suspended and dissolved within it.

To compensate for the attenuation of light in water, this thesis presents a novel light prop-

agation model and illustrates how it can improve optical imaging performance. Insights

gained from this model are used to design an in-situ hyperspectral system. The optical

system is comprised of two upward looking spectrometers at different positions in the water

column. The downwelling light in the water column is continuously sampled by the system.

This allows for the generation of a dynamic water model.

In addition to the two upward looking spectrometers the in-situ system contains an imaging

module. This module can be used for imaging of the seafloor. It consists of a hyperspectral
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Abstract iii

sensor and a trichromatic stereo camera. New calibration methods are presented for the

spatial and spectral co-registration of the two optical sensors. The dynamic water model is

used in conjunction with the stereo camera to resolve water corrected RGB imagery and cor-

rected hyperspectral reflectance data. The resultant image data is invariant to the changing

optical properties of the water, weather conditions, scene structure and lighting changes.

In this thesis the in-situ optical system is mounted onboard an Autonomous Underwater

Vehicle (AUV). The utility of the corrected data from this system is demonstrated with

data obtained during a coral reef survey over the Great Barrier Reef, Australia.

Data from the imaging module is also used to classify seafloor materials. The combined

classification is shown to perform better than a single sensor modality. The classified seafloor

patches are then integrated into a high resolution 3D benthic map of the surveyed site. This

can provide informative details about underwater habitats for biological applications. Given

the limited imaging resolution of the hyperspectral sensor used in this work, a new method

is also presented that uses information from the co-registered colour images to inform a new

spectral unmixing method to resolve subpixel materials.
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Chapter 1

Introduction

Alice came to a fork in the road. ‘Which road do I take?’ she asked.

‘Where do you want to go?’ responded the Cheshire Cat.

‘I don’t know,’ Alice answered.

‘Then,’ said the Cat, ‘it doesn’t matter.’

- Lewis Carroll, Alice in Wonderland

1
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We live on a planet of vast oceans with 70% of the Earth’s surface covered by water.

They are integral to supporting life on Earth, providing 99% of the inhabitable space on

earth [144]. Our oceans and the habitats within them are under threat to due to a variety

of factors, including climate change, over-fishing, habitat destruction, pollution and bio-

invasion [169]. To understand the changes occurring and possible solutions, the monitoring

of the marine habitats is critically important [203].

A variety of platforms are used for the monitoring of marine habitats. Above water remote

sensing is generally used, to cover large areas at low resolution from aerial or satellite based

platforms. Below water (in-situ) platforms such as towed video, towed diver [41, 136],

scuba divers [81], Remote Operated Vehicles (ROVs) and Autonomous Underwater Vehicles

(AUVs) [54, 157] are typically used when finer detail is required. Optical imaging is typically

used on these platforms as it provides reliable fine detailed information necessary for marine

habitat monitoring. Optical imaging is an attractive means to gather critical information

about habitats within our oceans. This information can include the biological constituents

living within a water body, the seafloor coverage types such as sand, coral, seagrass and

various health indices of marine habitats such as the health of coral [7, 90]. Colour plays

an important role in the inference of this health information.

Imaging through water presents many challenges. Ocean water and the particles dissolved

and suspended within it have strong attenuating effects on light and thus on the data

collected when imaging through it. This attenuating effect is wavelength dependant; the

green portion of the visible spectrum passes most easily followed by blue, then red. Red

light (> 600nm) can be attenuated quickly in a short depth of water. This thesis aims to

develop methodologies for use on in-situ platforms that can remove the attenuation effects of

the water. Once these effects are removed the data can be used to reliably classify different

objects in underwater environments.

Colour is often thought of in the trichromatic domain which consists of combinations of

Red-Green-Blue (RGB). This is due to how the human eye perceives colour. The colour

of an object is a combination of the underlying illumination and the spectral reflectance

of the object. A spectral reflectance profile defines how a material will reflect light at a

given wavelength. Obtaining the spectral reflectance will give a spectral signature which

can be used for identifying the material composition of the object as is commonly performed

for example in terrestrial remote sensing [163]. Hyperspectral sensors are one of the many
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sensors commonly found onboard remote sensing platforms. The term ‘hyperspectral’ refers

to resolving the spectral reflectance signature at a fine spectral resolution.

When the colour of a scene is collected in the hyperspectral domain it can provide numerous

features for discrimination of the various benthic types. Numerous studies are conducted

above water in a remote sensing domain [29, 117] as well as sparse measurements at fine

scales using contact sensors held by scuba divers [87]. These studies have been conducted

to demonstrate the ability of hyperspectral reflectance to reliably classify material types,

but there has been limited use of hyperspectral reflectance information from other in-situ

platforms due to the difficulties of working with light underwater.

Hyperspectral Imaging (HSI) cameras, like colour cameras, capture a entire spatial image

of a scene, however they may collect 100-1000s of spectral bands for each spatial ‘pixel’.

Spectrometers are also hyperspectral sensors that capture a single cone of light (1 large pixel)

but with similar or greater spectral resolution than a HSI camera. The trade-off with spatial

resolution is countered by a lower cost, smaller form factor, lower energy requirements and

better Signal-to-Noise Ratio (SNR). The better SNR is derived from collecting a large solid

angle of light and larger pixel wells on the sensor’s collector.

In this work an in-situ imaging system is designed as well as methodologies for removing

the attenuation effects of water. There are two parts to the in-situ imaging system. The

first part is a system using upwards facing spectrometers at different depths in the water

to continuously sample the water column to determine the optical properties of the water.

This data allows for the creation of a dynamic water model which is constantly updated

during imaging. This water model allows for the removal of the attenuation effects of the

water the imaging system is working within. This removal method is commonly called

colour correction in the trichromatic domain as it corrects the colours so it appears that

the image was taken out of water. New methodologies for undertaking these corrections in

both the trichromatic domain and the hyperspectral domain are discussed.

The second part of the in-situ imaging system is an imaging module which allows for the

imaging of an underwater environment such as coral reef habitats. The imaging module

allows for the hyperspectral and colour imaging of a scene. Techniques are developed to co-

register the two sensors to maximise the benefits of each sensor. The corrected hyperspectral

reflectance spectra and corrected colour imagery are used together to classify materials in

an underwater environment.



CHAPTER 1. INTRODUCTION 4

1.1 Thesis aims and objectives

The two principal objectives of this thesis are:

1. To recover accurate and consistent colour and hyperspectral reflectance profiles using

data from a trichromatic imaging camera and a spectrometer in underwater scenes.

2. To fuse this corrected data for accurately classifying materials on the seafloor.

1.2 Thesis Contributions

In this work methods are developed to parametrise a water model through the design and

use of an insitu optical system. This model is used to correct traditional trichromatic and

hyperspectral imaging for the changing optical properties and lighting within a water body.

The presented method was applied using sensors onboard an AUV. An adaptive water

model was possible through the design and calibration of an apparatus to measure the

optical properties of a body of water from an AUV. This model could then be used to

recover RGB imagery and hyperspectral reflectance data corrected for water, lighting and

structure influences by using an inverse attenuation model.

The utility of this corrected data is demonstrated with data obtained during a coral reef

survey over the Great Barrier Reef (GBR). It is shown that the hyperspectral data can be

fused with the RGB data to classify seafloor materials. In order to effectively fuse and exploit

data coming from these two different sensor types, the spatial and spectral co-registration

of the two sensors is required. Calibration in this context refers to (a) accurate knowledge of

the spectral response function of the trichromatic imager in relation to the response of the

hyperspectral sensor, and (b) the spatial response pattern of the hyperspectral sensor with

respect to the Field-of-View (FOV) of the trichromatic camera. The fused information is

classified using a supervised classifier. From the labelled patches, a 3D benthic map of the

surveyed site is generated. Given the limited spatial resolution of the hyperspectral sensor

used in this work, a new method is presented that takes information from the co-registered

colour images to inform a new spectral unmixing method to resolve subpixel materials with

the pixel of the hyperspectral sensor.

The following sections provide more detail on each of the contributions.
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1.2.1 Spatial and spectral calibration techniques

In this work a new sensor combination is presented involving an RGB camera and a spec-

trometer for underwater high spectral and high spatial resolution imaging. New calibration

techniques were developed to recover radiometrically accurate readings from this sensor

combination:

Field-of-View (FOV) of spectrometers - The spectrometer provides a single spatial

measurement of light radiance entering the FOV of the sensor. An automated method

for characterising the field of view of spectrometers and providing a map of the sensi-

tivity vs angle of incoming light was developed. The method is expanded to produce

a three-dimensional sensitivity map of the spectrometer’s FOV.

Co-registration - This new method provides a spatial calibration of a spectrometer spa-

tial response pattern within the FOV of a RGB camera. This allows for the combined

use of the two imaging technologies (RGB camera and spectrometer) for scene classi-

fication.

Camera spectral characterisation - Generally the spectral characteristics of a camera

are not provided by the manufacture, these characteristics are essential for the task of

colour correction. A new method is developed for determining the spectral sensitivities

of a conventional RGB camera. The new method is faster and less complex than

previous characterisation techniques.

Combining a spectral device with an imaging camera - In this work a novel sensor

combination is presented. A stereo RGB camera system is combined with a high

spectral resolution spectrometer. Techniques are explored for exploiting the benefits

of the combined modalities. The engineering behind the software and hardware are

discussed and results are presented for an AUV survey over the GBR.

1.2.2 Insitu water-corrected imaging

Current methods of colour correction and spectral correction are not capable of compen-

sating for spatially and temporally varying optical properties of a water body. Correction

refers to recovering the reflectance of an underwater object to make it appear as if the water

was completely removed. The contribution in this area includes the following:
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Estimation of optical properties of the water - A water model was parametrised through

the measurement of a water body from two vertically-varying locations. This was

achieved through the design of an optical system using two spectrometer facing up-

ward to measure the downwelling irradiance of the water body. These measurements

allowed for the estimation of the diffuse downwelling attenuation coefficient.

Colour correction - Colour correction was implemented using the parametrised water

model as well as the spectral sensitivities of an RGB camera. This correction removes

the selective attenuation effects as a result of imaging through a water body. The

validity of this technique is demonstrated in several experiments, including a test

tank setup where the target, water and lighting could be completely controlled and

an outdoor ocean environment representing a real-world scenario. In this experiment,

the target and depth could be controlled. A final experiment was conducted onboard

an AUV. Lighting, depth and target were uncontrollable but measurable. This last

scenario represented a real application with real varying environmental conditions.

Spectral correction - Spectral correction is necessary to resolve the reflectance spectra

invariant to lighting and water attenuation effects. A new method is presented which

models the lighting contributions and the optical properties of the water to obtain

corrected spectral reflectance curves. These reflectance curves are similar to what a

remote sensing platform would deliver. The presented method was able to recover

spectral reflectance measurements at a much higher spatial resolution than what is

possible from above water platforms.

1.2.3 Spectral-based underwater classification & mapping

The water-corrected colour imagery and corrected hyperspectral reflectance profiles allowed

for the classification of materials in the data collected on an AUV survey mission. These

corrections allowed the imagery and hyperspectral data to be spatially and spectrally con-

sistent and accurate. This accuracy and consistency is necessary before the data can be

used to classify or distinguish between coverage types. The classified data was then used

to create maps of the different benthic material types on the seafloor. The contributions

resulting from this include:

Abundance map generation - Utilising the spatial information from the RGB camera
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(the texture features from the co-registered colour camera) and the spectral infor-

mation from the spectrometer, a Support Vector Machine (SVM) based supervised

classifier was trained and compared against other conventional supervised classifiers.

Data from a survey mission was classified and overlaid on a 3D map of the seafloor.

This is a new method for fusing in-situ RGB imagery with hyperspectral data to

create a high resolution benthic map.

Informed Spectral unmixing - The co-registered RGB patches under each spectral patch

were used to further determine the number and relative abundance of materials present

in the scene. This segmentation process allowed for an informed spectral unmixing

process that resulted in a constrained combinatorial problem for spectral unmixing.

The computational complexity of this search was reduced using a greedy graph-based

search algorithm developed for spectral unmixing. The contribution in this area is

the development of two new algorithms for spectral unmixing.

1.3 Thesis overview

Chapter 2 provides a background on the properties of light underwater and the different

modelling techniques available. Following the background section a review of the

literature relevant to the contributions of this work is detailed. This includes methods

for improving underwater visibility and the correction of underwater colour imagery.

Extending to the hyperspectral domain, a review of HSI is provided with a emphasis

on underwater and marine based HSI. This is followed by a literature review of spectral

unmixing techniques and related background.

Chapter 3 details the spectral and spatial calibration methods necessary to resolve chro-

matically accurate colour and hyperspectral underwater imagery. This includes an

automated method for determining the spatial sensitivities of a spectrometers FOV.

In this work the spectrometer is combined with a RGB stereo camera. The spatial

co-registration for this modality is described. Finally a calibration method for deter-

mining spectral sensitivities of an RGB camera is presented. This is necessary for the

process of colour correction.

Chapter 4 presents the methods for recovering accurate and consistent colour from un-
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derwater imagery. This is shown first for correcting the colour in RGB underwater

imagery. The method was validated and demonstrated with three different imagery

scenarios of varying realism and environmental control. These experiments included

a test tank, an ocean swimming spot and lastly onboard an AUV. This method was

then applied to the hyperspectral domain for correcting spectral reflectance data taken

underwater. The correction techniques were performed on data from an AUV map-

ping mission. The mission was over a coral shoal of varying coral and benthic types.

Several examples of the different benthic types are shown from the mission.

Chapter 5 demonstrates how the radiometrically corrected colour imagery and hyperspec-

tral data can be used to create high resolution benthic maps. The AUV conducted

a survey mission over an area of the GBR. From this mission over 14,000 stereo im-

ages and spectral reflectance data were collected. Several classifiers were trained on

the survey data using the combined imagery and HSI data. The choice of spectral

device imposes a spatial resolution limit. To resolve and classify materials smaller

than the pixel size of the spectral device, spectral unmixing techniques are used. A

new method is presented which improves the unmixing process by utilising the high

spatial information from the co-registered RGB imaging camera.

Chapter 6 provides a conclusion of the presented work as well as future directions based

on the contributions made in this thesis.

Appendix A presents a technique for improving underwater visibility with the use of

polarising filters. This work is relevant to the background of visibility improvements

but due to poor performance was not used in the final method. The work however

should be presented as it could be used for future improvements to the proposed

method.

1.4 System overview

In this thesis a spectral imaging system was developed for achieving the aims of this work.

The imaging system was built onto an existing AUV. The AUV was a Woods Hole Oceano-

graphic Institution (WHOI) designed seabed class AUV operated and customised by Aus-

tralian Centre for Field Robotics (ACFR). Figure 1.1 shows the location of each of the
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sensor used in this work. To characterise the water column, two upward looking spectrom-

eters are used. One is onboard the AUV platform and the other onboard a surface vessel.

Next the developed imaging module is mounted on the underside of the AUV for taking

successive images of the seafloor as the vehicle transverses a planned route. The imaging

module consists of a spectrometer spatially co-registered with a RGB stereo camera.

AUV Upward Looking Spectrometer

Downward Facing SpectrometerStereo RGB Camera

Surface Upward Looking Spectrometer

AUV

Surface Vessel

Strobes
Motion of AUV

previous measurements future measurements

Air-water interface effects

Figure 1.1 – Layout of the designed system showing the placement of the upwards looking
spectrometers to characterise the water column and the co-location of the stereo camera
and downwards looking spectrometer for benthic habitat mapping.

This system will be referred to in it’s separate sub-systems throughout this dissertation.

Referring to this figure will assist the reader in understanding the context of each developed

sub-system.



Chapter 2

Background & literature review

2.1 Introduction

The underwater environment presents formidable barriers towards its exploration, one of

which is the limited passage of light. Typically underwater imaging has been undertaken

through the use of sonar based systems. High spatial resolutions have been attainable with

the advent of high resolution sonar systems such as side scan sonar. This modality however

provides limited information on the types of materials under examination.

When performing close-range sensing underwater, optical underwater imaging is preferable

to sonar based imaging due to its affordability, high resolution (both spatially and chromat-

10
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ically) and ease of interpretation by an operator. However optical sensing in an underwater

environment can be challenging due to the complex absorption and scattering properties

of the water. These attenuation properties are dependant on factors such as the particles

dissolved and suspended within the water, sunlight/weather variations and distance to the

object of interest.

2.2 Background

2.2.1 Understanding the water column and its effect on light

Due to the atomic nature of water (H2O), water molecules absorb almost all electro-

magnetic radiation except for photons within the visible band [137]. Typically bodies of

water do not pass the visible spectrum evenly: green light (around 532nm) passes most

easily through water followed by blue then red light. Figure 2.1 shows images taken of a

colour chart in a typical underwater environment. In the left image the colour chart is close

to the camera so that the colours appear similar to their values when observed out of water.

In the right hand image the target is far away and it can be seen that the reds have been

diminished to a greater degree than the blues or greens. Figure 2.2, illustrates sensing light

from the surface from different depths within the ocean. It can be seen that Infra-Red (IR)

( > 700nm) is most quickly attenuated, followed by reds ( > 600nm). The transmission

properties of the water also change with different particles dissolved and suspended within

the body of water.

The interactions of light within a body of water will fall within one of two cases, either the

light is absorbed or scattered. The degree to which these interactions occur depends on the

water’s constituents (particles dissolved or suspended within a body of water). A typical

river for example is often more turbid than open ocean water. Here incident light flux may

be attenuated more quickly due to the silt suspended within the water and algae growing

near the surface of the river. In contrast a body of ocean water will have a smaller degree

of particle suspension or biological growth. As a result the optical properties of these two

examples will differ greatly.

In a medium where absorption is the only factor (no scattering), the visible range is a

function of the light source illumination and the camera sensitivity [69]. In the blue region
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(480nm) of the ocean, 60% of the water’s attenuation is due to scattering and 40% due to

absorption, whereas in other spectral regions absorption is the dominant attenuation factor

[56]. Light energy in the red end of the spectrum is attenuated very heavily with complete

extinction occurring around 10-15 metres for very clear tropical waters.

(a) Close up (b) Far away

Figure 2.1 – This demonstrates the selective attenuation of a typical body of water, the far
away image has a blue green colour-cast due to the reds being attenuated more quickly
than blue or green.

The optical properties of a body of water are often given one of two labels: Inherent Optical

Properties (IOP) or Apparent Optical Properties (AOP) [137]. The attributes of a body of

water which only depend on the scattering and absorption characteristics and not on the

geometric structure of the light field within the body of water are called the IOPs [159].

The amount of scattering is defined by the scattering coefficient, often denoted by the letter

b. This quantity describes the fraction of incident flux scattered within the medium at

a particular wavelength. The degree of absorption of a body of water is defined by the

absorption coefficient. This is often assigned the letter a, which describes the fraction of

incident flux absorbed within the medium at a particular wavelength. The total attenuation

of a body of water is defined by the attenuation coefficient c and is simply c = a+ b.

When the geometry of the light field is considered along with the attenuation properties of

a body of water these are often classified as AOPs. To a large extent the attenuation of a

body of water is defined by the IOPs [115], however they will change with the location and

direction in which they were measured hence the need for defining the AOPs. A common

quantity measured by oceanographers is the downwelling attenuation coefficient Kd. Similar

to the attenuation coefficient c it characterises the light passing downwards through a water
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Figure 2.2 – The spectrum of downward irradiance in the sea for different depths below the
surface, figure taken from Jerlov [101]

column. It measures the incident light loss due to absorption and scattering per unit distance

at a particular wavelength of light. In a similar vein an upwelling attenuation coefficient Ku

can be defined for the light passing upward through a body of water. In the next section it

is shown how Kd maybe derived from optical measurements within the body of water.

2.2.2 Water column modelling

In the literature there have been several optical models for a given body of water. The

majority of modern literature uses the Lee et al. method [122] or alternatively using the

water modelling software Hydrolight [139]. These methods are able to model the attenua-

tion effects due to the major constituents present in ocean waters, this can include Coloured

Dissolved Organic Matter (CDOM) and photosynthesising chlorophyll. The methods are

primarily aimed for use with correcting the water attenuation effects in remote sensing im-

agery and the retrieval of shallow water bathymetry [9, 116, 123]. These models rely on

the in-situ measurement of CDOM, chlorophyll, scattering and absorption. These measure-

ments are often only taken in one or very few locations at one moment in time. They do not

actively measure the transmission of light through a body of water, with the exception of
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several scattering and absorption sensors which often take measurements over a short pas-

sage of water. Several assumptions are made as to the homogeneity of a body of water both

spatially and temporally. Other methods will use predefined models of ‘standard’ ocean

waters. Jerlov [101] developed a set of standardised ocean water models. There are a set

for coastal waters and a set for open ocean waters. The degree to which these standardised

models generalise to all ocean water conditions is not clear [125].

The water’s attenuation properties may be modelled through the Lambert-Beers law:

Eδ(λ) = Es(λ)e−Kd(λ)δ (2.1)

where: Eδ(λ) is the irradiance with respect to wavelength λ at depth δ, Es(λ) is the

irradiance just below the surface, Kd(λ) is the wavelength dependant diffuse downwelling

attenuation coefficient for the water. We may re-write this as seen in Equation (2.2) to

derive the diffuse downwelling attenuation coefficient Kd(λ).

Kd(λ) = −1

δ
loge

(
Eδ(λ)

Es(λ)

)
(2.2)

Due to the complex nature of the air-water interface, measurements taken above the water

need further processing.

2.2.2.1 Air-water interface effects

Light passing through the air-water interface will be reduced through various factors such as

reflection and refraction, arising from the angle of the sun, waves and wind elements. Figure

2.3 shows visually where these derived quantities come from. To determine the amount of

reflection from the interface the refractive index is derived using the empirical equation for

the index of refraction of seawater Equation (2.3) [162] which is a function of wavelength

(λ in nanometres), salinity (S) and temperature (T ).

n(S, T, λ) = n0 + (n1 + n2T + n3T
2)S + n4T

2 +
n5 + n6S + n7T

λ
+
n8

λ2
+
n9

λ3
(2.3)
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Optical sensor

Figure 2.3 – This shows the complete parameters obtained for modelling for the air-water
interface, see Section 2.2.2.1 for further details.

n0 = 1.31405 n1 = 1.779× 10−4 n2 = −1.05× 10−6 n3 = 1.6× 10−8

n4 = −2.02× 10−6 n5 = 15.868 n6 = 0.01155 n7 = −0.00423

n8 = −4382 n9 = 1.1455× 106

From the derived refractive index nwater(S, T, λ), Snell’s Law Equation (2.4) can be used

to determine the exit angle of the light in the water. Note that this is for the angle of

the incoming sunlight. The skylight contribution is diffused in the hemisphere around the

area and so for these calculations it is not considered angle dependant for the purpose of

modelling extinction.
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θw(λ) = arcsin

(
nair

nwater(S, T, λ)
sin(θa(λ))

)
(2.4)

Where the index of refraction of air nair ≈ 1 and the entry angle (θa(λ)) is the zenith angle

of the sun. The refracted angle at which the light now passes through the water after the

air-water interface is defined by θw(λ). A proportion of light will be reflected at the interface

surface and does not pass into the water. The reflectance r at the surface is a function of

the zenith angle of the incident light in air (θa) and the exit angle (relative to vertical) in

water θw. This relationship is given by Fresnel’s Equation:

r =
1

2

sin2(θa − θw)

sin2(θa + θw)
+

1

2

tan2(θa − θw)

tan2(θa + θw)
(2.5)

There will also be light reflection from wind derived white caps on the surface of the water

which can be modelled using a white cap percentage [187], where windspeed ws is in metres

per second:

whitecap% = 2.692× 10−5w2.625
s (2.6)

The work of Koepke et al. [118] found the white caps had an effective reflectance of 22% over

time due to their short life. The extinction percentage (ε) of the irradiance passing through

the air-water interface is derived in Equation (2.7) with the resultant light irradiance just

below the surface Es being defined in Equation (2.8).

ε = whitecap%× 22% + r (2.7)

Finally there needs to be a correction for the possible off-zenith angle of the measuring

device above the water. Equation (2.8) shows the value for Es which is the irradiance

models just below the water’s surface.

Es = Eψ

(
1− ε

cos(θη)

)
(2.8)

where θη is the angle between the sensor’s optical axis and the zenith angle at the time

of acquisition. Eψ is the irradiance measurement from the above water optical sensor.
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The result of this process derives the irradiance just below the surface Es (λ). This is

encompasses the complex intereactions of the air-water interface. This is used together with

a measurement taken at some depth δ to derive the downwelling attenuation coefficient Kd.

2.3 Optical visibility improvements in water

With the complexities of imaging underwater due to the absorption and scattering of the

body of water, there has been a lot of research into developing methods for improving

visibility underwater. Visibility in this case refers to the ease of the transmission of light

underwater. The techniques for improving visibility vary greatly from active illumination

to optical filtering to various post-processing techniques.

When conducting imaging underwater with active illumination, scattering can stop or de-

flect light from entering the scene. The type of scattering is often categorised into two

classes; if the reflected light from the scene is scattered by a particulate in the water col-

umn but the light continues forward (at a changed angle) this is called forward scattering.

If the light is scattered back into the sensor without reaching the scene it is classified as

backscattering [101, 126]. These concepts are visually explained in Figure 2.4. This dis-

tinction is often quite necessary as back scattering tends to inhibit visibility underwater by

reducing the contrast of the image coming back from the scene, whereas forward scattering

often results in blurring of the image.

Particles in water
Camera

Light Source

Object of interestForward scattering

Back scattering

Normal reflection

Figure 2.4 – This describes the process of back and forward scattering in the context of an
underwater environment

A series of methods utilise the capacity for light to become polarised to improve underwater

visibility. Polarisation naturally exists in the underwater environment up to depths of 200m
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[101]. Light can become naturally polarised through several means. Firstly light from the

sky can be partially polarised and pass through into the water. Secondly light can become

scattered by the water molecules or by particles in the water column can polarise the light.

Lastly the transmission of unpolarised sunlight through the surface of the water can result

in elliptically polarised light, dependant on the incident angle [137].

One method for reducing the effect of the backscatter is through the use of polarisation

filters [69]. The method is to place a filter in-front of the light source thus polarising the

outbound light and another in-front of the sensor to filter the light entering the camera

[176]. The probability of the polarisation orientation remaining intact is reduced as the

number of incident reflections increases [69]. Therefore particles in the water column reflect

the light back polarised whereas the object of interest reflects the light partially or fully

depolarised dependent on the surface structure of the material [126, 177, 210].

Suspended particles in water tend to reflect the light only a limited number of times. This

results in the reflected light from the particles remaining partially polarised. When using

linear polarisation filters, this reflected light will be blocked if the filter in front of the

light source is perpendicular to the filter in front of the sensor. This serves to reduce the

amount of light reflected back into the sensor by the suspended particles thus reducing

backscatter. Several papers have referred to using circular polarisers over linear due to the

angle invariance of circular polariser, the slight performance advantage and the compatibility

with digital SLR auto-focusing systems [69, 110, 177, 196, 197]. In this work the application

of polarisation to improve visibility has been investigated and can be seen in Appendix A.

The work has been inserted as an appendix due to its relevance to the topic but not directly

to the design of the proposed system. It was found that this technique improved visibility

but at the expense of luminous flux (the measure of the power of light). It reduced the

quantity of flux by 91% which despite the visibility improvement was not seen as a good

trade-off. This could however be a future upgrade to the system only if it were possible to

mitigate the severe reduction in flux.

Another benefit of using polarising filters was the ability to generate a rough estimate of the

3D structure of a scene [196, 197]. This was however quite coarse and only had an effective

distance reconstruction range of 1-2m.

The performance advantage of circular polarisers is considered to be better due to circular

polarised light being more easily depolarised than linearly polarised light [100]. In [126] it
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was also found that rougher surfaces such as rusty metal depolarises light whereas specular

reflectors do not. An improvement in the performance of polarisation discrimination was

found for an isotropically scattering medium as opposed to anisotropic media. Anisotropic

particles are more representative of ocean particles [142]. Particles suspended within the wa-

ter column are generally larger than the wavelength of light [100]. This results in scattering

being independent of wavelength.

2.4 Colour accuracy and correction underwater

Colours in underwater photographs often appear with a strong blue green colour cast, due

to the selective absorption of the water column. The colours will vary for different distances,

change of lighting, weather conditions and changing water constituents. The properties of

this colour shift will change depending on several factors such as the presence of particles

such as viruses, colloids, bacteria, phytoplankton, organic detritus and large particles (eg.

zooplankton & amorphous aggregates of smaller particles - marine snow) [137]. For a more

accurate representation of the imaged scene, the underwater imagery needs to be colour

corrected. Accurate and consistent colour aids in improving classification performance.

There exists many post processing and in-situ techniques which aim to rectify the colour

cast problem.

2.4.1 Post processing techniques

The first set of techniques implement some sort of processing of the underwater imagery

after acquisition. Some are informed techniques, utilising extra information obtained during

acquisition. Others are implementing image processing techniques to correct the colour.

Ahlen et al. [2–4] used spectrometer measurements of a colour plate at different depths.

From these readings they obtained the attenuation coefficients of the body of water. Using

the attenuation coefficients they were able to produce good colour correction for imagery

from commercial off the shelf Red-Green-Blue (RGB) cameras. In addition to this they

were able to create a pseudo hyperspectral image through the use of a Wiener filter.

Stigell et al. [192] developed a similar method, using Wiener estimation to make estimations

from low-dimensional data into high dimensional data. They utilised peak-signal-to-noise
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root-mean-square error metrics to validate their estimations. This was done by imaging a

Macbeth colour chart (Pascale, 2006 [152]) using both a spectral camera and a digital SLR

under standard D65 illumination[170]. The limitation of Ahlen et al. & Stigell et al. work

is that it does not take into account scattering or a changing attenuation coefficient.

Yamashita et al. [206] had a similar method to Ahlen et al. [4] except they modelled for

different artificial lighting and camera positions. Their method however was quite simplistic

as they only performed lab based measurements of the water’s attenuation. These were done

in clean, clear water and captured with a standard RGB camera rather than a spectrometer.

Many methods use image processing filtering techniques to perform the colour correction.

The disadvantage of these methods is the filtering amount can be quite user subjective.

They are not explicitly measuring the optical properties of the water column.

Torres-Mendez et al. [195] used a markov random field (MRF) and a belief propagation

(BF) to solve for the colour correction. They used a supervised learning method using a

model that is trained from a user-corrected patch of the image. Upon training the model

the rest of the image is corrected based on the learnt correction to the training patch. This

was a good method for colour correction by learning the mapping between uncorrected and

corrected, however it required training the model which not only questions the accuracy of

this method (as a user can be quite subjective), it also relies on the assumption that the

user knows the perfect corrected image.

Garcia et al. [68] presents a frequency domain filtering method for correcting for lighting

irregularities. This process is called homomorphic filtering and it involves performing a

high pass filter on the image to remove the low frequency component caused by the light

decaying towards the edges of an artificially lit scene, also known as vignetting. Colour

correction was then performed as a process of contrast stretching [19]. The problem with

this method is that it only suppresses prominent colour casts without taking into account

the absorption phenomena [19].

Iqbal et al. [99] uses a slightly different method. Unsupervised Colour Correction Method

(UCM) is designed to remove the colour cast in underwater imagery. In a three step

process the image data for red, green and blue is equalised. The next step is that a contrast

correction method is used to perform stretching of the upper side of the histogram for the

red channel and stretching down the histogram for the lower side of the blue channel, then
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the contrast is stretched for the histogram of the RGB image. The final step is performed in

the Hue, Saturation and Value (HSV) colour space where a similar stretching is performed

on the S & V channels. They compared the performance of UCM to Grey-World, White

Patch and Adobe Photoshop Histogram Equalisation and found that UCM performed better

using the metric of edge detection and width of histogram.

The method assumes the histogram of colour-cast-free underwater images are chromatically

balanced. This assumption however would not hold for scenes containing a large object of

just one colour. This method however works well for maximising the contrast of an image.

The method works well for detection applications however it lacks the accuracy needed for

chromatic reconstruction.

2.4.2 In-water colour compensation

Vasilescu [199] developed an adaptive underwater lighting system which produced notable

results. The system involved six selectable flash elements of varying colours. The flash

system determined the distance to the objects in the scene and lit the scene with increas-

ing amounts of red for increasing distances. This was quite a novel approach, except the

accuracy of the colour reconstruction is questionable as it assumes the same water spec-

tral attenuation coefficients for all water types. This method would not be accurate for an

organism-rich environment which may have a green tint and therefore will require different

colour compensation compared to that of clear open ocean.

Chen et al. [46] notes the problem that there can be great post processing methods, but

if the original scene is poorly illuminated, the post processing will perform poorly. The

authors examined the metrics of image quality as well as the shortfalls of machine vision

such as the limited dynamic range of the camera CCD. Chen et al. developed a Simulink R©

PID control model for controlling the light source to maximise dynamic range, maximise

contrast and reduce glare. The approach however is very theoretical and is the applicability

to a real work scenario appears to be limited.

In general the existing colour correction methods presented are too simplistic as they rely on

the assumption of homogeneity of the water conditions. The methods mentioned performed

well in controlled and predetermined environments, but would not work well in applications

involving varying inherent optical properties such as a moving Autonomous Underwater
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Vehicle (AUV) in the ocean.

2.5 Benthic classification

With large sections of the seabed being mapped by an AUV at a time, manual classification

of the benthic substratum is challenging. Therefore automated methods are typically used to

classify imagery of the seafloor. Several automated classification methods utilise the benthic

image data using Gaussian Mixture Models [190], Support vector machines [141], K-Nearest

Neighbours and various other supervised learning techniques [63, 121] are commonly used.

The scale of automated classification can change for different scientific objectives. Some

work aims to classify broad scale benthic habitats, focusing on the dominant substrates of

the area [131, 165, 189]. Others have focused on sub-image resolutions for finer scale benthic

coverage estimation [104, 161, 183]. Many of these techniques have utilised texture features.

A common method for determining illumination and rotation invariant texture features is

through the use of Local Binary Patterns (LBPs) [149]. Colour features have been used

for benthic classification along with texture features [186]. This method was rather naive

to the attenuation properties of the water and utilised a histogram stretching technique to

correct colour. Pizarro et al. notes that some benthic types are indistinguishable without

the incorporation of the colour features in the classifier [156].

Another features commonly found in the literature is 3D structure information. The struc-

ture information comes from stereo cameras onboard AUV platforms [105]. Using the 3D

data a large amount of information about the biological productivity of the scene can be

inferred from the rugosity of the benthic structure [64]. Rugosity information has been

combined with texture information for unsupervised classification of image-scale habitats

[191].

When classifying sub-image scale materials, Clement et al. [48] used LBP as a classification

feature. It was claimed that texture was the most suitable feature due to the difficulties

associated with resolving accurate colour information. Other works have used colour for

classification with good success [134]. Without good colour correction the method is unlikely

to perform as well in different experimental situations or for different datasets.
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2.6 Hyperspectral sensing underwater

In this section the literature related to hyperspectral imaging of ocean regions is reviewed.

Two areas of applications in this domain are investigated: marine ecology and defence

applications. Hyperspectral Imaging (HSI) from above water remote sensing platforms is

reviewed as well as in-situ HSI.

2.6.1 Introduction to hyperspectral imaging

HSI is the process of the sensing of electromagnetic radiation in the spectrum range of Ultra-

Violet (UV) through the visible spectrum up to IR wavelengths. Typically the spectrum is

sensed in 10-100’s of narrow spectral bands hence the name hyper-spectral. Multi-spectral

imaging refers to imaging devices which sense 5-10 bands of broader spectrum light. A

typical consumer camera will detect 3 bands of light in the visible spectrum. These standard

cameras will detect light in similar spectral bands (RGB) to match the human visual system.

These colour cameras can also be referred to as trichromatic cameras as they are measuring

three colours. Combinations of these bands/colours will produce all the other colours which

the human eye is sensitive to. The human visual system is highly complex and sophisticated,

which is a result of the physical capabilities of our eyes and the visual processing abilities of

our brains. Although the investigation of the human visual system is outside of the scope of

this work, the capabilities should be noted when interpreting results pertaining to colour.

The ability to image at finer spectral resolutions than the human eye can see, allows for

some unique abilities. HSI allows for improved characterisation and classification of the

material imaged as different materials will absorb and reflect certain wavelengths of light in

different ways [184]. Due to the high spectral resolution of HSI cameras it is often possible

to distinguish materials from one another [39]. This is due to the chemical composition

of the material which will show the presence of difference absorption features at certain

wavelengths.

In order to acquire a hyperspectral image a HSI camera is needed. Typically hyperspectral

images are taken using an instrument called an imaging spectrometer or a hyperspectral

camera. These work by passing the light from a scene through a dispersing element which

can be either a diffraction grating or a prism. This splits the light into many narrow and
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adjacent wavelengths of light [184]. The divided light is projected onto an imaging sensor.

By using a high resolution detector the spectral device can detect narrow bands of light. A

hyperspectral camera has two main architectures: a pushbroom HSI camera and a tunable

filter HSI camera.

Pushbroom cameras work like an array of 1D spectrometers. A dispersing element splits the

light from a narrow slice of the spatial image onto a 2D imaging sensor. The pushbroom

camera gets its name from the method of collection. In order to acquire the complete

hyperspectral image the camera is pushed or scanned across the entire scene and subsequent

slices are patched together. The disadvantage of this modality arises from the fact that co-

registration of the slices can be challenging in dynamic environments. This is because each

slice occurs at a different time, so this modality is only useful for static scenes.

The tunable filter hyperspectral camera utilises a filter element called an Acousto-Optical

Tunable Filter (AOTF). The material of the filter changes its optical properties (namely

its passband frequency) with changing acoustic excitation frequencies. The filter is able

to change to a different frequency very quickly (typically 4 − 20µsec 1). The advantage

of these filters is that they capture an entire scene at a single moment in time at a single

frequency band. However, the frequencies must be stepped through in order to capture an

entire HSI image. The disadvantage of this design is that it takes a finite amount of time

to step through the frequencies.

2.6.2 HSI imaging of coastal regions using remote sensing

HSI in the marine domain has typically only been performed from air or space-borne plat-

forms. It is an extremely challenging task due to the size and dynamic nature of the ocean

environment [53]. When imaging from above the water, complicated light interactions come

into play at the interface between the air and the water. Several additional processing steps

are needed to occur for imaging through the air-water interface. These steps are necessary

to mitigate surface artefacts such as glinting [76, 84]. Surface glinting occurs when light

from the sun or sky is reflected directly back in the Field-of-View (FOV) of the camera

imaging the scene [138]. Glinting will result in a localised increase in light intensity and

reduced contrast at certain wavelengths of light. Glint removal is important in hyperspec-

tral imaging of the ocean as it prevents unnecessary complications of seafloor classification.

1http://www.olympusmicro.com/primer/techniques/confocal/aotfintro.html

http://www.olympusmicro.com/primer/techniques/confocal/aotfintro.html
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This classification is based on the spectral reflectance which can be significantly distorted

by surface glint. Typically, 50% of remote sensing images suffer from significant glinting

issues [8]. Other effects on the air-water interface can come from the density change of the

water layer and surface distortions due to the wind and ocean currents [137]. Modelling of

these artefacts is discussed in Section 2.2.2.1.

Many applications for hyperspectral imaging of coastal regions have been focused on the

retrieval of bathymetry [31, 123]. These have all been from satellite or aerial based platforms.

However for these methods to work effectively their models must be parametrised by in-situ

measurements of the IOPs [31]. These methods were also limited by cloud cover, and provide

the horizontal spatial resolution may have been limited to 3.5m in this particular study [117],

but that is not a general limitation for airborne systems. The spatial limitations of airborne

platforms will be a function of imaging altitude and sensor resolution. Trade-offs are made

between ground sampled distance (GSD) and ground coverage which are dependant on the

application. Due to the physical properties of the water, sensing is limited to depths

of 10m or less in tidal zones [31, 167] or up to 20m in very clear coral reef regions [117].

Other factors which vastly affect the ability to resolve the spectra of substratum, include

the sensor Signal-to-Noise Ratio (SNR), wind speed and sun elevation [79]. When imaging

above water (either space or aerial platforms) atmospheric effects should be compensated

for [30].

There has been work looking into mapping coral reef regions using florescence however dif-

ferentiation is limited between coral classes [209]. These fluorescence methods have however

been shown to be useful in classifying coral bleaching [208]. Aerial HSI mapping of coral

reef regions has been shown to have good fidelity when the number of classes was limited

to three: coral, sand and algae [70]. Classification rates drop with the addition of more

classes. It was found that there was a linear decrease in classification accuracy with in-

creases in the number of classes [8]. For an 11-class dataset, cross validation accuracy is

< 50% [8]. This was for a data set obtained in shallow and clear water which is ideal for

these methods. Other remote sensing studies of coral reef benthos have returned similar

rates of classification accuracy, with 65.13% for a 7-class problem[125]. The depth limit of

accurate classification in this study was found to be 8m[125].

There are spatial resolution requirements for undertaking the assessment of coral bleaching

[6], these are quite fine (0.4m - 0.8m [6]) and as such above water imaging platforms do not
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satisfy these requirements [6, 179]. Over a variety of remote sensing applications the spatial

resolution exerts a strong influence on the ability to extract environmental information from

remotely sensed data [154]. There are methods to pull out subpixel information from remote

sensing data[153, 164], these shall be discussed further in spectral unmixing (Section 2.7).

Some examples of the spatial resolution limits (pixel sizes) from some current HSI sensor

platforms include:

• Hyperspectral Imager for the Coastal Ocean (HICO) satelitte in the International

Space Station with 90m pixels

• Moderate Resolution Imaging Spectroradiometer (MODIS) satelitte with 250m pixels

but only in the visible spectrum

• HyMap aerial based sensor has 3.5m pixels [117] 2

• Compact Airborne Spectrographic Imager (CASI) aerial based sensor has 4m pixels

[31] (altitude dependant).

Multispectral imagery has also been used for marine monitoring [72, 85, 96]. Multispectral

imagery has a high spatial resolution but a lower spectral resolution (8 bands versus 100s

in hyperspectral). Two mutispectral sensor platforms commonly used in the literature are

the WorldView 2 satellite3, with 8 multispectral bands and a spatial resolution of 1.84m at

nadir. The other commonly used platform is Landsat 74 with 7 spectral bands and 30m

spatial resolution. Spatial resolution of imaging platforms is constantly improving, recently

WorldView 3 satelitte was brought online. It has a spatial resolution of 1.24m for the

multispectral bands 5.

2.6.3 Marine ecology applications

Hochberg et al. [82, 83, 86, 87], Holden et al. [88–93] and Andréfouët et al. [6, 7] have lead

the field in examining the spectral features of marine ecology and botany. They found that

the health of some corals could be determined from spectral measurements. The research

2For this particular study, which is dependant on altitude and sensor resolution
3http://www.satimagingcorp.com/satellite-sensors/worldview-2/
4http://geo.arc.nasa.gov/sge/landsat/l7.html
5http://worldview3.digitalglobe.com

http://www.satimagingcorp.com/satellite-sensors/worldview-2/
http://geo.arc.nasa.gov/sge/landsat/l7.html
http://worldview3.digitalglobe.com
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conducted by Hochberg and Holden was also able to detect unhealthy coral covered in

algae [88, 90]. The authors have taken many hundred in-situ spectral measurements with a

spectrometer and have been able to distinguish coral taxa. Taxonomic variations were also

found in the results of the spectra of coral[86]. In Hochberg et al.[86] the authors found

corals generally fell into two spectral categories: blue corals and brown corals.

Barott et al. [17] also studied the spectral signatures of coral using much finer microscopic

detail and examined coral/algae interactions, it was found that pigment changes could be

detected with spectral imaging. The detection through spectral imaging could assist with

determining which types of algae may cause stress to corals.

Andréfouët et al. [6] examined the ability to determine coral health from imagery collected

from aerial vehicles. It was found a spatial resolution of 40-80cm (maximum pixel size) was

needed for assessing the degree of bleaching on a coral reef, a common motivator for this

area of work.

Some coral pigments exhibit fluorescent properties. One of the major pigments is chlorophyll

which is within the symbiotic algae (zooxanthellae) found in the coral endodermal tissues

[66]. Fuchs [66] developed a method to separate the fluorescent spectral signature from

the rest of the coral’s signature. This was done by taking two samples of the specimen,

firstly with a broad spectrum white light source and secondly with a fluorescence-eliminating

filter. Although separating the florescence signature could be useful it would be difficult

to acquire from a continuously moving platform as two samples at the same location are

needed. Joyce et al [107] looked at the photosynthetic capacity of coral by using a Pulsed

Amplitude Modulated (PAM) Fluorometer to determine health. The process was very

involved, which is one of the main limitations of the method. The coral had to be covered

and in the dark for a period prior to the coral being pulsed with a light source. The response

to the pulse was measured. This process would be slow and cumbersome from a moving

platform or for wide spread mapping.

Hochberg et al. [87] found they were able to predict the amount of photosynthetic pigments

present in coral from spectral reflectance measurements. This demonstrates a method for

non-invasive monitoring of the coral. The measurements of the spectral reflectance of dif-

ferent corals was done from an in-situ close range spectrometer. The spectrometer was a

similar model to the one used in this work.
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A triple peak in the reflectance spectral signature at 570nm, 600nm and 650nm has been

suggested as being ubiquitous for the pigments which exist in coral [82]. Many classification

techniques employ the use of the first and second derivative and multivariate techniques

such as Principal Component Analysis (PCA) to find the largest variance in the dataset

[85],[89]. These techniques, which are thought to have limited general applicability [77],

can discriminate without any priors concerning the chemical components of the materials

in the scenes. Other techniques which do include these priors included hierarchical cluster

analysis [93] and discrimination decision trees [124].

Due to the limited spatial resolution of HSI sensors often a single pixel will be composed of

several materials. Hochberg et al. [83] examined the current remote sensing HSI platforms

to determine if they could discern between coral, algae and sand as pure and mixed spectra.

They presented a good method for unmixing spectra based a priori spectra for coral, sand

and algae. It was found that current remote sensing platforms do not provide adequate

spatial resolution. This was similar to the conclusions found in the work of Andréfouët et

al. [6].

Most of the literature looking at the spectral reflectance of coral reef areas have used a

spectrometer to obtain the spectral measurements [166],[130],[160]. However the techniques

vary, particularly in the distance from sensor to sample. This is an issue as many do

not measure and correct for the water inbetween the spectrometer and the sample. The

water column is found to have a considerable effect on the ability to discriminate benthic

types [92]. Also due to these being human measurements, often with a diver, the angle of

measurement is not consistent and the water depths in which measurements are made is

quite limited (often at most 5m) [166].

Internal shadowing has been said to have a noticeable effect on the magnitude of the re-

flectance [108] whereas other research has concluded that the morphology did not affect the

spectra [89]. Other substrates around the measurement can greatly influence the resultant

spectra. A bright substrate such as sand could strongly influence the shape of these mixed

pixels [78],[7].

The Bi-Directional Reflectance Function (BRDF) of an object being imaged can complicate

the spectral image processing. A BRDF defines how the spectral reflectance of an object

changes with the angle of view. In general most benthic substrates have Lambertian like

surfaces, however the coral genus acropora was found to have the largest angle variance
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due to its morphology [108]. The proposed method in this thesis avoids the angle variance

issue as a result of the platform chosen. AUVs have the ability to travel on a very stable

trajectory. Also due to the AUV imaging system having a narrow field of view, the vehicle

is always imaging the seabed from a near-nadir position (vertically facing downward).

2.6.4 Defence applications

HSI has been used extensively in terrestrial based remote sensing for defence/military appli-

cation. These applications can include finding objects of interest and environmental analysis

for operations planning. HSI is beginning to be used more in marine based applications.

Sulzberger et al. [193] has examined the task of sensor fusion for Mine Counter-Measures

(MCM). Traditionally MCM has been achieved through the use of high frequency sonar

[47]. In Sulzberger et al. [193] they used an AUV equipped with a magnetometer, sonar

and camera. The camera had the ability to change its passband frequency based on the

water conditions. The performance as a result of this design was not well established. The

work aimed to fuse the sensor data from the variety of onboard sensors. Finding possible

targets in the data was conducted manually, resulting in very slow detection.

A common defence application for HSI in a marine context is the retrieval of shallow water

bathymetry[11, 13]. This process works by inverting the attenuation of downwelling light

over an area of a similar substrate type. Then the HSI can be used to assess an area for

traffic-ability [12–14, 36], which determines the load bearing strength of beach areas. The

HSI information is used to determine the water quantity in the sands of a beach area.

The trafficability is then derived through calibration and experimental testing. The testing

investigates the amount of load per unit area which can be resolved for a particular soil

type. These bathymetry and traffic-ability tasks are often done together to determine a

location for landing military troops and heavy machinery.

2.6.5 In-situ based spectral imaging

HSI measurements taken in-situ generally have only been collected for the creation of spec-

tral libraries. These are libraries of the underwater benthos such as coral [166], algae, sand

and seagrasses [67], the purpose often being for the ground truthing of aerial measurements.
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By imaging the seafloor benthos from under the water, a lot of the challenges of crossing

the air-water interface can be circumvented. The possibility of utilising underwater HSI

in applications has been discussed. Some of these applications include mapping of seafloor

substrates, chemical composition, and marine mining. An underwater system which has

shown promising results involves an underwater sliding HSI camera test rig with constant

illumination[103]. In Johnsen et al. [103] they have discussed mounting this system to a

moving platform such as an AUV. There has also been working implementing a hyperspec-

tral camera onboard an Remote Operated Vehicle (ROV) and as a scuba diver based system

[127].

In English & Carder [59] the authors present a method for determining the absorption co-

efficient, absorption and bottom reflectivity from a pair of upwelling and downward looking

spectrometers on board an AUV. A similar concept onboard an AUV was seen in Hartmann

et al. [75].

Davie et al. [50] used an RGB camera on board the Starbug AUV [55] for the application of

benthic habitat mapping. They used an RGB key card in each image for colour correction

process. The limit of the mapping is reliance on the ability for the RGB camera system

to distinguish different materials of similar colours. Davie et al. [50] acknowledges this

limitation and suggests the need for a multi-spectral imaging system.

Borrego-Acevedo et al. [28] used a spectrometer underwater aimed at reef platforms to

extract the markers for chlorophyll-a. Their work aimed to find a relationship between the

abundance of microphytobenthos and a spectral indicator. The goal was to determine the

amount of microphytobenthos from space-borne platforms.

2.7 Spectral unmixing

Spectral unmixing is a relatively new hyperspectral imaging processing technique brought

to the spotlight in 2002 in Keshava & Mustard’s tutorial paper published in IEEE signal

processing magazine [112]. Spectral unmixing is the procedure of resolving the endmembers

within a single pixel and their corresponding fractional abundances. Endmembers generally

are macroscopic objects in a scene, objects such as soil, vegetation, concrete etc. Spectral

unmixing takes advantage of the vast spectral resolution available to pull out the sub-pixel

constituents.
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Unmixing is part of a chain of steps that lead to a final product. These steps are: 1. At-

mospheric correction, 2. Data Reduction, 3. Unmixing, 4. Inversion [22]. Atmospheric

correction is the process of compensating for attenuation and scattering due to the atmo-

sphere affects on the radiance into the sensor. This process aims to recover the reflectance

from the radiance data. Data Reduction is the process of identifying a lower-dimensional

subspace in which the structure of the data is still retained. This serves to improve the

performance of the unmixing algorithm and reduce computational complexity. Unmixing

is the process of identifying the end-members in the mixture, this is done through vari-

ous techniques which shall be discussed later. Inversion is the process of determining the

fractional abundances of the materials present in the mixtures. Many hyperspectral unmix-

ing approaches simultaneously determine the end-members present as well as perform the

inversion step [22].

2.7.1 Mixture models

Mixture models refer to the assumptions of how materials in a scene are mixed together

to give a resultant spectra. Mixtures models fall into one of two categories: linear and

non-linear [112]. Linear mixture models are the most prevalent due to ease of computation

and mathematics as well as for many applications a linear mixture model is a sufficient

representation of the inter-material reflectance interactions. Non-linear mixtures become

more relevant and accurate when there is either a situation of an intimate mixture and/or

there is significant scattering from adjacent elements in close proximity. The choice of a

mixture model is often determined by the application and scale required.

2.7.1.1 Linear mixture models

Linear mixture models are the most common mixture model in the literature and it is

applicable if multiple scattering among materials in a scene is negligible. The premise of

the linear mixture model is that within a scene there exists a small number of distinct

materials (called end-members) and the mixture comprises of a linear combination of these

materials which is relative to their proportion of composition (fractional abundances) in the

scene/pixel [112]. A diagram of a linear mixture model is shown in figure 2.5.

In the linear mixture case the resultant spectral measurement yi at spectral band i ∈
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Figure 2.5 – This shows a typical linear mixture model, the resultant reflectance is proportional
to the relative abundance of materials (indicated by the percentages) in the scene (as
indicated by dotted line).

{1, . . . , B}, where B is the total number of spectral bands of the sensor; is given by the

linear mixing model (LMM):

yi =

p∑
j=1

eijαj + wi (2.9)

where eij ≥ 0 is the spectral measurement of endmember j ∈ {1, . . . , p} at ith spectral

band, αj ≥ 0 denotes the fractional abundance of endmember j, wi denoted an additive

perturbation which is made up of modelling errors and noise (predominately shot noise on

the imaging sensor). The fractional abundances are subject to the following constraints:

Non-negativity (ANC) αj ≥= 0, j = 1, . . . , p (2.10)

Sum-to-one (ASC)

p∑
j=1

αj = 1 (2.11)

In the literature [22] the non-negavitity constraint is termed abundance non-negavitity con-

straint (ANC) and the sum-to-one constraint is termed abundance sum constraint (ASC).

These two constraints are applied subjectively based on the application, the literature does

not indicate any dominant rule or principle to assist with determining when to apply the

constraints.
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Figure 2.6 – Intimate mixture model is typically applicable when the materials in the scene
are small and are in close proximity to each other, in this model the light interacts with
multiple materials before reaching the sensor.

2.7.1.2 Nonlinear mixture models

A relatively new area in spectral unmixing is inferring that the mixture model is non-linear

[80]. There are two predominate nonlinear mixture models, the Bilinear and the Intimate

mixture model. The bilinear model was first introduced by Singer and McCord [182] to

model the spectral reflectance of light and dark patches on the surface of Mars. The intimate

mixture model describes scattering resulting in spectral mixing and was popularised by

Hapke [73], [74].

2.7.1.3 Intimate non-linear model

Intimate mixtures occur where materials are in close contact with each other. The common

example given is that of grains of pepper being mixed amongst grains of salt. The spectral

reflectance characteristics depend on many factors such as the number of particles of each

material, size, shape and location of the particles. In an intimate mixture light will often

interact multiple times with the particles present before before being recorded by the sensor.

For each interaction the light will be absorbed or scattered in some direction. A diagram

of a typical intimate mixture model is shown in Figure 2.6.

2.7.1.4 Bilinear non-linear model

In certain spatial and structure configurations it is possible that light reflected from a

surface has undergone multiple reflections, in this instance the secondary reflections are
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Figure 2.7 – This represents a common scenario for the use of a Bilinear mixture model. The
tree canopy (due to reflected light) creates secondary illumination of the imaged area. As
a result of the secondary illumination the calculation of the spectral reflectance contains a
secondary term.

called bilinear interactions. An example is shown in Figure 2.7; here reflected light from a

tree’s canopy is illuminating a patch in the scene which is also illuminated by direct sunlight.

Considering two end-members e1 and e2, their bilinear interactiong will take on the form

of e1 � e2, where the � operator is a point-wise multiplication also called the Hadamard

product.

x = e1 � e2 ⇔ ∀n ∈ {1, . . . , B}, xn = e1ne2n (2.12)

Where B is the total number of spectral bands. Here a light ray is absorbed twice, once for

each endmember, so the change in intensity as a function of wavelength is defined by the

point-wise product of the spectral reflectance of the two endmembers. So the resultant two

endmember bilinear model as proposed by Singer and McCord [182] is defined as:

x = a1e1 + a2e2 + a12e1 � e2 (2.13)

with the constraints:

a1 ≥ 0, a2 ≥ 0, a12 ≥ 0 (2.14)



CHAPTER 2. BACKGROUND & LITERATURE REVIEW 35

a1 + a2 + a12 = 1 (2.15)

Where ai is the fractional abundance for the ith interaction/material. The Equation (2.14)

is the same non-negativity constraint as in Equation (2.9) as is the sum-to-one constraint

Equation (2.15). Here there are the standard linear mixtures a1e1 and a2e2 with the addition

of the a12e1 � e2 being treated like a third endmember in the unmixing process.

2.7.2 Data reduction

Generally the dimensionality of the spectral data is often much lower than the number of

available spectral bands. Identifying a lower dimensionality subspace improves computa-

tional performance, complexity and storage of the spectral data. If a linear mixture model is

an accurate assumption, the number of materials in the scene is equal to the dimensionality

of the signal subspace minus one.

Band selection or extraction methods exploit the correlation between adjacent bands to

select a few components to maximise the signal-to-noise ratio (SNR) [180], [44]. Some of

theses methods include a maximum likelihood approach such as Singular Value Decompo-

sition (SVD) [175], or through the use of Principal Components Analysis [106].

2.7.3 Unmixing & inversion

Bioucas-dias [22] provides a very comprehensive overview of the state-of-the-art hyperspec-

tral unmixing techniques. Methods using sparse-coding [150] show promise by avoiding the

need of spectral libraries, instead learning the spectral separability from the data resulting

in an advantage over traditional unmixing techniques which require a spectral library prior

to the unmixing step. Often there are issues arising from calibration differences during the

acquisition of the spectral libraries.

2.7.3.1 Geometric approaches

Geometrical techniques such as N-FINDR [205], are based on the premise that a linear

mixture is a simplex which is constructed from pure end-members. A simplex is an n-

dimensional volume. The outer vertices of the simplex are defined by the end-members
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belonging to a predefined spectral library. The algorithm finds the set of pixels defining

the largest volume by inflating a simplex inside the data. The unmixing is then based on

the position of a data point in the simplex. The closer the point is to a vertex the more it

contains that endmember represented by the vertex.

Pixel Purity Index (PPI) [24], [25] is similar to the N-FINDR algorithm except it assumes

the presence of at least one pure pixel per endmember is present in the dataset. So the

simplex has one pure pixel at each vertex. The unmixing is similar to N-FINDR in that the

abundances are relative to the position of the data point in the simplex.

Vertex Component Analysis (VCA) [147] projects the data onto a subspace orthogonal to the

endmembers already determined or found. The algorithm then iteratively attempts each

combination until all endmembers are exhausted. This method is quite computationally

intensive due to the combinatorial nature of the algorithm.

2.7.3.2 Statistical approaches

In hyperspectral unmixing often the number of materials and their abundances are unknown.

Independent Components Analysis (ICA) has been proposed to unmix hyperspectral data

[45], [18], [198]. ICA is based on the assumption that all the components are independent,

which does not hold for hyperspectral data as the sum of the abundance proportions are

constant and thus implies statistical dependence among the components [113, 148]. A de-

pendence variant has been implemented which compensates for the dependence assumptions

[145].

The work of Filippi & Archibald [61] uses support vector machines for extracting endmem-

bers for use in spectral unmixing. Support Vector Machines (SVMs) were used in Sun et

al.[194] for determining the ratio of Cyanobacterial Pigment C-phycocyanin (C-PC) con-

centrations in turbid lakes in China.

2.7.3.3 Sparse regression

Sparse regression techniques unmix by assuming the measured (mixed) spectra can be ex-

pressed as a linear combination of known spectra. These spectra could be from a predefined

spectral library. Unmixing is then performed by finding the optimal subset of these library



CHAPTER 2. BACKGROUND & LITERATURE REVIEW 37

spectra that best model the observed spectra. Due to large libraries this can become a

very computationally intensive task, since the number of endmembers present is usually

very small compared to the library size. Linear sparse regression techniques are an efficient

solution to this combinatorial problem [97, 98].

2.7.3.4 Spatial-spectral methods

Many HSI techniques neglect the spatial dimension in hyperspectral imagery [181]. Some

methods aim to determine the pure endmembers (endmember extraction) in an image by

iteratively examining the neighbours of each pixel at changing window sizes for spectral

similarity. By using a defined threshold certain pixels are defined as more pure than others

[135, 158]. To reduce the error during the unmixing process several methods aim to create

a subset of possible endmembers for a particular pixel [51, 114]. A similar approach can be

taken for clusters of multiple pixels. An image is partitioned into fields of pixels and then

subsets of endmembers are determined [207].

Other methods look at the spatial correlation between abundance quantities as opposed

to particular endmembers. The Jia et al. method utilises blind-source separation [102].

There will often be a similarity with abundances between neighbouring pixels. So a method

was proposed which imposed regularisation on the search cost function. This allowed the

abundance estimate to be generated from spectrally similar pixels in the neighbourhood

[42]. Other methods use a Markov-random field for the regularisation of the cost function

[57]. This is a promising area of HSI research as the spatial dimension is often neglected in

HSI processing.

2.8 Summary & outcomes

In this chapter the background literature relating to light in the underwater environment has

been reviewed. The selective attenuation properties of water were shown. Water will often

inhibit the transmission of light in the red region of the visible spectrum first, followed by

blue then green. The optical properties will change with different compositions of particles

within the body of water. Light passing through water will either be absorbed or scattered

by the water and it’s particulates.
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Several water models were presented, many of the current methods rely on assumptions or

in-water measurements to parametrise their water model. Often they rely on using stan-

dardised water models (Jerlov water models), however it is not clear how well this generalises

to actual bodies of water. Some methods take measurements of the water however this of-

ten occurs just in one location and one depth. It is unclear how this single measurement

extrapolates across large spatial areas. To improve the clarity of underwater images, several

methods have been presented which utilise polarising filters. The filters act to reduce the

backscatter within the water column which results in a loss of contrast. These methods did

produce promising results however the light loss was very large.

As a result of the selective attenuation of light, underwater images possess a certain colour

distortion. The degree of distortion will be dependant on several factors such as the distance

of objects in the scene to the camera and the materials dissolved and suspended within the

body of water. It is desirable to recover the true colour of underwater objects for the pur-

pose of improving classification performance using colour features. Several post processing

techniques exist which rely on histogram equalisation, or learning a mapping between the

uncorrected and corrected colour. The consistency of these techniques is questionable as

they do not sample the optical properties of the water the images are taken in.

Another colour correction technique utilises an active illumination system which can in-

crease the amount of red in the illuminant to match the approximate distance to the scene.

This technique makes an assumption about the optical properties of the water as well as

assumptions about the structure of the scene. This method would have limited performance

outside of the narrow parameters it was trained to operate within. A method which is able

to correct the colour in underwater imagery using high resolution 3D structure information

as well as utilising information about the optical properties of the water in front of the

camera is yet to be undertaken.

Correcting the colour of underwater imagery would allow for the use of colour as features

in underwater image classification. Current methods do not use colour due to difficulties

in obtaining accurate and consistent colour information. Colour or spectral reflectance

information at high spectral resolutions (such as hyperspectral) is able to provide high sep-

arability between benthic material types. In-situ hyperspectral measurements have been

obtained in-situ using scuba divers, however these are often spatially sparse point mea-

surements. A moving in-situ platform would be more ideal as it could cover much larger
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regions. In-situ derived hyperspectral images have potential applications in defence such as

the application of MCM for the detection of sea mines. At present this is being conducted

using sonar or imaging from above the water’s surface.

Optical imaging of the underwater environment from above the water’s surface is compli-

cated by the interface between the air and the water. Issues such as glinting, and distortion

due to wind and refraction present serious challenges for obtaining clear imagery. Most

above water imaging is being conducted by remote sensing platforms. These platforms are

often aerial or satellite based. These platforms are able to cover large areas due to their

altitude but this is often at the cost of horizontal spatial resolution. There are also depth

limitations imposed by the attenuation properties of the body of water.

Much of the remote sensing imagery currently obtained is either in the form of a hyperspec-

tral or multispectral sensor. A multispectral sensor has a higher spatial resolution than a

hyperspectral camera, however this is at the expense of spectral resolution. Several works

have examined the use of hyperspectral imaging of coral environments in applications of

benthic health monitoring. It was concluded that there are fundamental spatial resolution

requirements to undertake this task. Current remote sensing platforms do not satisfy these

spatial requirements.

Classifying materials smaller than the spatial resolution limits of a hyperspectral imaging

platform can be challenging. Spectral unmixing techniques however appear promising for

resolving sub-pixel materials. Often these methods do not utilise the extra information

contained in the spatial domain of the image. This in an evolving area of hyperspectral

image processing, however methods which do utilise the spatial component are limited to

the spatial resolution of the device. There has been a lack of research into fusing cameras

of different spatial resolutions to improve the spectral unmixing performance.



Chapter 3

Spectral and spatial calibration for

underwater imaging

3.1 Introduction

This chapter is focused on the methods for the calibration of the proposed imaging system.

Spectrometers were used to determine the attenuation of the water column and the spectral

profile of light into the scene. These spectrometers have an intrinsic FOV, this FOV . Also

40
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unknown was the FOV of the spectrometer in the combined imaging system and how this

FOV corresponded to the FOV of the stereo cameras used onboard the AUV. The FOV and

spatial co-registration is covered in Section 3.2.

The sensitivities of each spectrometer to different wavelengths of light can vary greatly. In

order to relate the response of one spectrometer to another a radiometric calibration must

be undertaken. This is covered in Section 3.3.

Along similar lines to radiometric calibration is deriving a relationship between the spec-

trometer data to the spectral sensitivities of the cameras in the stereo camera. A good

calibration allows for accurate correction of the colour from an RGB camera. The method

presented to characterise the spectral sensitivities of RGB cameras relies on using a Linear

Variable Edge Filter (LVEF) (a filter with the optical passband frequency varying spatially

along one physical axis). The characterisation of the LVEF is presented in Section 3.4.2.1.

Then to calibrate the spectral sensitivities of RGB cameras a new method is presented in

Section 3.4.

3.2 FOV and spatial co-registration of spectrometers and

RGB cameras

Spectrometers are a point measuring device. They have very high spectral resolution but

very low spatial resolution. Despite only capturing data at a single point, spectrometers

have an intrinsic spatial sensitivity to their FOV. The term FOV refers to the solid angle of

light in front of the spectrometer which will be measured by the systems detector. A solid

angle is the two-dimensional angle in three-dimensional space that an object subtends at a

point. The SI unit of a solid angle is a steradian (abbreviated “sr”). In this instance the

FOV can be thought of as a cone emanating from the aperture of the imaging device. This

point-spread is not necessarily circular nor even. It has been shown that some spectrometers

exhibit rectangular FOVs [40]. Knowledge of the FOV becomes important when the imaged

target is spatially variable within the FOV. This may occur when measuring targets which

are a mixture of materials.

In this work a new optical sensor combination is introduced. A spectrometer is combined

with a conventional RGB camera (see Figure 3.1); the spectrometer provides high spectral
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resolution with low spatial resolution and conversely the RGB camera provides high spatial

resolution with low spectral resolution. The region of high spectral resolution within the

high spatial resolution RGB image will allow for greater classification and characterisation

abilities in remote sensing and mapping operations [204], [26]. This comes at a much

reduced cost and size compared to a traditional hyperspectral imaging platform. Utilising

the combined measurements from the sensors relies on an accurate spatial registration of

the two sensor FOV.

In Hedley et al.[78] a series of coral, algae, sand and rock combinations were imaged with a

spectrometer with the aim of recovering the abundances of each substrate type within the

scene. The proportions of the substrate types within the scene changed their contribution

to the resultant spectra and hence knowledge of the FOV response function was necessary.

Current methods for calibrating the FOV of a spectrometer are quite labour intensive, low

resolution and slow. In Hedley [78] they present a method of moving a black target across

the FOV at different angles to gain the FOV characteristics. The method from Caras et

al.[40] involved mounting a spectrometer above a black surface imprinted with a light grid

pattern. A white square was then placed on the black grid in front of the spectrometer. The

process involved moving the white square one position on the grid and taking a spectrometer

reading and repeating the process. This was then repeated for different distances to ensure

the linearity of the FOV angle. From this the authors were able to generate a sensitivity

map of the spectrometer’s FOV. Experiments were also performed with different colour

combination targets to estimate the spectral mixing sensitivity. MacArthur et al. [129]

implemented a similar method but rather than translating a reflective object they translated

a light source and measured the spectrometer’s response to the position of the source.

These methods are laborious and there is an increased potential for human error through

the involvement of an operator. The resolution is limited to how much time the operator

wishes to expend and the size of the square used [40].

In the proposed calibration, the basic methodology from Caras et al.[40] has been used and

an automated version developed which obtains much higher spatial resolution and does not

require a constant human-in-the-loop. By allowing the system to be automated the number

of measurements which can be taken can be dramatically increased because of the removal of

the laborious task of moving the white square and taking spectral readings. The extension

to this automated method is to allow the spatially co-registering of the spectrometer with
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a conventional RGB camera.

3.2.1 Methodology

The method developed was implemented in two parts; the first part determines the FOV re-

sponse function and the second spatially co-registers the RGB camera and the spectrometer

together.

The spectrometer used was an Ocean Optics STS-VIS Micro-spectrometer with an optical

resolution (Full Width at Half Maximum (FWHM)) of 6nm (100µm slit width), and a

spectral range of 350-800nm. The camera used was the stereo camera rig from the AUV

used in this work and was shooting in RAW format.

3.2.1.1 Determining the FOV

Determining the FOV response function involves replacing the black target board[40] with

a computer LCD monitor (19inch Hewlett-Packard model: LP2065), which was imaged by

the spectrometer and the two cameras within the stereo camera rig. See Figure 4.20 for the

mounting of the spectrometer and the two cameras. The apertures are tethered together to

ensure they do not shift from their relative positions to one another. A MATLAB [1] program

was written to generate a user definable sized white square on a black background, which

took a reading from the spectrometer then moved the square to the next adjacent position

and repeats the process for the entire screen. One of the advantages of this method was the

box size could easily be reduced which in turn generated a higher spatial resolution for the

FOV map. However by reducing the box size less light is gathered so the spectrometer’s

integration time needs to be increased proportionally to the decrease in box area.

The monitor which is used for displaying the white square will have an angle variance. The

measured intensity of the screens output will reduce as the angle increases from straight

on. This factor needs to be compensated for in the calibration method. The angle response

function of the monitor was determined by displaying a white screen, this was then imaged at

various angles using the camera from a fixed distance. The initial reading was taken straight

on to the monitor (0◦) and the cameras exposure was adjusted to ensure the imaging system

was not being saturated by the white screen.
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Figure 3.1 – Experiment Setup: a spectrometer tethered to an RGB camera was placed at
height h above a computer LCD screen. The screen shows a white box on a black back-
ground. For each movement of the box a spectral measurement is taken. After spectral
measurements have been taken for the whole screen, the sensitivity map is displayed and a
picture is taken with the attached camera. The process is repeated at different distances.
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After taking measurements for each box location the result was a three dimensional dataset

consisting of 3 axes: a horizon, vertical and spectral axis. The spectrometer had 1024

spectral bins, however due to the narrow band output of the back-lighting in the screen

only a few bands are usable, so an average over the usable wavelength bands were taken.

Then the map is normalised so it is scaled from 0 to 1.

Sx,y =
sx,y(λu)− smin
smax − smin

(3.1)

where Sx,y is the normalised sensitivity at position (x, y), and sx,y(λu) was the mean of the

unnormalised sensitivity at position x, y for usable wavelengths λu. smin was the minimum

sx,y(λu) for the whole map and smax was the maximum sx,y(λu) for the whole map. The

readings were then rectified for the angle variance of the screen using:

Ax,y = vx,y(θ)Sx,y (3.2)

where Ax,y is the angle adjusted spectral reading for position x, y, Sx,y is the sensitivity

gathered in Equation (3.1) and vx,y(θ) was the screen angle variance for position x, y where

the angle variance has been normalised 0 to 1 for θ = 0◦.

The collection of Sx,y measurements are put together to form a sensitivity map. This map

defines how sensitive the spectrometer is at a particular spatial location.

3.2.1.2 Spatial co-registration

The second stage of the calibration process is the spatial co-registration of the FOV of the

spectrometer within the FOV of the imaging camera. This was achieved by displaying the

completed spectrometer sensitivity map on the monitor and a picture of this map was taken

with the camera. The first step of this method (Section 3.2.1.1) is repeated for different

distances from the display, after each a photograph of the map is taken. From these photos

of the FOV sensitivity map the center of the spectrometers FOV (spectrometer’s center

line/optical axis) was identified and the Euclidean pixel distance to the center of the photo

was measured. This pixel distance was converted into real world units based on the camera’s

distance to the monitor and angle of view. The measurements of the optical axis’s of the

camera and the spectrometer for 4 different distances allowed for a line to be fitted in 3D
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space for each device. This was performed by taking the four 3D points for the respective

sensor and fitting a linear line in 3D space by minimising a sum of squares cost function.

From these generated optical axis lines a spatial transformation matrix was derived for the

rotation and translation of a point on the camera axis to one in the spectrometer axis. To

map the spectrometer’s sensitivity, the FOV was modelled as a cone emanating from the fore

optics of the spectrometer. It was determined from the angle of view of the spectrometer

from the sensitivity maps gathered in Section 3.2.1.1.

The spatial transformation matrix β was derived from:

RY X =


cos(ξy) 0 sin(ξy)

0 1 0

− sin(ξy) 0 cos(ξy)




1 0 0

0 cos(ξx) − sin(ξx)

0 sin(ξx) cos(ξx)

 (3.3)

β =


φx

RY X φy

φz

0 0 0 1

 (3.4)

Where RY X is the rotation matrix derived from rotation about the x-axis ξx and about

the y-axis ξy. The spatial transformation matrix β is then derived from RY X and X, Y, Z

translations φx, φy & φz. To obtain a point in the spectrometer frame Pspec from a point

in the camera frame Pcam is calculated:

Pspec = β

Pcam
1

 (3.5)

3.2.2 Results

3.2.2.1 Spectrometer FOV

The apparatus was set up as per the methodology described above. Prior to measuring the

sensitivity maps the angle variance was measured. The response is shown in Figure 3.2. The

spectrometer sensitivity maps for four different distances were measured, as shown in Figure
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3.4. These results were derived by using a box size of 55 × 55 pixels which corresponds to

a spatial size of 14× 14mm.

For comparison the method from Caras et al.[40] was done, (see Figure 3.3), it had a much

coarser spatial resolution than the proposed method (2 × 2cm vs 0.766 × 0.766cm). This

result took approximately 2 hours to record all the data points and it was very labour

intensive requiring the user to move the white square for every reading. The proposed

method takes about 2.5 hours but does not require an operator, the duration is dependant on

the number of boxes to measure (resolution) and the integration time for each measurement.

From the result more detail can be seen in the sensitivity of the FOV whereas the Caras et

al.[40] result did not detect the insensitive region right in the middle of the FOV.

The FOV of our spectrometer at the −10dB point of the sensitivity map was found to be

12.935◦ ± 0.480◦.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Angle (deg)

N
o
rm

a
lis

e
d
 R

e
sp

o
n
se

Normalised Angle Response

 

 
Red
Green
Blue

Figure 3.2 – Angle variance of the computer monitor, angle in degrees is from 0◦ perpendicular
to the screen. There is a point missing around 35 degrees due to an error during acquisition
of this measurement
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(a) Caras et al.[40] manual method

(b) Our automated method

Figure 3.3 – (a) Spectrometer FOV map using the method of Caras et al.[40] with a 2cm
white square (b) FOV map using the our method with a box size of 30 pixels (7.6 ×
7.6mm), spectrometer was 767mm from the screen. This shows a comparison between the
proposed method and one from the literature. Our method is clearly higher resolution
and autonomous. The spectrometer used was the upwards looking spectrometer. The axes
refer to the square number. The magnitude scale is between the lowest value assigned blue
and the highest sensitivity value is assigned dark red.

3.2.2.2 Spatial co-registration

After each FOV sensitivity mapping step the FOV map was displayed on screen and several

photos of the map were taken with the stereo camera. Two examples from the 1655mm

distance are shown in Figure 3.5.

To co-register the stereo camera with the spectrometer the pixel coordinates (xpix, ypix) for

the middle of the FOV map in the images is determined. The middle of the camera image is

defined to be the optical axis of the image. This means the calibration is only valid for this

particular camera and spectrometer combination. Subsequent changes to the combination

or relative positioning of either sensor would require re-calibration. The pixel coordinates

are converted to real-world units for both cameras based on distance to target and camera

FOV with the origin at the front of the lens in the optical axis of the cameras. This is

repeated for each distance, and then a line is fit to these 3D points for each camera. The
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Figure 3.4 – FOV sensitivity maps for different distances between the spectrometer and the
monitor.

(a) Left colour image (b) Right Mono image

Figure 3.5 – FOV co-registration: Images of the FOV from the stereo camera at a distance of
1655mm from the monitor. These images are used to co-register the stereo camera with
the FOV of the spectrometer.
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error on the fit is shown in Table 3.2. It is the distance error between the 3D points for the

spectrometer’s optical axis and the fitted line for the spectrometer optical axis. The error

is not large given the distance of the measurements from the screen. The errors are largest

for the closer measurements at 582mm and 987mm. The spatial translations and rotations

were found from this fit and the results are shown in Table 3.1. Then a translation and

rotation matrix were defined for the optical axis of the spectrometer in each of the camera

frames, which was then combined into a spatial transformation matrix [27] see Equation

(3.6) - left colour camera, Equation (3.7) - right mono camera. There is not a z-axis rotation

because the spectrometer does not have a definable orientation about its optical axis. So

the orientation of the FOV is defined to be the same as the optical axis of the imaging

camera.

Quantity Left Colour Right Mono

x-offset 45.3mm −23.2mm
y-offset 33.3mm 34.4mm
z-offset −0.6mm −0.7mm

x-rotation −1.27◦ −1.26◦

y-rotation −0.46◦ −0.23◦

z-rotation 0◦ 0◦

Table 3.1 – The spatial relations of the spectrometer’s optical axis with respect to the optical
axis of each of the stereo cameras

βLC =


1 0.00018 −0.0081 45.2605

0 0.9998 0.0221 33.2829

0.0081 −0.0221 0.9997 0

0 0 0 1

 (3.6)

βRM =


1 0.00009 −0.0040 −23.1563

0 0.9998 0.0221 34.4314

0.0040 −0.0221 0.9997 0

0 0 0 1

 (3.7)
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Distance from screen Left Colour Error Right Mono Error

582 mm 10.54 mm 7.53 mm
987 mm 21.80 mm 14.22 mm

1200 mm 7.09 mm 3.24 mm
1655 mm 4.14 mm 3.61 mm

Table 3.2 – This shows the distance error between the 3D points for the spectrometer optical
axis and the fitted line for the spectrometer optical axis.

3.2.3 Discussion

The computer monitor will have a limited spectral output due to the back-lighting source. In

current Liquid Crystal Display (LCD) monitors the backlighting is usually a Light Emitting

Diode (LED) whereas older LCD monitors are Cold-Cathode Fluorescent Lamps (CCFL).

Either source is not broadband, however due to the spectral sensitivity of human eyes this

light source appears white. So as a result one can not say much on the possible spectral

variability of the FOV sensitivity map.

A higher spatial resolution of the sensitivity map may be obtained by decreasing the box

size. As a result an increase in the spectrometer integration time would be needed to obtain

the same signal strength. A smaller box size was not undertaken because the chosen box

size provided adequate resolution for the requirements of the application.

Context of the FOV in the underwater environment

The FOV mapping was used for two reasons in this work. Firstly for assisting with clas-

sification, it was useful to know what was in the FOV of the spectrometer for improving

classification performance. This will be discussed further in Section 5.2. Secondly the FOV

mapping provided an improved estimate of vehicle altitude relative to the imaging pod. Ve-

hicle altitude was traditionally provided by a reading from the Doppler Velocity Log (DVL),

however the DVL was located at the rear of the vehicle and the imaging pod towards the

front. As a result as the vehicle passes over changing elevations in terrain, an estimate for

altitude from the DVL is not correct for the imagery.

To solve this problem the stereo imagery was used. From the stereo imagery a 3D mesh was

obtained and a depth map could be derived. In the depth map each pixel was the distance

in metres from the centre of the camera to the respective point in the scene. An example

of a depth map for a stereo camera image is shown in Figure 3.6.
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(a) Colour image from stereo camera
(b) Depth map

Figure 3.6 – An example of a depth map derived from the 3D mesh generated from the stereo
camera data. These depth maps allow for an accurate measurement of altitude for the
spectrometer reading. An accurate altitude reading is critical for correcting the spectra for
water attenuation.

To obtain an accurate altitude for camera system, firstly the altitude was initialised from

the DVL measurement and then the size of the FOV in the scene was determined from the

calibration model of the spectrometers FOV. Then mapping the FOV into the 3D depth

map a better altitude measurement was obtained, the process was then repeated: define the

FOV, map into the 3D scene, and obtain an altitude measure. This process was repeated

until it converges to within 1mm. This new altitude reading was used for subsequent

radiometric corrections needed in this work.

3.3 Relative radiometric calibration of spectrometers

In this work multiple spectrometers were used. The sensitivity of each spectrometer at

a particular wavelength of light differed slightly. This difference also applied to the two

spectrometers of identical model and acquisition date. This was most likely due to slight

variations in the diffraction grating and the mechanical mounting of the grating with respect

to the imaging sensor. Also each spectrometer sat behind different underwater windows of

varying thickness and material composition. In order to compare and utilise the data from

each spectrometer the sensors were calibrated to create a relative radiometric calibration.

The output of the spectrometers were not calibrated to absolute units but rather defined

scaling factors as a function of wavelength which allowed for inter-sensor output comparison.
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The system was not calibrated to absolute radiometric units due to the difficulty in under-

taking this task. Facilities for this task were not easily available during the undertaking of

this research. For this system however a relative radiometric calibration was adequate.

To calibrate the spectrometers a large panel of Quartz-doped Teflon which was chosen as it

was spectrally similar to Spectralon (a common spectral reflectance target). The choice of

reflectance target is particularly important as it needs to provide a near lambertian surface

which is both spectrally and spatially even. The target panel was evenly illuminated by

diffused halogen lamps, an even illumination was achieved through indirect illumination off

the flat even ceiling above the target panel. Care was taken to ensure the lamps had warmed

up prior to acquisition (the lamps were left on for over an hour). The three spectrometers

used in the system were aimed from identical distances at the panel. The spectrometers

were mounted in their housings so as to incorporate the influence of the housing windows

on light transmission into the sensors.

To remove the variance which would occur from different exposure times (integration times)

the sensor’s digital count (DC) output was divided by the respective integration time in

milliseconds resulting in the units (DC/ms). Figure 3.7 shows the spectral measurements

obtained by the three spectrometers over the wavelength range 400-820nm. Conversion of

one spectrometer’s output to the relative units in another is done through the multiplication

of the output by the ratio from this calibration of the source and destination spectrometer.

Note each spectrometer plot has a different amplitude, this is due to each spectrometer

having a different response to the lit panel.

To obtain an estimate on the noise of a spectrometer reading, the test was repeated for

each spectrometer. In this experiment the integration time was varied from very short to

very long (5ms - 1600ms). The spectrometer was faced towards a spectralon reflectance

panel and was illuminated by a halogen lamp. For each reading at a different integration

time the dark spectrum was measured and subtracted from the reading. To test the ability

to read the radiance invariant of the integration time the intensity output was divided by

the integration time. This in effect gathered the power of the reading. Figure 3.8 shows

the spectrometer readings divided by their respective integration time. Intuitively it shows

more noise relative to the signal is present on the short integration times.

To examine the variance of the noise, Figure 3.9 shows a plot of the noise variance with

respect to wavelength. This shows it is reasonably even across the different wavelengths
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Figure 3.7 – This figure shows the response of the three spectrometers to a reference reflectance
panel. This demonstrates the need for a good radiometric calibration. Ideally they should
all resolve a similar reading, however even the two upward looking spectrometers which
contain the same imaging Charge-Coupled Device (CCD) and are the same model of spec-
trometer are not the same. The calibration is also beneficial as it compensates for the
transmission properties of the windows of the underwater housings for the instruments.
The units are in digital counts per millisecond, this is to make the measurements invariant
of exposure time.

of the spectrum. The mean of the power curves was taken and then a histogram of the

distance from the mean was obtained for several different integration times. This is shown

in Figure 3.10, it shows that noise on the spectrometer readings are normally distributed

about the mean. This also shows the SNR increases as integration time increases which

would be expected with a larger integration time.
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Figure 3.8 – This figure shows the noise for different integration times. These curves are taken
from the spectrometer reading divided by the respective integration time.

3.4 Spectral sensitivities of RGB cameras

Knowing the spectral sensitivities of the RGB cameras used in the proposed system is

important. It allows for the translation of the water model obtained using the spectrometers

in the hyperspectral domain into the trichromatic domain of the colour cameras used. The

application which it shall be utilised for is in underwater colour correction where the aim

is to mitigate the water’s optical attenuation effects. This will also help in allowing data of

the same underwater area taken on different cameras to be chromatically comparable.

The advantage of the method is the simplicity of the experimental setup, the small number

of measurements needed and the simplicity of the characterisation.
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Figure 3.9 – Plot of the variance of the noise per wavelength from the readings in Figure 3.8

3.4.1 Previous work

One of the issues with spectrally characterising trichromatic cameras is knowledge of the

light intensity response characteristics. Vora et al. [202] used a method of photographing a

target with different exposures for defining the linearity of photometric response. Grossberg

and Nayar [71] developed a method using Principal Components Analysis (PCA) to derive

constraints from the intensity response of a large number of cameras, which was then used

to determine the response function for a new camera.

An accurate method of chromatic characterisation is to use a monochromator to generate

a narrowband light source which is imaged off a reflectance standard into a camera under

test and a spectrophotometer [201]. Vora et al. [201] presented a processing technique

using Wiener estimation methods to correct for errors due to the non-zero width of the

spectral power distribution of the narrowband light source. The monochromator method is

defined as the standard for the European Machine Vision Association (EMVA) [60]. The

disadvantage of the monochromator approach, despite the high resolution achieved, is that

it requires costly hardware or needs strictly controlled acquisition conditions [173].

A variation of the monochromator technique is seen in Mauer et al. [133] where 39 in-

terference filters were used to characterise the spectral response of the RGB camera. The

technique does not provide as high a resolution of characterisation as the monochromator
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Figure 3.10 – This shows noise distribution, the distance from the mean for the readings shown
in Figure 3.8 for different integration times. The units for Distance from the mean is in
Power units (digital count/integration time) as seen in Figure 3.8
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technique, but did produce good results. This would be a slow process as at least 39 mea-

surements need to be taken. An alternative method for generating monochromatic light is

through the use of a liquid crystal tunable filter in front of the camera which can tune into

a specified narrow frequency (bandwidth = 10nm) [173].

A quick method is seen in Finlayson et al. [62] who devised a quadratic programming tech-

nique to gather the sensitivity response by imaging a Macbeth colour chart1 and gathered

the spectral reflectance profiles of the lighting and Macbeth colour chart swatches. These

measurements of the swatches from the camera and the spectral measurements impose a

set of constraints that naturally form a series of linear inequalities which lends itself to a

quadratic programming routine. The process could also be further simplified by using a

pre-existing Macbeth colour chart reflectance library [120].

The quadratic programming technique [16, 120, 155] works well, requiring only one picture of

the colour chart for each illuminant type. There are however two issues with this technique:

the first issue is that they assume that the lighting is identical between the photograph of

the chart and the spectral measurements of the chart. This may not be the case if using

a spectral library [120]. The second issue is that the color chart is made for photography

applications, and so the colour panels are not evenly distributed in the spectral domain

[173].

3.4.2 Methodology

The standard approach would used a monochromator, however one was not used in this

work because one was not available. Monochromators are also quite expensive hence a new

lower cost method needed to be developed. The proposed approach involves imaging a light

source of known frequency and intensity. This is done through the use of a filter which

produces narrow-band light. This could be analoguous to a monochromator. Then the

sensitivity of the camera at a particular band can be obtained by reading it’s response to

the narrow wavelength light. The major difference in the proposed method to the literature

is the speed of acquisition. The filter used produces all the required narrow bands of light

at once in one filter. This method is also advantageous for ease of implementation, a

monochromator is a expensive and thus hard to obtain piece of equipment. The filter is

called a LVEF and further details on the filter are provided ahead.

1Xrite Photo ColorChecker Classic http://xritephoto.com/ph_product_overview.aspx?ID=1192

http://xritephoto.com/ph_product_overview.aspx?ID=1192
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The equipment used was a broad spectrum light source such as the sun or an incandescent

light bulb, a LVEF[58], a dark box, a Spectralon reflection target, a spectrometer and the

RGB camera under test. Choosing a broadband light source is important. Lighting sources

such as fluorescent and LED lights should be avoided due to their sharp spectral peaks and

large troughs [155, 171, 185]

The LVEF is mounted on one side of the dark box and the camera under test on the other

looking through the LVEF. On the outside of the box next to the LVEF, a Spectralon target

is placed so as to reflect light from the light source through the LVEF into the camera. The

dark box is important as it cuts out stray light which may reflect off the back side of the

LVEF into the camera. The LVEF is very reflective on both sides, so stray light will greatly

influence the results.

The spectrometer is mounted so as to measure the reflectance of the light source upon the

Spectralon target. This gives us the spectral profile of the light before it passes through

the LVEF. The spectrometer should acquire a spectrum of the light at the same time as

the RGB image is acquired. The spectrometer used was an Ocean Optics STS-VIS Micro-

spectrometer with 100µm slit width, 6nm resolution (FWHM) and a spectral range of:

350-800nm. The setup can be seen in Figure 3.11.











Figure 3.11 – Experimental setup for camera characterisation

To obtain the unnormalised spectral response of the RGB camera, an image of the target is

taken through the LVEF. Most point-and-shoot cameras are unable to save raw photographs.

In this instance Day light white balance was found to be the best to select because it was

closest to a halogen light source. This was important for minimising the colour distortion
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the camera’s software was imposing. Ideally only cameras which can shoot in RAW should

be used, however this methodology shows it can be applied to any point-and-shoot camera.

An exposure was chosen such that the image was not over exposed. Due to geometric lens

effects, the signal around the outer edges of the image plane is attenuated (vignetting)

where the fall off is proportional to the fourth power of the cosine off the off axis angle [16].

To minimise these effects we use only the central portion of the image.

To accompany the spectral sensitivity response of the camera system, the intensity response

was also gathered. It was found that the consumer grade point-and-shoot cameras applied

a gamma curve (non-linear response) to the received image. Cameras shooting in RAW

exhibited a linear intensity response. To determine the intensity response a calibrated

Spectralon 50% reflectance target was imaged over different shutter speeds.

For validating the camera model a variety of colour objects needed to be imaged with the

RGB cameras and their reflectance measured with the spectrometer. We used 55 different

paint sample swatches which varied chromatically across the visible spectrum. The paint

sample swatches had the advantage over artificially created printed swatches in that they

were made of well mixed paint pigments as opposed to four discrete inks (Cyan, Magenta,

Yellow & Black - CMYK) in the case of digital printing.

3.4.2.1 LVEF characterisation

To characterise the spectral sensitivities of an RGB camera a method was developed which

is discussed in Section 3.4, this method relies on the use of a LVEF. This is an optical

bandpass filter (dimensions: 59mm wide x 24mm high) whose passband frequency changes

linearly with translation along the longest axis of the filter. At one end it only passes light

at 369nm while at the other end only 737nm. Figure 3.12 shows what would be seen if one

were to look through the filter onto broadband illumination. The information provided on

this filter however was inadequate and required knowing the transmissions of the device at

finer resolutions, hence further investigation was needed.

To examine the transmission properties a rig was built from LEGO to hold both the spec-

trometer and LVEF in place. Using a corkscrew gearing system a translational stage for

the LVEF was designed, by rotating a crank as can be seen in Figure 3.13 the LVEF is

translated horizontally in front of the spectrometer’s tip. The spectrometer was held in
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Figure 3.12 – Linear Variable Edge Filter - pass band frequency changes along the horizontal
spatial dimension

place by cable ties and the LVEF was held in place by the Lego frame and Blu Tac. The

LVEF was illuminated behind by a spectralon 50% target and the light source was a halogen

desk lamp.

The spectrometer used was an Ocean Optics STS-VIS Micro-spectrometer with 100µm slit

width, and a spectral range of: 350-800nm. It’s tip was mounted 1mm away from the surface

of the LVEF (see Figure 3.15). This was the same spectrometer as used for the upwards

looking sensor in this work. The FOV of the spectrometer is approx 12◦ as determined

during the FOV calibration in Section 3.2.

The experiment was conducted at two spatial resolutions, coarse and fine. The fine res-

olution was conducted at 1
2 rotations of the crank per reading and the coarse at single

rotations per reading. The relationship between rotations and translation is described by

the following:

translation(mm) = 2.1298rotations (3.8)

The zero starting point was defined as the edge of the filter in the near UV end covering

half of the aperture of the spectrometer. A similar position but at the other end defined

the end of the measurements. There will be some fringing effects at these end points so the

data is not to be trusted.

At each new location a transmission reading was taken and subsequently plotted as is show

in the results section.

3.4.2.2 LVEF transmission curves

The results for the fine resolution are shown in Figure 3.17. The results show transmission

bands for a certain spatial location to be extremely even and consistent. The FWHM for
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Figure 3.13 – The LEGO rig with the spectrometer and LVEF mounted in place

the transmissions is found to be 13.8nm (taken from the transmission band at 566.53nm

from the fine resolution).

Tabulated results for the translation and transmission are show in Tables 3.3 & 3.4.

3.4.2.3 Processing

To acquire the unnormalised spectral response of the RGB camera a row vector was obtained

from each of the chromatic channels of the acquired image. To reduce noise, the mean of the

imaging sensor values perpendicular to the frequency axis was measured. For each channel

the response of the imaging sensor colour filter was obtained with the limits of 380nm to

745nm due to the limits of the LVEF.

The LVEF inherently has some leakage or blurring at any point, whereby it will pass a peak

frequency but with a Hann window [23] like shape passing neighbouring frequencies. The

width of this window was found through the use of a red laser; the frequency width of the

laser was measured without the LVEF and then measured through the LVEF. The window

was found to have a width of approximately 17nm. To reconstruct the effect of frequency

blurring we constructed a Hann window. The window is normalised such that the sum of

the window is equal to 1 in order to maintain the power density of the spectra.



CHAPTER 3. SPECTRAL AND SPATIAL CALIBRATION 63

Figure 3.14 – Top view of the LVEF LEGO Rig

Fw =
hw∑
hw

∑
Fw = 1 (3.9)

where: Fw is the LVEF normalised Hann window, hw is a Hann window of width 17.6nm.

This was chosen to be close to the inherent window width of the LVEF.

The light received through the camera system is a combination of the light source, the

LVEF transmission properties, the cameras’ Bayer filter and the camera sensors’ spectral

sensitivities. We define the spectral sensitivity of the camera in the wavelength, λ, as C(λ) =

β(λ)σ(λ), where β(λ) is the three channel Bayer filter spectral transmission properties and

σ(λ) is the transmission properties of the imaging sensor at wavelength λ. The spectrum

of light received at each band b can be written as Sb(λ):

Sb(λ) = C(λ)(Fw · (Ft(λ)L(λ))) (3.10)

where Fw(λ) is the smoothing window of the LVEF, Ft(λ) is the transmission of the LVEF,

L(λ) is the spectra of the light being reflected off the spectralon target into the LVEF and

λ is the wavelength range of the LVEF.

The spectral response function can be used to convert spectra into the camera’s RGB colour

space. The RGB response Rb to a certain spectra of light is the integral over all the K



CHAPTER 3. SPECTRAL AND SPATIAL CALIBRATION 64

Figure 3.15 – Spectrometer tip mounting against the LVEF, approx 1mm off filter surface

measured wavelengths of light of Sb for each band b (red, green & blue):

Rb =

K∑
Sb(λ) (3.11)

3.4.2.4 Validation of model

To validate the camera response model the quadratic programming method as seen in Pike

[155] was utilised. This solves for C(λ) in the camera model:

Rb =
K∑
ρ(λ)C(λ) (3.12)

where ρ(λ) is the radiance of each of the colour swatches of the macbeth colour chart,

which was measured with a spectrometer. C(λ) was the camera model Equation (3.10)

which refers to the spectral sensitivity for the bth RGB colour band, taking into account

the transmission properties of the lens, colour filters and onboard processing. Rb was a

RGB value gathered from each swatch from an image of the Macbeth colour chart taken by

the camera under test.

To compare the LVEF method to the Pike[155] method, a validation data set was made
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Figure 3.16 – Bottom view of the LVEF LEGO Rig showing the cog gearing system

consisting of 55 different colour swatches. The aim was to accurately reproduce the RGB

value of these swatches from the measured spectral reflectance. The reconstructed RGB

value from the LVEF model is derived from Rb using the Equation (3.12).

The chromatic accuracy was an important aim of this research, so to compare the perfor-

mance of the LVEF method to the Pike method, a Euclidean distance metric was used in a

chrominance only colour-space. The colour-space chosen was the YCbCr colour-space. To

have a chrominance only measure the Y (luminance component) was negated.

3.4.3 RGB camera characterisation results

In this section the results for the intensity response (section 3.4.3.1) and the spectral re-

sponse (section 3.4.3.2) for the three cameras under test are presented. In section 3.4.3.3

the model is validated by comparing to the Pike method[155]. In Section 3.4.3.4 the results

of the spectral sensitivities of the stereo cameras on-board the AUV used in this work are

shown.
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Figure 3.17 – Transmission of the LVEF, each peak represents a measurement, it shows the
even and consistent transmission for a point along the filter. The FWHM was found to be
13.8nm. There is noise below 375nm due to insufficient light flux.

3.4.3.1 Intensity response

Figure 3.18a illustrates the intensity response for the Nikon D5000 with the images taken

in RAW mode; this shows the camera exhibited a linear intensity response. In comparison

the intensity response of the Canon Powershot A2000 and the Olympus µTough 8000 are

clearly nonlinear (Figure 3.18b & 3.18c). The scale of the intensity response for the Nikon is

greater than the other two cameras due to the Nikon capturing the photo in 12-bit resolution

as opposed to the 8-bit resolution of the Canon and Olympus. The Red, Green and Blue

channels are offset due to the colour of the lighting, as it had quite a yellow/red bias. The

intensity response curves (Figures 3.18a-3.18c) are shown with the error bars showing the

standard deviation of the measurements.

3.4.3.2 Spectral responses

The spectral response graph for the Nikon D5000 is shown in Figure 3.20a. The Canon

Powershot A2000 response is shown in Figure 3.20b showing the Sunny white balance

response. The spectral response of the Olympus µTough 8000 over four different white

balances is shown in Figure 3.19. The vertical axis of the spectral responses are scaled

such that the cross product of an imaged surface with the spectral response will result in

an accurate reproduction in the camera’s RGB space for a particular shutter speed. This
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Figure 3.18 – Intensity response curves for cameras under test

shutter speed is what was used when generating the spectral response. Provided the non-

linearity of the camera is known, the spectral response may be scaled to accommodate

different exposure levels.

3.4.3.3 Validating the model

Using the quadratic fitting method from Pike[155] we were able to generate spectral re-

sponses for all the cameras under test. The spectral response for the Nikon D5000 derived

from the Pike method is shown in Figure 3.21. To compare the performance of our method

we determine the Euclidean distance of the chrominance components in the YCbCr colour-

space. The LVEF method performance is shown in Figure 3.22a and the Pike method

performance is shown in Figure 3.22b, with a table of the mean and standard deviation of

the errors shown in Table 1. These results show the presented method to be more consistent

in the response modelling and result in less modelling error overall. The RGB reconstruction

is shown in Figure 3.23 this shows a visual example of the RGB reconstruction performance

of the two methods.

3.4.3.4 AUV stereo camera response

On the AUV, the stereo camera consisted of two different cameras, both were Prosilica

GC1380 cameras from Allied Vision Technologies, but one was a colour camera (trichro-

matic) while the other was a mono camera. They were connected to the data acquisi-

tion system in the vehicle over ethernet. They have 12 bit Sony ICX285AQ (colour) and
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(b) Fluorescent White Balance
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(c) Incandescent White Balance
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Figure 3.19 – The relative spectral responses of the Olympus µTough 8000

ICX295AL (mono) CCD progressive type imaging sensor, and pixel size was 6.45µm. The

images were acquire as RAW, so no compression or down-sampling was applied.

The spectral response curves for the colour camera in the stereo camera pair onboard the

AUV is shown in Figure 3.24.

3.5 Summary

In this chapter several new calibration methods were presented for the spatial and spectral

characterisation of the imaging sensors used in this thesis. The spatial sensitivities of the

spectrometers FOV was shown in Section 3.2. Then the spatial relationship between the

spectrometer and a conventional imaging camera was presented.
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Figure 3.20 – Spectral response functions for the Nikon and Canon cameras
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Figure 3.21 – Spectral response curves generated using the Pike method[155]

The spectral relationships between the spectrometers was calibrated for in Section 3.3. Then

finally the spectral sensitivities of an RGB camera was established using a LVEF in Section

3.4 with the characterisation of a LVEF covered in Section 3.4.2.1.
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(b) Errors using the Pike method

Figure 3.22 – Chrominance RGB reproduction error for the LVEF and Pike methods for the
different cameras and white balances. The error bars define the magnitude of the standard
deviation. Note: Nikon error has been scaled from 16bit to 8bit for comparative purposes.
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Figure 3.23 – RGB reconstruction from spectral measurements of Colour Swatches. The
top row is the swatch as seen by the camera, these are the truth measurements; the
reconstruction process is attempting to create a RGB coordinate as close to what the
camera would image. The second row is the RGB reconstruction using the model generated
by the LVEF method and the 3rd is the RGB reconstruction using the model generated
by the Pike method. Above each swatch is the RGB coordinate of the swatch.
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Rotation Translation Wavelength Transmission
(# turns) (mm) Peak (nm) (%)

0.0 0.00 369.09 -
0.5 0.89 375.78 -
1.0 1.96 382.47 -
1.5 3.02 389.16 -
2.0 4.09 395.84 32.51
2.5 5.15 402.53 36.01
3.0 6.22 409.22 40.08
3.5 7.28 415.68 42.34
4.0 8.34 421.69 44.63
4.5 9.41 429.09 46.09
5.0 10.47 434.65 47.86
5.5 11.54 441.61 49.26
6.0 12.60 449.04 49.43
6.5 13.67 455.56 50.91
7.0 14.73 462.54 51.18
7.5 15.80 469.54 50.95
8.0 16.86 476.55 51.86
8.5 17.93 483.56 52.06
9.0 18.99 491.05 52.65
9.5 20.06 497.62 53.35
10.0 21.12 504.66 53.30
10.5 22.19 511.71 54.14
11.0 23.25 518.77 53.93
11.5 24.32 525.37 54.06
12.0 25.38 532.44 54.02
12.5 26.45 539.06 53.75
13.0 27.51 546.62 54.27
13.5 28.58 552.78 54.45
14.0 29.64 559.88 54.49

Table 3.3 – The results for the fine resolution characterisation of the LVEF. It shows the
wavelength of the passband peak as well as the transmission of the filter for that translation
along the LVEF.
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Rotation Translation Wavelength Transmission
(# turns) (mm) Peak (nm) (%)

14.5 30.71 567.00 54.53
15.0 31.77 573.65 55.00
15.5 32.84 580.30 55.11
16.0 33.90 587.44 55.11
16.5 34.97 593.64 55.31
17.0 36.03 600.79 55.75
17.5 37.10 607.95 55.85
18.0 38.16 614.64 55.77
18.5 39.23 621.33 54.17
19.0 40.29 628.51 54.38
19.5 41.36 635.22 53.89
20.0 42.42 641.46 54.38
20.5 43.49 648.66 54.53
21.0 44.55 655.39 54.95
21.5 45.62 662.12 55.01
22.0 46.68 668.86 55.44
22.5 47.75 675.60 55.52
23.0 48.81 681.87 55.63
23.5 49.88 688.14 55.83
24.0 50.94 694.90 55.81
24.5 52.01 700.70 55.80
25.0 53.07 706.50 56.11
25.5 54.14 712.30 56.50
26.0 55.20 717.63 56.67
26.5 56.27 723.93 55.97
27.0 58.40 730.23 56.29
27.5 60.52 735.56 55.66
28.0 62.65 737.02 20.24

Table 3.4 – The results for the fine resolution characterisation of the LVEF continued from
Table 3.3. It shows the wavelength of the passband peak as well as the transmission of the
filter for that translation along the LVEF.
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Figure 3.24 – Spectral response curve for the Colour camera onboard Sirius AUV



Chapter 4

In-situ water corrected imaging

4.1 Introduction

In the previous chapter the spatial calibration was presented for a spectrometer. Knowing

the spatial sensitivity allowed the spectrometer to be used as a very poor spatial resolution

imaging camera. The spatial co-registration of the spectrometer with a Red-Green-Blue

(RGB) camera was shown as well as a method for determining the spectral sensitivities of

a RGB camera.

The main aspect of this chapter is the correction of underwater imagery from a traditional

imaging camera and a hyperspectral sensor. A method for correction is developed which

uses an empirically derived model of the optical properties of the water. Correction occurs

through an inversion step which shall be detailed. The method is first presented for the

74
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correction of RGB imagery. It is demonstrated in a controlled test tank first where the

correction process is validated with chromatic comparison to ground truth. It is then

applied to imagery taken in an outdoor underwater scene where the depth, target scene and

environmental factors are controllable.

Finally the method is implemented on data from an Autonomous Underwater Vehicle (AUV)

mapping mission. The AUV mission was over real world coral reef scenes. In this setting it

was possible to generate a dynamic water model through the continuous use of the upwards

looking spectrometers. The correction of imagery from an AUV differs from the previous

scenarios because the AUV uses a stereo camera which provides scene structure information

as well as the vehicle also carries strobe lights for additional illumination.

The reason for performing the proposed methodology in three different locations was for

ease of validation. Obtaining ground truth for the AUV imagery is very hard due to the

depths and rough open ocean environments the vehicle is operating in. Conversely this was

easy with the test tank and the outdoor swimming spot environment.

The last aspect of this chapter covers the correction of spectral reflectance data. Hyper-

spectral data comes from the spectrometer within the imaging module. Spectral reflectance

is recovered after water correction and scene illumination modelling. Results are presented

for a coral reef mapping mission. The correction of the RGB imagery and the spectral data

allows for the training of a classifier and the generation of a benthic map. This will be

discussed further in the next chapter.

4.2 Environmentally based colour correction

In this section a new method is presented which uses a model of the water to correct the

colour in RGB imagery. The current colour correction techniques were reviewed in Section

2.4. Most techniques rely on various assumptions about the environment, such as assuming

that the mean colour of an image is grey, as in the Greyworld colour correction technique,

that the lighting is homogeneous over time [68] or that scene structure is flat [19]. These

are poor assumptions as the colour channels will not always be balanced (as when imaging

colourful coral [132]) and the environmental lighting will not remain constant as weather

and time of day influence the intensity and spectral profile of the solar radiance [115]. In

addition, the underwater scene will have some form of structure. Even in the case of a flat
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scene the path length from scene to camera frame will be longer for the edges of the image

compared to the center [38].

Other methods are too simplistic due to their assumption of homogeneity of the water

conditions [200]. These methods performed well in controlled and predetermined conditions,

but would not work well in applications of varying optical properties such as in the case of

a moving AUV.

New techniques have been presented which gather the optical properties of the scene by

utilising 3D structure information from multiple viewpoints of a scene point, from which

the imagery is corrected on a very fine spatial scale and allows for changing lighting condi-

tions [38]. This technique however only gathers the optical properties of the water in the

trichromatic domain. By sensing in the hyperspectral domain this could allow the data to

be used in applications such as ground-truthing above water hyperspectral imaging, and

deriving various levels of biological constituents from within the water column [15].

In this section the methodology will be presented first. This will show the technique for

measuring and removing the attenuation effects of the body of water. After the methodology

some details on the assumptions made in the methodology are presented. The experimental

setup for the first colour correction experiment is detailed, this is proceeded by the results

for this experiment. The proposed method is repeated for a real world experiment conducted

outside in a local ocean swimming area. After the results for the test tank and the real

world experiments are presented a method for evaluating the performance and validation

of the proposed technique is shown. Lastly an extension of the colour correction technique

is presented using imagery taken onboard an AUV with results presented from a coral reef

survey mission.

4.2.1 Methodology

The water model presented in Section 2.2.2 is used and is translated for use in the RGB

domain. This is not a trivial task as the RGB cameras have varying sensitivities to the

different wavelengths of light, and their response is unknown. In Section 3.4 a new cali-

bration technique was shown for obtaining the spectral sensitivities of RGB cameras. This

calibration provided the translation from the hyperspectral domain into the trichromatic

domain.
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To parametrise the water model, irradiance measurements were obtained with a spectrome-

ter looking upwards just below the surface and also facing upwards at a known depth; from

these measurement the downwelling attenuation coefficient Kd of the water column can be

derived using the rearranged Beers law Equation (4.1) and reproduced here:

Kd(λ) = −1

d
loge

(
Eδ(λ)

Es(λ)

)
(4.1)

where: Eδ(λ) is the irradiance with respect to wavelength λ at depth δ, Es(λ) is the

irradiance just below the surface, Kd(λ) is the wavelength dependant diffuse downwelling

attenuation coefficient for the water.

After determining the attenuation coefficient the incident irradiance at a different depth d

can be modelled using the Lambert-Beers equation for attenuation through water Equation

(2.1).

A chromatic transfer function τ describing the light from the surface changes for a given

depth of water at a fixed point in time:

τ(λ) =
Es(λ)

Ed(λ)
(4.2)

where the transfer function τ(λ) at wavelength λ is defined as the ratio of the irradiance at

the surface Es to the irradiance at the bottom of the tank Ed (this is also defined as the

irradiance at the scene, where the scene is at the botton of the tank). The irradiance at Ed

may be unknown if measuring Eδ above the scene. So Ed may be modelled from:

Ed = Eδe
Kd(δ−d) (4.3)

This transfer function exists in the discrete frequency domain. In order to convert the

hyperspectral transfer function to the RGB domain the following is used:

τb =

k∑
τ(λk)Cb(λk) (4.4)

where the weighted RGB transfer function is τb for colour band b where the colour bands are
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Red, Green & Blue, Cb(λ) is the camera spectral characteristic function for colour band b,

k is the number of discrete wavelength bands of the camera spectral characteristic function.

To correct the colour in the underwater image the image bands are multiplied by their

respective weights as gathered from the transfer function in Equation (4.4).

ICC(b) = IUC(b)τb (4.5)

Where ICC(b) and IUC(b) are the colour corrected and uncorrected colour images for colour

band b (RGB) respectively.

Given this transfer function describing the selective attenuation of light through water,

our objective is to estimate the parameters of the model from a set of observations. The

next section outlines some of the assumptions which were made in developing the water

modelling methodology. The remainder of this section outlines the method used to validate

this model.

Methodology assumptions

The water model is parametrised by measuring the downwelling light at Es and Eδ. The

light at the scene Ed (bottom of the tank) is interpolated from the water model. An accurate

estimate of Ed is based on the assumption that the optical properties of the last section

of water between Eδ and Ed (interpolated section) is the same as the measured section

between Es and Eδ. The validity of this assumption will vary with several factors.

As the ratio between the distance of the interpolated section to the distance of the mea-

sured section decreases the errors are assumed to reduce. This intuitively makes sense as

the region which is being interpolated is getting smaller in proportion to the measured

section. Depending on the clarity of the water and the location of sampling, there can be

stratification of the particles within the water column [15]. These considerations need to

be taken into account when using the water model. A possible method for assessing the

degree of stratification would involve examining the upward looking spectrometer data as

the system descends through the water column to the working depth. One might see if

any layers are present, however the stratification measurements would only hold for that
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location at that one point in time. If the imaging platform were to move large distances

assumptions would need to be made as to the horizontal extent of the stratification layer.

In the latter section of this chapter, the water model is generated from the in-situ system

mounted on an AUV. The water column was found to be quite uniform when mapping in

the tropical reef area. To measure the amount of scattering in the water column a turbidity

meter (nephelometric turbidimeter) was used. A turbidity meter measures scattered light

using a light source at 850nm and a photomultiplier at 90◦ to the beam angle. The units of

a turbidity meter are nephelometric turbidity units (NTU) which are measured relative to

an artificial standard with reproducible light scattering properties [115]. Several turbidity

profiles of the water column were made at the survey sites during AUV missions over the

Great Barrier Reef (GBR). The turbidity meter was calibrated prior to use. The calibration

was done with turbidity standards of 100NTU and 20NTU1. The instrument used was a

Turner Designs C6 system2.

Figure 4.1 shows the turbidity profile measurements for 6 different sites. It shows depth vs

turbidity reading in NTUs. For most of the sites turbidity was approximately 6 NTU. This

is quite clear water, an example of the water clarity for 3.2 & 13.0 NTU is shown in Figure

A.3 & A.4.

A limitation of the proposed method is only the downwelling attenuation coefficient Kd is

derived. Kd encapsulates both the scattering and absorption of the water column. This

carries two limitations, as it is an apparent optical property, the measurement is generally

only valid for the location and light field at the time of acquisition. This is not a problem

for the purpose of colour correcting imagery taken at that location and time. Using Kd for

future or past corrections at different locations would require some assumptions to be made

about homogeneity of the water column’s optical properties and light field structure. This

leads to the second limitation: other water models may require scattering and absorption

to be separate. As the scattering and absorption coefficient are encapsulated in Kd, feeding

the optical measurements into an external model could be challenging. So this can restrict

the external use of these water measurements. There have been methods for inverting Kd to

recover the inherent optical properties of scattering and absorption (a & b), however these

require further measurements of the materials within the water column [140].

1Hach StablCal Turbidity standards
2Turner Designed C6 multi-sensor platform

http://www.hach.com/stablcal-turbidity-standard-20-ntu-500-ml/product?id=7640202636&callback=qs
http://www.turnerdesigns.com/products/submersible-fluorometer/c6-multi-sensor-platform?page=shop.product_details&flypage=flypage_default.tpl&product_id=2&category_id=1
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Figure 4.1 – Turbidity measurements for 6 different sites over the glsgbr. It shows a uniformity
for most of the water column. NTU - Nephelometric Turbidity Units

4.2.2 Test tank experimental setup

The first validation was performed under controlled conditions in a test tank. This allowed

aspects of the model, such as illumination, distance between the scene and the camera

and the depth of the spectrometer to be precisely controlled. The setup involved a spec-

trometer, an underwater camera (Olympus µTough 8000), a 1.77m test tank filled with

chlorinated/salt water, a MacBeth Colour target and a photographic broad spectrum light-

ing rig. The test tank was non-transparent and was painted with a matte / non-reflective

paint. The room which housed the tank was dark with the only light coming from the

experiments light source. The spectrometer used was an Ocean Optics STS-VIS Micro-

spectrometer with 100µm slit width, and a spectral range of 350-800nm. The spectrometer

was mounted in an underwater housing. The spectral response function of the RGB camera

was gathered using the Linear Variable Edge Filter (LVEF) method presented in Section
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3.4. The experimental setup is shown in Figure 4.2.

Colour Chart

RGB Camera

Lighting Rig

Upward Facing
Spectrometer

Test Tankչd

Eδ

Ed

Es

Figure 4.2 – The equipment setup for the test tank experiment

4.2.3 Test Tank Results

The uncorrected image of the MacBeth Colour Chart is shown in Figure 4.4a. The irra-

diance was measured just below the surface and again at 1.51m with the upwards looking

spectrometer. From these measurements the attenuation coefficient of the water in the tank

was obtained using Equation (4.1). Then the irradiance was modelled at the bottom of the

tank at 1.77m using the Equation (2.1). Figure 4.3 shows the surface and 1.51m lighting

spectrum, and the predicted bottom irradiance. From this figure it can be seen quite clearly

that the light in the red end of the spectrum (> 600nm) has been heavily attenuated. The

light energy in the other regions such as green (500nm−600nm) and blue (400nm−500nm)

has been reduced but not nearly to the same degree. A transfer function was generated for

the light over all the wavelengths using Equation (4.2). The transfer function is then con-

verted into the RGB colour space of the camera Equation (4.4). This process then allowed

for the image of the target to be corrected using Equation (4.5).

Using the presented technique the results for colour correction of the test tank imagery are

shown in Figure 4.4.
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Figure 4.3 – The prediction of the illumination on the bottom of the tank based on the surface
and 1.51m measurements. The integration time of the spectrometer was kept constant for
both the surface and the 1.51m measurement.

4.2.4 Real-world experimental setup

A local ocean swimming area was used for testing the proposed method in a real world

situation. In this situation depth and target could be controlled. In Clovelly, Sydney,

Australia (−33.915◦, 151.268◦) there is a sheltered tidal bay which contained a few typical

benthic substrates including rock, sand, algae and seagrasses. Measurements were taken at

approx. 13:00 on 28 March 2013 the sun was approximately at a angle of: zenith = 36.9◦,

azimuth = 0.0◦ [172].

A methodology similar to that used in the test tank was used, except that a cosine corrector3

was used on the end of the spectrometer to reduce the sensitivity to angle variance of the

measurements. It allowed for collection of the hemisphere of sky/sun light. The colour

target used was an Amphibico - Underwater Colour Bar4. This was used instead of the

Macbeth colour chart as it was water damaged in a previous experiment.

3Ocean Optics CC-3 Cosine Corrector: http://www.oceanoptics.com/Products/cc3cosinecorrectors.asp
4http://www.amphibico.com

http://www.amphibico.com
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(a) Original image (underwater) (b) Ground truth image (in air)

(c) Colour corrected image

Figure 4.4 – Results of colour correction method (a) This image was taken at the surface of
the test tank looking down at the MacBeth colour chart on the bottom of the tank at a
depth of 1.77m, (b) the MacBeth colour chart - ground truth image: photo taken out of
water under the same illumination, (c) The colour corrected image of the MacBeth colour
chart in the test tank after using the proposed technique.
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4.2.5 Real-world Results

The results from the data collected at Clovelly are shown in figures 4.6 and 4.7. The

downwelling irradiance measurements (Figure 4.5) show the irradiance for the spectrometer

at the surface, 67cm, 1.55m and the modelled irradiance at 1.77m. It can be seen from

this graph that the light energy in the reds ( > 600nm) drops off quite quickly underwater

similar to what was seen in the test tank.

The camera was set to a fixed ISO and white balance was set to Sunny. This was consistent

with the spectral sensitivity calibration shown in Section 3.4.3.2. The result from the

colour correction will still look like it was taken using the same white balance just without

the water. Using the Sunny white balance results in a slight chromatically warmer than

expected result in the corrected imagery.

The colour correction performs quite well despite the green water. The cloudiness of the

water does result in some blurring within the images. There are also some large water

particulates which can be seen in the pictures. The performance of the colour correction is

shown in the next section.
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Figure 4.5 – Downwelling irradiance measurements from real-world results. The curves have
been normalised about the peak in the green at 526nm.
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(a) Original colour (b) Colour corrected

(c) Original Colour (d) Colour Corrected

(e) Original Colour (f) Colour Corrected

Figure 4.6 – (a) & (b) This image was taken at the surface of the water looking at a colour
target at a depth of 1.4m. (c) & (d) were at a depth of 1.55m. (e) & (f) were at a depth
of 1.77m
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(a) Original Colour (b) Colour Corrected

(c) Original Colour (d) Colour Corrected

(e) Original Colour (f) Colour Corrected

Figure 4.7 – (a) & (b) This image was taken at the surface of the water zoomed in looking at
a colour target at a depth of 1.77m. (c) & (d) were at a depth of 1.55m. (e) & (f) were at
a depth of 67cm.
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4.2.6 Performance Evaluation

To establish the performance of the colour correction method several swatches of the colour

target were compared in the corrected underwater image with the same swatches from a

picture of the colour target taken out of water (ground truth) but shot with the same ISO,

white balance and under the same illumination.

Most cameras will implement some form of auto-exposure (AE). AE will meter the light level

in the scene and adjust the exposure time to maximise the Signal-to-Noise Ratio (SNR) and

will aim to minimise over exposing the image. Light from a scene can be broken down into

two components, the intensity of the reflected light from the scene and the chrominance.

For the evaluation of the correction of colour in the RGB domain, changes or errors in

intensity are less of interest but rather just the chromatic component of objects. In latter

sections, correction of the spectral reflectance is performed where the absolute radiometric

quantities are necessary and are evaluated.

The performance of the colour correction technique is first demonstrated visually by showing

a crop of the patches of the colour charts. These show the original uncorrected colour, the

colour corrected result using the proposed technique and the ground truth.

To minimise the differences in intensity due to AE, each of the images were normalised

based on the black and white squares on the colour chart. Consideration was taken to

ensure the normalisation process did not over expose the colours. The first metric to

evaluate performance was looking at the colour error between corrected and ground truth

for the same colour patch. The colour error was defined as the absolute difference between

the RGB values of the respective patches and channels. The mean error for each colour

channel is plotted against the standard deviation for each pixel in the corresponding patch

(colour corrected to ground truth). This allows us to see which colours are being corrected

the best as well as the variance of the measurements.

The next analysis is conducted using a chrominance only metric. To do this the RGB

values are converted to the CIE L*a*b* colour space. In this colour space L* defines the

lightness of the colour, where L* = 0 is black and L* = 100 is diffuse white. Then the two

chrominance channels define the following: a* - defines the colours green to magenta and

b* - defines the colours blue to yellow. In this colour space the error for a* and b* between

the corrected result and the ground truth is evaluated. These errors are plotted a* versus
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b* to show which patches and colours perform best.

4.2.6.1 Test tank performance

A qualitative validation of the colour correction method for the test tank experiment is

done first. The results are compiled into Table 4.1. The first observation of the uncorrected

patches is they are particularly green. The red and yellow patches are almost indistinguish-

able from the green patches. Blue patches are quite similar between the original colour and

the ground truth. Visually the colour correction has performed very well, the corrected

patches appear to be quite similar to the ground truth. Some patches such as Brown (no.

1), Skin (no.2), Foliage (no. 4), blue flower (no. 5), Purple (no. 10) and Magenta (no. 17)

appear to be chromatically similar but appear slightly too light or too dark.

The next analysis technique is using plots of the error versus standard deviation for each

colour channel. This is shown in Figure 4.8. First the Red channel is examined. We would

expect this channel to have the largest errors as the water distorts the red channel the most.

The largest errors are seen with patches 10, 6, 5, 17. This confirms some of the distortions

observed visually from Table 4.1. The standard deviations of the patches is not very high

despite some obvious texture in the images.

In the other channels (green and blue) there are some stand out errors. Patch 1 in both

the green and blue has a large error and variance. This is due to the texture features on

the patch. A texture variance is also seen in Patch 8 with white areas causing errors in all

channels. As validation that the colour correction is performing equally across the colour

channels the mean and standard deviation of the errors is taken for each colour channel.

The error is shown for before and after colour correction. This is shown in Table 4.2. It can

be seen that the mean error for the corrected patches are essentially the same, with very

similar standard deviations, unlike the uncorrected error. So this implies the correction

process is not favouring one colour channel over another. A correction process which was

not performing correctly would have a bias on one of the colour channels in this analysis.

The colour bias can be seen in the same table under uncorrected mean error. There is a

large red error with a moderate blue error. This is implying that the image should have a

green bias due to the large errors in red and blue. This is visually confirmed by examining

the uncorrected image or patches. The image has quite a green colour cast. This is due to
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how this particular (rather green) water body is attenuating the light. This highlights that

different water bodies require different attenuation models. Being able to measure these

models in-situ allows for this adaptability.

To examine the errors in a chrominance only colour space, the patches are converted to the

L*a*b* colour space. The errors in a∗ versus b∗ (just denoted a & b) are plotted in Figure

4.9. The same patches (no. 6, no. 1, no. 5, no. 10 and no. 17) show up as performing the

worst, confirming the analysis in the RGB colour space.

4.2.6.2 Real-world performance

In this section the performance of the real world (Clovelly) colour correction dataset is

discussed. The full colour corrected images are shown in Figures 4.6 & 4.7. Tables 4.3 -

4.5, show the uncorrected patch, the corrected patch using the proposed correction method

and the ground truth patch. Qualitatively it can be seen from the patch tables that the

correction process has performed quite well. In particular the correction shown in Figure

4.7f and Table 4.4 was for imaging the target at a distance of 1.77m. The original has a

very distinct green colour bias. The correction fixes this quite well. The correction shown in

Figure 4.7b and Table 4.5, appears to have the correct colour but the patches are distorted

by caustics. This should be taken into account when viewing the numeric results. One

advantage of the proposed colour correction method is it does not use a colour chart for the

correction process and thus is not distorted by optical effects such as caustics.

To evaluate the performance quantitatively, the error in RGB colour space is first examined.

The mean error versus standard deviation for the Clovelly results is shown in Figure 4.11.

First thing to note is the standard deviation is much larger on all channels than was seen in

the test tank results. This is due to the texture of the colour board creating small variations

in the reflected colour. The other reason, as just mentioned, is the presence of caustics and

particles in the water creating local image texture variations on the sampled patches.

Examining the RGB error charts (Figure 4.11), it can be seen that patches 1, 9, 11, 12,

13, 14 have relatively large errors after the corrections. These same errors are reflected in

the L*a*b* colour space plot shown in Figure 4.12. These errors can be largely attributed

to the mentioned environmental effects of imaging in an outdoor underwater environment.

Establishing clean performance metrics in this dynamic environment is challenging.
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Patch Index 1 2 3 4 5 6

Original Colour

Colour Corrected

Ground Truth

Patch Index 7 8 9 10 11 12

Original Colour

Colour Corrected

Ground Truth

Patch Index 13 14 15 16 17 18

Original Colour

Colour Corrected

Ground Truth

Table 4.1 – The performance of the colour correction for the test tank result (Figure 4.4) in
the RGB colour space. The top row shows the uncorrected patch (underwater image),
second row the corrected patch using the proposed correction method, and the third row
are the patches from the ground truth image taken in air. The ground truth was taken
from a picture of the target panel out of water but under the same illumination. The
colour chart was laminated and this can be seen in patch 1 as small circle on the swatch.
This would have resulted in high patch error variance, the influence on the other patches
appears minimal.
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(a) Red Channel
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(b) Green Channel
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(c) Blue Channel

Figure 4.8 – Each scatter plot is for analysis of a different colour channel. Each scatter plot
shows error versus standard deviation. Error refers to the distance in 8-bit RGB colour
coordinates between the ground truth and the colour corrected panel for the respective
colour channel. The standard deviation refers to the deviation of the errors for a patch,
with units again in 8-bit colour coordinates. An ideal correction would be placed close to
the bottom left corner (0,0). The numbers on the plots correspond to the respective patch
in Table 4.1.
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Corrected Corrected Uncorrected Uncorrected
Mean Error Std.Dev. of error Mean Error Std.Dev. of error

Red 25.7 15.0 87.6 37.2
Green 24.7 13.8 19.4 12.7
Blue 23.8 16.8 37.2 23.6

Table 4.2 – This is a summary of the test tank colour correction performance in the RGB
domain. It shows the mean RGB error for all colour swatches as shown in Table 4.1 and
the standard deviation (std.) of the errors for each swatch. This validates the colour
correction method. A good correction should have even colour errors across the colour
bands (Red/Green/Blue).

Validation of the correction process for the 3 sets of 6 patches is shown in the Tables 4.6 -

4.8 respectively. In Table 4.6 it can be seen that there was a large red channel error and a

very small green and blue colour error. The correction process equalised these colour errors,

and as a result actually made blue and green worse on average (within the bounds of the

standard deviation). Table 4.8 shows good performance in correcting the red channel errors

and equalising the errors across the colour channels. The uncorrected errors as shown in

Table 4.7 are the largest errors seen in the Clovelly dataset. Red is particularly distorted to

a lesser extent so is blue. Green in contrast does not have distorted colour, this is confirmed

in the imagery. The imagery has a green colour cast. The correction process does a good

job of reducing these colour errors with the exception of green error which increases.

Overall the colour correction in the Clovelly dataset performs quite well given the variability

of the environmental conditions. In the next section the same colour correction method is

applied to data obtained onboard an AUV while conducting a survey mission of a coral reef

shoal on the GBR.

4.3 Colour correction of AUV imagery

Two AUVs are operated at the Australian Centre for Field Robotics (ACFR)5; an IVER II

AUV and a Woods Hole Oceanographic Institution (WHOI) Seabed class AUV (SIRIUS).

The vehicle chosen for this work was the seabed class AUV (Sirius). A photo of the AUV

is shown in Figure 4.13. A suite of sensors are installed aboard SIRIUS, such as a Doppler

Velocity Log (DVL), Multi-beam Sonar, Wetlabs EcoPuck, GPS, Ultra-Short BaseLine

5http://www.acfr.usyd.edu.au

http://www.acfr.usyd.edu.au
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Figure 4.9 – This shows the chromatic error in CIE Lab colour space. The further from the
origin the greater the chromatic error. The luminance channel (L) has not been shown as
we wish to isolate just chromatic error.

(USBL), Conductivity/Temperature probe and a Stereo camera with Light Emitting Diode

(LED) strobes for artificial lighting [204]. The AUV typically travels at 0.5m/s and aims

to maintain an altitude of 2m from the seabed.

To further improve the colour correction, knowledge of scene structure is important. Three-

dimensional depth maps were obtained from the stereo imagery. These depth maps give

the distance of every pixel from the camera frame to the scene (see Figure 3.6). The water

model can be used to correct the AUV images to be invariant of scene structure. Instead

of correcting for a single distance as in the test tank (Section 4.2.2) and the real-world

scenario (Section 4.2.4), each pixel can be corrected individually for its respective distance

to the camera. This was only possible through the use of the stereo camera which provided

structure information. This was unnecessary for evaluating the performance in the test

tank and real world results as the colour target was in the middle of the camera’s Field-
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Figure 4.10 – This is the ground truth image for the real-world results, the image is taken
under the same lighting, ISO and white balance as the underwater images.

Patch Index 1 2 3 4 5 6

Original Colour

Colour Corrected

Ground Truth

Table 4.3 – The performance of the colour correction for Figure 4.7d compared to the ground
truth image (Figure 4.10) taken out of water under the same lighting, ISO and white
balance.

of-View (FOV) and the distance was measured from the camera to the colour target. In

addition to compensating for scene structure, vignetting is also taken into account using the

cosine-fourth rule [111]. A comparison is done qualitatively against the greyworld method

for colour correction.

For the proposed system a series of spectrometers were installed aboard the AUV and on the

support surface vessel. Figure 4.14 shows the positioning of these spectrometers. The two

upward looking spectrometers collect the downwelling irradiance at two different locations;

on the surface before the light enters the water (support vessel mounted) and as the surface



CHAPTER 4. IN-SITU WATER CORRECTED IMAGING 95

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

1

2

3

4
5

6
7

8

9

10
11

12

13

14

1516

17

18

Error vs Std. Dev. for Red Channel

Error from ground truth

S
ta

n
d

a
rd

 D
e

vi
a

tio
n

 o
f 

e
rr

o
rs

 f
o

r 
p

a
tc

h

(a) Red Channel
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(b) Green Channel
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(c) Blue Channel

Figure 4.11 – Each scatter plot is for analysis on a different colour channel. Each scatter plot
shows error versus standard deviation. Error refers to the distance in 8-bit RGB colour
coordinates between the ground truth and the colour corrected panel for the respective
colour channel. The standard deviation refers to the deviation of the errors for a patch,
with units again in 8-bit colour coordinates. An ideal correction would be placed close to
the bottom left corner (0,0). The numbers on the plots correspond to the respective patch
in Tables 4.3 - 4.5.
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Figure 4.12 – This shows the error in CIE Lab colour space, the further from the origin the
greater the chromatic error. The units are in the 8-bit Lab colour coordinate space.
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Patch Index 7 8 9 10 11 12

Original Colour

Colour Corrected

Ground Truth

Table 4.4 – The performance of the colour correction for Figure 4.7f compared to the ground
truth image (Figure 4.10) taken out of water under the same lighting, ISO and white
balance.

Patch Index 13 14 15 16 17 18

Original Colour

Colour Corrected

Ground Truth

Table 4.5 – The performance of the colour correction for Figure 4.7b compared to the ground
truth image (Figure 4.10) taken out of water under the same lighting, ISO and white
balance.

light (sunlight and skylight) passes the vehicle (AUV mounted). Further details of these

spectrometers are provided in Sections 4.3.1 & 4.3.2.

4.3.1 AUV upward looking spectrometer

An upwards looking spectrometer was installed on the top of the AUV for collecting the

downwelling irradiance. This data along with the data from the surface based spectrometer

was used to create the water model. This spectrometer sampled the sun and sky light

penetrating down through the water column from the surface above. The signal received

by this sensor is limited by depth and consequently sensor SNR, beyond a certain depth at
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Colour Corrected Corrected Uncorrected Uncorrected
channel mean error std. dev. of error mean error std. dev. of error

Red 11.5 19.2 28.8 17.1
Green 19.3 20.2 0.1 0.2
Blue 6.7 7.1 1.1 2.1

Table 4.6 – This summaries the errors and standard deviations of the colour correction process
for patches 1-6. The patches are shown in Figure 4.3. A good correction should have even
colour errors across the colour bands (Red/Green/Blue).

Colour Corrected Corrected Uncorrected Uncorrected
channel mean error std. dev. of error mean error std. dev. of error

Red 6.1 10.9 16.3 17.9
Green 7.9 10.5 8.6 11.3
Blue 7.8 16.6 6.7 14.8

Table 4.7 – This summaries the errors and standard deviations of the colour correction process
for patches 7-12. The patches are shown in Figure 4.4. A good correction should have even
colour errors across the colour bands (Red/Green/Blue).

a given water clarity the sensor will not receive enough light for a reasonable signal.

The spectrometer used was an Ocean Optics STS microspectrometer6 which was chosen

due to its high resolution and small form factor (40mm x 42mm x 24mm). The spectral

sensitivity range of the STS spectrometer was 335nm to 820nm. This encompassed all of

the visible spectrum with a small amount of near Infra-Red (IR) and near Ultra-Violet

(UV). The optical resolution (Full Width at Half Maximum (FWHM)) was 6nm, this was

dependant on the dispersion slit width size which was 100µm.

A 400µm fibre optic is permanently attached to the front of the STS spectrometer. A cosine

6http://www.oceanoptics.com/products/sts.asp

Colour Corrected Corrected Uncorrected Uncorrected
channel mean error std. dev. of error mean error std. dev. of error

Red 21.9 21.2 65.0 29.4
Green 24.9 20.9 10.3 11.9
Blue 9.0 6.0 26.6 29.1

Table 4.8 – This summaries the errors and standard deviations of the colour correction process
for patches 13-18. The patches are shown in Figure 4.5. A good correction should have
even colour errors across the colour bands (Red/Green/Blue).

http://www.oceanoptics.com/products/sts.asp
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Figure 4.13 – A photograph of Sirius the main AUV operated at ACFR

corrector7 was installed on the fore-optics, for integrating the incoming radiance. The cosine

corrector’s sensitivity is a function of the cosine to the nadir angle of the corrector.

In front of the cosine corrector is the window of the underwater housing. A 4mm thick

window was chosen due to the possible depths which the vehicle may descend to. The

material of the window was chosen to be UV fused silica which has excellent flat transmission

properties ( > 95%) over the wavelength range of interest.

To receive data from the AUV based upward looking spectrometer a custom driver was

written in C to interface with the Lightweight Communications and Marshalling (LCM)

logging system [95] of the vehicle. Communication between the sensor and the data ac-

quisition computer was over RS-232. As the spectrometer was in a different housing to

the downward facing spectrometer it was impracticable to link up a trigger line for this

spectrometer. As a result triggering was done in software at a sample rate of approximately

1Hz, (similar to the camera system). Synchronisation was implemented in post mission

processing.

7Ocean Optics CC-3: Opaline glass, 180◦ FOV, 350-1000nm wavelength range
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AUV Upward Looking Spectrometer

Downward Facing SpectrometerStereo RGB Camera

Surface Upward Looking Spectrometer

AUV

Surface Vessel

Strobes
Motion of AUV

previous measurements future measurements

Air-water interface effects

Figure 4.14 – Layout of the designed system showing the placement of the upwards looking
spectrometers to characterise the water column and the co-location of the stereo camera
and downwards looking spectrometer for benthic habitat mapping.

An auto-gain functionality was implemented in the interface driver to adjust integration

time to a suitable signal level. This was done every 30secs (or user definable time period)

taking the mean of the signal across the visible spectrum, and scaling the integration time

by the ratio of measured mean to a user definable mean (essentially ensuring a certain

power level). There were also checks to ensure the signal did not saturate and to ensure

the integration time did not change too quickly. This system worked well and produced

balanced signals which were neither saturated nor at noise level. This auto-gain system was

implemented in the code for all of the spectrometers.
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4.3.2 Ship-borne upward looking spectrometer

To measure the irradiance before it entered the water an upwards looking spectrometer on

the support vessel on the surface was installed. This spectrometer was mounted in the zenith

position in an unobstructed high vantage point on the ship. The sensor was identical to the

upward facing spectrometer on the AUV: an Ocean Optics STS micro-spectrometer, with

the same fore-optics (cosine corrector) and was mounted inside a waterproof housing with

an acrylic window. An acrylic window is quite comparable to a Quartz glass window within

the visible spectrum. The acrylic window starts to heavily attenuate light in the near-UV

spectrum. As this is outside of the wavelengths easily passed by water it is considered a

negligible trade-off. Further detailed analysis of the transmission of an Acrylic window is

provided in Section 4.4.3.

The spectral data is logged to a ship based computer over RS-232 serial using a custom

Python-based driver. An auto-gain system was implemented in the device driver similar

to the one on the AUV spectrometer (see Section 4.3.1). The time on the surface data

logging computer was synchronised with the AUV’s onboard computer preceding each dive.

The data acquisition system was also logging spectra at approximately 1Hz. Position, roll,

pitch and heading were recorded from an Inertial Measurement Unit (IMU) mounted on

the support vessel, these were sampled at 10Hz.

4.3.3 Limitations

Imaging underwater whether it be in the hyperspectral or traditional trichromatic domain

presents similar challenges, particularly in gathering sufficient light. The selective absorp-

tion of the water means a lot of the light energy was lost. One method to increase the

SNR would be to increase the integration time of a Hyperspectral Imaging (HSI) camera;

(this would be analogous to a longer shutter speed on a camera) which would result in

spatial blurring of the image due to the movement of the AUV. So having a higher spatial

resolution would not achieve much except long blurred streaks of the substrate.

The illumination of the scene had limited spectral bandwidth; the strobes on the AUV

were LEDs, although chosen to have a broader spectral profile than standard LEDs, the

illumination profile was heavily diminished by 700nm (near IR) (see Figure 4.23). The solar

illumination below 2-3m has lost almost all of the flux in this region too. However there is not
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much information that can be inferred if information was known anyway. Photosynthesising

organisms will have a distinct absorption at 675nm followed by a sharp IR reflectance after

675nm. This absorption band is enough to characterise this type of pigment [115].

4.3.4 Extended water model

The upward looking spectrometers onboard the AUV and above the surface on the support

vessel were used to gather information about the optical attenuation properties of the water.

This method was the same as was introduced in the test tank and Clovelly experiments.

These attenuation properties encapsulated both the scattering and absorption of the water

as well as the constituents within it. All the parameters estimated in the extended water

model are visually presented in Figure 4.15.

Due to the complex nature of the air-water interface the surface spectrometer measurements

cannot be used without first compensating for the surface effects. These effects will vary

vastly with time of day, wind speed and tilt of the vessel. Onboard the support vessel a

Novatel ProPak G2 IMU and GPS receiver was mounted. They were sampling at 10Hz,

collecting the latitude, longitude, altitude, roll, pitch and heading of the support vessel.

The position of the sun (azimuth and zenith) can be obtained from time, date, position and

altitude [172]. Measurement of the ship’s orientation is important due to it’s continuous

movement and the spectrometer’s cosine corrector was sensitive to light as a function of the

cosine of the angle of the incoming light flux to the nadir of the optical axis of the sensor.

Using the theory of air-water interface modelling presented in Section 2.2.2.1. The model

took into account several factors which influence the passage of light through the water

column. These factors included: refractive index, entry angle (angle of the sun), reflections

off the surface of the water, roughness of the water’s surface due to wind.

The refractive index of the water is a function of wavelength, salinity and temperature. The

salinity and temperature of the water were continuously collected from a conductivity and

temperature sensor (Seabird SBE 37-SI MicroCAT ) on-board the AUV. Using Snells law

Equation (2.4) the exit angle into the water can be modelled. Then the reflected component

at the surface can be computed using the Fresnel equation Equation (2.5).

Wind induced surface disturbances can also influence the amount of surface reflection. Wind

measurements for the experiment were collected from an Australian Institute of Marine
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Upward facing
spectrometer

Imaging Platform

Figure 4.15 – This shows the complete parameters obtained for modelling for the air-water
interface, as well as the parameters for resolving the seafloor spectral reflectance.

Science (AIMS) offshore weather station at Davies Reef (18.83S, 147.63E)8 which was close

to the mapping sites. To convert the spectrometer readings into the same units as each other,

firstly the radiometric calibration is done (Section 3.3) then the readings are transformed

accordingly.

Through this process a measurement for the diffuse downwelling attenuation coefficient Kd

was obtained Equation (4.1). A new Kd was gathered for each spectral reading measurement

8http://data.aims.gov.au/aimsrtds/station.xhtml?station=4

http://data.aims.gov.au/aimsrtds/station.xhtml?station=4
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(approximately once a second). This allowed the water model to adapt to changes in the

environmental conditions both in the water column above the imaging platform and above

the water. These changes include the position of the sun and weather/cloud conditions.

This does become a consideration when used for AUV surveying missions. The length of

an AUV survey mission can last for 8-10 hours, over which time the conditions above the

water will change dramatically.

The weather or water conditions were not expected to change rapidly within a second or

even within 30 seconds, but due to noise in subsequent measurements of the attenuation co-

efficient Kd temporal smoothing was needed. So the attenuation coefficient needs smoothing

not only in the time domain but also in the frequency domain. The AUV upwards looking

spectrometer was susceptible to low signal noise in the fringe regions of the visual spectrum

where the passage of light is considerably attenuated. For the data smoothing a Savitzky-

Golay filter [174] was used. This is commonly used in HSI processing and is achieved by

fitting successive subsets of the spectra with a low-degree polynomial. The major advantage

of Savitzky-Golay filtering over other smoothing techniques is that it removes noise while

preserving the amplitude and shape of features within the data (within the limits of the

width of the fitted polynomial).

4.3.4.1 Surface lensing effects

In the air-water interface model surface disturbances such as waves and the resultant lensing

effects which ensue are not compensated for. These optical effects are often observed on the

seafloor in shallow regions and are characterised by moving lines and regions of light and

dark. These are commonly referred to as caustics [128].

As part of the calibration routine for the USBL (sensor used for the localisation of the AUV);

the AUV remains in the same position at a depth of approximately 25 metres, for 20 minutes.

To see if there were visible caustics in the spectral data, the AUV based upward looking

spectrometer data was examined over the 20 minutes period. A Fast Fourier Transform

(FFT) was performed on one of the spectral bands in the ‘green’ section of the visible

spectrum, this is shown in Figure 4.16. The same band was examined in the downward

looking spectrometer data, as well as readings from the depth sensor, altitude recorded by

the DVL and the motion of the ship. The FFT on the ship’s tilt and roll gave the wave
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period, which was found to be 5.9 seconds. This feature was further confirmed to be wave

motions from the wind data. The wave period was modelled based on the wind data (wind

speed = 8.5 metres/second) at the time and location of the measurements [151].

In the depth, altitude and downward spectrometer data an oscillation was found with a

period of 13 - 14 seconds, this was traced to be the period of the control system of the

AUV maintaining the constant altitude for the 20 minutes. No oscillations in the upwards

looking spectrometer data were seen at either wave nor vehicle motion frequencies. The

reason caustics were not seen at this depth is because the scattering properties of the water

have heavily diffused the downwelling light. It should be noted that this only applies in

this situation and dataset. In a shallower area the downwelling light may not have fully

diffused and so some temporal smoothing or equivalent may need to be applied. In other

studies at shallower depths surface effects were found to influence the ability to make reliable

measurements[140].

4.3.5 AUV imagery colour correction results

An AUV survey was conducted over a coral shoal at Pakhoi Bank (+147.883◦N , −19.441◦E),

on the GBR, Queensland, Australia (17th December 2013, 14:02 - 16:40). This was a coarse

grid transect with approximately 100m in-between parallel grid lines. A map showing the

path and bathymetry of the survey is shown later in Chapter 5 - Figure 5.4. This was a long

mission where 14,168 stereo pairs of images and corresponding spectrometer readings were

taken. The mean depth was 27.1m and mean altitude of the vehicle was 2.2m. Typically the

AUV runs at an altitude of 2m, but this will vary as it passes over undulating terrain. This

was one of many surveys conducted over small shoals on the GBR approximately 60kms

off the coast of Townsville. This particular survey was chosen due to its wide variety of

substrate types present.

Figures 4.17 - 4.19, show the results for using the proposed method on AUV imagery. (a) is

the original image, (b) is the depth map outputted from the stereo camera generated mesh,

(c) is colour correction using the traditional greyworld correction technique and (d) is the

result from our proposed method. The images are of typical coral reef structures as well as

a flat seagrass environment.



CHAPTER 4. IN-SITU WATER CORRECTED IMAGING 106

Frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

|Y
(f

)|

0

100

200

300
Surface ship roll FFT

Frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

|Y
(f

)|

0

2

4

6

8
Alt + Depth of AUV FFT

Frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

|Y
(f

)|

0

5

10

15

20
Depth of AUV FFT

Frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

|Y
(f

)|

0

20

40

60

80
Spec Up at 542nm FFT

Frequency (Hz)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

|Y
(f

)|

×105

0

0.5

1

1.5

2
Spec Down at 542nm FFT

Figure 4.16 – The top plot shows an FFT of the roll of the surface ships movements, the 2nd
and 3rd are of the depth and altitude + depth of the AUV at depth. The 4th plot is of
data at 542nm for the upwards looking spectrometer on the AUV and the last plot is a
FFT plot of the downwards looking spectrometer at 542nm on board the AUV. This figure
shows that the motion of the water (shown by the ships motion) does not influence the
optical readings of the AUV below. The optical readings are more influenced by variations
in the movement of the vessel in the water column.
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(a) Original (b) Depth Map

(c) Greyworld corrected (d) Our method corrected

Figure 4.17 – This coral scene demonstrates the colour correction for large change of depth
from the camera due to large variations in the structure of the scene.

AUV colour correction performance

Earlier colour correction results from a test tank and real-world scenario show the validity

of the proposed correction method. Instead of manually measuring the distance to the scene

the stereo camera is used to resolve the distance from each point in the scene to the camera.

Given the lack of ground truth, it is hard to give a proper quantitative evaluation of the

colour correction performance. However qualitatively it can be seen that scene colour is

more ‘natural’ looking and does not have the colour cast which was obvious on the original.

The greyworld correction does quite a good job of removing the colour cast however is

ignorant to scene structure. This results in elements further away still maintaining a blue

colour casting. The inverse also applies to objects close by which appear much brighter

than the surrounding substrate which can be seen in Figure 4.17. There is a broad range
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(a) Original (b) Depth Map

(c) Greyworld corrected (d) Our method corrected

Figure 4.18 – This demonstrates clearly the use of the 3D mesh for correcting the colour
and intensity balance in the image, the coral in the foreground on the greyworld corrected
image is much brighter than the background, whereas our method produces a more even
balance.

of depths in the scene, it covers 1.8m - 2.7m. From these distance variations it can be seen

that the correction method can compensate for a variety of distances.

The naive greyworld method also does not take into account the vignetting effect which the

proposed method also compensates for using the cosine fourth correction. The vignetting

effect can be seen in a flat scene as in Figure 4.19. In this image the edges appear much

darker than the foreground, however this is compounded by the greyworld method not

compensating for the scene structure. The proposed method will allow for more consistent

and accurate colour in underwater colour distorted imagery. The colour correction method

also has the advantage over conventional methods because it utilises a water attenuation

model which is updated at the time of every image.
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(a) Original (b) Depth Map

(c) Greyworld corrected (d) Our method corrected

Figure 4.19 – Vignetting Correction for a flat scene containing seagrass

4.4 Deriving spectral reflectance

In hyperspectral imaging, deriving the material reflectance of objects in a scene allows for

their classification. The spectral reflectance was obtained from Equation (4.6) where Eu(λ)

is the reflected upward irradiance from the scene which was illuminated by the downwelling

irradiance at the scene Ed(λ).

R(λ) =
Eu(λ)

Ed(λ)
(4.6)

Eu(λ) can be measured by an in-situ spectral device facing downwards. If the downwards

facing device is at a distance above the scene spectral correction needs to be undertaken to

invert the water attenuation effects. This correction methodology will be covered further in

Section 4.4.2. Ed(λ) can come from a variety of sources, this could be the ambient illumi-
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nation from above the water. In the case of imaging from an AUV, additional illumination

might come from an artificial source on the platform.

4.4.1 Illumination at scene

A model of the scene illumination needs to be obtained to be able to recover spectral

reflectance. As previously mentioned the upwards looking spectrometers were used for

generating a model of the water. The upwards spectrometer on the in-situ platform may

also be used to measure the contribution of ambient illumination coming from above the

imaging platform.

In order to derive the ambient illumination at the scene level Equation (2.1) was used (Beers

Law),

Ed(λ) = Eδ(λ)e(−Kd(λ)Λ) (4.7)

where Eδ is the downwelling irradiance measured by the upward looking spectrometer on

the imaging platform, Kd is the attenuation coefficient curve at wavelength λ and Λ is the

altitude of this spectrometer from the scene. This results in the ambient illumination at

scene level.

4.4.2 Reflected irradiance at scene

To determine the spectral reflectance of the materials in the scene, the reflected light from

the scene was obtained with a downward facing spectrometer. To convert the measured

spectra to what was reflected at scene level, the inverse of Beers law Equation (2.1) as

shown in Equation (4.8) was used.

Eu(λ) =
1

e−Kd(λ)Λ
Eσ(λ) (4.8)

where Eu(λ) is the upwelling irradiance at scene, Kd is the attenuation coefficient curve

and Λ is the altitude of the vehicle, Eσ is the irradiance measured by the downward looking

spectrometer onboard the imaging platform.
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4.4.3 Spectral imaging from an AUV

Using the AUV setup introduced in Section 4.3, a spectrometer was co-located with the

downwards facing stereo camera. The FOV calibration was undertaken on this spectrometer

(Section 3.2) as well as a radiometric calibration (Section 3.3). Figure 4.21 shows a photo

of the window of the camera housing showing the positioning of the downwards facing

spectrometer co-located with the stereo camera.

A spectrometer was chosen for the downward looking spectral measurements over a HSI

camera for a few reasons: a spectrometer can achieve higher SNR due to larger pixel wells

on the receiving imaging sensor and will also gather more light due to a larger swath.

Spectrometers are also much smaller, use less power, less data storage requirements and are

cheaper, but at the cost of spatial resolution. In the current configuration, pairing a stereo

camera with a HSI camera would not be possible. At the moment, the strobes fire and

the cameras trigger at the same time, acquiring the whole image. With a push-broom HSI

camera this would result in only acquiring a single line of spectral measurements not an

image. To acquire an image over the same area constant illumination would be needed. This

would be very power intensive and unfortunately an AUV can only carry so much power.

This may suit a Remote Operated Vehicle (ROV) which are often tethered to a support

vessel. The other form of HSI camera is an Acousto-Optical Tunable Filter (AOTF) camera.

Under the same strobe illumination this HSI camera would capture the whole scene at once

but only at one narrow wavelength. Hundreds of flashes or constant illumination would

be needed to capture an entire spectral image. The AOTF modality also has an issue of

imaging from a moving platform. Each frame would be displaced from the previous. These

frames could be stitched together later, however parallax effects could cause issues if moving

over a complex 3D scene.

To implement the proposed system the stereo camera housing on the AUV was re-engineered

to fit an Ocean Optics USB 2000+9 spectrometer (dimensions: 89.1mm x 63.3mm x 34.4mm).

The USB 2000+ collects 2048 spectral bins with a FWHM of 7.7nm. It is sensitive in the

spectral region of: 340nm - 1032nm, and it achieves this through a 200µm entrance slit. A

high sensitivity CCD (Sony ILX-511B 10) was installed in the spectrometer to account for

low light levels when imaging underwater. The design of the Ocean Optics USB 2000+ is

9http://www.oceanoptics.com/products/usb2000+.asp
10http://www.oceanoptics.com/technical/ILX511B(E).pdf

http://www.oceanoptics.com/products/usb2000+.asp
http://www.oceanoptics.com/technical/ILX511B(E).pdf
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Figure 4.20 – The internals of the camera pod, at the top is the two camera system, which
make up the stereo pair, and below is the spectrometer (Ocean Optics USB2000+). The
spectrometer is connected by a fibre optic to a collimating lens in the aluminium bracket
shown in the picture.
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Stereo Camera Pair

Downward Facing Spectrometer

Figure 4.21 – This is a view of the camera housing window and shows the positioning of the
spectrometer’s aperture (small hole) with respect to the lenses of the stereo cameras (two
larger holes). The downward facing spectrometer used was an Ocean Optics USB 2000+
with a wavelength range of 340nm - 1032nm, and a FWHM of 7.7nm.

a Symmetrical crossed Czerny-Turner type architecture. The USB 2000+ optical entrance

is connected via a 10cm fibre optic cable to a collimating lens11 co-located with the stereo

camera lenses at the window of the camera system (Figure 4.21). The fibre optic diameter

was chosen to be 400µm. Should a different quantity of light be needed in future revisions

a fibre of a different diameter can be installed. Figure 4.20 shows the internal components

of the camera pod. Here the cameras and spectrometer can be seen.

The collimating lens on the fore-optics of the system allows for the focusing of the FOV of

the spectrometer to a sharp edged spot. The lens was focused through sliding a lens away

or towards the tip of the fibre, with a grub screw locking the position of the lens in place.

Knowledge of the FOV of the spectrometer is important for co-registration and subsequent

use with the stereo camera system. The details of determining the FOV and the spatial

co-registration were detailed in the previous chapter (Section 3.2).

The cameras used for the stereo pair were Allied Technologies Prosilica GC1380 ethernet

cameras. One camera was mono and the other colour in a Bayer configuration. More

technical details are provided in Section 3.4.3.4.

Another consideration in combining the two sensors was synchronisation of acquisition. The

cameras in the stereo imaging system, the spectrometers and the strobes were all triggered

11Ocean Optics 74-VIS: 350-2000nm wavelength range, f/2 BK-7 glass
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together on the same trigger line. This method ensured they both saw the same scene.

The strobes are on for approximately 7-11ms, providing enough light for a well balanced

exposure of the cameras and spectrometers, while minimising motion blur. Communication

to the spectrometer is via RS232 serial. Custom software was written in C to interface the

sensor data into the LCM [95] vehicle logging system.

The spectrometer has the ability to integrate the light falling on the CCD over a user

definable period. This acts similarly to controlling the shutter period on a conventional

camera.

Despite the wide bandwidth of the spectrometer there are limitations on the wavelengths

of light which may enter the optical system. These restrictions come from the windows of

the underwater enclosures and secondly from the optical transmission of the water. The

window used on the camera housing was made of acrylic. The transmission was near flat

at 91-94% between 400-800mm, but it did not pass light below approximately 400nm. The

measured transmission curve is shown in Figure 4.22.
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Figure 4.22 – The optical transmission curve of the acrylic window of the camera housing
onboard Sirius
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4.4.3.1 Illumination modelling on an AUV

Illumination modelling on the AUV is an extension of the illumination modelling introduced

in Section 4.4.1. In addition to ambient illumination to the scene, the AUV carries LED

strobes for additional light. However the strobes (which was the major source of illumination

to the scene) can not be directly isolated and measured for each frame. So an illumination

model was created for each frame based on the ambient light measurement and a strobe

model based on the altitude from the scene.

To generate a strobe model, measurements of a sandy substrate were taken at an altitude

of 1.9 metres and depth of 32.3 metres. A series of measurements of the downwards spec-

trometer with the strobes on were acquired. This gathered the ambient and the strobes

contribution, and then a series of measurements with strobes off were measured (just the

ambient contribution). Both surface and AUV upward looking spectrometer readings were

simultaneously collected so a model for the attenuation of the water was obtained. The as-

sumption was made that the spectral reflectance of the sand in the first set of measurements

(strobes on) is the same as the sand in the second set of measurements (strobes off). This

is so the strobe contribution can be isolated and spectral profile obtained. This assumption

was fair as both measurements occurred in the same location. The spectral profile of the

LED strobes used on board the AUV used is shown in Figure 4.23.

As the AUV passed over different benthic substrates there was variance in the altitude. The

vehicle aims to maintain an altitude of 2m but has limits on how quickly it can descend

and ascend over terrain while still maintaining a certain forward trajectory. As a result

the illumination model and subsequently the strobe model needed to accommodate these

variances. Figure 4.24 shows the physical positioning of the strobes with respect to the

seafloor and imaging package. This figure is from the side perspective of the vehicle, looking

length ways along the side of the AUV.

The first step was calculating the strobe angles (θf & θr) from strobes to the scene then

calculating the path lengths for both strobes (pf & pr). The angle variance Equation (4.9)

of the strobes was modelled using a cosine model. The light disperses spherically, but

the scaled variance from the strobe illumination model taken in the strobe calibration was

required. So spherical spreading Equation (4.10) can be rewritten to give the ratio Sratio

of light power of the new distance to the power at the calibration distance Equation (4.11).
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Figure 4.23 – The spectral profile of the LED strobes onboard the AUV used in this work.
This measurement was taken in air. Unit on the vertical axis is in raw digital count from
the spectrometer.

Where: L0 is the light intensity at the strobes, LΛ is the light intensity at distance Λ, pcalf

& pcalr is the path length for the calibration for both front and rear strobes, and pf & pr

is the path length to the scene from the strobes for front and rear for the current altitude

measurement.

V = cos(|θ − ψ|) (4.9)

LΛ =
L0

Λ2
(4.10)

Sf =
pcal2f
p2
f

Sr =
pcal2r
p2
r

(4.11)

Attenuation due to the water is also taken into account using Equation (2.1), where the

variation from the calibration altitude was considered. If the altitude was less than the
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Figure 4.24 – This shows the layout of the imaging pod and the strobes on our AUV. This is
important for modelling the strobe illumination: a - altitude of vehicle & imaging pod, pf
& pr - strobe path length from strobe to scene for front and rear strobes respectively, θf
& θr - illumination angle as a function of altitude and linear offset on the AUV, ψf & ψr

- fixed tilt of the strobes on the vehicle.

calibration altitude the reciprocal of Equation (2.1) was taken, otherwise Equation (2.1)

was used to attenuate the strobe contribution to scene level. This variation due to water

attenuation was defined as Kf (λ) & Kr(λ) at wavelength λ. Then combining these varia-

tions Equation (4.14) from the strobe calibration model (Bcal) it was assumed the spectral

profile of the front Equation (4.12) and rear strobes Equation (4.13) were nearly identical.

The final strobe contribution to the scene illumination EB(λ) is defined in Equation 4.15.

scalingf (λ) = Vf × Sf ×Kf (λ) (4.12)

scalingr(λ) = Vr × Sr ×Kr(λ) (4.13)

scaling(λ) =
scalingf (λ) + scalingr(λ)

2
(4.14)

EB(λ) = scaling(λ)×Bcal (4.15)

The strobe contribution at scene level is done in a similar way, Eb(λ) Equation (4.15)

was attenuated using Equation (2.1). This derived the strobe contribution at scene level.
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To then obtain the total downwelling irradiance at scene Ed(λ) the strobe and ambient

illumination at scene were added together.

Ed(λ) = (EB(λ) + Eδ(λ))e(−Kd(λ)a) (4.16)

In the modelling of the strobe illumination some assumptions were made. Shadowing by the

AUV over the scene was not investigated in great detail and was assumed to be the same

as what was seen in the in-water calibration process. In the future it might be worthwhile

investigating further shadowing effects.

4.4.4 Spectral reflectance results

In section 4.3.5 results were presented for correcting the colour of AUV imagery from a

surveying mission of a reef on the GBR. In this section hyperspectral reflectance results are

presented from the same surveying mission.

In the presented results (Figures 4.25 - 4.29) the colour image on the left (a) showing a

red circle indicates the FOV of the spectrometer, to the right (b) is the derived spectral

reflectance for that sample. (c) this shows the upwards looking spectrometer readings, on-

board the AUV and above the water. (d) shows the resultant attenuation curve derived

from the upwards looking spectrometer readings, note the decrease beyond 625nm is due

to low signal/noise. By examining the spectral reflectance more information can be ex-

tracted about the pigments present within the sample. It can be seen in Figure 4.26 that

there is more green pigment (475-575nm) in the Montipora than the more distinctly brown

colouration of the Acropora in Figure 4.25. The distinctive blue tips of the Pocilloporidae

Seriatopora (Figure 4.28) are seen as a small peak in the spectral reflectance around 480nm.

Samples other than coral were also imaged; the distinct chlorophyll b absorption in the near

IR at 675nm can be seen in a measurement of seagrass (Figure 4.29).

Figures 4.30 - 4.31 show the variance of the spectra for a particular class. These class labels

have been hand labelled by a coral expert. The white line indicates the median of the

spectra for that class. Then the different shaded regions show the percentage of spectra

which fell in that region. The black indicates the middle 25% about the mean, dark grey

is the middle 50%, medium grey - 75% and light grey - 95%. Tighter regions indicate less
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variance between the measurements. For example the Sand shown in Figure 4.30 has quite

close regions. Sand is particular even as there is not a lot of variance between different

readings for sand. Unlike Soft Coral shown in Figure 4.31.

To demonstrate the effectiveness of the proposed method for recovering the reflectance spec-

tra of the spot on the seabed, a spectral library was created from select data points in the

survey, labelled by an expert, and classification was performed on the dataset. This will be

shown in Section 5.2. The materials with larger variances often resulted in poorer classifi-

cation performance. As will be shown in the classification section, Sand and Seagrass have

very good classification accuracies as a result of low spectral variance and good interclass

separability.

(a) RGB image of the coral imaged, red circle
is the FOV of the spectrometer
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(b) Spectral Reflectance of the coral
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Figure 4.25 – Spectral reflectance of Agropora Cytherea coral
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(a) RGB image of the coral imaged, red
circle is the FOV of the spectrometer
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(b) Spectral Reflectance

Figure 4.26 – Spectral reflectance of Montipora coral

(a) RGB image

450 500 550 600 650
0

5

10

15

20

25

30

35

40
Spectral Reflectance

Wavelength (nm)

R
e
fle

ct
a
n
ce

 %

(b) Spectral Reflectance of the sand

Figure 4.27 – Spectral Reflectance of the sand

(a) RGB image
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(b) Spectral Reflectance of the sample

Figure 4.28 – Spectral reflectance of Acropora coral from our collected dataset
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(a) RGB image
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(b) Spectral Reflectance

Figure 4.29 – Spectral reflectance of seagrass

Challenges in AUV spectral results validation

During the AUV survey missions the vehicle was operating at depths over 25m. This means

it is dangerous and a logistically difficult task to obtain ground truth data for the areas being

mapped. One method of demonstrating the validity of the reflectance results is through

expert labelling with further classification to examine spectral consistency. The other is

through comparison of the resultant spectra obtained through the proposed method to that

published in the literature [166]. These spectra from the literature were also collected on

the Great Barrier Reef near Heron Island, approximately 720km from our survey site.

A comparison is complicated due to the different methods of obtaining the spectra. In

this work the AUV is measuring from a distance of 2 metres whereas the result cited in the

literature involve a measurement from approximately 5cm (to be then used for classification

from aerial heights). The literature methods measuring at 5cm do not take into account

IOPs. The degree to which the literature measurements were altered by this small body of

water is unknown and unaccounted for.

For each of the measurements in this work the degree of purity of material varies. Leiper

et al.[124] makes the comment that spectra measured in-situ are only valid for the data

set for which they were acquired because much of the light and water interactions were

not measured. It has been observed that in the upper green section of the spectrum (550-

600nm) the spectra from this work tend to be more attenuated than that of the literature.

This was most likely due to the correction processes adjusting more heavily than should be

performed. This however is not a big issue due to the whitening process before classification.
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Figure 4.30 – Spectral reflectance of various benthic types, the shaded regions show the vari-
ance of the spectra in the class sets, and the white line shows the mean of the data. Light
gray represents 2.5 - 97.5% of the data, medium grey: 12.5 - 87.5%, dark grey: 25 - 75%
and black 37.5 - 62.5%. n denotes the number of samples of that class.
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Figure 4.31 – Spectral reflectance of various benthic types, the shaded regions show the vari-
ance of the spectra in the class sets, and the white line shows the mean of the data. Light
gray represents 2.5 - 97.5% of the data, medium grey: 12.5 - 87.5%, dark grey: 25 - 75%
and black 37.5 - 62.5%. n denotes the number of samples of that class.
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As a result feature separability is still being maintained. In the other bands 400-550nm and

600-700nm it has been found that the spectra from this work match reasonably well.

For the mentioned reasons a comparison can be challenging. The validation of the spectra

has primarily been done in this work through the use of classification. A large number of

spectra were hand labelled by an expert. This labelling could be done because there was

corresponding colour imagery to match. From this labelling several classifiers were trained

and cross validation was performed. This test revealed how separable the spectral clusters

for a particular label are from other groups of spectra with different labels. This process is

revealed in much more detail accompanied by results in the next Chapter in Section 5.2.

4.5 Summary

In this chapter a method for colour correction was presented. This method uses a water

model parametrised by an in-situ optical system. The method was validated using three

different scenarios of varying realism and control. The corrections were found to perform

well for a test tank setup and in an outdoor ocean swimming spot with a single distance

to the scene. The performance was evaluated by comparing the correction of the colour

of a colour chart to an image of the same chart taken out of water but under the same

illumination.

The method was also implemented on an AUV. The AUV had a stereo camera which deliv-

ered 3D scene information. The colour correction method was able to utilise this structure

information to allow for structure invariant colour correction. The 3D structure informa-

tion produced better results for complex scenes than making a single distance assumption.

Results were presented which showed good performance over a range of scene structures.
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The water attenuation correction was then applied to hyperspectral data from a spectrom-

eter mounted downward towards the seafloor on an AUV. The use of a downwards facing

spectrometer allowed for good signal-to-noise while not sacrificing spatial resolution too

heavily. It was also easier to implement and cheaper than a full hyperspectral camera given

the restrictions on size, power for the light source, onboard storage/processing power and

cost.12 Spectral reflectance was recovered using models for the scene illumination and wa-

ter. The ability to recover spectral reflectance of the seafloor was demonstrated with several

examples from an AUV coral reef mapping expedition over a coral shoal on the GBR.

Above water hyperspectral imaging of the ocean benthos presents some challenges, includ-

ing limited spatial resolution, air-water interface artefacts, weather reliance, time of day

dependence, and depth limitation due to the attenuation of the water column. The ability

to image in the hyperspectral domain in-situ largely overcomes these limitations. An AUV

is an ideal platform for this application. It is able to travel to depths beyond the euphotic

zone. Also it’s operation is not weather dependant and time of day dependence is eliminated

due to self-powered on-board illumination. It also images 2m off the seabed so it achieves

excellent spatial resolution and minimises the optical attenuation from the water.

12Comparing the Ocean Optics USB2000+ to a small hyperspectral camera available on the mar-
ket (Headwall Photonics - Nano-HyperSpec http://www.headwallphotonics.com/spectral-imaging/

hyperspectral/nano-hyperspec/). Cost: USB2000+ - $5000 vs Nano-HyperSpec $100k, resolution: 16-
bit vs 12 bit, data per frame: USB2000+ - 4096 bytes vs 230,400 bytes, power: 1.25W vs 10W, volume: 696
cm3 vs 194 cm3, pixel bin size: 14µm× 200µm vs 7.4µm× 7.4µm.

http://www.headwallphotonics.com/spectral-imaging/hyperspectral/nano-hyperspec/
http://www.headwallphotonics.com/spectral-imaging/hyperspectral/nano-hyperspec/


Chapter 5

Spectral-based classification &

mapping

5.1 Introduction

In the previous chapter a model of the water column was developed using upwards looking

spectrometers. This allowed for the correction of the downwards looking spectrometer data.

An illumination model could also be estimated which allowed for the recovery of the spectral

reflectance of a small patch on the seabed. Using this same water model, imagery from a

126
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conventional colour camera in the Red-Green-Blue (RGB) domain could be corrected also

for the water’s attenuation effects.

In this chapter the spectral reflectance curves are brought together with the colour corrected

RGB imagery to create benthic habitat maps of large areas of the seafloor as surveyed by

an Autonomous Underwater Vehicle (AUV). The ability to resolve subpixel (hyperspec-

tral pixel) materials is also explored and new methods for informed spectral unmixing are

presented.

5.2 Spectral and spatial classification

In the previous chapter a method was presented for recovering the spectral reflectance of

measurements of the seafloor taken from an insitu platform. To demonstrate the effective-

ness of this method, a spectral library was created and subsequent classification performed

on the dataset. The dataset contained over 14,000 spectra and image pairs of which approx-

imately 1,400 images were hand labelled by a coral expert, Dr. Tom Bridge (James Cook

University, Queensland, Australia) [32–35]. The labels were a mixture of classes represen-

tative of the benthic stratum types present in the dataset. 10-fold cross validation [119]

was used for the training of the classifier. Several of the major supervised classification

techniques such as Support Vector Machines (SVM), Decision Trees, K-Nearest Neighbours

(KNN), Ensemble Boosting and Bagging were implemented.

The classifiers were initially trained only on spectral reflectance data. To improve the

performance of the classifier the spatial information provided by the imagery from the

stereo cameras was also used as well as the first and second derivative of the spectra. To

generate the spatial classifier features a Local Binary Pattern (LBP) was performed on the

disc of benthos encompassed by the spectrometer’s Field-of-View (FOV) (the calibration was

covered in Section 3.2). LBPs are a technique of deriving a descriptor for the texture of an

image [149] and have been used with good success in computer vision image classification

[20, 211]. LBP’s have two major adjustments parameters: the radius of the circle to be

evaluated and the number of points in that circle. LBPs examine how the chosen points

in the circle vary from the pixel under test (in the middle of the circle). Then the texture

gradient is examined from multiple angles to ensure it is rotationally invariant. The LBP

is performed for every pixel in a given image.
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Two LBPs were computed on the image spot which corresponded to the FOV of the spec-

trometer in the FOV of the stereo camera. One LBP had a radius of 1 pixel with surrounding

8 points and the other with a radius of 3 pixels with surrounding 8 points. This combina-

tion was chosen based on its success in the literature with classifying underwater imagery

from an AUV [21]. The histogram of both LBPs were added to the feature matrix for

classification. Feature selection was performed while training the classifier to ensure the

greatest inter-class variability in the feature matrix. Feature selection [65] is a computa-

tionally intensive process where different combinations of the features are removed with the

objective function being to maximise the performance of the classifier. When testing and

training, the dataset was whitened by subtracting the mean and dividing by the variance

at the feature level.
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Figure 5.1 – A histogram of the spectral features chosen as a result of the feature selection
process (post-feature selection). Also shown are the spectral feature prior to feature selec-
tion.

Feature selection was performed on the spectral and LBP features which encompassed 741

spectral bands from 415 - 680nm and the 2 LBPs: radius 1,8 points (1,8) and radius 3, 8

points (3,8) which made up 76 texture features. The best 200 features were chosen, of these
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Figure 5.2 – A histogram of the LBP features chosen as a result of the feature selection process.
Two LBP’s were implemented: one with a radius of 1 and 8 points, and the other a radius
of 3 with 8 points. Note there are two overlapping LBP features at 29 and 34.

187 were spectral features and the remaining 13 were LBP features.

Figure 5.1 shows a histogram of which spectral features were chosen (Post-feature selection).

This shows three spikes of spectral content, features around 430nm, 490nm and 570nm. This

indicates that the best feature separation with this particular dataset occurs around these

frequencies.

Figure 5.2 similarly shows a histogram of the LBP features. This shows which elements

of the LBP histogram were chosen for the two LBPs. The first (1,8) LBP appears to be

centred around index 22, whereas the (3,8) LBP appears to be centred lower, around 17.

This suggests the best texture features are physically fine or small textures.
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5.2.1 Classification performance

The performance of several classifiers were compared using LBP, Hyperspectral (HS) and

combined LBP & HS features in training and validating the classifier used in this work.

Table 5.1 shows these results. It was found that a Linear Support Vector Machine (SVM)

with HS and LBP features performed the best with a classification accuracy at 91.99% ±

2.32.

To provide a baseline for how colour can be used to classify substrate types, RGB was

included for comparison. The RGB imagery was corrected for water attenuation and just

the mean RGB values were used as features. RGB does surprisingly well given the low

dimensionality of the feature set. This is a rather naive feature as it does not contain any

texture information or a large degree of spatial information. RGB is not used in the HS

classification. It is only included for comparison.

Just using LBP it performs quite well using the Ensemble Boosting method with a correctly

classified rate of 82.38%. In comparison just using HS, it performs better (91.69%) than a

LBP using a Linear SVM, Ensemble Boosting also performs well for HS only classification.

When examining the combined HS + LBP the performance is not much higher than just HS

alone. The error margin is slightly larger as well, this may suggest some small disagreement

between the HS and LBP features. This makes sense given they are very different features,

one is hyperspectral reflectance while the other is image texture. The polynomial, sigmoid

kernel, and radial bases function SVMs, are all non-linear versions of the SVM algorithm,

what is interesting is they perform worse than the linear counterpart. The reason for this is

the high dimensionality of the HS data. With hundreds of HS features it can be linearised.

Table 5.2 shows the confusion matrix for the Linear SVM (LBP+HS) trained classifier.

A confusion matrix shows the true class of a data point versus the predicted class. The

confusion matrix can explain some reasons for a suboptimal classification: Coral rubble is

mostly predicted accurately (84.7%), however it is also predicted to be Algae, Acropora

Grandis, Other Corals and Acropora. This could be due to coral rubble being made up of

broken dead corals mostly covered in algae. Seagrass was sometimes misclassified (2.1%)

because images of seagrass also contain sand. Turf algae was misclassified as coral and

rubble (28%) because turf algae is often present over most underwater surfaces. Soft coral

was being misclassified as Acropora (39.3%) most likely because the process is picking up
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Classifier RGB LBP HS HS + LBP

Linear SVM 39.13% ± 0.51% 73.30% ± 1.79% 91.69% ± 1.75% 91.99% ± 2.32%
Polynomial SVM 39.13% ± 0.52% 39.13% ± 0.53% 88.41% ± 1.81% 88.48% ± 2.99%
SVM Sigmoid Kernel 39.13% ± 0.46% 39.13% ± 0.41% 71.32% ± 1.67% 71.40% ± 1.77%
SVM Radial Basis Fn 39.13% ± 0.48% 39.66% ± 1.02% 39.13% ± 0.54% 39.13% ± 0.34%
KNN 84.59% ± 1.47% 79.79% ± 3.67% 86.73% ± 1.91% 86.80% ± 1.13%
Ensemble Boosting 82.61% ± 2.07% 82.38% ± 2.42% 91.00% ± 2.28% 89.24% ± 2.56%
Ensemble Bagging 82.68% ± 1.13% 81.08% ± 3.22% 90.92% ± 1.49% 89.40% ± 1.30%
Decision Tree 84.67% ± 2.20% 78.72% ± 2.20% 88.56% ± 2.36% 88.02% ± 2.08%

Table 5.1 – Classification performance for the 1311 data points from the hand labelled data.
The performance from several different classifiers with feature selection performed are
shown. The table shows the results from using 10-Fold cross validation on the hand la-
belled data points. A linear SVM performed the best on a combination of hyperspectral
reflectance data (HS) and LBP. We can see from this table LBP does not contribute much
to the performance of the classification over just using HS. Classification results are shown
with ± the 1st standard deviation.

on a pigment common to most corals [77, 87] and the small number of samples of soft coral.

There will also be confusion due to the relatively large spatial coverage of the spectrometer’s

FOV. It will often cover more than one material. The spectrometer’s FOV has a diameter of

approximately 30cm when imaging the seafloor from a height of 2m. This spatial attribute

can also explain the poor performance in some classes. CCA, turf algae, encrusting coral,

soft coral and cyanobacteria performed poorly. Most of the time they are smaller than

the FOV of the spectrometer. This would result in spectral mixing. The material they

are mixed with will change and thus the spectra for these materials will not be consistent

leading to classification errors. To overcome this, either a finer spatial resolution is needed or

closer measurements of the substrate are needed. For the larger materials such as seagrass,

sand, coral rubble and Acropora they all perform well under the 10-fold cross validation

due to the reduction in spectral mixing. The limited spatial resolution can be a problem

for identifying these smaller materials in the scene. This leads to using spectral unmixing

to assist in classifying materials at the subpixel level which is explained ahead in Section

5.4.

5.3 Spectral mapping

Through the motion of the AUV a series of spectral measurements were built up along the

transect of the survey. The vehicle typically travels at 0.5m/s [204] and samples were taken

at 1.5Hz of both the stereo cameras and the spectrometer, with the scene illuminated by the
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CCA 6 0 0 0 6 0 2 2 2 0
Seagrass 0 502 3 1 0 1 1 0 0 0

Sand 0 11 455 1 0 0 0 0 0 0
Coral Rubble 0 0 4 61 4 0 1 1 4 6

Predicted Turf Algae 4 0 0 5 15 3 3 0 0 3
class Acropora 1 0 0 0 4 130 4 2 11 0

Encrusting 2 0 0 0 1 2 2 1 1 0
Sponge 0 0 0 1 0 2 0 9 1 0

Soft Coral 0 0 0 1 0 4 0 0 9 0
Cyanobacteria 0 0 0 2 2 0 0 0 0 12

class size (n) 13 513 462 72 32 142 13 15 28 21

% correctly
predicted 46% 98% 98% 85% 47% 92% 15% 60% 32% 57%

Table 5.2 – Confusion matrix for the classification model using a linear SVM with HSI and
LBP data. The model was trained using 10 fold cross-validation on the hand-labelled
dataset. CCA - Crustose Coralline Algae, Encrusting - Encrusting Corals. The major
classes: Seagrass, Sand, Rubble, Turf Algae and Acropora perform very well, the other
smaller classes do not, believed to be in part due to their small numbers to train the
classifier. These particular classes were rare in the dataset.

strobes at either ends of the AUV. Figure 5.3 shows the proximity of subsequent spectral

measurements over an area of reef. The red circles indicate the FOV of each spectrometer

measurement. An AUV mission typically is run in one of three configurations [157]: first

is a long single transect with a length in the order of several kilometres; secondly a broad

scale sparse grid with a size 500-1000m on a side, and thirdly for comprehensive coverage

the AUV conducts a ‘mow the lawn’ pattern in a dense grid patern. The grid is typically

of the order of 25m x 25m.

To visually demonstrate the classification of benthic material types, the labels obtained from

the classifier have been overlaid on a subset of the mosaicked colour corrected imagery. The

size and location of the circle is representative of the FOV of the spectrometer for that point

on the survey. This will give the reader a better visual intuition as to the performance of the

presented method. Figure 5.7a shows a section of the survey mission over a sand to seagrass

transition. This section of seafloor data was new to the classifier and so was not trained on.
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Figure 5.3 – This is a mosaic of a series of consecutive images showing the proximity of
subsequent spectral measurements over an area of reef. Red circle indicates the FOV of
the spectrometer measurements.

This demonstrates the typical classification performance by using the classifier trained on

other sections of similar substrate. The incorrectly classified labels have been denoted on

the image with a red asterisk. Some misclassification can be seen in Figure 5.7b of soft coral

(just after the sandy patch but before the Acropora) but besides this point, the classifier

manages to classify the rest of the scene quite accurately. It was found that the classifier

could label the major substrates with good accuracy, but small class sizes suffered. This

was also reflected in the confusion matrix, shown in Table 5.2. The reduced performance

on the minor substrates was due in part to the number of training samples in the model

(there were many more sand and seagrass samples than CCA). Figure 5.7c demonstrates

the classification performance over a different section of coral reef.
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Figure 5.4 – Spectral map from an isometric angle showing the altitude distribution of the
benthic types. The altitude has been amplified by a factor of 5 to demonstrate the class
distribution as a function of altitude further. The key for the class labels is on the left.
This dataset contains over 14,000 points, due to the size limitations of this medium, the
entire detail of classification can not be fully shown in this figure. More detailed figures of
subsets of the map are shown in Figure 5.7.

5.3.1 Benthic habitat map

For each spectral point measured, the position of the AUV was also recorded with position

derived using a combination of data from the USBL, DVL, depth and attitude data and

further corrected using the SLAM framework. [204]. Figure 5.4 shows the eastings and

northings map of the survey. For each point, the spectral reflectance of the point on the

seafloor was resolved.

Some biological inferences which can be drawn from this dataset are: Acropora tended to

occur around the higher altitude areas on top of the coral outcrops, where as seagrass was

growing in the lower altitude sandy patches. Coral rubble patches were more prevalent on

the exposed eastern side of the reef. This makes sense given the location of this dataset.

Storms in this area often come from the south-east and this was at the edge of a large flat

sandy expanse. On the western side more Acropora is growing. It may hypothesised that

this was because it was protected by the eastern edge.

Being able to map coral reef regions at fine resolutions such as this section allows for finer
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Figure 5.5 – Spectral map from a horizontal view. In this view the entire track has been
stretched out horizontally. Horizontal translation represents the distance the AUV is along
the track.
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Figure 5.6 – A zoomed in section of the spectral map, better showing the spatial detail of the
map. Each coloured dot represents a spectral reading.

investigations about the various indicators of the biological health or productivity of a region

to be conducted. In this survey the region was about 1000m x 300m. There was over 14,000

labelled spectral points in this map.

Figure 5.5 shows the same spectral map from a horizontal view point. The track has been

stretched out horizontally showing the distance travelled along the survey path. Figure 5.6

shows a zoomed in section of the spectral map. It better shows the spatial detail of the

map.

5.4 Spatially assisted spectral unmixing

One of the limitations discovered in the previous section was due to multiple materials within

the FOV patch of the spectrometer misleading the classifier. This results in spectral mixing.

An overview of the background and current literature on spectral unmixing is provided in
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(a) Sand/seagrass (b) Rubble/coral section (c) Coral reef Section

Figure 5.7 – (a) Mosaic of a small section of the classification prediction, this shows a transi-
tional section of sand to seagrass. Yellow circles signify a label of Sand, and Green is the
label for seagrass. (b) & (c) Mosaics of a small section of the classification prediction, this
shows a section of coral reef. They show the transition from sandy substrate to coral and
algal substratum. The Red asterisks indicate a misclassification.
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Section 2.7. Many traditional methods of spectral unmixing do not rely on the large degree

of information contained in the spatial component of the hyperspectral imagery, however

there has been a large move in Hyperspectral Imaging (HSI) processing towards utilising

this rich source of information [181]. The imaging module in the presented system differs

from most HSI imaging platforms in that a very low spatial resolution spectrometer was

combined with a very high spatial resolution RGB camera. Due to the relative sparsity of

the HSI measurements with the spectrometer the spatially assisted unmixing methods [181]

generally cannot be used. However in this work a new method was developed which utilises

the high resolution RGB imagery to provide information about the components within the

imagery. This in turn informs the spectral unmixing process. Usually unmixing methods

do not know anything about what is within the FOV of their sensor. Results are presented

which show that this unmixing method performs better than methods from the literature.

The process which informs the unmixing algorithm reveals the number of endmembers

within the FOV of the spectrometer as well as their relative abundance and position within

the FOV. Other methods are blind to the sub-pixel contents. They rely on a fitting process

to determine the subpixel materials. The method used for informing the unmixing method

developed in this work uses an existing algorithm for image and contour segmentation

[10]. This information provides constraints for the unmixing process. This new method

for informed spectral unmixing has been named Image Segmentation Assisted Constrained

Spectral-unmixing (ISACS).

As discussed in the spectral unmixing background there are several mixture models which

can be used which are dependant on the physical circumstances. A linear mixture model

was chosen in this case due to several reasons. Firstly most of the literature is based around

the assumption of a linear mixture model. Relating specifically to underwater spectral

unmixing, it has been said that a linear mixture model is adequate for the underwater

environment [124]. Secondly the computational complexity is much lower, and lastly the

water and the environmental conditions under which the data were acquired are conducive

to a linear mixture model.

One of the reasons the conditions are conducive to a linear mixture model is due to the

underwater platform providing artificial lighting in addition to ambient illumination. This

results in an even coverage of light over the scene with minimal shadows. Shadows are often a

large source of non-linear mixing, this is due to light scattering off other objects illuminating
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the shadow areas (second order illumination) [80]. Another reason is the imaging platform

(AUV) imaged close to the seabed (2 metres) and in very clear tropical waters so scattering

and absorption were minimised.

5.4.1 Resolving number of materials

The RGB imagery provides higher spatial resolution than the spectrometer. This allowed

for the imagery to provide hints as to the content within the FOV of the spectrometer.

Image segmentation was used to partition the patch into the different materials contained

within a scene. A method which provided weighted and closed regions in the segmentation

was needed. A method suitable to perform this task was the gPB-owt-ucm algorithm [10].

In this algorithm contour detection and image segmentation were done by deriving contours

from the brightness, colour and texture gradients at different scales. The segmentation was

then performed by using an oriented watershed transform [168] to join the contours to

create an Ultrametic Contour Map (UCM). The UCM has the desirable characteristics of

ensuring regions are always closed and each region is uniquely weighted to represent its edge

contour strengths. This created a hierarchy of strong regions in an image which could then

be thresholded to reveal a varying number of regions.

The contour detection algorithm [10] was used on the RGB imagery which was in the

FOV of the spectrometer. The location of the spectrometers FOV within the FOV of the

RGB camera was determined during the calibration routine covered in Section 3.2. Regions

were picked out of the UCM by defining a minimal edge strength, a maximum number of

materials and minimal size of materials. By examining several hundred images a threshold

was chosen to best segment typical benthic materials. The output from the segmentation

process was the number of materials in the patch, their relative abundance as a percentage

of the patch area and their spatial location within the patch.

Figure 5.8 shows an example of the UCM from the gPB-owt-ucm algorithm on an image

from the coral reef dataset. This shows the number of materials present within the scene,

their abundance and location. More examples are shown later in this Chapter in Figures

5.22 - 5.24.
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Figure 5.8 – An example of segmentation using the gPB-owt-ucm algorithm, the image on the
left is the UCM from the output of the segmentation algorithm, the lines are in increasing
edge strengths. Dark red is strongest, decreasing through yellow, green, blue to the weakest
edge in dark blue. The middle image is the thresholded UCM map filled in for 3 regions
which were greater than 5% of the patch area. In the right of this image is a region which
does not satisfy the minimal area constraint, it has been cut out by the threshold. The
right image is the colour corrected RGB image of the scene cropped to the FOV of the
spectrometer.

5.4.2 Informed and constrained unmixing

The additional information gathered through the mentioned segmentation process provided

constraints when finding the combination of materials present in the spectrometer patch.

Traditional methods using least squares assume that all materials in a library could be

present but just in very small quantities. With the extra information about the number

of materials k and their abundances α, an exhaustive search can be done to find which

k materials best fit to the linear mixture model. This is the underlying technique in the

proposed ISACS method. The number of combinations to search for is Nk where N is

the size of the spectral library and k is the number of materials present in the scene. The

method to evaluate which combination is best is performed by equating the Spectral Angle

Mapper (SAM) score [52] and the Euclidean distance error score [43]. Two metrics are

chosen to minimise error due to noise and lighting changes.

SAM (as shown in equation 5.1) calculates the cosine angle between the measured spectra

and the mixture combination obtained through the search. The advantage of using the

SAM distance metric is that it is more invariant to lighting differences (constant offsets)

[125]. The Euclidean distance metric is measuring the Euclidean distance between these

same two spectral vectors. The choice of SAM and Euclidean metrics was also due to their
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low computational cost.

SAM = cos−1

(
~t · ~r
‖~t‖ · ‖~r‖

)
(5.1)

The Euclidean metric has the advantage of being less sensitive to noise on the spectra. Noise

on the spectra could result in large differences using SAM as the angle between the vectors

is varying with the noise. The best unmixing combination is chosen as the one with the

smallest SAM error and Euclidean error. If there exists a solution where both the SAM and

Euclidean metrics are equal, the result from the whole patch SVM method is used to sway

the choice of label for the classification. For example if the SAM metric labelled a sample

as Sand and Euclidean labelled as Seagrass, both with equal error metrics, the decision is

referred to the whole patch SVM. If the SVM labelled the sample as Sand then the final

classified label is Sand. This algorithm has been called ISACS and is detailed in Algorithm

1.

Algorithm 1 ISACS algorithm

for each image in dataset do
derive number of materials in patch: k
determine % abundance of materials found: x
for all combinations of spectra in reduced library do

calculate SAM error
calculate Euclidean error

end for
pick min error for SAM & Euclid errors
use SVM classification on patch to assist picking unmixing solution

end for

5.4.3 Reducing computational complexity

The problem with the proposed algorithm for unmixing is that it is very computationally

intensive for large library sizes. The number of steps required to assign the unmixed classes

is O(Nk) where N is the number of endmembers and k is the number of materials in a scene

to be unmixed. Two methods will be presented for reducing the computational load of this

process. One is a method for reducing the library size through clustering and the other is

a greedy graph based search method (Section: 5.4.3.2).
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5.4.3.1 Spectral library clustering

A large library was generated from the training in section 5.2. The size of the library

needed to be reduced due to the combinatorial nature of the developed unmixing method.

As was detailed in Section 5.4.2 the computational complexity of the ISACS algorithm can

be defined as O(Nk) where N is the size of the library and k is the number of materials

present within the scene being unmixed. So reducing the size of the library N will greatly

affect the computation time for large values of N .

One important consideration in reducing the size of the library was maintaining the variance

of the interclass spectra. For example there may be 300 expert labelled examples of agropora

coral but this may be reduced to 5 spectra representative of the 300. To achieve this firstly

a Principle Components Analysis (PCA) of each class in the labelled training dataset was

performed. The aim of this process was to best express the variance of the class, then a

k-means clustering was performed on the PCA data where the number of clusters k is set

to the desired number of representative spectra in the subset.

The subset is then chosen by the closest spectral data points to the centroids generated

during the k-means clustering. The distance to the centroids for each of the data points

was equated as the cosine between the two vectors. This is important in hyperspectral

data as two spectra of identical materials with slightly differently lighting intensities will

generate a constant offset between them. A conventional Euclidean based distance metric

will perceive those two as different, whereas a cosine based metric will evaluate them as

more similar. This is similar to the SAM algorithm for determining spectral similarity.

After the subset spectra were chosen for each label set, they were combined to form a new

subset labelled library. The methodology described is illustrated in Algorithm 2.

Algorithm 2 Spectral library clustering and reduction

Define the size of the class subset j
for each class type in labelled dataset do

Take the PCA of the spectra belonging to the class
Take k-means on the PCA subset creating j clusters
Determine the distance of each labelled point to its corresponding cluster using the

cosine metric.
Choose the j spectral points closest to the centroids.

end for
Add chosen spectra to the new subset library.
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5.4.3.2 Graph based search

This is the second method to reduce the computational complexity. It is based on a

greedy graph search. The algorithm has been named: Image Segmentation Assisted Con-

strained Spectral-unmixing Greedy Ordered Graph-based Search (ISACS-GOGS). This

method works by evaluating only a limited subset of unmixing combinations which ap-

pear to have a strong possibility of being the right combination. It is sub-optimal unlike

the ISACS algorithm. ISACS-GOGS can be tuned to how exhaustive the search is. Greedy

graph searching is the process by which a large graph is explored by choosing only the most

promising nodes based on a pre-defined rule. This results in many graph paths not being

explored and thus a reduced computational load.

The proposed method (illustrated in Figure 5.9) starts by ordering the abundances obtained

during the segmentation method. The first graph leaves are based on all the library end-

members multiplied by the largest abundance value. Then T graph leaves are chosen based

on the best T scoring nodes, and all the other low scoring nodes are trimmed. T can be

chosen based on the trade off between computational load and classification performance.

The scoring is based on a minimal SAM and Euclidean distance error similar to the ISACS

algorithm. The graph is then expanded at each chosen node, with the next highest abun-

dance value. The new combination is tested and the graph is trimmed again. This continues

until all k materials have been evaluated. This method greatly reduces the complexity from

O(Nk) down to O
(
N
(

1−Tk

1−T

))
where N is the size of the spectral library, k is the number

of material present in the scene and T is the number of paths to expand at each branch

(the tuning parameter). An advantage of this method is library reduction is not needed,

so the search can be over the entire library, or a lesser reduced library can be used. The

disadvantage is that it can miss materials present in the scene if it does not evaluate a par-

ticular path on the graph. The chance of a material being discovered is proportional to its

abundance in the scene as it is a linear mixture assumption. The ISACS-GOGS algorithm

is shown in Algorithm 3.

5.5 Unmixing results: synthetic dataset

The proposed unmixing technique was tested on two datasets to demonstrate the perfor-

mance of the approach. The first dataset is synthetic and the second is on the coral reef



CHAPTER 5. SPECTRAL-BASED CLASSIFICATION & MAPPING 144

Algorithm 3 ISACS-GOGS algorithm

Sort abundances α descending order
for each sorted abundance up to k do

if at the start of the graph - initialise stack then
else

take previous top scoring graph paths
end if
for each material in library do

Calculate reflectance with abundance and material
Calculate SAM & Euclidean score

end for
pick top T SAM and Euclidean scores
discard all but chosen scores

end for
return Top scoring graph path for SAM and Euclidean metrics

dataset used in Section 4.4.4. A synthetic dataset was used because it was possible to fully

control the ground truth, the mixing of materials and the noise present in the set.

5.5.1 Generating a synthetic dataset

To generate a synthetic dataset spectral reflectance measurements of the squares on a Mac-

Beth colour chart [152] were taken to form the spectral library. The number of end-members

to mix k was chosen. Then k end-members were randomly picked from the library and the

abundances for these end-members were determined by a Dirichlet distribution. The Dirich-

let distribution generates the k abundances with the constraint that all abundances must

be positive and add to one. This method for generating a synthetic dataset was based on a

method popular in the literature [98]. Figure 5.10 shows the spectral reflectance curves for

the patches of a macbeth colour chart which make up the end-members of the library.

D(s1, ..., sk) =
Γ
(∑k

j=1 µj

)
∏k
j=1 Γ (µj)

k∏
j=1

s
µj−1
j (5.2)

where Γ(n) is the Gamma function, µ is picked at random from a gamma distribution.

There are k abundances generated D(s1, ..., sk), which sum to one and are all positive.

This was repeated for N mixtures. The result is a mixture matrix which has the dimensions

N×B where B is the number of spectral bands in the library. In this case B was defined by
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1

2

3

Figure 5.9 – Diagram of the ISACS-GOGS graph based search algorithm, in this graph: T =
2, k = 3, size of library = 5. ex represents the x endmember signature. αt represents the
abundance at position t where the position is listed in descending order of size.

865 spectral bands between 409nm and 821nm. This was based on the spectral resolution

of the spectrometer which was used to measure the MacBeth colour chart.

In the literature, noise on a synthetic dataset has been modelled as a proportion of the

expected value of the signal, expressed as a Signal-to-Noise Ratio (SNR) Equation (5.3).

Most authors implement several SNR values: 30dB, 40dB and 50dB [57, 98, 146]. This noise

represents the shot noise which would result from an imaging sensor. This noise model is not

entirely representative of the true noise which would exist in a true imaging system [178].

The other sources of noise include dark current noise, read/thermal noise and quantisation

noise. For ease of comparison against other methods this noise model was chosen.
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Figure 5.10 – Spectral reflectance curves for the patches of a MacBeth colour chart (taken in
air), these curves were used to generate the synthetic dataset

SNRdB = 20 log10

(
Esignal
Enoise

)
(5.3)

where Enoise is the expected value for the uniformly distributed random noise. Esignal is

the expected value of the spectra which the noise is being added to.

Figure 5.11 shows one of the synthetically generated mixed spectra. The colour curves are

the 4 components which are added together to make the mixed spectra (shown in black).

The component spectra are made from the fractional abundance multiplied by the randomly

chosen end-member spectra. The colours of the component curves in the plot represent the

RGB colour of the corresponding MacBeth colour swatch. As fractional abundances reduce

and noise increases it can be challenging to resolve which materials were mixed together.
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Figure 5.11 – This diagram shows the result of mixing together 4 materials/components given
certain artificially generated abundances. The resultant spectra (curve shown in black) is
composed by adding the four components together. In this example abundance SNR =
20dB and mixture SNR = 30dB.

5.5.2 Noise sensitivity

The synthetic dataset was used to examine the sensitivity of the algorithms ISACS and

ISACS-GOGS to the presence of noise. More noise was progressively added on both the

mixture matrix and the abundance matrix.

In the linear mixture model the mixture matrix is the result after combining the chosen

endmembers by their respective abundance quantities (the abundance matrix). The rea-

son for specifically adding noise to the abundance matrix in the proposed methods is to

simulate noise or errors with the estimation of the fractional abundances obtained during

the segmentation process. Noise was added to the mixture matrix to simulate how the

methods from the literature implement a noise model as well as to evaluate the unmixing

performance. The linear mixture model is denoted by:

Y = D(α+Na) +Nm (5.4)

where: Y is the mixture matrix, Nm is the noise added to the mixture matrix, D is the



CHAPTER 5. SPECTRAL-BASED CLASSIFICATION & MAPPING 148

array of end-members in the spectral library. α is the abundance matrix, a 0 indicates the

endmember at that spot was not chosen. There is also the sum-to-one constraint where

Σα = 1. Na is the noise on the abundance matrix.

5.5.3 Results

The performance under noise was evaluated using two different distance metrics, SAM and

the Euclidean distance. These distances were taken between the reconstructed reflectance

spectra after spectral unmixing and the ‘measured’ mixed spectra. Then the misclassifica-

tion rate for the estimated unmixed endmembers to the ground truth was compared.

Noise analysis

The noise analysis was done for both the ISACS and the ISACS-GOGS algorithm, these

results are shown in Figures 5.12 & 5.13 respectively. What can be seen is that the error

(using either SAM or Euclidean distance as the error metric) drops off quite quickly with

an increase in mixture SNR, levelling out after 30dB, however the error does not change

significantly for increases in the abundance SNR. The same conclusion can be drawn from

the ISACS-GOGS results for noise sensitivity (Figure 5.13). The noise sensitivity for ISACS

is nearly identical to ISACS-GOGS.

The results show that as more noise was added the performance dropped. Examining the

distance metrics it was found that the error increased significantly more with noise on the

mixture matrix than on the abundance matrix. This makes sense as the noise was expressed

as a ratio in dB. The magnitude of the mixture matrix is larger than that of the abundance

matrix so this would be expected.

Misclassification rate for decreasing abundances

To establish the performance of the proposed methods with the synthetic dataset, the

number of misclassifications were compared. The outcome of classification is based on a

binomial decision. The SAM and Euclidean scores are computed between the unmixed

result and the library endmembers, then the smallest score defines the classification label.

If it is incorrect for that material it counts as a 1 otherwise a correct classification is recorded
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Figure 5.12 – Error of the unmixing as a function of different levels of noise on the mixture ma-
trices and the abundance matrix. This was performed using the original ISACS algorithm.
Error bars represent ± 1 standard deviation from the mean.
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Figure 5.13 – Error of the unmixing as a function of different levels of noise on the mixture ma-
trices and the abundance matrix. This was performed using the ISACS-GOGS algorithm,
T = 10, k = 4. Error bars represent ± 1 standard deviation from the mean.



CHAPTER 5. SPECTRAL-BASED CLASSIFICATION & MAPPING 151

as a 0 on the misclassification score. This is evaluated for all endmembers present in the

mixture.

To evaluate the unmixing performance 500 synthetic mixtures were generated with k = 4,

(so there were 4 endmembers being mixed together). The results are presented using the

ISACS and ISACS-GOGS algorithms for both the SAM and Euclidean distance metrics.

For each data run (for a specific error metric and algorithm), the misclassification rate over

the 500 tests is plotted again the abundance SNR and is repeated for different mixture SNR

levels. For each algorithm and error metric choice results are presented for the misclassifi-

cation rate for the different endmembers ranked from largest (a) to smallest (d). Results

are shown in Figures 5.14 - 5.17.

Generally throughout the different combinations of error metric and algorithm choices, the

smaller materials in the scene result in a higher misclassification rate, and are also more

sensitive to noise on the abundance SNR. The results for ISACS-GOGS (Figures 5.16 &

5.17) demonstrate that there is a baseline misclassification rate (0.2). Even with reductions

in noise on either the abundance or mixture matrices the misclassification rate remains

above this baseline. In comparison the misclassification rate with the ISACS algorithm

(Figure 5.14 & 5.15) drops to near zero. The performance of the ISACS-GOGS algorithm

can be improved by increasing T (the number of search paths at each level of the graph

search. This is covered in more detail in Section 5.5.3. It can also be seen that as the

fractional abundance of a mixed material increases, the sensitivity to noise decreases with

a decrease in the misclassification rate (flatter curves). This is seen for both unmixing

algorithms.

Comparing between the error metrics, SAM appears to perform worse than the Euclidean

distance metric. This is because this is a synthetic dataset, there is not a lot of amplitude

variation. SAM is good at finding spectral similarity between spectra which are offset from

each other where Euclidean is less sensitive to noise. The amplitude is nearly identical in

the materials used for mixing. The Euclidean distance metric delivers the best result as

SAM is being mislead by the noise on the mixtures.
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Figure 5.14 – ISACS algorithm, SAM error metric - Error on the unmixing as a function
of different levels of noise on the mixture matrices and the abundance matrix. Error is
calculated as the mean misclassification rate over 500 tests for unmixing one endmember
of a given size from a mixture of 4 elements. Error bars represent ± 1 standard deviation
from the mean.

Performance tuning

The performance of the ISACS-GOGS method increased if the number of search paths, T

increased. To examine the effect of changing T had on performance for a fixed mixture

SNR and a fixed abundance SNR, T was changed, taking on the values 1, 4, 8, 12, 16, with

k = 4. Figure 5.18 shows the average number of misclassifications for 4 endmembers over

40 tests with the error bars representing 1 standard deviation.

As T was increased, the performance improved when using the ISACS-GOGS algorithm. T
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Figure 5.15 – ISACS algorithm, Euclidean error metric - Error on the unmixing as a function
of different levels of noise on the mixture matrices and the abundance matrix. Error is
calculated as the mean misclassification rate over 500 tests for unmixing one endmember
of a given size from a mixture of 4 elements. Error bars represent ± 1 standard deviation
from the mean.

can be increased until it equals the number of endmembers in the library N . Figure 5.19

illustrates this point of changing values of T and the corresponding computational load for

ISACS-GOGS versus ISACS. The actual time it takes to run the algorithms are covered in

Table 5.6. This table shows the unmixing algorithms running on the coral reef data (used

in the next section), the full library refers to an endmember of size N = 1311, the reduced

library only contains 7 endmembers. The algorithms ran on a machine with a dual-core

intel i7 and 8GB of RAM in MATLAB. Running ISACS with a small library is quite fast,

with 0.25 secs for unmixing 4 endmembers, however if ISACS is run with the full library
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Figure 5.16 – ISACS-GOGS algorithm, SAM Error metric - Error on the unmixing as a
function of different levels of noise on the mixture matrices and the abundance matrix. T
= 10. Error is calculated as the mean misclassification rate over 500 tests for unmixing
one endmember of a given size from a mixture of 4 elements. Error bars represent ± 1
standard deviation from the mean.

those same 4 endmembers take 9.6 years to unmix, making it quite intractable. Using the

ISACS-GOGS algorithm it would take 59 secs to unmix 4 endmembers using the full library

and T = 10, with the reduced library and T = 4 it only takes 0.07 secs. It was found for

this applicaiton that a value of T = 10 was a good compromise between performance and

computational time.
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Figure 5.17 – ISACS-GOGS algorithm, Euclidean error metric - Error on the unmixing as a
function of different levels of noise on the mixture matrices and the abundance matrix. T
= 10. Error is calculated as the mean misclassification rate over 500 tests for unmixing
one endmember of a given size from a mixture of 4 elements. –Error bars represent ± 1
standard deviation from the mean.

Comparative performance to conventional methods

To gauge the comparative performance of the proposed methods to literature methods,

the ISACS and ISACS-GOGS algorithms were compared to three conventional unmixing

algorithms. The algorithms chosen for comparison were: Fully Constrained Least Squares

(FCLS), non-negative constrained least squares (NNLS) [22] and the Sparse Unmixing via

variable Splitting and Augmented Lagrangian (SUNSAL) [97]. The two proposed unmixing

algorithms were tested with the conventional algorithms for two abundance SNRs. The

results are shown in Figure 5.20 for the abundance SNR = 20dB and 50dB for the mean
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Figure 5.18 – Using the ISACS-GOGS, T can be tuned to increase performance, the graphs
show the reduction in misclassifications as T is increased. This misclassification rate is
calculated by unmixing 500 mixtures containing 4 mixtures, and it examines the number
of misclassified elements within the mixtures.

misclassification rate of determining 4 endmembers over 500 tests. The error bars indicate

the magnitude of one standard deviation.

For high noise on the abundance matrix (SNR = 20dB) the conventional methods perform

similarly to the proposed methods. In the 50dB case however ISACS & ISACS-GOGS mis-

classification rate reduces to near zero and out performs conventional methods. However

the difference and performance of the proposed unmixing methods is revealed when exam-

ining the unmixing of the smaller endmembers. As the proportional size of the endmember

decreases the margin of improvement over conventional methods increases. Figure 5.21a

shows the performance for the second largest endmember and the 4th (smallest) endmem-

ber case. The misclassification rate increased with the conventional methods whereas the

proposed methods remained the same. This means that the proposed methods not only are

able to determine the number and location of the materials within the scene/pixel they are

able to better resolve small materials within the scene/pixel.



CHAPTER 5. SPECTRAL-BASED CLASSIFICATION & MAPPING 157

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

12

Value of T

C
o

m
p

u
ta

tio
n

a
l o

rd
e

r

Choices of T, for N = 1400, k = 4

 

 

ISACS−GOGS

ISACS

Figure 5.19 – Different values of T change the computational load for using the ISACS-GOGS
versus ISACS algorithms. N = 1400, k = 4. Computational load indicates the number of
cycles through the unmixing algorithm.

5.6 Spectral unmixing results: coral reef dataset

The proposed informed spectral unmixing algorithms were run on the coral reef dataset.

The following figures show the unmixing results for 3 different benthic scene types. The

first (Figure 5.22) is a scene in a seagrass patch. The unmixing process was able to resolve

the two patches of seagrass and sand. The segmentation process split the seagrass patch,

which the classifier could label both as seagrass due to its ability to allow more than one

item to have the same label.

Figure 5.23 shows a scene over a coral reef section. The process was confused about the

sponge and Acropora. This is most likely because the abundances were quite similar. The

classifier also said there was sand in the scene. It was however a small patch of Acropora.

This confusion was most likely because of the high brightness of coral compared to the other

materials in the scene.
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(b) Abundance SNR = 50dB

Figure 5.20 – Comparing different unmixing methods from the literature to the proposed
methods ISACS and ISACS-GOGS. k = 4, T = 15

.
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Figure 5.21 – Comparing different unmixing methods to the proposed methods for smaller
endmembers. The proposed methods perform better as the abundance size drops

.
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Figure 5.24 shows a scene over a rocky substrate, the unmixing process picked up the

components in the image correctly but in the wrong locations. The large patch in the

middle consists of small bits of CCA combined with turf algae. Also of note is the small

piece of Acropora in the top right of the image. The segmentation process has ignored

this due to it being too small. An appropriate size threshold for the segments is needed

considering small patches often result in misclassification and an increased computational

load.

Figure 5.22 – The result for informed spectral unmixing for a seagrass scene.

Figure 5.23 – The result for informed spectral unmixing for a coral reef scene.

To verify the performance of the ISACS and ISACS-GOGS algorithms on the coral reef

dataset. The images firstly were segmented then the ISACS and ISACS-GOGS algorithm

were applied. From this, 116 randomly chosen unmixed samples were examined to verify

the performance and accuracy. Table 5.3 shows the number of endmembers present as a

result of the segmentation algorithm in the 116 chosen samples. A majority contain just
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Figure 5.24 – The result for informed spectral unmixing for a rocky scene.

one endmember in the scene (58%), and very few contain 4 endmembers (5%).

1 EM 2 EMs 3 EMs 4 EMs

Dataset size 67 30 13 6

Table 5.3 – Number of endmembers for each record in the 116 data points chosen from the
coral reef dataset.

To establish the accuracy of the segmentation algorithm to resolve the number of materials

in the scene, the number of materials present in the scene was evaluated by hand. This

was done for the chosen samples. The accuracy rate for determining the correct number

of materials present in the scene was 76%. The number of materials was determined by

the gPB-owt-ucm algorithm [10]. Of the 24% incorrect, the mean error from the correct

number of materials was ±1.125 with a standard deviation of 0.33.

After finding the number of materials in the scene the ISACS and ISACS-GOGS algorithms

were both tested. Using the ISACS-GOGS algorithm both the full hand labelled library

(Full) and a reduced library (Reduced) was used. The reduced library was manually con-

structed from samples within the full library. Samples were chosen which appeared most

pure within the FOV of the spectrometer. Materials such as CCA and turf algae were re-

moved as they only existed on small scales and did not take up the entire FOV. Mixed pixels

would cause confusion during the unmixing process. Mixed pixels as library endmembers

were tested and it resulted in very poor performance (28% correctly classified for samples

only containing 1 endmember).

When using the ISACS algorithm only the reduced library was used as the full library of

1131 samples took too long to compute as shown in Table 5.6. The evaluation of classi-
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fied materials was done manually. The algorithms outputted the labels for the segmented

sections of the coral reef imagery. Then evaluation was performed and a simple binomial,

correct or not correct was applied to each label. Table 5.4 shows the correctly classified

rate for each algorithm and the number of endmembers in the image. Table 5.5 shows the

correct classification rate for at least one algorithm predicting the right class label. How to

choose the correct solution from each of these algorithms has not been done in this work.

This has been left for future work.

Method 1 EMs 2 EMs 3 EMs 4 EMs

ISACS (SAM-Reduced) 73.3% 53.1% 31.6% 50.0%
ISACS (Euclid-Reduced) 72.4% 51.0% 21.1% 66.7%
ISACS-GOGS (SAM-Full) 32.8% 22.5% 26.3% 16.7%
ISACS-GOGS (Euclid-Full) 29.3% 20.4% 26.3% 16.7%
ISACS-GOGS (SAM-Reduced) 74.1% 46.9% 26.3% 33.3%
ISACS-GOGS (Euclid-Reduced) 74.1% 40.8% 15.8% 33.3%

Table 5.4 – Results for spectral unmixing on coral reef dataset. It shows the correct clas-
sification rates for the different algorithms. EM stands for endmember and are listed in
descending order of fractional abundance. Full and Reduced refer to using the full library
and reduced subset library. ISACS reduced: N = 7, ISACS-GOGS Full: N = 1311, T =
10, ISACS-GOGS Reduced: N = 7, T = 4.

1 EMs 2 EMs 3 EMs 4 EMs

All methods 86.2% 80.0% 63.2% 66.7%

Table 5.5 – Using all methods to find a solution

Method 1 EMs 2 EMs 3 EMs 4 EMs

ISACS Reduced Library
N = 7 0.0029 sec 0.0085 sec 0.0559 sec 0.2457 sec

ISACS Full Library
N = 1311 (Interpolated times) 0.5431 sec 298 sec 102 hrs 9.6 yrs

ISACS-GOGS Full Library
N = 1311, T = 10 0.1043 sec 0.6932 sec 5.9250 sec 59.0237 sec

ISACS-GOGS Reduced Library
N = 7, T = 4 0.0014 sec 0.0049 sec 0.0170 sec 0.0703 sec

Table 5.6 – This is the time it took to unmix the endmembers using the ISACS & ISACS-
GOGS algorithms on the coral reef dataset for different library sizes and choices of T.
The algorithm was running on an intel i7 2.9Ghz, 8GB RAM. The times for the ISACS
full library have been interpolated from the reduced library ISACS results because the
computer it was running on ran out of memory trying to run the algorithm on the full
library of 1311 endmembers, and the time it would take for 4 endmembers was a little
intractable.
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From the unmixing results it can be seen that using a single algorithm the best performance

was by using the ISACS-GOGS or ISACS algorithm with a correctly classified rate of 74.1%

& 73.3% respectively. The performance decreases as the number of materials increases. This

was to be expected and was reflected in the synthetic dataset. What is quite noticeable

is the performance difference between using the full spectral library versus the reduced

library. The performance drops to 32.8% when using the full library. This is thought to

be because of the presence of mixed spectral library entries. Further analysis has not been

conducted to confirm this, however it is known that mixtures exist in the spectral library.

This is sometimes because the materials are smaller than the FOV of the spectrometer (as

discussed in Section 5.2). As a result mixtures in the spectral library can not be avoided.

The ideal practice for obtaining good spectral unmixing results is to collect a large number

of samples over a survey mission then manually pick out the most pure endmembers out

of the data for inclusion in the spectral library. The practicability of doing this for small

materials from a moving AUV platform would be quite hard.

5.7 Summary

In this chapter several supervised classification algorithms have been used to label a real-

world coral reef survey dataset. In these methods, several different features were included to

increase the classification performance. In addition to the spectral measurements obtained

using the methods in the previous chapter, texture features were added to utilise the co-

registered imagery from the stereo camera. This imagery was of a higher spatial resolution

than that of the downward facing spectrometer. It was found that a linear SVM performed

the best with a classification performance of 91.99%. The trained dataset was obtained by

hand-labelling over 1300 images. From the output of the classifier a large coral reef survey

was labelled (over 14,000 data points), along with the location of the vehicle at the time of

acquisition, the labels could be put into a 3D substrate map.

Although the spatial resolution of the spectral measurements is higher than current above

water platforms, the seafloor assemblages exist at a resolution smaller than the patch cov-

ered by the downward looking spectrometer. New methods were presented in this chapter

for informed spectral unmixing. This algorithm was called Image Segmentation Assisted

Constrained Spectral-unmixing (ISACS). This utilised the higher resolution stereo cam-
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eras to inform the number of materials and their relative abundances in the area of the

spectrometer patch.

The presented unmixing algorithm was very computationally intensive, so two different

methods were presented for reducing the computational load. These included a method

for reducing the size of the spectral library using a clustering technique and the second

was by utilising a greedy graph-based search. This algorithm was called Image Segmenta-

tion Assisted Constrained Spectral-unmixing Greedy Ordered Graph-based Search (ISACS-

GOGS).

The performance of these two algorithms for spectral unmixing was demonstrated with a

synthetic dataset and a real-world dataset. Noise of increasing amounts was added to the

synthetic dataset to examine the sensitivity to noise. The performance of the presented

unmixing algorithms was compared to the unmixing algorithms from the literature. The

performance of the unmixing algorithms on the real-world datasets was found to perform

well with a reduced spectral library. The library had to only contain pure materials. The

informed unmixing algorithms presented show promise for improving the performance of

spectral unmixing methods.



Chapter 6

Conclusions and future directions

“We’re all mad here. Im mad. You’re mad”

- Lewis Carroll, Alice in Wonderland
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6.1 Conclusions

Dynamic water modelling using upward facing spectrometers

In this work a new method was developed which used two upward facing spectrometers to

characterise the optical properties of a water body. One spectrometer is placed above the

water while the other is mounted on top of the imaging platform. Having a measurement

from above the water results in a need to model the air-water interface. This can become

complicated with surface platform motion, wind and time of day changes, however the

presented modelling is able to take this into account.

Many methods from the literature aim to predict the optical properties of a body of water

based on either above water visibility measurements or through in-situ measurements of

chlorophyll and Coloured Dissolved Organic Matter (CDOM) measurements. The method

presented in this work measures the optical properties of the water body through its trans-

mission properties, this has the advantage of minimising modelling errors. Another advan-

tage of the presented method is a new measurement is taken once a second, so a dynamic

model of the optical properties can be built up. This allows for adaptability to environmental

changes. This feature is particularly important for applications involving an Autonomous

Underwater Vehicle (AUV). AUV survey missions can last for 8 hours, over which time

the environmental conditions invariably change. In contrast, the literature methods over

generalise the homogeneity of a body of water both spatially and temporally.

Design of an in-situ hyperspectral platform

In this work a new imaging modality was presented that combined a high spectral resolution

spectrometer with a stereo camera system. A new calibration technique was developed to

determine the spatial sensitivity of the spectrometer’s Field-of-View (FOV) along with the

spatial co-registration of the spectrometer’s FOV with the FOV of the stereo cameras. This

calibration allowed for data to be related spatially and spectrally between the two modali-

ties. The engineering design of this combination along with data acquisition methodology

was presented.
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Colour correction of RGB imagery using a hyperspectral water model

The water column attenuates light in an uneven manner. This results in colour distortions

in the imagery. In this work, a method was presented for correcting the colour of underwater

imagery. This was performed through an inversion process by using a model of the optical

properties of the water. This model was obtained using the upwards looking spectrometers.

The water model exists in the hyperspectral domain. To correct for Red-Green-Blue (RGB)

imagery a new method was presented for characterising spectral sensitivities of a trichro-

matic camera. This allowed for a new process to correct underwater RGB imagery. This

method utilised not only the water model but also the 3D structure of the scene by using

the stereo imagery. This resulted in imagery that is invariant to water conditions, weather,

structure of the scene and lighting. Results for these methods were presented using three

datasets of varying control: a test tank set, a shallow water outdoor environment and a

AUV mapping mission over a coral reef.

Recovering spectral reflectance in-situ

Recovering the hyperspectral reflectance of a patch on the seabed requires knowing the

incoming irradiance to a scene as well as the reflected irradiance. This method was presented

in the context of recovering spectral reflectance from an AUV platform. The incoming light

to a scene came from two sources: the artificial strobes onboard the AUV as well as the

ambient illumination from the sun above the water. In this work a method was presented for

predicting the scene illumination by modelling the strobe lighting based on the geometry of

the scene to the AUV as well as the measurement of the ambient light contribution with an

upwards looking spectrometer mounted on the AUV platform. The measurements for the

scene illumination and the reflected light were compensated and corrected for the water’s

attenuation properties using the water model.

Classification of benthic types using a combined spectral and spatial clas-

sifier

In this work it was shown that spectral reflectance could be combined with the Local

Binary Pattern (LBP) features from the co-registered RGB camera image data to improve
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classification performance. A supervised classification approach was taken using a coral

expert to label 12 different classes over 1300 data points. The trained classifier was run

using 10-fold cross validation on the 1300 data points to gauge the performance of different

classifiers. It was found that a linear Support Vector Machine (SVM) on the hyperspectral

data combined with LBP from the RGB imagery performed the best. This combination

achieved a classification rate of 91.99%. As each measurement carried a corresponding

location it was possible to map out a survey which showed the locations of the various

benthic types. Results were presented for a mapping mission over a coral shoal on the

Great Barrier Reef (GBR).

Spectral unmixing using mixed resolution RGB imagery and hyperspectral

measurements

Two new algorithms were presented for the unmixing of spectral data. These algorithms

are unique in that they utilise the spatial information from imagery of a higher spatial

resolution than that of the hyperspectral data to inform the unmixing process. Previous

methods in the literature have sought to utilise the spatial component of a hyperspectral

image further for spectral unmixing, however they were still limited by the spatial resolution

underlining the hyperspectral camera. The RGB camera was used to determine the number

of endmembers in a scene and their approximate fractional abundance. This was done

through a hierarchical segmentation method from existing literature. The spectral data

combined with the information from the segmentation presented a constrained unmixing

problem which was combinatorial in nature. Two methods were developed for dealing with

this computational complexity. One was a method for reducing the size of a spectral library

while still maintaining the variance of that library, and the second was using a greedy graph

based optimisation technique for considerable reduction in computational load. The results

were presented on a synthetic and a real dataset.
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6.2 Future directions

6.2.1 Water modelling onboard the AUV

In the current technique for measuring the optical properties of the water column, measure-

ments occur in two separate locations. Onboard the AUV and onboard a support vessel

on the surface. Some of the problems with this method are it can only work down to and

not beyond solar penetration depth. By extension it also does not work at night time. In

addition because of the separation of the measurement of these two data points, the water

model can not be computed online on the AUV. It all needs to be done in post-mission

processing. With the advent of online processing it would be advantageous to be able to

measure the optical properties onboard the vehicle. A method for measuring the optical

properties onboard could be performed with an instrument such as a Wet Labs AC-S in-

situ spectrophotometer. This is however a particularly bulky instrument. Another method

could be to fire a known broadband light source down the side of the vehicle and measure

it at a fixed distance and examine the attenuation due to the water.

The current method of using two upwards looking spectrometers could further be improved

by removing the need to model the air-water interface. This could be accomplished by taking

the surface measurement just below the water. This could be done with a spectrometer on

a buoy suspended just below the surface of the water, however it would mean that caustics

and water lensing effects would come into play. The solution to these effects could be a

larger receiver or temporal smoothing of the measured incoming irradiance.

6.2.2 Examining the spatial distribution of optical properties

As the AUV transits around a survey site, it is constantly collecting information about

the optical properties of the water. There has been little work into examining the spatial

distribution of optical properties. Most methods assume the homogeneity of a certain water

model for quite large areas. Investigations into this assumption would be quite interesting.

Particularly through the use of an AUV which is able to cover large areas. For example,

this might be useful in the context of the modelling of the ecology living within the water

column and how this may vary with location. If an area has more nutrients does this result

in higher degrees of marine life?
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6.2.3 Upgrading to a HSI camera

As previously mentioned, a Hyperspectral Imaging (HSI) camera was not used for taking

spectral measurements due to Signal-to-Noise Ratio (SNR) concerns, and limitations on size,

power and data storage onboard the imaging platform (see Section 4.5 for a comparison

between a spectrometer and a miniaturised HSI camera). There was also a concern due

to the modality of imaging when using a pushbroom or Acousto-Optical Tunable Filter

(AOTF) HSI camera. To be able to use a HSI camera onboard an underwater platform

the best option would be to use a pushbroom camera with constant illumination. Rather

than illuminating the whole scene a more efficient method would be to just illuminate the

small narrow strip currently being imaged. This would reduce the power burden of constant

illumination and minimises backscatter. An AOTF camera could work in this environment

if there was a limited subset of frequencies under investigation. The large challenge as

previously mentioned would be the parallax effects of having each wavelength image from

slightly different locations as the platform moves. This could be rectified if the underwater

platform was able to stop during acquisition and then move to the next sample site. This

would be inefficient and difficult to achieve in practice.

Utilising a HSI camera would result in much higher spatial resolutions for insitu HSI map-

ping. Promising work has been shown in Johnsen et al. [103] where they had constant

illumination and a controlled camera rig on the seabed.

6.2.4 Benthic health monitoring

In the presented work LBP was used as a feature descriptor for the camera imagery, however

other additional techniques could be incorporated to add more features to our classifier. The

3D data could be used for assisting in coral taxa classification. Above water hyperspectral

coral classification methods have been unable to distinguish coral to the species level [83].

An additional classification feature could be the use of rugosity. This has also been shown

to be an ecological indicator of bio-productivity [64].

This technique may also be used for deriving the health of the coral [90] which may have

been affected by bleaching or invasive algal blooms events. An AUV is well suited for

undertaking this task as an AUV is able to revisit large areas of underwater seafloor with
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high accuracy. This is crucial for examining small level changes which may be occurring

temporally.

6.2.5 Defence applications

There is an array of defence applications for this work particularly in Mine Counter-

Measures (MCM). Current methods for finding sea mines are predominately performed

using sonar based systems. In flat open seabed areas it is easier to find a mine target, how-

ever in a cluttered environment it can become quite challenging. The technique presented

of measuring the optical properties of the water for correction of optical imagery could also

allow for target detection. There are a series of HSI processing techniques which work by

knowing the target signature. When the target is unknown anomaly detection could be

applied [5, 188]. This technique involves examining the spectral data for data points which

do not belong and are rare in the dataset. These rare data points could be elements such

as sea-mines.

6.2.6 Spectral unmixing

Further improvements could be made in the performance of the informed spectral unmixing

algorithms. Sparse regression techniques could speed up the search process. Current sparse

regression unmixing is uninformed however quite fast for large library sizes.

A limitation discovered in this work for informed spectral unmixing was the need for a

quality spectral library. A future avenue of this work would be to obtain a spectral library

consisting of pure endmembers. This would not only improve the unmixing performance

but would also be good for ground truthing the spectral measurements from the in-situ

imaging platform.
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coral reef bottom-types worldwide and implications for coral reef remote sensing.
Remote Sensing of Environment, 85(2):159–173, 2003.

[86] Eric J Hochberg, Marlin J Atkinson, Amy Apprill, and Serge Andréfouët. Spectral
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[145] José M. P. Nascimento and José M. Bioucas-Dias. Hyperspectral unmixing
algorithm via dependent component analysis. In International Geoscience and
Remote Sensing Symposium (IGARSS), pages 4033–4036, 2007. ISBN 1424412129.
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[147] José M. P. Nascimento and José M. Bioucas Dias. Vertex Component Analysis : A
Fast Algorithm to Unmix Hyperspectral Data. IEEE Transactions on Geoscience
and Remote Sensing, 43(4):898–910, 2005.
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Appendix A

Enhanced underwater visibility

through the use of polarisation

A.1 Introduction

The underwater environment present formidable barriers towards it’s exploration, one of

which is the limited passage of light. Optical sensing is an attractive means of underwater

imaging over sonar based imaging due to it’s affordability, high resolution (both spatially

and chromatically) and ease of interpretation by an operator. The major inhibitor of light

transmission is the presence of suspended organic matter and absorption by water molecules.

This results in both absorption and scattering of the photons. Absorption lowers both the

illumination of the target and the luminance returning from the target. In a medium where

absorption is the only factor (no scattering), the visible range would just be a function of

the light source illumination and the camera sensitivity [69]. In the blue region (480nm) of

the ocean, 60% of the water’s attenuation is due to scattering and 40% due to absorption,

in other spectral regions absorption is the dominant attenuation factor [56].

For an actively lit scene scattering both stops or deflects light from returning from the

object of interest (forward scattering) but also reflects light from the light source back into

the sensor commonly called backscatter. [101, 126]

Polarisation naturally exists in the underwater environment up to depths of 200m [101].

Light can become naturally polarised through several means, firstly light from the sky can
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be partially polarised and pass through into the water. Secondly scatterings of the light

by the water molecules or by particles in the water column can polarised the light and

finally the transmission of unpolarised sunlight through the surface of the water can result

in elliptically polarised light (dependant on incident angle) [137].

One method for reducing the effect of the backscatter is through the use of polarisation

filters [69]. The method is to place a filter in-front of the light source thus polarising the

outbound light and another in-front of the sensor to filter the light entering the camera

[176], See Figure A.1 for a visual representation of the principle behind the method. The

probability of the polarisation orientation remaining intact is reduced as the number of

incident reflections increases. [69] Therefore particles in the water column reflects the light

back polarised whereas the object of interest, dependant on surface structure reflects the

light partially or fully depolarised. [126, 177, 210].

Particles

Blocked Backscatter

Polarising Filters

Camera

Light Source

Unpolarised Light

Polarised Light

Object of Interest

Figure A.1 – The principal Outbound light is polarised, reflections off the particles (backscat-
ter) in the water remain polarised, reflections of objects of interest are depolarised. The
depolarised light from the object of interest passes through the camera filter whereas the
filter blocks the opposed polarised light from the backscatter. Thus the contrast of the
objects of interest is increased.

In the case of using linear polarisation filters, if the sensor filter is at 90◦ to the light source

filter it will have the effect of blocking the reflected light from the suspended particles

which have only reflected the light very few times, hence the light will still be partially

polarised. This results in reducing the amount of light reflected back into the sensor by the
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suspended particles thus reducing backscatter. Several papers used circular polarisers over

linear due to the angle invariance of circular polariser, the slight performance advantage

and the compatibility with digital SLR auto-focusing systems [69, 110, 177].

The performance advantage of circular polarises is alleged in [100] to be better due to circular

polarised light being more easily depolarised than linearly polarised light [126]. In [126] it

was also found that rougher surfaces such as rusty metal depolarise light whereas specular

reflectors do not. An improvement in the performance of polarisation discrimination was

found for an isotropically scattering medium as opposed to anisotropic media. Anisotropic

paricles are more representative of ocean particles [142]. The particles are generally of sizes

larger than the wavelength of light and hence scattering is independent of wavelength [100].

This work plans to show that polarisation filters on the light source and on the receiver at

perpendicular orientations reduces the magnitude of light due to backscatter. This results

in an increased visibility range, higher contrast and sharper images. These improvements

will be quantified through the use of the modulation transfer function and contrast ratio

comparisons. Two set of data will be examined, a tank experiment taken in a controlled

environment and an outside experiment taken in a dam.

A.2 Methodology

Two experiments will be conducted to show the performance gain of using polarisation

filters, first in a tank as a control and second in a dam to emulate an ocean environment to

be more representative of an AUV application.

To examine the effects of using polarisation filters in a turbid media a control experiment was

setup. Various objects were placed in a matte black Pelican case of dimensions 74x45cm,

this was filled with water to a depth of 18cm, approximately 60 Litres (Figure A.2a). The

objects selected were a standard drinking glass, a piece of hardwood, a piece of die-cast

metal, a rusty bolt attached to a stick of reflective stainless steel and a piece of slightly

reflective plastic (Figure A.2b).

To incrementally make the water more turbid small measured quantities of full cream milk

were added and stirred into the water. The turbidity of the water was measured using a

OBS-3A from D&A Instrument Company. The camera used was an underwater Olympus
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(a) Tank experiment setup (b) Objects of Interest

Figure A.2 – Experimental setup

µTouch-8000 [49]. The light into the scene was provided solely by the camera’s on-board

flash. The experiment was conducted in a dark room. A polarising filter was placed in front

of the light source and another in front of the camera’s lens. The nomenclature regarding

the filter orientation will be either 90◦ or 0◦ which refers to the relative polarising angle of

the lens filter to the flash filter. At an orientation of 90◦ the lens filter will block reflected

polarised light from the flash, and subsequently pass reflected polarised light at 0◦.

Two photographs of the scene were taken at each turbidity level. The first photo was with

the camera filter’s polarisation axis parallel to the flash filter’s polarisation orientation and

the second with the camera filter orientation perpendicular to that of the flash. This results

in the first photo passing polarised light reflected back from the scene and in the second

photo polarised light is blocked.

For the realistic environment experiment, Australian Centre for Field Robotics’ (ACFR)

Diver Rig was used in a freshwater dam (Lat: -33.918007, Long: 151.230068 ). The Diver

Rig is a diver held stereo vision system, it contains two Prosilica GC1380 machine vision

cameras, one was mono and the other Bayer arranged RGB. The images were recorded

in raw. On either side of the camera housing were mounted high intensity LED strobes.

Polarisation filters were placed on the strobes and in front of both camera lenses in perpen-

dicular orientations. The target imaged was a MacBeth colour checker chart and an optical

resolution chart. Three sets of experiments were conducted, first the target was imaged at

different depths in a horizontal orientation to avoid non-linearities due to turbidity strati-

fications in the dam. The second test was establishing the visibility range for the polariser
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orientations, this involved moving the target away from the cameras until they disappeared.

The final test was looking down at the target on the seabed to emulate an AUV scenario.

A.2.1 Modulation Transfer Function

To quantify the effect of the turbid medium on the recorded image, the modulation transfer

function is used. The Modulation Transfer Function (MTF) is the magnitude of the optical

transfer function with the phase component ignored. It characterises the optical system’s

ability to reproduce frequency components within the scene being imaged. Within the

imaging community it is a common metric for quantifying the optical systems ability to

reproduce the scene [37, 94, 100, 109]. For this experiment, the effect the milk has upon

the MTF will be examined.

The effect can be measured in two ways. The first is looking at the imaging system’s ability

to reproduce a ‘sharp’ edge [109]. Once a sharp edge is imaged at given turbidity, a scan

perpendicular to the edge will show pixel values for the background transitioning into the

edge material’s pixel readings. As this edge becomes more blurred due to the scattering

effect of the milk particles, the gradient of the transition line will decrease. By taking the

first derivative of this edge scan function we obtain the Line Spread Function (LSF) this

gives us the gradient of the edge. By taking the Fourier transform of the LSF we obtain the

MTF. This is scaled from 0 to 1 on the vertical axis for fraction of contrast reproduction.

The frequency response on the horizontal axis is measured in terms of lines/mm.

This method is quite susceptible to noise on the surfaces being sampled. To maintain

the profile of the edge scan function and reduce the noise elements the Savitzky-Golay

smoothing filter [174] was used. This performs a local polynomial regression for a given

series of values, it is good at preserving features such as relative maxima and minima.

The more accurate second method to calculate the MTF of the system is to image a optical

resolution chart. This chart has a series of vertical lines of decreasing width and increasing

frequency (lines/mm) then from an image of this chart the MTF at a certain ω can be

calculated from (A.1).

MTF (ω) =
maxω −minω
maxω +minω

(A.1)
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Where: maxω & minω correspond to the maximum and minimum intensity pixel values

respectively for the corresponding frequency ω.

A.2.2 Contrast Comparison

The second method to measure the polarising filters improvement to the image is to compare

the contrast of the image [176]. Turbidity has the effect of clouding or washing out the

image, a higher contrast enables the discernment of greater detail in the picture. To measure

contrast it is a ratio of the pixel intensities for neighbouring parts of an object within a scene.

In this experiment we shall compare a piece of an object with a piece of the background.

To determine the contrast of the scene for a user selected (j × k) crop of the image, the

average pixel value is calculated according to (A.2):

avgcolourband =

∑j
a=1

∑k
b=1 pab

jk
(A.2)

where pab is the pixel value for the colour band at pixel position (a, b). This is repeated

for the other colour bands Red, Green, Blue then the overall pixel average is computed

according to (A.3):

avgobject =
avgred + avggreen + avgblue

3
(A.3)

The average pixel value is repeated for a user chosen section of the background within the

image, from this the contrast is computed

contrast =
avgobj − avgbk

avgbk
(A.4)

where avgobj and avgbk are the average pixel values over red, green and blue for the user

chosen area for the object of interest and the background. This is repeated for all the

turbidity records and the other materials.
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A.2.3 Visibility Enhancement

The use of polarisation filters also has the benefit of increasing the visibility distance. In

a homogeneous water medium with low backscattering the light intensity will attenuate

according to Beers-Lambert Law.

I = I0 exp−ad (A.5)

a = scatter + absorb (A.6)

Where I is the intensity of light at distance d from the source, I0 is the intensity of the light

source and a is the attenuation coefficient. Where a is made up of the scattering coefficient

(scatter) and the absorption coefficient (absorb).

The method to measure the improvement to visibility with the tank experiment is quite

rough. This is done by observing when an object disappears from view for both filter

orientations. In the case of the tank experiment an easy object to track which disappears

quickly is the disk on the back wall of the tank (Figure A.2a). This object is 63.5cm from

the camera. The visibility distance for a certain turbidity can be calculated from [143]:

distance = 244.13(turbidity)−0.662 (A.7)

Where: distance is the visibility distance in cm and turbidity is measured in Nephelometric

Turbidity Units (NTU).

For the dam experiment the visibility distance was obtained by moving the target away from

the camera and observing when it is no longer visible on both the 90◦ and 0◦ orientations.

Then to compute the visibility enhancement a ratio of d90◦/d0◦ are calculated. Where d90◦

& d0◦ are the visibility drop off distances at 90◦ and 0◦ orientations respectively.

A.3 Results

Using the polarisations filtered produced some quite obvious visibility improvements. The

tank results produced slightly better results, this was expected given the controlled nature
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of the test environment. Images from the tank experiments for a turbidity of 3.2 NTU and

13 NTU can be seen in figures A.4 & A.3. Some noticeable observations of the tank results

are the 90◦ orientation appears a lot less washed out and the colours appear more vivid. In

figure A.4 for the 0◦ orientation the backscatter is very obvious on the right of the image,

which completely masks the view of the objects on the right of the scene. The filters also

have the effect of removing reflections from the reflective metal and plastic objects. This

allows us to view greater detail on the surface of the metal object and removes the halo

around the reflection point.

(a) filter orientation = 0◦ (b) filter orientation = 90◦

Figure A.3 – Turbidity = 3.2 NTU

(a) filter orientation = 0◦ (b) filter orientation = 90◦

Figure A.4 – Turbidity = 13.0 NTU
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A.3.1 Improvement to the Modulation Transfer Function

To test the comparison of sharpness between 90◦ and 0◦ degree orientations we chose a

turbidity of 7.3 NTU to represent an set of images which are undoubtedly clouded by

the milk. Then by applying the MTF analysis technique described earlier figure A.5 was

obtained. Both responses were scaled by the same amount to make the 90◦ set become

scaled from 0 to 1. The results show that the 90◦ orientation was more able to reproduce

higher frequency components so we would subsequently expect this image to be sharper

than the 0◦ image.
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Figure A.5 – A comparison of the MTF for different polarisation filter orientations for turbidity
= 7.3NTU

A.3.2 Contrast Improvements

Polarisation made a difference to the contrast ratio as show in Figure A.6. It is consistently

higher for the 90◦ orientation than for the 0◦ up until a turbidity of 21 NTU. This point

corresponds to the limit of visibility for the 90◦ set. This is a noticeable contrast increase

for the wood, but it this performance gain varied for the different materials present in

the scene. Figure A.7 shows the difference between the contrast ratios of 90◦ minus the

0◦ orientation. For the reflective plastic there was actually a reduction in contrast, this
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Figure A.6 – Comparing the contrast with the wood to the background for filter angles parallel
and perpendicular to the orientation of the light source filters

fits with our expectations. We would expect the return intensities of the more reflective

materials to be reduced by the cross polarisation of the filters.

A.3.3 Increased Visibility

For the tank experiment the back wall disk is observed to disappear at the image for 18.8

NTU for 90◦ orientation and between 9.2 and 13 NTU for 0◦. So using Equation (A.7) 18.8

NTU should correspond to a vis distance of 35cm so for a distance of 63.5cm that is an

improvement of 1.81 half way between 9.2 and 13 NTU results in a visibility distance of 49

cm for 63.5cm the corresponding turbidity is 7.64 NTU.

A.4 Discussion

The calculation of the MTF for the tank experiments is not very reliable for high frequencies

because of noise on the sensors as mentioned. A more accurate measure of the MTF is to

image the optical resolution chart. The segment that was used to create the MTF was a

section of the background onto the edge of the wood. High frequency components on the
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Figure A.7 – Shows the contrast improvement with the use of polarisation filters

edge scan function were being created in the MTF by the noise in the black background

and the texture of the wood surface. Hence the result for the tank experiment using the

edge scan function should only be used for comparison with the two measured filter angles.

(Figure A.5)

The tank experiment suffered from some minor issues which might influence the results,

these include uneven lighting of the scene, camera movement and the nature of milk as a

turbidity medium. The camera flash was on the right of the device so the scene tended

to be illuminated more on the right side, this may result in the contrast ratios for the

objects in the left of the scene being lower. Milk is an isotropic scattering medium as

opposed to an anisotropic medium which is more representative of an ocean environment.

So the performance gain on the tank experiment may be inflated in comparison to a more

representative medium.

One of the big issues to using polarisation filters is the reduction of light intensity, typical

transmission is approximately 30% with 95% polarisation efficiency. Higher transmission

filters are available but at the cost of polarisation efficiency. So combining the loss from two

filters on both the light source and sensor, the resultant transmission is only in the order of
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9% of the original light intensity. So either one must put a greater intensity of light into the

water or be able to manage a reduction in the signal to noise ratio. Increased light comes

at the cost of electric energy which is limited in the application of AUVs.

Besides the obvious improvement to visibility there is also an application for discriminating

objects of different specular reflectance, this could be useful in detecting man-made objects

on the seabed. This could be done by taking two images simultaneously similar to the dam

setup with differing filter orientations and looking at the differences.

A.5 Conclusion

Polarisation filters placed on the light source and on the camera sensor at a perpendicular

orientation were found to improve underwater visibility in a turbid environment. The

improvement was shown through the increased contrast ratio between an object in the

scene and the background. The image was sharper using the filters as proven using the

modulation transfer function and the point as which visibility dropped off was extended by

a factor approximately equal to two. The negative factor to using polarisation filters is a

significant drop in light intensity being transmitted and received from the scene, requiring

a higher powered light source or a reduction in the signal to noise ratio of the resultant

image.
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