1,212 research outputs found

    Fast wavelet-based pansharpening of multi-spectral images

    Get PDF
    Remote Sensing systems enhance the spatial quality of low-resolution Multi-Spectral (MS) images using information from Pan-chromatic (PAN) images under the pansharpening framework. Most decimated multi-resolution pansharpening approaches upsample the low-resolution MS image to match the resolution of the PAN image. Consequently, a multi-level wavelet decomposition is performed, where the edge information from the PAN image is injected in the MS image. In this paper, the authors propose a pansharpening framework that eliminates the need of upsampling of the MS image, using a B-Spline biorthogonal wavelet decomposition scheme. The proposed method features similar performance to the state-of-the-art pansharpening methods without the extra computational cost induced by upsampling

    Fast wavelet-based pansharpening of multi-spectral images

    Get PDF
    Remote Sensing systems enhance the spatial quality of low-resolution Multi-Spectral (MS) images using information from Pan-chromatic (PAN) images under the pansharpening framework. Most decimated multi-resolution pansharpening approaches upsample the low-resolution MS image to match the resolution of the PAN image. Consequently, a multi-level wavelet decomposition is performed, where the edge information from the PAN image is injected in the MS image. In this paper, the authors propose a pansharpening framework that eliminates the need of upsampling of the MS image, using a B-Spline biorthogonal wavelet decomposition scheme. The proposed method features similar performance to the state-of-the-art pansharpening methods without the extra computational cost induced by upsampling

    Multispectral Image Enhancement Based on the Dark Channel Prior and Bilateral Fractional Differential Model

    Get PDF
    Compared with single-band remote sensing images, multispectral images can obtain information on the same target in different bands. By combining the characteristics of each band, we can obtain clearer enhanced images; therefore, we propose a multispectral image enhancement method based on the improved dark channel prior (IDCP) and bilateral fractional differential (BFD) model to make full use of the multiband information. First, the original multispectral image is inverted to meet the prior conditions of dark channel theory. Second, according to the characteristics of multiple bands, the dark channel algorithm is improved. The RGB channels are extended to multiple channels, and the spatial domain fractional differential mask is used to optimize the transmittance estimation to make it more consistent with the dark channel hypothesis. Then, we propose a bilateral fractional differentiation algorithm that enhances the edge details of an image through the fractional differential in the spatial domain and intensity domain. Finally, we implement the inversion operation to obtain the final enhanced image. We apply the proposed IDCP_BFD method to a multispectral dataset and conduct sufficient experiments. The experimental results show the superiority of the proposed method over relative comparison methods

    Satellite Image Fusion in Various Domains

    Full text link
    In order to find out the fusion algorithm which is best suited for the panchromatic and multispectral images, fusion algorithms, such as PCA and wavelet algorithms have been employed and analyzed. In this paper, performance evaluation criteria are also used for quantitative assessment of the fusion performance. The spectral quality of fused images is evaluated by the ERGAS and Q4. The analysis indicates that the DWT fusion scheme has the best definition as well as spectral fidelity, and has better performance with regard to the high textural information absorption. Therefore, as the study area is concerned, it is most suited for the panchromatic and multispectral image fusion. an image fusion algorithm based on wavelet transform is proposed for Multispectral and panchromatic satellite image by using fusion in spatial and transform domains. In the proposed scheme, the images to be processed are decomposed into sub-images with the same resolution at same levels and different resolution at different levels and then the information fusion is performed using high-frequency sub-images under the Multi-resolution image fusion scheme based on wavelets produces better fused image than that by the MS or WA schemes

    Pixel-level Image Fusion Algorithms for Multi-camera Imaging System

    Get PDF
    This thesis work is motivated by the potential and promise of image fusion technologies in the multi sensor image fusion system and applications. With specific focus on pixel level image fusion, the process after the image registration is processed, we develop graphic user interface for multi-sensor image fusion software using Microsoft visual studio and Microsoft Foundation Class library. In this thesis, we proposed and presented some image fusion algorithms with low computational cost, based upon spatial mixture analysis. The segment weighted average image fusion combines several low spatial resolution data source from different sensors to create high resolution and large size of fused image. This research includes developing a segment-based step, based upon stepwise divide and combine process. In the second stage of the process, the linear interpolation optimization is used to sharpen the image resolution. Implementation of these image fusion algorithms are completed based on the graphic user interface we developed. Multiple sensor image fusion is easily accommodated by the algorithm, and the results are demonstrated at multiple scales. By using quantitative estimation such as mutual information, we obtain the experiment quantifiable results. We also use the image morphing technique to generate fused image sequence, to simulate the results of image fusion. While deploying our pixel level image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also makes it hard to become deployed in system and applications that require real-time feedback, high flexibility and low computation abilit
    • …
    corecore