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Abstract: Compared with single-band remote sensing images, multispectral images can obtain
information on the same target in different bands. By combining the characteristics of each band,
we can obtain clearer enhanced images; therefore, we propose a multispectral image enhancement
method based on the improved dark channel prior (IDCP) and bilateral fractional differential (BFD)
model to make full use of the multiband information. First, the original multispectral image is inverted
to meet the prior conditions of dark channel theory. Second, according to the characteristics of multiple
bands, the dark channel algorithm is improved. The RGB channels are extended to multiple channels,
and the spatial domain fractional differential mask is used to optimize the transmittance estimation
to make it more consistent with the dark channel hypothesis. Then, we propose a bilateral fractional
differentiation algorithm that enhances the edge details of an image through the fractional differential
in the spatial domain and intensity domain. Finally, we implement the inversion operation to obtain
the final enhanced image. We apply the proposed IDCP_BFD method to a multispectral dataset
and conduct sufficient experiments. The experimental results show the superiority of the proposed
method over relative comparison methods.

Keywords: multispectral image enhancement; remote sensing; dark channel prior; fractional differential

1. Introduction

Recently, multispectral remote sensing images have been widely used in agriculture,
forestry, mineral exploration, military, and many other fields, resulting in huge social
and economic benefits [1]; however, due to the limitations of sensors and atmospheric
scattering, the visual effect and spatial resolution of multispectral remote sensing images
cannot fully meet the demands of people; therefore, image enhancement processing is
usually used before image analysis and interpretation to highlight useful information and
expand the differences between different features [2–4]. Multispectral remote sensing
images are generated by collecting several bands of the same region in different spectral
sampling intervals [5]. The generated data include information from multiple channels.

At present, single-channel image enhancement methods mainly include spatial do-
main algorithms and frequency domain algorithms [6–8]. Common spatial domain al-
gorithms include histogram matching [9–11], Retinex algorithms [12–15], morphological
methods [16], differential filtering algorithms, dark channel prior algorithms, and deep
learning algorithms.

Differential filtering algorithms include integer-order differential algorithms and frac-
tional differential algorithms. In integer-order differential algorithms, several integer-order
operators, including first-order operators, such as the Sobel operator and Prewitt operator,
and second-order operators, such as the Laplacian operator [17], have been proposed to
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sharpen images. With the appearance of fractal theory, fractional differential algorithms
have been widely used [18]. Compared with integer-order differential algorithms, fractional
differential algorithms can preserve the low-frequency information of the smooth region
and the high-frequency edge features [19]. Classic fractional differential algorithms process
images in the form of filtering masks; however, the masks usually cannot make full use of
the autocorrelation between neighboring pixels [20]. The pixels in the image have great
correlations, and these correlations are mainly reflected in the spatial position relations;
therefore, some researchers proposed dividing the nonzero coefficients of the fractional
differential mask equally within the pixel neighborhood [20,21]; however, the above differ-
ential filtering algorithm cannot accurately represent the spatial position relations in the
neighborhood and cannot improve the detailed information of smooth areas.

The dark channel prior algorithm, which mainly utilized the deviation of each pixel
from the minimum brightness point in the three basic color channels to enhance images
and obtain an effective defogging effect for a single image, was proposed by He et al. [22].
Dong et al. [23] found the similarity between low illuminance images after inversion and
haze images and applied the dark channel prior theory to low-illuminance image enhance-
ment. At present, researchers have also proposed some methods combining dark channel
priors with other algorithms [24–28]; however, the above enhancement algorithms are used
for color images or grey images, and the multispectral remote sensing image contains more
than three bands. We expand the RGB channels and optimize the transmittance through
the fractional differentiation algorithm in the spatial domain.

Furthermore, traditional algorithms have relatively been less used in the field of
image enhancement, especially in remote sensing images. In recent years, deep learning
algorithms have been widely applied in image enhancement [29]; however, deep learning
algorithms still have some disadvantages, such as long training time, large data demand,
and low universality.

Therefore, an improved enhancement method based on the dark channel prior and
fractional differential filtering is proposed. We implement the improved dark channel
prior technology to improve the clarity and brightness of the original multispectral image
and then use the bilateral fractional differential algorithm to further enhance the edge and
textural details of the image. Figure 1 illustrates the flowchart of the proposed method,
which contains four steps. The first step is to invert the original multispectral image to make
it suitable for dark channel theory. Second, the improved dark channel prior technology is
used to enhance the image after inversion. The guided image is obtained by space domain
fractional differential filtering and applied to estimate the transmittance of the dark channel
prior. Simultaneously, the original channels are extended to multiple channels. Third,
a bilateral fractional differential algorithm is proposed to enhance image details, which
includes the space domain fractional differential model and intensity domain fractional
differential model. Multiple bands of the multispectral image are enhanced by the spatial
domain algorithm and intensity domain algorithm. Finally, the combined image is inverted
and synthesized to obtain the final enhanced image. To verify the effectiveness of the
method, we test and analyze it on multispectral image datasets.

Remote Sens. 2022, 13, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 1. Algorithm flow chart. 

Compared with previous works, our proposed method mainly offers the following 
contributions. 
(1) By synthesizing the multiband information of multispectral remote sensing images, 

our algorithm obtains more accurate and clearer images than single-band remote 
sensing images. 

(2) A bilateral fractional differential model is firstly proposed and effectively improves 
the edge and textural details of multispectral images. 

(3) By expanding the bands and optimizing the transmittance of the dark channel prior 
model, an improved image with higher contrast and brightness is further obtained. 
The remainder of this paper is organized as follows. Section 2 introduces the related 

multispectral image enhancement methods. Section 3 describes the principle and imple-
mentation steps of the proposed method. Section 4 discusses the experimental datasets 
and experimental results. Section 5 presents the conclusion. 

2. Related Work 
In this section, we briefly review previous works on multispectral remote sensing 

image enhancement. 
At present, some enhancement algorithms for multispectral images have been pro-

posed. Tian et al. [30] introduced the extended offset sparsity decomposition (OSD) algo-
rithm into multispectral image enhancement and applied it to hue saturation value (HSV) 
transformation and principal component analysis (PCA) transformation, respectively, 
thereby forming the HSV-OSD and the PCA-OSD algorithms, respectively. OSD is per-
formed on the brightness component of HSV and the selected principal component of 
PCA to maintain the original image information and improve the image details. A. K. 
Bhandari et al. [31] applied a method combining the discrete wavelet transform (DWT) 
and singular value decomposition (SVD) to multispectral color image enhancement. The 
original image was decomposed by the wavelet transform and the subbands were nor-
malized by SVD so that the image after inverse discrete wavelet transform (IDWT) had 
higher contrast. In addition, A. K. Bhandari et al. [32] presented a combination method of 
the discrete cosine transform (DCT) and SVD to highlight the contrast of color multispec-
tral remote sensing images. In [33], Shilpa Suresh et al. exploited a novel framework for 
the enhancement of multispectral images, which primarily aimed to highlight the contrast 
of color-synthesis remote sensing images through a modified linking synaptic computa-
tion network (MLSCN). Wang et al. [34] exploited a color constancy algorithm, which 
used the improved linear transformation function to improve the brightness while avoid-
ing color distortion. Shan-long Lu et al. [35] introduced a multispectral satellite remote 
sensing image enhancement algorithm based on the combination of PCA and the inten-
sity-hue-saturation (IHS) transform. The intensity component of the IHS transform was 
replaced by the first principal component of the PCA transform, and the inverse IHS trans-
form was applied to obtain an enhanced image. T. Venkatakrishnamoorthy et al. [36] 
mainly expounded on a method based on spatial enhancement and spectral enhancement, 

Figure 1. Algorithm flow chart.



Remote Sens. 2022, 14, 233 3 of 25

Compared with previous works, our proposed method mainly offers the following
contributions.

(1) By synthesizing the multiband information of multispectral remote sensing images,
our algorithm obtains more accurate and clearer images than single-band remote
sensing images.

(2) A bilateral fractional differential model is firstly proposed and effectively improves
the edge and textural details of multispectral images.

(3) By expanding the bands and optimizing the transmittance of the dark channel prior
model, an improved image with higher contrast and brightness is further obtained.

The remainder of this paper is organized as follows. Section 2 introduces the related
multispectral image enhancement methods. Section 3 describes the principle and imple-
mentation steps of the proposed method. Section 4 discusses the experimental datasets and
experimental results. Section 5 presents the conclusion.

2. Related Work

In this section, we briefly review previous works on multispectral remote sensing
image enhancement.

At present, some enhancement algorithms for multispectral images have been pro-
posed. Tian et al. [30] introduced the extended offset sparsity decomposition (OSD) al-
gorithm into multispectral image enhancement and applied it to hue saturation value
(HSV) transformation and principal component analysis (PCA) transformation, respec-
tively, thereby forming the HSV-OSD and the PCA-OSD algorithms, respectively. OSD
is performed on the brightness component of HSV and the selected principal compo-
nent of PCA to maintain the original image information and improve the image de-
tails. A. K. Bhandari et al. [31] applied a method combining the discrete wavelet transform
(DWT) and singular value decomposition (SVD) to multispectral color image enhancement.
The original image was decomposed by the wavelet transform and the subbands were
normalized by SVD so that the image after inverse discrete wavelet transform (IDWT) had
higher contrast. In addition, A. K. Bhandari et al. [32] presented a combination method of
the discrete cosine transform (DCT) and SVD to highlight the contrast of color multispectral
remote sensing images. In [33], Shilpa Suresh et al. exploited a novel framework for the
enhancement of multispectral images, which primarily aimed to highlight the contrast of
color-synthesis remote sensing images through a modified linking synaptic computation
network (MLSCN). Wang et al. [34] exploited a color constancy algorithm, which used the
improved linear transformation function to improve the brightness while avoiding color
distortion. Shan-long Lu et al. [35] introduced a multispectral satellite remote sensing image
enhancement algorithm based on the combination of PCA and the intensity-hue-saturation
(IHS) transform. The intensity component of the IHS transform was replaced by the first
principal component of the PCA transform, and the inverse IHS transform was applied to
obtain an enhanced image. T. Venkatakrishnamoorthy et al. [36] mainly expounded on a
method based on spatial enhancement and spectral enhancement, which was applied to
false-color-synthetic satellite cloud images. The algorithm was used in image processing
after extracting useful features using independent component analysis (ICA) and PCA.

Nevertheless, the above research was mainly applied to color-synthetic multispectral
images. That is, the images only included three bands of the original multispectral images,
which cannot effectively combine the information of other bands. To solve the above
problems, some multiband image enhancement algorithms have been proposed. In [37],
Afshan Mulla et al. proposed a multispectral image enhancement scheme for specific bands,
which performed selective region enhancement to improve the resolution of all bands.
Chen Yang et al. [38] proposed a fuzzy PCA algorithm and tested it on a multispectral
image dataset with six bands. The algorithm improved the accuracy of surface feature
identification by introducing fuzzy statistics; however, the abovementioned studies do
not show a satisfactory enhancement effect on image brightness and contrast and cannot
sufficiently enhance the edge and local details of images.
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In this paper, our proposed method is different from the previous multispectral remote
sensing image enhancement methods in the following ways.

(1) The method of combining the dark channel prior algorithm with the fractional differ-
ential algorithm is applied to multispectral remote sensing image enhancement for the
first time. Based on improving the overall brightness and detail characteristics of the
image, the information of the spatial dimension and spectral dimension is combined
to make full use of all wave bands of multispectral images.

(2) Unlike the previous fractional differential algorithm, we propose a new fractional
differential framework that enhances the edge and textural details of images. Con-
sidering the influence of the spatial distance on the pixel autocorrelation, we modify
the fractional differential coefficients and propose the spatial domain fractional mask.
Furthermore, according to the ability of the pixel similarity to judge the image edge,
we propose the intensity domain fractional mask. Then the two above domains are
fused to compose the bilateral fractional differential framework, and the enhanced
images can be obtained by the framework. This framework can fully combine the
information of spatial domain and intensity domain to maintain the details of the
image in the smooth region and texture region and improve the image definition.

(3) An improved dark channel prior algorithm, which extends the RGB channels to
multiple channels and optimizes the transmittance through our proposed spatial
domain fractional differentiation algorithm to make full use of the ground features of
different spectral bands and enhance the overall brightness and contrast of an image,
is proposed.

3. Proposed Method

In this section, we review the definitions of the classical dark channel prior algo-
rithm and fractional differential algorithm and discuss the principles and steps of the
proposed method.

3.1. Dark Channel Prior

An inverted low illumination image and its histogram have high similarities with a
hazy image and its histogram [23]; therefore, first, the low illumination image is inverted as

I(x) = 255−R(x) (1)

where I(x) denotes the pseudohaze image vector containing 3-channel images
{

Ir, Ig, Ib
}

,

and R(x) denotes the input image vector containing 3-channel images
{

Rr, Rg, Rb
}

. The
physical model of atmospheric scattering describing haze images can be expressed as

I(x) = J(x)t(x) + A(1− t(x)) (2)

where t(x) is the transmittance, which represents the degree of scattering of the incident
light; A represents the total intensity of atmospheric light; and J(x) represents the image
vector to be restored containing 3-channel images

{
Jr, Jg, Jb

}
.

He et al. [22] stated that in most local areas of fog-free images, there are some pixels
with very low values in at least one of the color channels; therefore, the dark channel prior
theory was proposed. That is, for a fog-free image, the dark channel can be defined as

Jdark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Jc(y)

)
(3)

where Jdark(x) represents the dark channel, and Jc(y) is the intensity of the c color channels
including r, g, and b, Ω(x) represents the filtering window centered on the pixel point.
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The rule of the dark channel prior can be defined as

Jdark(x)→ 0 (4)

The core of the dark channel prior model is to obtain the atmospheric light Ac and
transmittance t̃(x) by handling the dark channel map and then realize image enhancement
according to the image defogging model.

To estimate the initial transmittance, the atmospheric scattering model is normalized as

Ic(x)
Ac = t(x)

Jc(x)
Ac + 1− t(x) (5)

Assuming that the transmittance is constant in the same filtering window, minimum
filtering is conducted at both ends of the above formula to obtain the transmittance with
errors t̃(x), which can be written as follows:

min
y∈Ω(x)

(
min

c∈{r,g,b}

Ic(y)
Ac

)
= t̃(x) min

y∈Ω(x)

(
min

c

Jc(y)
Ac

)
+ 1− t̃(x) (6)

Assuming that the image to be restored is similar to the clear image under normal
weather conditions, the dark channel prior rule can be generated as

Jdark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Jc(y)

)
= 0 (7)

Dividing by the constant Ac, we can obtain

Jdark(x) = min
y∈Ω(x)

(
min

c

Jc(y)
Ac

)
= 0 (8)

Continuing with the derivation, the transmittance is computed by

t̃(x) = 1− min
y∈Ω(x)

(
min

c

Ic(y)
Ac

)
(9)

Under normal weather conditions, incident light inevitably has some scattering effects,
which shows that close objects are displayed more clearly, and distant objects are usually
blurrier. To preserve this depth-of-field effect and avoid the over enhancement of images, a
constant parameter w (0 < w < 1) is introduced to increase the transmittance. The final
transmission is modified as

t̃(x) = 1− w min
y∈Ω(x)

(
min

c

Ic(y)
Ac

)
(10)

where w is the haze removal factor, which is generally set to 0.95.
In the above deduction, it is assumed that the ambient light intensity A is known. In

practice, we can obtain the value from the dark channel of foggy images. The smaller the
reflectivity of a pixel in the image, the greater the attenuation of the incident light, and the
greater the superposition effect of ambient light; thus, the grey value of the corresponding
pixel is higher in the final dark channel map. The larger the reflectivity of the pixel is,
the smaller the attenuation of incident light and the weaker the effect of ambient light.
Generally, the grey value of the corresponding pixel is lower. In He’s work, the first 0.1%
pixels with the largest brightness values were screened in a dark channel image, that is, the
area where the transmittance is close to zero; and then the pixel value of the point with the
highest brightness was found as the ambient light value A in the corresponding position of
the area.
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After calculating the atmospheric light and transmittance, the reconstructed image of
the real scene can be obtained by substituting the image defrosting model:

J(x) =
I(x)−A

t̃(x)
+ A (11)

A smaller value of the projection map will result in a larger value of J, which will
make the entire image transition to the white field; therefore, the threshold is written as t0.
When t̃(x) is less than t0, set t̃(x) = t0, and the typical value of t0 is 0.1. The final haze-free
image is recovered by

J(x) =
I(x)−A

max
(
t̃(x), t0

) + A (12)

3.2. Improved Dark Channel Prior

Multispectral remote sensing images usually have the characteristics of low contrast
and low illumination; therefore, we reverse the multispectral image and then substitute the
haze removal model.

I(x) = 255−R(x) (13)

where I(x) denotes the pseudofoggy image vector containing multi-channel images{
I1, I2, · · · , Iz}, R(x) denotes the input image vector containing multi-channel images{
R1, R2, · · · , Rz}, and z represents the number of bands of the multispectral image. The

atmospheric scattering model of multispectral images can be modified as

I(x) = J(x)t(x) + A(1− t(x)) (14)

where J(x) represents the image vector to be restored containing multi-channel images{
J1, J2, · · · , Jz}.

For a fog-free image, the dark channel can be defined by

Jdark(x) = min
y∈Ω(x)

(
min

λ∈{1,2,··· ,z}
Jλ(y)

)
(15)

where Jλ(y) is the intensity of any channel of multispectral image; therefore, the atmo-
spheric scattering model is generated as

Iλ(x)
Aλ

= t(x)
Jλ(x)

Aλ
+ 1− t(x) (16)

In addition, we improve the guided filtering operation in the refinement of the trans-
mittance. We use the image enhanced by the fractional differential algorithm in the spatial
domain as the guide image, which can better identify the edge and texture area of the
image, remove the image details, and make the guided filtering more accurate.

The improved dark channel image is introduced as

Ismooth
dark (x) = guid(Idark(x)) (17)

where guid(·) represents the refinement of the dark image obtained by the spatial domain
fractional differential algorithm. We represent the intensity value of pixel coordinate as
the Ismooth

dark (x1, x2) in the thinned dark channel image Ismooth
dark (x) and Equation (17) can

be expressed as the convolution of dark channel image and spatial domain fractional
differential mask.

Ismooth
dark (x1, x2) = Idark ∗ h = ∑2

i=−2 ∑2
j=−2 h(i, j)Idark(x1 − i, x2 − j) (18)
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where Idark is the original dark channel image, h represents the spatial domain fractional
mask in Table 3 of Section 3.4.1, Idark(x1, x2) is the intensity value of pixel coordinate (i, j)
in the original dark channel image.

Accordingly, the transmittance can be written as follows:

min
y∈Ω(x)

(
min

λ∈{1,2,··· ,z}

Ismooth
dark (y)

Aλ

)
= t̃(x) min

y∈Ω(x)

(
min

λ

Jλ(y)
Aλ

)
+ 1− t̃(x) (19)

Dividing by a constant Aλ, we can obtain the dark channel rule as follows:

Jdark(x) = min
y∈Ω(x)

(
min

λ

Jλ(y)
Aλ

)
= 0 (20)

The estimated transmittance can be defined as

t̃(x) = 1− w min
y∈Ω(x)

(
min

λ∈{1,2,··· ,z}

Ismooth
dark (y)

Aλ

)
(21)

Therefore, the final enhanced image J can be expressed as

J(x) =
I(x)−A

max
(
t̃(x), t0

) + A (22)

3.3. G-L Fractional Differential Model

The Grünwald–Letnikov (G-L) definition [39] of the fractional-order derivative comes
from the operating rules of the classical integer derivative with a continuous function and
the fractional-order from the derivation of the integer-order. The function f (t) within the
interval t ∈ [a, b](a < b, a ∈ R, b ∈ R) is continuously differentiable, and the first-order
derivative of f (t) is generated as

f ′(t) =
d f
dt

= lim
h→0

f (t)− f (t− h)
h

(23)

where h denotes the step size of variable t in the interval [a, b]; and the value of h, which is
normally set to 1, is unchanged. Furthermore, according to the theories of the integer-order
derivative, the second-order derivative of the function can be deduced as follows:

f ′′ (t) =
d2 f
dt2 = lim

h→0

f (t)− 2 f (t− h) + f (t− 2h)
h2 (24)

By analogy, the nth derivative of the function can be defined by

f (n)(t) =
dn f
dtn = lim

h→0

∑n
r=0(−1)r

(
n
r

)
f (t− rh)

hn (25)

where r is an integer from 0 to n. The integer n-order (n ∈ Z+) can be extended to the
fractional v-order (∀v ∈ R). When v > 0, r is taken at least the integer portion [v] of v;
therefore, the G-L definition of fractional derivative is given by [40]

Dv
t f (t) = lim

h→0

∑
[ t−a

h ]
r=0 (−1)r

(
v
r

)
f (t− rh)

hv = lim
h→0

h−v ∑[ t−a
h ]

r=0 (−1)r Γ(v + 1)
r!Γ(v− r + 1)

f (t− rh) (26)
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where v is the fractional order,
[ t−a

h
]

is the integer portion of t−a
h , and Γ(·) is the gamma

function, which can be computed by

Γ(v) =
∫ ∞

0
e−ttv−1dt (27)

The continuous period of unary signal f (t) is t ∈ [a, t]. To make f (t) close to the nonzero
limit, when h→ 0 , n needs to be close to ∞; therefore, the duration [a, t] is equally separated
according to the unit interval h = 1. Let h = (t− a)/n, then n = [(t− a)/h] = [t− a].
The approximate expression of the fractional-order differential of the unitary signal can be
deduced as follows:

dv f (t)
dtv ≈ f (t) + (−v) f (t− 1) +

(−v)(−v + 1)
2

f (t− 2) + · · ·+ Γ(−v + 1)
n!Γ(−v + n + 1)

f (t− n) (28)

The fractional differential expression defined for the unary signal can be generalized
to two-dimensional functions. Thus, the two-dimensional expression in the x-direction and
y-direction can be obtained [41].

∂v f (x,y)
∂xv ≈ f (x, y) + (−v) f (x− 1, y) + (−v)(−v+1)

2 f (x− 2, y) + · · ·+ Γ(−v+1)
n!Γ(−v+n+1) f (x− n, y)

= a0 f (x, y) + a1 f (x− 1, y) + a2 f (x− 2, y) + · · ·+ an f (x− n, y)
(29)

∂v f (x,y)
∂yv ≈ f (x, y) + (−v) f (x, y− 1) + (−v)(−v+1)

2 f (x, y− 2) + · · ·+ Γ(−v+1)
n!Γ(−v+n+1) f (x, y− n)

= a0 f (x, y) + a1 f (x, y− 1) + a2 f (x, y− 2) + · · ·+ an f (x, y− n)
(30)

The nonzero coefficient values can be written in order as

a0 = 1
a1 = −v

a2 = (−v)(−v+1)
2 =

(v2−v)
2

a3 = (−v)(−v+1)(−v+2)
6 =

(−v3+3v2−2v)
6

· · ·
an = Γ(−v+1)

n!Γ(−v+n+1)

(31)

Therefore, the classic G-L fractional differential mask is designed based on the nonzero
coefficients. The first three partial differential coefficients are used to define a 3× 3 fractional
differential algorithm including eight symmetrical directions, in which the directions of 8
sub masks correspond to the positive x-direction, negative x-direction, positive y-direction,
negative y-direction, upper-left diagonal direction, lower-left diagonal direction, upper-
right diagonal direction, and lower-right diagonal direction of the target pixel (x, y) in the
image f (x, y). The masks of the negative x-direction, negative y-direction, and upper-right
diagonal direction are illustrated in Table 1 [19].

Table 1. G-L fractional differential mask.

0 v2−v
2 0 0 0 0 0 0 v2−v

2

0 −v 0 v2−v
2 −v 1 0 −v 0

0 1 0 0 0 0 1 0 0

3.4. Bilateral Fractional Differential Model

In recent research, some fractional differential algorithms that preserve pixel auto-
correlation have been proposed [20,21]. The value of each pixel is related to the value of
its adjacent pixels. These algorithms integrate spatial correlation into the construction of
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fractional masks, but they fail to measure the spatial position relations between adjacent
pixels accurately. In addition, these algorithms still fail to improve the details of flat areas.

Bilateral filtering is a nonlinear filtering method that can maintain edges, reduce noise,
and smooth images. This filtering considers both the spatial distance between pixels and
the differences of the pixel value in the intensity range domain while sampling. We propose
a bilateral fractional differential algorithm inspired by bilateral filtering, which considers
the autocorrelation of pixels in the spatial domain and the similarity between pixel values in
the intensity domain, for image sharpening. In the spatial domain, we accurately calculate
the spatial position relations between adjacent pixels and reconstruct the coefficients of the
mask. In the intensity domain, we accurately calculate the difference between the target
pixel and the neighborhood pixels and design the new fractional coefficients to highlight
the detail of the flat area and preserve the edges of the image.

3.4.1. Spatial Domain Fractional Differential Model

We propose a spatial domain fractional differential model that mainly modifies the
fractional differential coefficients by using spatial distance weights. Considering that the
distances from the surrounding pixels to the target pixel are different, we suggest that the
correlations between these pixels and the target pixel are also different. The closer a pixel
is to the target pixel, the more similar it is to the target pixel. We need to assign various
weights to the adjacent pixels according to the distances; that is, we give higher weights to
the closer pixels and lower weights to the farther pixels; therefore, we define the spatial
distance weight as

Wp = N(µ,σ2)(||p− q||) (32)

where q is the two-dimensional vector coordinate of the central pixel and p is the two-
dimensional vector coordinate of the neighborhood pixel. N(µ,σ2)(·) is a Gaussian function,
which µ = 0 can ensure the maximum weight of the central pixel. In addition, it can be seen
from Figure 2 that compared with other values of σ, the pixels farther from the central pixel
can be given lower weight and the pixels closer to the central pixel can be given higher
weight when σ = 1; therefore, N(µ,σ2)(·) is set to a standard Gaussian function, in which µ
is 0 and σ is 1.
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For instance, the distances from the eight surrounding pixels to the target pixel are in
order

√
5, 2,
√

5,
√

2, 1,
√

2, 1, and 1 from left to right and from top to bottom in the negative
x-direction mask, respectively; and the distances from the eight surrounding pixels to the
target pixel are in order 2,

√
5, 2
√

2, 1,
√

2,
√

5, 1, and 2 from left to right and from top to
bottom in the bottom-right diagonal mask, respectively. Suppose variable d denotes the
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distance between surrounding pixels and the target pixel in the 3 × 3 neighborhood. When
d is sorted in ascending order as 1,

√
2, 2,
√

5, and 2
√

2, we substitute d into the function,
and then the defined weights can be obtained by

wi = N(µ,σ2)

(
dj
)
, i, j = 1, 2, 3, 4, 5 (33)

If the 3 × 3 fractional differential masks in Table 1 are used in each pixel of the original
image, the pixels with the coefficient of 0 will be ignored. To make full use of the correlation
between pixels, we use the above spatial weight to improve the G-L mask. It should
be noted that the pixel with a constant coefficient of 1 is the target pixel. We divide the
coefficients a0 unevenly on the pixels with the distance of a 1-unit pixel from the target
pixel according to the weight, and divide the coefficients a1 unevenly on the pixels with the
distance of a 2-unit pixel from the target pixel according to the weight. Table 2 shows the
G-L masks in negative x-direction, negative y-direction, and upper-right diagonal direction
on the left, as well as the normalized spatial domain masks in the negative x-direction,
negative y-direction, and upper-right diagonal direction on the right.

Table 2. The 3 × 3 G-L fractional differential masks and 3 × 3 spatial domain fractional differential
masks in (A) negative x-direction; (B) negative y-direction; (C) upper-right diagonal direction.

(A)

0 a1 0 w4
w3+2w4

a1
w3

w3+2w4
a1

w4
w3+2w4

a1

0 a0 0 w2
3w1+2w2

a0
w1

3w1+2w2
a0

w2
3w1+2w2

a0

0 1 0 w1
3w1+2w2

a0 1 w1
3w1+2w2

a0

(B)

0 0 0 w4
w3+2w4

a1
w2

3w1+2w2
a0

w1
3w1+2w2

a0

a1 a0 1 w3
w3+2w4

a1
w1

3w1+2w2
a0 1

0 0 0 w4
w3+2w4

a1
w2

3w1+2w2
a0

w1
3w1+2w2

a0

(C)

0 0 a1
w3a1

2w3+2w4+w5

w4a1
2w3+2w4+w5

w5a1
2w3+2w4+w5

0 a0 0 w1a0
2w1+w2

w2a0
2w1+w2

w4a1
2w3+2w4+w5

1 0 0 1 w1a0
2w1+w2

w3a1
2w3+2w4+w5

The 3 × 3 masks in eight directions (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) are
obtained, and the 5 × 5 masks in eight directions are extended by the 3 × 3 masks with
adding zero centered around the target pixel, and then the 5 × 5 masks in eight directions
are stacked to obtain the new 5 × 5 mask, as illustrated in Table 3.

Table 3. The 5 × 5 spatial domain fractional differential mask.

w5
2w3+2w4+w5

a2

(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2

(
2w3

2w3+2w4+w5
+ w3

w3+2w4

)
a2

(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2

w5
2w3+2w4+w5

a2(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2

(
w2

2w1+w2
+ 2w2

3w1+2w2

)
a1

(
2w1

2w1+w2
+ 3w1

3w1+2w2

)
a1

(
w2

2w1+w2
+ 2w2

3w1+2w2

)
a1

(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2(

2w3
2w3+2w4+w5

+ w3
w3+2w4

)
a2

(
2w1

2w1+w2
+ 3w1

3w1+2w2

)
a1 8a0

(
2w1

2w1+w2
+ 3w1

3w1+2w2

)
a1

(
2w3

2w3+2w4+w5
+ w3

w3+2w4

)
a2(

w4
2w3+2w4+w5

+ w4
w3+2w4

)
a2

(
w2

2w1+w2
+ 2w2

3w1+2w2

)
a1

(
2w1

2w1+w2
+ 3w1

3w1+2w2

)
a1

(
w2

2w1+w2
+ 2w2

3w1+2w2

)
a1

(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2

w5
2w3+2w4+w5

a2

(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2

(
2w3

2w3+2w4+w5
+ w3

w3+2w4

)
a2

(
w4

2w3+2w4+w5
+ w4

w3+2w4

)
a2

w5
2w3+2w4+w5

a2

Moreover, we divide each item in the improved mask by the sum of all the coefficients
to obtain the normalized mask. Finally, we use the spatial domain mask to filter the image
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and implement histogram equalization (HE) to enhance the contrast of the image with a
small dynamic range.

Jλ′
α =

(
Jλ
α

)
HE

(34)

where Jλ
α is the image after spatial domain fractional differential filtering, and Jλ′

α is the
enhanced image.

3.4.2. Intensity Domain Fractional Differential Model

Considering the difference in the similarity and brightness between the neighboring
pixel and the center pixel, we modified the fractional-order differential coefficients by
using the intensity domain weights. The difference between the center pixel value and the
adjacent pixel value is relatively small, which indicates that the change of pixel values in
this area is not obvious; that is, it is usually in a flat area. We need to give higher weights
to the points whose grey values are closer to the grey values of the center point, thereby
highlighting the textural details of the flat area. The difference between the center pixel
value and adjacent pixel values is large, which indicates that the change of pixel values in
this area is relatively obvious, and the area contains boundary information. We need to
give lower weights to the points whose grey values are farther away from the center point
so that the current pixel is less affected, which preserves the edge information. The grey
distance weight formula is generated by the standard Gaussian function as follows:

wp = exp
(
−1

2

(∣∣Ip − Iq
∣∣2/σ

)2
)

(35)

where Iq is the intensity value of the two-dimensional vector coordinate of the central pixel
and Ip is the intensity value of the two-dimensional vector coordinate of the pixel adjacent
to the central pixel.

Therefore, the two-dimensional fractional differential expression can be written as follows:

∂v f (x,y)
∂xv ≈ f (x, y) + (−v)

wpΩ1(i,j)
∑ wpΩ1(i,j)

f (x− 1, y)

+ (−v)(−v+1)
2

wpΩ2(i,j)
∑ wpΩ2(i,j)

f (x− 2, y) + · · ·+ Γ(−v+1)
n!Γ(−v+n+1)

wpΩn(i,j)
∑ wpΩn(i,j)

f (x− n, y)

= a0 f (x, y) + a1 f (x− 1, y) + a2 f (x− 2, y) + · · ·+ an f (x− n, y)

(36)

∂v f (x,y)
∂yv ≈ f (x, y) + (−v)

wpΩ1(i,j)
∑ wpΩ1(i,j)

f (x, y− 1)

+ (−v)(−v+1)
2

wpΩ2(i,j)
∑ wpΩ2(i,j)

f (x, y− 2) + · · ·+ Γ(−v+1)
n!Γ(−v+n+1)

wpΩn(i,j)
∑ wpΩn(i,j)

f (x, y− n)

= a0 f (x, y) + a1 f (x, y− 1) + a2 f (x, y− 2) + · · ·+ an f (x, y− n)

(37)

The nonzero coefficients are in order as follows:

a0 = 1
a1 = −v·

wpΩ1(i,j)
∑ wpΩ1(i,j)

.

a2 = (−v)(−v+1)
2 ·

wpΩ2(i,j)
∑ wpΩ2(i,j)

=
(v2−v)

2 ·
wpΩ2(i,j)

∑ wpΩ2(i,j)

a3 = (−v)(−v+1)(−v+2)
6 ·

wpΩ3(i,j)
∑ wpΩ3(i,j)

=
(−v3+3v2−2v)

6 ·
wpΩ3(i,j)

∑ wpΩ3(i,j)

· · ·
an = Γ(−v+1)

n!Γ(−v+n+1) ·
wpΩn(i,j)

∑ wpΩn(i,j)

(38)
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where Ωr(r = 1, 2, . . . , n) represents the neighborhood that contains the rth nonzero
coefficient in the fractional differential mask, wpΩr(i,j) is the weight of pixel (i, j) in Ωr, and
∑ wpΩr(i,j) is the sum of all coefficients in neighborhood Ωr.

The anisotropic filter is constructed according to (38) to obtain the intensity domain
fractional differential mask, which is shown in Table 4.

Table 4. Intensity domain fractional differential mask.

wpΩ2(2,−2)

∑ wpΩ2(i,j)
a2

wpΩ2(2,−1)

∑ wpΩ2(i,j)
a2

wpΩ2(2,0)

∑ wpΩ2(i,j)
a2

wpΩ2(2,1)

∑ wpΩ2(i,j)
a2

wpΩ2(2,2)

∑ wpΩ2(i,j)
a2

wpΩ2(1,−2)

∑ wpΩ2(i,j)
a2

wpΩ1(1,−1)

∑ wpΩ1(i,j)
a1

wpΩ1(1,0)

∑ wpΩ1(i,j)
a1

wpΩ1(1,1)

∑ wpΩ1(i,j)
a1

wpΩ2(1,2)

∑ wpΩ2(i,j)
a2

wpΩ2(0,−2)

∑ wpΩ2(i,j)
a2

wpΩ1(0,−1)

∑ wpΩ1(i,j)
a1 wp(0,0)a0

wpΩ1(0,1)

∑ wpΩ1(i,j)
a1

wpΩ2(0,2)

∑ wpΩ2(i,j)
a2

wpΩ2(−1,−2)

∑ wpΩ2(i,j)
a2

wpΩ1(−1,−1)

∑ wpΩ1(i,j)
a1

wpΩ1(−1,0)

∑ wpΩ1(i,j)
a1

wpΩ1(−1,1)

∑ wpΩ1(i,j)
a1

wpΩ2(−1,2)

∑ wpΩ2(i,j)
a2

wpΩ2(−2,−2)

∑ wpΩ2(i,j)
a2

wpΩ2(−2,−1)

∑ wpΩ2(i,j)
a2

wpΩ2(−2,0)

∑ wpΩ2(i,j)
a2

wpΩ2(−2,1)

∑ wpΩ2(i,j)
a2

wpΩ2(−2,2)

∑ wpΩ2(i,j)
a2

After fractional differential filtering using the above mask, we use linear transforma-
tion and contrast limited adaptive histogram equalization (CLAHE) [42] to further enhance
the global brightness and contrast of the image.

Jλ′
β =

(
KJλ

β

)
CLAHE

(39)

where K is the adjustment parameter, Jλ
β is the image after intensity domain fractional

differential filtering, and Jλ′
β is the final enhanced image. The above-enhanced image of the

spatial domain fractional differential filter and the enhanced image of the intensity domain
fractional differential filter are synthesized to obtain the bilateral fractional differential
enhanced image.

S = 255− 1
2z

(
∑z

λ=1 Jλ′
α + ∑z

λ=1 Jλ′
β

)
(40)

After inverting the bilateral fractional differential image as (40), the final enhanced
image S can be obtained.

The above content is summarized, and the proposed multispectral image enhancement
algorithm is described in the Algorithm 1.
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Algorithm 1. Multispectral image enhancement based on IDCP_BFD.

Input: A original multispectral image R =
{

R1, R2, · · · , Rz} of the test dataset.

(1) Improved Dark Channel Prior step:

• Through (13), the multispectral image R is reverse as I to be used for the subsequent
algorithm.

• The enhanced multispectral image J =
{

J1, J2, · · · , Jz} is generated via (14)–(22).

(2) Bilateral Fractional Differential step:

For λ = 1, to z do
Let Jλ be any bands in the multispectral image.

• Spatial domain Fractional Differential

• Enhance the Jλ by using the spatial domain fractional differential normalized
mask of Table 3.

• Implement histogram equalization and calculate the spatial domain enhanced
image Jλ′

α via the (34).

• Intensity domain Fractional Differential

• Enhance the Jλ by using the intensity domain fractional differential normalized
mask of Table 4.

• Perform contrast limited adaptive histogram equalization and calculate the
intensity domain enhanced image Jλ′

β via the (39).

end for
• Calculate the final enhanced image S by considering (40).
Output: The enhanced result of the original image.

4. Experimental Results and Analysis

To verify the effectiveness of our proposed algorithm, we evaluate the visual effects
and objective indicators of the algorithm. All experiments in the paper are performed on
a personal computer with an Intel (R) Core (TM) i5-11300H 3.10 GHz CPU. Retinex-Net
method uses Python 3.6 and other methods use MATLAB R2020b. Code is available at
https://1drv.ms/u/s!ApVw-FZtwy2wfkXeeKpkh2HLvtY?e=YBgDiq (3 January 2022).

By referring to the relevant works of multispectral remote sensing image enhance-
ment [30–38], five well-known evaluation indexes, including the contrast, image intensity,
information entropy, average gradient, and execution time are used to evaluate the perfor-
mance of different methods.

Contrast represents the difference scale in the brightness levels of the brightest area
and the darkest area in an image. The greater the contrast is, the better the image quality;
however, the smaller the contrast is, the less obvious the image change. Contrast is
defined by

C = ∑δ
δ(i, j)2Pδ(i, j) (41)

where C represents the image contrast. δ(i, j) represents the intensity difference between
adjacent pixels. Pδ(i, j) indicates the distribution probability of the pixel with intensity
difference.

The image intensity denotes the average value of an image.

µ =
1

MN ∑M−1
i=0 ∑N−1

j=0 S(i, j) (42)

where µ represents the image intensity, M, N represent the dimension of image, S(i, j)
represents the intensity of the pixel (i, j).

Entropy reflects the information that an image carries.

H(S) = −∑255
k=0 pklogpk (43)

https://1drv.ms/u/s!ApVw-FZtwy2wfkXeeKpkh2HLvtY?e=YBgDiq
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where S represents the input image, and pk represents the proportion of pixels with gray
value k in the image. The larger the information entropy, the richer the information of
the image.

The average gradient represents the ability of an image to express minute details and
textural changes.

AG =
1

(M− 1)(N − 1)
·∑M−1

i=1 ∑N−1
j=1

√
(S(i, j)− S(i + 1, j))2 + (S(i, j)− S(i, j + 1))2

2
(44)

where S(i,j) represents the intensity value of pixel coordinates of the image. Generally, the
greater the average gradient is, the richer the image hierarchy and the clearer the image.

To confirm the performance of the proposed algorithm, we conducted experiments
in three ways. In Section 4.3, we compare our bilateral fractional differential algorithm
with five differential filtering algorithms, such as Sobel operator, Laplacian operator, the
Yipufei approach [19], the MGL approach [20], the approach of Wadhwa et al. [21], on
the premise of the proposed dark channel prior algorithm. The Yipufei approach and
the MGL approach are set in the fixed fractional order as in this paper. The approach of
Wadhwa et al. uses the adaptive fractional order; thus, the parameters are obtained from
original literature. In Section 4.4, we compare our IDCP algorithm with the original DCP
algorithm of 3-bands, IDCP algorithm of 3-bands, 4-bands, 5-bands, 6-bands, and 7-bands
on the premise of the proposed BFD algorithm. In Section 4.5, we compare the proposed
IDCP_BFD algorithm with the Retinex-Net approach [29], the LIME approach [43], and the
ACSEA approach [44] to evaluate the overall algorithm. All parameters are obtained from
the parameters set by each author.

4.1. Dataset

The Landsat-5 satellite is the fifth satellite in the Landsat series with an orbit altitude
of 705 km, which was launched in March 1984. This is an Earth observation satellite that
carries a thematic mapper (TM) and a multispectral scanner (MSS). To date, the images
delivered by Landsat-5 satellites have been widely used in many fields and have provided
a great deal of effective information worldwide. The Landsat-5 satellite is also the longest
optical remote sensing satellite in orbit.

In this paper, we chose thirty multispectral remote sensing images from Changji, Xin-
jiang in 2011 and Turpan, Xinjiang in 2009 obtained by the Landsat-5 satellite and then pro-
duced the multispectral image dataset. Each image of the dataset contains 500 × 500 pixels.
Landsat TM image contains 7 bands ranging from visible to thermal infrared wavelength.
Band 1 is the blue band with a wavelength range from 0.45 µm to 0.52 µm and a spatial
resolution of 30 m, which has strong penetration into water and can effectively distinguish
soil and vegetation. Band 2 is the green band with a wavelength range from 0.52 µm to
0.60 µm and a spatial resolution of 30 m, which is relatively sensitive to the response of
healthy and lush plants. Band 3 is the red band with a wavelength range from 0.63 µm to
0.69 µm and a spatial resolution of 30 m, which is the main band of chlorophyll absorption
and is usually used to observe bare soil and vegetation. Band 4 is the near-infrared band
with a wavelength range from 0.76 µm to 0.90 µm and a spatial resolution of 30 m, which
is a general band for plants and is usually used for the analysis of crop growth. Band 5 is
the shortwave infrared band with a wavelength range from 1.55 µm to 1.75 µm and a
spatial resolution of 30 m, which is used to distinguish the characteristics of roads, bare
soil, and water systems. Band 6 is the thermal infrared band with a wavelength range
from 10.40 µm to 12.50 µm and a spatial resolution of 120 m, which is used to distinguish
the characteristics of roads, bare soil, and water. Band 7 is the mid-infrared band with
a wavelength range from 2.08 µm to 2.35 µm and a spatial resolution of 30 m, which is
used to respond to targets emitting thermal radiation. Figures 3–5 present three sub-sets of
multispectral dataset. Each sub-set shows Band 1–7 and the composite image of 7 bands,
in which the composite image represents the superposition of all bands in the original
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multispectral data and shows the overall visual effect of the unenhanced image. The
multispectral remote sensing images reflect the ground information of different spectral
bands in the same region. From Figure 4a, we can see that the characteristics of water
bodies and urban colonies are obvious in band 1. Figures 4d and 5d show that band 4 has
relatively clear terrace characteristics. Figure 4e reflects the clear characteristics of urban
settlements and roads in band 5. In Figure 3a, the ridge and other lithologic characteristics
of band 7 are more prominent; therefore, we integrate seven bands to generate a single
band image in the subsequent enhancement processing. Compared with the enhancement
algorithm using only one band, the 7-bands combination algorithm can make better use
of the detailed information of different bands, restore the real and rich features of ground
objects, and then improve the visual interpretation effect.
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4.2. Parameter Analysis

In this part, we discuss the parameters in the paper. In the proposed algorithm, some
free parameters need to be adjusted in advance, including K and v. We carry out two sets of
experiments to verify the impact of these parameters on the performance of the algorithm.

The introduction of K is to control the degree of brightness adjustment. The fractional
filtering in the intensity domain makes the overall brightness of the image lower; therefore,
K is used to constrain the linear transformation and improve the brightness value of
multiband images. For this reason, we vary K from 0 to 10 with 0.5 intervals and test on
multispectral image datasets, including 30 images. The influence of K on image information
is given in Figure 6a. From Figure 6a, we can see that with the increase of K, the information
entropy gradually increases and tends to be stable. To the end, K is set to 6 to retain the
image information abundance in this paper.
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In addition, we need to set the order v of the fractional differential algorithm. As for
our fractional differential framework, the importance of neighborhood points changes with
the order. If the order is too small and the target pixel is not prominent enough, the gray
value of the image edge may mutate, resulting in the local region being too bright or too
dark. If the order is too large, the gray value of the image may be too large or too small
to exceed the gray display range. We vary the order v from 0 to 1 with 0.05 interval and
test on multispectral image datasets including 30 images. From Figure 6b, we can see that
the information entropy increases with the value of order but decreases sharply when v is
close to 1, which has been mentioned in Luo’s work [45]; therefore, we set v to 0.8 to ensure
the enhancement effects.

4.3. Comparative Experiments of Other Methods Based on Differential Filtering

In this part, we compared the proposed BFD algorithm with the image enhancement
methods based on differential filtering, such as Sobel operator, Laplacian operator, Yipufei
approach [19], MGL approach [20], and the approach of Wadhwa et al. [21]. The enhanced
visual effects of test images are shown in Figures 7–9. The ground objects of the original
images are different in each band; that is, the same ground objects are clear in some bands
and blurred in the other bands. By synthesizing the dimensional information, the enhanced
image with more complete features can be obtained. Figures 3–5 and 7–9 show that most
of the enhanced images can improve the clarity and texture details of the original image
to some extent. Comparing Figures 3a,e, 4a,e and 5a,e with Figures 7a,e, 8a,e and 9a,e,
we can see that although the contrasts of the images using the Sobel method and the
approach of Wadhwa et al. [21] are higher than that of the original image, the brightness
adjustment effects are not obvious, and the processed images still have fuzzy edge features.
Figures 7b–d, 8b–d and 9b–d show that the results generated by the Laplacian algorithm,
the Yipufei algorithm [19], and the MGL approach [20] can enhance the edge and textural
area of the original images to a certain extent, but the overall visual effects of the images
are generally dark, and the image contrast is not effectively improved. Furthermore,
Figure 9c,d show that the Yipufei algorithm [19] and the MGL approach [20] do not recover
some details of dark areas. The proposed method shows good visual effects on three sets
of images, as shown in Figures 7f, 8f and 9f. It is evident from the enhanced images that
our fractional differential method performs exceedingly well in maintaining the details.
Simultaneously, our method can fully enhance the edge and textural details and improve
the contrast and brightness of multispectral images.
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Table 5 shows the quantitative results of each band from Figures 3–5 and the average
quantitative results of 30 original multispectral images. Table 6 shows the quantitative
results of six differential methods used in Figures 7–9 and the average quantitative results
of the comparison methods used in 30 multispectral images. As shown in Table 5, band 6
has relatively high brightness values, and less information, and band 5 has relatively high
information entropy and average gradient; however, as a whole, the original multispectral
images have low contrast and weak edge retention. By comparing the data in Tables 5 and 6,
it can be observed that the proposed BFD method can effectively improve these problems of
the original images. The enhanced images using the BFD method have a relatively higher
information entropy and average gradient than each band of original multispectral images,
especially band 5 with the best comprehensive index, which reflects that the enhanced
images contain richer information, clearer edge textural features, and higher ability to
maintain details. In addition, it can be seen that the proposed method effectively improves
the global contrast, thereby enhancing the visibility of the original multispectral images;
therefore, the enhanced images have relatively moderate brightness value, clear edge, and
rich details, which can improve the basic features of the original multispectral image.

Table 6 shows that the method proposed in this paper has a higher mean value and
contrast than other differential algorithms, which shows that the enhanced image has good
global visual quality. Moreover, the proposed method achieves the highest entropy and
average gradient. This implies that our method can retain the advantages existing in the
original image and highlight the local detail features. Furthermore, the running time of the
proposed algorithm is higher than the other methods, apart from the approach of Wadhwa
et al. [21]. This is because our bilateral fractional filtering algorithm needs to calculate the
pixel difference in the neighborhood of an image, which makes the time consumption of the
algorithm longer. Although the time of the BFD algorithm is long, the other four indexes of
our method are higher than those of the five comparison methods; therefore, our algorithm
is a better algorithm to meet the needs of human vision.



Remote Sens. 2022, 14, 233 20 of 25

Table 5. The quantitative results of the original multispectral data.

Original Images
Metrics

µ C H AG

Data 1

Band1 113.73 50.06 5.54 4.33
Band2 59.25 21.06 5.06 2.91
Band3 71.15 44.76 5.68 4.24
Band4 72.48 41.51 5.47 4.07
Band5 115.07 116.69 6.54 6.94
Band6 190.00 1.47 4.81 0.73
Band7 69.97 55.95 6.03 4.83

Data 2

Band1 115.15 50.06 5.73 4.37
Band2 59.21 19.70 5.19 2.85
Band3 69.62 42.37 5.83 4.18
Band4 74.93 47.92 5.91 4.36
Band5 111.22 109.63 6.65 6.84
Band6 187.27 2.01 5.07 0.85
Band7 67.38 56.89 6.20 4.91

Data 3

Band1 88.51 25.78 5.50 3.30
Band2 45.43 11.72 4.91 2.19
Band3 49.57 33.09 5.56 3.57
Band4 80.82 95.66 6.39 6.04
Band5 92.72 60.55 5.88 4.98
Band6 171.47 2.62 5.62 0.95
Band7 50.89 43.52 5.86 4.18

Average in 30
multispectral data

Band1 97.84 34.04 5.61 3.79
Band2 51.12 15.94 5.07 2.61
Band3 59.92 39.95 5.76 4.08
Band4 76.11 52.51 5.92 4.48
Band5 106.76 93.46 6.37 6.27
Band6 174.41 2.24 5.12 0.86
Band7 61.53 53.72 6.04 4.73

4.4. Comparative Experiments Based on Dark Channel Prior

In this paper, we extend and improve the original dark channel algorithm; therefore,
we have further experimented and discussed the dark channel algorithm in different bands.
According to the average values of normalized information entropy and normalized image
intensity, we rank the seven bands in descending order: Band 5, Band 6, Band 4, Band
7, Band 1, Band 3, and Band 2. Then we combine the above bands, including the first
three bands, the first four bands, the first five bands, the first six bands, and the first
seven bands. The original DCP algorithm is used to test 3-bands combinations and the
proposed IDCP algorithm is used to test all band combinations. The experimental results
are given in Figures 10 and 11. It is readily observed that the histogram of Figure 10e
can make full use of the whole dynamic range than the histograms of Figure 10b,c. This
shows that the 7-bands algorithm used in this paper can obtain more detailed information.
In addition, compared with Figure 10a,b, Figure 10e is closer to the normal distribution,
and therefore closer to the ideal enhanced image [46]. Moreover, Figure 11 shows the
information entropy and average gradient obtained by applying the DCP algorithm of
3-bands and the IDCP algorithm from 3-bands to 7-bands in the multispectral dataset.
As shown in Figure 11a, the 7-bands algorithm has relatively higher information entropy,
indicating that the proposed algorithm can maintain the image information and enhance
the clarity of the images. From Figure 11b, it is clear that the average gradient of the 7-bands
combined algorithm is relatively high, which shows that the image contains more detailed
information. Theoretically, multispectral images exist “same body with different spectrum”
phenomenon; that is, the same type of ground objects have different gray values in different
bands; therefore, different electromagnetic wavebands can reflect different features. The 7-
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bands algorithm can use the spectrum information of all bands. On the whole, the 7-bands
IDCP algorithm can better integrate information and improve image quality.

Table 6. The quantitative results of the six differential methods with the proposed IDCP algorithm.

Test Images Methods
Metrics

µ C H AG Time(s)

Data 1

Sobel 87.68 121.56 6.06 5.74 2.21
Laplacian 96.13 2530.04 7.19 32.68 2.15

Yipufei [19] 96.13 2270.00 7.17 30.85 2.14
MGL [20] 96.13 2090.31 7.13 29.81 2.22

Wadhwa et al. [21] 96.02 95.72 5.97 5.47 7.24
Proposed BFD 114.69 3202.81 7.55 40.53 6.67

Data 2

Sobel 97.10 108.57 6.12 5.67 2.24
Laplacian 105.90 2311.94 7.22 31.72 2.09

Yipufei [19] 105.90 2063.72 7.20 29.92 2.21
MGL [20] 105.90 1899.01 7.15 28.90 2.18

Wadhwa et al. [21] 105.74 91.62 6.01 5.34 7.24
Proposed BFD 120.37 3090.68 7.56 40.22 6.72

Data 3

Sobel 75.20 102.33 5.80 4.81 2.23
Laplacian 83.70 1372.77 6.82 24.18 2.16

Yipufei [19] 83.70 1227.02 6.79 22.75 2.21
MGL [20] 83.70 1145.76 6.76 22.19 2.14

Wadhwa et al. [21] 83.54 54.96 5.69 4.23 7.15
Proposed BFD 106.19 2160.91 7.23 32.92 6.65

Average in 30
multispectral

data

Sobel 84.78 117.11 6.02 5.73 2.24
Laplacian 93.75 2054.57 7.11 30.07 2.16

Yipufei [19] 93.75 1842.40 7.09 28.41 2.21
MGL [20] 93.75 1703.19 7.05 27.52 2.16

Wadhwa et al. [21] 93.56 89.58 5.98 5.28 7.22
Proposed BFD 112.21 2866.97 7.49 38.71 6.67
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and the LIME approach make the overall image brighter, but the sharpness is relatively 
lower. There are low contrast and loss of detail in the Retinex-Net approach, while satu-
ration artifacts appear in the LIME approach. This is because the above methods are 
mainly used for low illumination image enhancement. Although they greatly improve the 
image brightness, they cannot preserve the edge details of the image well. In addition, 
Figure 12c shows that the ACSEA approach has uniform brightness but has relatively 
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(e) IDCP of 6-Bands; (f) IDCP of 7-Bands.



Remote Sens. 2022, 14, 233 22 of 25

Remote Sens. 2022, 13, x FOR PEER REVIEW 22 of 26 
 

 

different bands; therefore, different electromagnetic wavebands can reflect different fea-
tures. The 7-bands algorithm can use the spectrum information of all bands. On the whole, 
the 7-bands IDCP algorithm can better integrate information and improve image quality. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. The histograms corresponding to enhanced data 1 by using different input bands combi-
nations: (a) original DCP of 3-Bands; (b) IDCP of 3-Bands; (c) IDCP of 4-Bands; (d) IDCP of 5-Bands; 
(e) IDCP of 6-Bands; (f) IDCP of 7-Bands. 

  

(a) (b) 

Figure 11. The quantitative results of different input bands combinations used in 30 multispectral 
data: (a) entropy; (b) average gradient. 

4.5. Comparative Experiments of Other Methods Based on Image Enhancement 
We compared the lasting image enhancement methods with our whole algorithm, 

such as the Retinex-Net approach, the LIME approach, and the ACSEA approach, which 
as shown in Figure 12 and Table 7. As shown in Figures 12a,b, the Retinex-Net approach 
and the LIME approach make the overall image brighter, but the sharpness is relatively 
lower. There are low contrast and loss of detail in the Retinex-Net approach, while satu-
ration artifacts appear in the LIME approach. This is because the above methods are 
mainly used for low illumination image enhancement. Although they greatly improve the 
image brightness, they cannot preserve the edge details of the image well. In addition, 
Figure 12c shows that the ACSEA approach has uniform brightness but has relatively 

Figure 11. The quantitative results of different input bands combinations used in 30 multispectral
data: (a) entropy; (b) average gradient.

4.5. Comparative Experiments of Other Methods Based on Image Enhancement

We compared the lasting image enhancement methods with our whole algorithm,
such as the Retinex-Net approach, the LIME approach, and the ACSEA approach, which as
shown in Figure 12 and Table 7. As shown in Figure 12a,b, the Retinex-Net approach and
the LIME approach make the overall image brighter, but the sharpness is relatively lower.
There are low contrast and loss of detail in the Retinex-Net approach, while saturation
artifacts appear in the LIME approach. This is because the above methods are mainly
used for low illumination image enhancement. Although they greatly improve the image
brightness, they cannot preserve the edge details of the image well. In addition, Figure 12c
shows that the ACSEA approach has uniform brightness but has relatively blurred texture
details. As shown in Figure 12d, the proposed image enhancement method provides clearer
edge details and texture features effectively.
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IDCP_BFD.

Table 7 shows that the proposed IDCP_BFD has improved results in terms of con-
trast, entropy and average gradient than the other comparison algorithms; therefore, the
enhanced image of the proposed algorithm has more texture details and can significantly
highlight urban settlements, roads, and other ground features. It is clear that the proposed
method is superior to other algorithms in maintaining the overall image quality.
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Table 7. The quantitative results of the four image enhancement methods.

Test Images Methods
Metrics

µ C H AG Time(s)

Data 2

Retinex-Net 160.20 51.46 4.95 3.83 2.82
LIME 199.94 151.33 6.39 7.88 2.43

ACSEA 149.04 64.35 6.27 5.22 434.29
Proposed 120.37 3090.68 7.56 40.22 6.72

Average in 30
multispectral data

Retinex-Net 159.43 54.43 4.87 3.83 2.73
LIME 196.01 146.38 6.36 7.76 2.29

ACSEA 161.09 99.05 6.34 6.52 450.71
Proposed 112.21 2866.97 7.49 38.71 6.67

5. Discussion

Due to the influence of sensors, atmospheric environment, and weather, multispectral
remote sensing images usually have some problems such as distortion, blur, low contrast,
and loss of details, which brings difficulties to the visual interpretation. From the above
experiments, it can be seen that the proposed algorithm can effectively improve the image
quality and clearly express the ground features. At the same time, the superiority of the
proposed IDCP_BFD algorithm is also shown in the objective evaluation. The results mainly
depend on the combination of bilateral fractional differential algorithm and improved dark
channel prior algorithm. In particular, the BFD algorithm plays an important role in image
texture detail and visual quality improvement. In this paper, we mainly implement the
comparison methods in the Landsat-5 TM dataset. The proposed algorithm can still be used
for other multispectral remote sensing datasets; however, the free parameters may change.
Especially for datasets with a high overall brightness value, the brightness adjustment
parameter K can be appropriately reduced. In addition, the execution time of the proposed
method is relatively long and the processing rate needs to be improved. In the future, we
will further optimize the algorithm to achieve a higher image processing rate and try to use
parameter adaptation to improve the robustness of the algorithm.

6. Conclusions

In this paper, a multispectral image enhancement method based on dark channel
prior technology and the fractional differential algorithm is proposed. In this method,
we extend the dark channel model from the RGB channel to multiple channels and use
the spatial fractional differential algorithm to improve the guided filtering and optimize
the transmittance estimation. Furthermore, we redistribute the coefficients defined by the
G-L function according to the weights of the spatial domain and intensity domain and
then use the improved fractional differential algorithm to obtain an enhanced image with
a clearer edge and textural details. We perform experiments on the multispectral image
dataset and compare the enhancement results of different algorithms qualitatively and
quantitatively. Compared with other methods, the proposed method not only improves the
global brightness and local contrast of the original multispectral image but also effectively
enhances the edges and textural details of the image.

Author Contributions: Z.J. and W.C. conceived and designed the study; W.C. conducted the experi-
ments and wrote the article; J.Y. and N.K.K. assisted by reviewing the article and providing editorial
supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China (No. U1803261)
and the International Science and Technology Cooperation Project of the Ministry of Education of the
People’s Republic of China (No. 2016–2196).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Remote Sens. 2022, 14, 233 24 of 25

Data Availability Statement: The data is obtained from the following: https://1drv.ms/u/s!ApVw-
FZtwy2wfkXeeKpkh2HLvtY?e=YBgDiq (2 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fu, X.; Wang, J.; Zeng, D.; Huang, Y.; Ding, X. Remote Sensing Image Enhancement Using Regularized-Histogram Equalization

and DCT. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2301–2305. [CrossRef]
2. Lu, X.; Li, X. Multiresolution Imaging. IEEE Trans. Cybern. 2014, 44, 149–160. [CrossRef] [PubMed]
3. Lu, X.; Wang, Y.; Yuan, Y. Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images. IEEE Trans.

Geosci. Remote Sens. 2013, 51, 4009–4018. [CrossRef]
4. Wang, J.; Yang, Y.; Chen, Y.; Han, Y. LighterGAN: An Illumination Enhancement Method for Urban UAV Imagery. Remote Sens.

2021, 13, 1371. [CrossRef]
5. Hagag, A.; Hassan, E.S.; Amin, M.; Abd El-Samie, F.E.; Fan, X. Satellite multispectral image compression based on removing

sub-bands. Optik 2017, 131, 1023–1035. [CrossRef]
6. Iqbal, M.Z.; Ghafoor, A.; Siddiqui, A.M. Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform

and Nonlocal Means. IEEE Geosci. Remote Sens. Lett. 2013, 10, 451–455. [CrossRef]
7. Lee, E.; Kim, S.; Kang, W.; Seo, D.; Paik, J. Contrast Enhancement Using Dominant Brightness Level Analysis and Adaptive

Intensity Transformation for Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 62–66. [CrossRef]
8. Pyka, K. Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and Close Range Images. Remote Sens. 2017, 9, 25.

[CrossRef]
9. Lisani, J.; Michel, J.; Morel, J.; Petro, A.B.; Sbert, C. An Inquiry on Contrast Enhancement Methods for Satellite Images. IEEE

Trans. Geosci. Remote Sens. 2016, 54, 7044–7054. [CrossRef]
10. Liu, J.; Zhou, C.; Chen, P.; Kang, C. An Efficient Contrast Enhancement Method for Remote Sensing Images. IEEE Geosci. Remote

Sens. Lett. 2017, 14, 1715–1719. [CrossRef]
11. Liu, C.; Sui, X.; Kuang, X.; Liu, Y.; Gu, G.; Chen, Q. Optimized Contrast Enhancement for Infrared Images Based on Global and

Local Histogram Specification. Remote Sens. 2019, 11, 849. [CrossRef]
12. Febin, I.P.; Jidesh, P.; Bini, A.A. A Retinex-Based Variational Model for Enhancement and Restoration of Low-Contrast Remote-

Sensed Images Corrupted by Shot Noise. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 941–949. [CrossRef]
13. Jang, J.H.; Kim, S.D.; Ra, J.B. Enhancement of Optical Remote Sensing Images by Subband-Decomposed Multiscale Retinex With

Hybrid Intensity Transfer Function. IEEE Geosci. Remote Sens. Lett. 2011, 8, 983–987. [CrossRef]
14. Ye, X.; Yang, H.; Li, C.; Jia, Y.; Li, P. A Gray Scale Correction Method for Side-Scan Sonar Images Based on Retinex. Remote Sens.

2019, 11, 1281. [CrossRef]
15. Song, M.; Qu, H.; Zhang, G.; Tao, S.; Jin, G. A Variational Model for Sea Image Enhancement. Remote Sens. 2018, 10, 1313.

[CrossRef]
16. Chaudhuri, D.; Kushwaha, N.K.; Samal, A. Semi-Automated Road Detection From High Resolution Satellite Images by Directional

Morphological Enhancement and Segmentation Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1538–1544.
[CrossRef]

17. Bandeira, A. Random Laplacian Matrices and Convex Relaxations. Found. Comput. Math. 2015, 18, 345–379. [CrossRef]
18. Chen, S.; Zhao, F. The Adaptive Fractional Order Differential Model for Image Enhancement Based on Segmentation. Int. J.

Pattern Recognit. Artif. Intell. 2018, 32, 1854005. [CrossRef]
19. Pu, Y.; Zhou, J.; Yuan, X. Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhance-

ment. IEEE Trans. Image Processing 2010, 19, 491–511. [CrossRef]
20. Hemalatha, S.; Margret Anouncia, S. G-L fractional differential operator modified using auto-correlation function: Texture

enhancement in images. Ain Shams Eng. J. 2018, 9, 1689–1704. [CrossRef]
21. Wadhwa, A.; Bhardwaj, A. Enhancement of MRI images of brain tumor using Grünwald Letnikov fractional differential mask.

Multimed. Tools Appl. 2020, 79, 25379–25402. [CrossRef]
22. He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33,

2341–2353. [CrossRef] [PubMed]
23. Xuan, D.; Guan, W.; Yi, P.; Weixin, L.; Jiangtao, W.; Wei, M.; Yao, L. Fast efficient algorithm for enhancement of low lighting video.

In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011; pp. 1–6.
24. Caballero, R.; Berbey-Alvarez, A. Underwater Image Enhancement Using Dark Channel Prior and Image Opacity. In Proceedings

of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama City, Panama, 9–11 October
2019; pp. 556–561.

25. Im, J.; Yoon, I.; Hayes, M.H.; Paik, J. Dark channel prior-based spatially adaptive contrast enhancement for back lighting
compensation. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; pp. 2464–2468.

https://1drv.ms/u/s!ApVw-FZtwy2wfkXeeKpkh2HLvtY?e=YBgDiq
https://1drv.ms/u/s!ApVw-FZtwy2wfkXeeKpkh2HLvtY?e=YBgDiq
http://doi.org/10.1109/LGRS.2015.2473164
http://doi.org/10.1109/TCYB.2013.2286496
http://www.ncbi.nlm.nih.gov/pubmed/24346037
http://doi.org/10.1109/TGRS.2012.2226730
http://doi.org/10.3390/rs13071371
http://doi.org/10.1016/j.ijleo.2016.11.172
http://doi.org/10.1109/LGRS.2012.2208616
http://doi.org/10.1109/LGRS.2012.2192412
http://doi.org/10.3390/rs9010025
http://doi.org/10.1109/TGRS.2016.2594339
http://doi.org/10.1109/LGRS.2017.2730247
http://doi.org/10.3390/rs11070849
http://doi.org/10.1109/JSTARS.2020.2975044
http://doi.org/10.1109/LGRS.2011.2146227
http://doi.org/10.3390/rs11111281
http://doi.org/10.3390/rs10081313
http://doi.org/10.1109/JSTARS.2012.2199085
http://doi.org/10.1007/s10208-016-9341-9
http://doi.org/10.1142/S0218001418540058
http://doi.org/10.1109/TIP.2009.2035980
http://doi.org/10.1016/j.asej.2016.12.003
http://doi.org/10.1007/s11042-020-09177-x
http://doi.org/10.1109/TPAMI.2010.168
http://www.ncbi.nlm.nih.gov/pubmed/20820075


Remote Sens. 2022, 14, 233 25 of 25

26. Sonkar, P.K.; Raj, K. Single Image Dehazing Using Dark Channel Prior With Median Filter and Contrast Enhancement. In
Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November
2020; pp. 1–6.

27. Yang, H.; Chen, P.; Huang, C.; Zhuang, Y.; Shiau, Y. Low Complexity Underwater Image Enhancement Based on Dark Channel
Prior. In Proceedings of the 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications,
Shenzhen, China, 16–18 December 2011; pp. 17–20.

28. Yang, H.; Wang, J. Color image contrast enhancement by co-occurrence histogram equalization and dark channel prior. In Pro-
ceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 659–663.

29. Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex Decomposition for Low-Light Enhancement. arXiv 2018, arXiv:1808.04560v1.
30. Tian, L.; Du, Q.; Younan, N.; Kopriva, I. Multispectral image enhancement with extended offset-sparsity decomposition. In

Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July
2016; pp. 4383–4386.

31. Bhandari, A.K.; Gadde, M.; Kumar, A.; Singh, G.K. Comparative analysis of different wavelet filters for low contrast and
brightness enhancement of multispectral remote sensing images. In Proceedings of the 2012 International Conference on Machine
Vision and Image Processing (MVIP), Coimbatore, India, 14–15 December 2012; pp. 81–86.

32. Bhandari, A.K.; Kumar, A.; Singh, G.K. SVD Based Poor Contrast Improvement of Blurred Multispectral Remote Sensing Satellite
Images. In Proceedings of the 2012 Third International Conference on Computer and Communication Technology, Allahabad,
India, 23–25 November 2012; pp. 156–159.

33. Suresh, S.; Das, D.; Lal, S. A Framework for Quality Enhancement of Multispectral Remote Sensing Images. In Proceedings of the
2017 Ninth International Conference on Advanced Computing (ICoAC), Chennai, India, 14–16 December 2017; pp. 9–14.

34. Wang, M.; Zheng, X.; Feng, C. Color constancy enhancement for multi-spectral remote sensing images. In Proceedings of the
2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013;
pp. 864–867.

35. Lu, S.-l.; Zou, L.-j.; Shen, X.-h.; Wu, W.-y.; Zhang, W. Multi-spectral remote sensing image enhancement method based on PCA
and IHS transformations. J. Zhejiang Univ. SCIENCE A 2011, 12, 453–460. [CrossRef]

36. Venkatakrishnamoorthy, T.; Reddy, G.U. Cloud enhancement of NOAA multispectral images by using independent component
analysis and principal component analysis for sustainable systems. Comput. Electr. Eng. 2019, 74, 35–46. [CrossRef]

37. Mulla, A.; Baviskar, J.; Mohhamed, R.; Baviskar, A. Adaptive Band Specific Image Enhancement Scheme for Segmented Satellite
Images. In Proceedings of the 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015;
pp. 1–5.

38. Yang, C.; Lu, L.; Lin, H.; Guan, R.; Shi, X.; Liang, Y. A Fuzzy-Statistics-Based Principal Component Analysis (FS-PCA) Method for
Multispectral Image Enhancement and Display. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3937–3947. [CrossRef]

39. Cafagna, D. Fractional calculus: A mathematical tool from the past for present engineers [Past and present]. IEEE Ind. Electron.
Mag. 2007, 1, 35–40. [CrossRef]

40. Matlob, M.A.; Jamali, Y. The Concepts and Applications of Fractional Order Differential Calculus in Modelling of Viscoelastic
Systems: A primer. Crit. Rev. Biomed. Eng. 2017, 47, 249–276. [CrossRef]

41. Che, J.; Shi, Y.; Xiang, Y.; Ma, Y. The fractional differential enhancement of image texture features and its parallel processing
optimization. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 16–18
October 2012; pp. 330–333.

42. Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization. In Graphics Gems; Heckbert, P.S., Ed.; Academic Press: San
Diego, CA, USA, 1994; pp. 474–485.

43. Guo, X.; Li, Y.; Ling, H. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE Trans. Image Processing
2017, 26, 982–993. [CrossRef]

44. Suresh, S.; Lal, S.; Reddy, C.S.; Kiran, M.S. A Novel Adaptive Cuckoo Search Algorithm for Contrast Enhancement of Satellite
Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3665–3676. [CrossRef]

45. Luo, X.; Zeng, T.; Zeng, W.; Huang, J. Comparative analysis on landsat image enhancement using fractional and integral
differential operators. Computing 2020, 102, 247–261. [CrossRef]

46. Demirel, H.; Ozcinar, C.; Anbarjafari, G. Satellite Image Contrast Enhancement Using Discrete Wavelet Transform and Singular
Value Decomposition. IEEE Geosci. Remote Sens. Lett. 2010, 7, 333–337. [CrossRef]

http://doi.org/10.1631/jzus.A1000282
http://doi.org/10.1016/j.compeleceng.2019.01.005
http://doi.org/10.1109/TGRS.2008.2001386
http://doi.org/10.1109/MIE.2007.901479
http://doi.org/10.1615/CritRevBiomedEng.2018028368
http://doi.org/10.1109/TIP.2016.2639450
http://doi.org/10.1109/JSTARS.2017.2699200
http://doi.org/10.1007/s00607-019-00737-0
http://doi.org/10.1109/LGRS.2009.2034873

	Introduction 
	Related Work 
	Proposed Method 
	Dark Channel Prior 
	Improved Dark Channel Prior 
	G-L Fractional Differential Model 
	Bilateral Fractional Differential Model 
	Spatial Domain Fractional Differential Model 
	Intensity Domain Fractional Differential Model 


	Experimental Results and Analysis 
	Dataset 
	Parameter Analysis 
	Comparative Experiments of Other Methods Based on Differential Filtering 
	Comparative Experiments Based on Dark Channel Prior 
	Comparative Experiments of Other Methods Based on Image Enhancement 

	Discussion 
	Conclusions 
	References

