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Abstract—Remote Sensing systems enhance the spatial quality
of low-resolution Multi-Spectral (MS) images using information
from Pan-chromatic (PAN) images under the pansharpening
framework. Most decimated multi-resolution pansharpening ap-
proaches upsample the low-resolution MS image to match the
resolution of the PAN image. Consequently, a multi-level wavelet
decomposition is performed, where the edge information from the
PAN image is injected in the MS image. In this paper, the authors
propose a pansharpening framework that eliminates the need
of upsampling of the MS image, using a B-Spline biorthogonal
wavelet decomposition scheme. The proposed method features
similar performance to the state-of-the-art pansharpening meth-
ods without the extra computational cost induced by upsampling.

I. INTRODUCTION

Image Fusion is the process of combining visual informa-

tion, obtained from various image modalities, into a single

image representation, in order to facilitate information infer-

ence by human operators or computer vision systems [1].

The launch of several satellites, that provide various types

of spectral and spatial information about our planet, have

encouraged the development of remote sensing systems. The

IKONOS satellite, launched in 2000, offers Multi-Spectral

(MS) imagery at 4m and Panchromatic (PAN) imagery at

1m resolution [2]. The QuickBird satellite, launched in 2001,

collects Panchromatic imagery at 60-70 cm resolution and

Multi-Spectral imagery at 2.4 and 2.8m resolutions [3]. Cur-

rent state-of-the-art image processing and fusion methods have

facilitated the efficient processing and enhancement of the

available satellite image data.

Pansharpening is the procedure of combining the high

spectral information available in Multi-Spectral (MS) images

with the high spatial information of the Panchromatic (PAN)

image. Although the spatial resolution of MS images in

modern satellites has significantly increased, PAN imagery still

has finer spatial resolution than MS imagery [4]. In contrast,

MS imagery provides better spectral resolution compared to

PAN imagery (RGB and Night Infra Red (NIR) channel). Both

these features are essential for performing image classification

tasks in remote sensing applications. High spectral resolution

facilitates the discrimination of land cover types, whereas high

spatial resolution facilitates the identification of textures and

the accurate extraction of shape and boundaries of the different

objects present in the image [4]. Assume an MS image xMS

of size M1 ×N1 × 3 (the NIR channel will not be considered

in our study) and a PAN image xPAN of size M2 × N2

(M2/M1 = N2/N1 = 4). The problem of Pansharpening can

thus be described as the problem of transferring the spatial

resolution of the PAN image and the spectral resolution of the

MS image to a composite pansharpened image xPS of size

M2 × N2 × 3.

The literature in Pansharpening methods is vast, cover-

ing a wide variety of methods [4]–[11]. The Gram-Schmidt

(GS) Pansharpening methods [9], [10] combine the PAN and

MS images using the GS transformation. Principal Compo-

nent Analysis (PCA)-based pansharpening approaches perform

PCA to select a principal image representation between the

PAN and the MS images [11]. Wavelet-based Pansharpen-

ing is a multi-resolution method featuring enhanced perfor-

mance [4]–[8]. Undecimated wavelet-based approaches using

the à-trous algorithm seem to perform better than decimated

approaches [8]. Most decimated pansharpening approaches

employ an upsampling preprocessing step in order to tackle

the problem of spatial resolution difference between the PAN

and MS images. In this paper, the authors revise current deci-

mated wavelet-based pansharpening approaches, by proposing

a methodology to solve the spatial resolution problem inside

the wavelet multi-resolution analysis. The computational cost

of a wavelet-based pansharpening approach is thus reduced,

while retaining similar image quality.

II. WAVELET-BASED PANSHARPENING

Most pansharpening approaches tackle the difference in

spatial resolution between the PAN and the MS image by

upsampling the three channels (RGB) of the MS image by

a factor of 4 in order to match the resolution of the PAN

image [4]–[8]. Thus, the first step in most pansharpening

systems is upsampling, which is usually performed by Bicubic

or B-spline interpolation.

Most fusion approaches create a single channel output

from multiple modality inputs, whereas in pansharpening a

multichannel fused output is required. A first strategy is to

fuse each RGB channel independently with the PAN image to

create a RGB Pansharpened image [5]. Another widely used

approach is to transfer the RGB MS image to a representation



 
 

  

R 
G 
B 

�
4 

 
R 
G 
B 

 
H 
S 
I 

RGB to  
 
HSI 

 
P 
A 
N 

Histogram 
Matching 

I 

I 

PAN’ 

LL I        LHI 
 
 
HLI          HHI 

LLPN      LHPN 
 
 
HLPN     HHPN 

LL I      LHPN 
 
 
HLPN     HHPN 

Wavelet 
Decomposition 

H S 

 
R 
G 
B 

 
H 
S 
I’ 

HSI to  
 
RGB 

I’  

Panchromatic 
Image Pansharpened 

Image 

Multi Spectral 
Image 

Fig. 1. A common wavelet-based Pansharpening architecture using upsampling to match the different resolution inputs.

of Intensity, Hue and Saturation (IHS) [5]. The intensity image

in the IHS representation is very similar to a panchromatic

image, thus many approaches fuse the I channel of the MS

image with the PAN image and then transform the modified

I channel jointly with the original H, S channels back to the

RGB domain to create the Pansharpened image. There are

various implementations of the forward and inverse transfor-

mation between the RGB and the IHS colour systems [1], [5].

In this work, we followed the implementation in [12].

The Wavelet Transformation (WT) is a multi-resolution

decomposition, where the original image is initially sub-

stituted by a structure of approximation images LLj and

three detail images HLj , LHj , HHj of lower resolution

(usually downsampled by 2) at various decomposition levels j.

The detail images HL, LH, HH capture the image’s salient

features, whereas the approximation images LL capture the

low frequency information, mainly intensity information.

Based on the previous observation, most wavelet-based

pansharpening approaches [4]–[8] perform a j-level wavelet

decomposition to both the PAN and MS image. Some ap-

proaches decompose the channels RGB independently and

perform channel pansharpening with the PAN image. Sev-

eral other approaches transform the MS image to the IHS

space and perform wavelet decomposition on the I chan-

nel alone. Once the wavelet decompositions are calculated,

the wavelet decomposition of the pansharpened image is

formed from the calculated decompositions. The detail images

HLi, LHi,HHi,∀i ∈ [1, j] of the pansharpened image’s

decomposition are acquired from the PAN image’s decom-

position. The LL image is acquired from the last LL1 of

MS image’s decomposition. The intensity range of the PAN

image is matched to the intensity range of the I channel of the

MS image prior to the wavelet decomposition. The intensity

matching can be either a simple linear transformation or a

nonlinear exact histogram matching, as described in [13]. The

pansharpened decomposition is finally recomposed, producing

the final pansharpened image (see Fig. 1). In practice, the

choice of wavelet family does not seem to affect significantly

the performance of pansharpening, although the choice of an

undecimated wavelet decomposition (the à-trous algorithm)

seems to produce superior results compared to the decimated

case [8].

III. DECIMATED WAVELET-BASED PANSHARPENING

WITHOUT UPSAMPLING

The current wavelet-based schemes feature the following

conceptual redundancy. The algorithm is required to process

two input images at different resolutions. The authors believe

that the upsampling of the MS image can be avoided, since

the whole procedure actually implies moving up and down

the MS image’s scale of decomposition. Instead, one can only

move downwards the wavelet decomposition in order to match

the resolution of the PAN image and perform pansharpening.

To avoid the upsampling stage of the MS image, the differ-

ent resolutions are matched inside the wavelet decomposition.

Initially, we move the MS image to the IHS space and store

the H,S components. Then, wavelet decomposition of j − 2
levels of the I image is performed. Wavelet decomposition

of j levels is performed to the PAN image and the same

pansharpening procedure can now be applied in a similar

manner to the previous wavelet-based approaches. The LL1

is acquired from the decomposition of the I image, whereas

the HLi, LHi,HHi,∀i ∈ [1, j] images are acquired from

the decomposition of the PAN image. Hence, a coefficient

substitution method is followed rather than coefficient fusion

to increase computational complexity. Once the PS image is

formed in the wavelet domain, wavelet recomposition is used

to reconstruct the I image to the resolution of the PAN image

(up j levels). The H and S channels can be upsampled using

a two-level wavelet recomposition, by placing them as the

LL sub-image and filling the HL, LH, HH sub-images with

zeros, or using bicubic interpolation. Finally, the pansharpened

image xPS is acquired by returning the estimated IHS repre-

sentation to the RGB space. The whole procedure is outlined

in Figure 2.

In order to combine the I channel of the MS image with the

PAN image in the wavelet decomposition, one has to match

the value range of the PAN image to the value range of the I

channel, regardless of the difference in resolution. Many ap-

proaches employ an exact histogram specification approach, as

proposed by Coltuc et al [13]. This approach often introduced
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Fig. 2. The proposed wavelet-based Pansharpening architecture that involves no upsampling of the multispectral input. The number in brackets denotes the
level of wavelet decomposition/recomposition.

artifacts in our pansharpening examples, thus, we employed a

linear mapping in the form of x̃PAN = axPAN + b, where

a, b are estimated to impose the mean and variance of the

I channel of the MS image on x̃PAN . This process yields

a smoother histogram matching procedure with less artifacts

than the nonlinear specification approach in [13].

One can argue that the proposed approach will suffer from

edge localisation problems. These problems will occur due to

the difference in the number of wavelet decomposition levels

that are performed on the two images. The wavelet decom-

position may introduce some shifting in the actual position

of the edges as it moves to the coarsest decomposition level.

Thus, using a (j − 2)-level decomposition for the MS image

and a j-level decomposition for the PAN image may result

in a slight drift between the edges in the two representations

and thus double edges will appear in the pansharpened image

after reconstruction. This problem does not appear in the orig-

inal wavelet-based methods, since the same level of wavelet

decomposition is applied on both input images and possible

correction to edge localisation is performed via registration

after upsampling. In the proposed scheme this problem can

be alleviated by using a wavelet family with strong edge

localisation properties, so that that the wavelet decomposition

introduces minimal shift to the original position of the edges.

The Biorthogonal Spline Wavelets are shown to provide ac-

curate edge localisation along the wavelet decomposition, as

they provide optimal spatial-frequency localisation [14]. In this

analysis, the Toolbox Wavelets’ implementation of Biorthogo-

nal Spline Wavelets (Cohen-Daubechies-Feauveau CDF) (3,9)

is employed to perform the wavelet decomposition [15]. Using

the aforementioned wavelet family, one can encounter minimal

edge localisation problems in the pansharpened image, without

the extra registration and upsampling stages.

In this paper, we examine the case that the input images

are registered or have minimal registration offset. In the

case of strong misregistration between the MS and the PAN

images, one can register the MS channels with the LL sub-

image of the two-level decimated decomposition of the PAN

image. Upsampling an image does not necessarily improve the

localisation of edges in the MS channels and thus performing

registration at a level with increased uncertainty in the edge

position does not necessarily improve the registration and

pansharpening performance.

IV. COMPUTATIONAL COST COMPARISON

In order to compare the computational cost of the two

wavelet-based methods, we will assume that the upsampling

of the H,S channel in the proposed method is performed by

bicubic interpolation. Thus, the difference in the computational

cost between the two methods is entailed in the following

steps. In the original wavelet-based framework, a single chan-

nel bicubic upsampling by a factor of 4 is performed, an

RGB to IHS transformation at resolution M2 × N2 and a

wavelet decomposition of j levels. In the proposed framework,

these steps are replaced by an RGB to IHS transformation at

resolution M1 × N1(M1 < M2, N1 < N2) and a wavelet

decomposition of j − 2 levels. Hence, the computational cost

is reduced in the proposed framework.

V. EXPERIMENTS

In this section, the performance and the computation time

of three wavelet-based pansharpening schemes along with a

PCA-based method are evaluated. The “Toolbox Wavelet”

implementation of Biorthogonal Spline Wavelets (Cohen-

Daubechies-Feauveau CDF) (3,9) and the ’‘a-trous transfor-

mation was employed [15]. Four levels of wavelet decompo-

sition (j = 4) were performed. A recent study has shown

that this is the optimal level of wavelet decomposition for

pansharpening [16]. Pansharpening performance was evaluated

in terms of Relative Shift, Deviation Index, Spectral Angle,

Correlation Index, ERGAS and Q4, as commonly employed by

the Pansharpening community [1], [5], [7]. The computation

time was evaluated using MATLAB’s “tic”-“toc” commands

on a Core2 3GHz PC with 4 GB RAM.

Experiments employed three QuickBird image pairs of

different terrain types, available online from the University
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Fig. 3. Comparison of four Pansharpening schemes using a sample from the QuickBird database.
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Fig. 4. Comparison of four Pansharpening schemes using a sample from the QuickBird database.



of Maryland1, that were used to construct 256, 60 and 120
1024 × 1024 PAN and 256 × 256 MS images respectively

from the three image pairs. The images were already ortho-

rectified. We applied the three wavelet-based approaches and a

PCA-based approach that employs upsampling. We performed

numerical evaluation of the achieved pansharpening with ref-

erence to the original MS image for those metrics that measure

spectral deviation and with original PAN image for those

metrics that measure spatial deviation. Average results for each

performance index are summarised in Table I. It should be

noted that wavelet-based methods are superior to PCA-based

methods. It is clear that the undecimated à-trous wavelet-

based pansharpening excels in all metrics, as it was expected.

However, the wavelet-based approach without upsampling

seems to be similar in performance to the original approach,

which implies that there was no reduction in performance

removing the upsampling stage. In Fig.3, 4, 5 we can perform

a visual evaluation of the aforementioned approaches.

One important difference is the computation time between

the wavelet-based approaches, which is also depicted in Ta-

ble I. The decimated approach without upsampling required

4.28 sec/image on average to perform pansharpening on the

aforementioned machine, whereas the approach with upsam-

pling required 6.09 sec/image to perform the same task with

almost similar quality. The à-trous wavelet approach required

9.85 sec/image. This implies that the proposed scheme has

reduced the processing time by ∼ 30% compared to the

decimated wavelet transform, which is quite significant for

real-time applications. The PCA method was obviously the

fastest method (0.96 sec/image) in all experiments as fusion

in essentially performed in the spatial domain without any

multiscale decomposition. However, the PCA method featured

the worst pansharpening performance. Finally, there was no

visible registration error in any of the images for the wavelet-

based approach without upsampling. This was achieved by

using Biorthogonal B-spline wavelets with accurate edge lo-

calisation properties.

VI. CONCLUSIONS

In this paper, the authors reviewed the current state-of-

the-art wavelet-based methods and identified the redundant

step of upsampling the multispectral image to the resolution

of the panchromatic image in order to perform a wavelet

decomposition for image fusion. Instead, we proposed to re-

move the upsampling stage and perform different-level wavelet

decompositions in order to match the resolution of the two

images and perform fusion of the spectral and spatial infor-

mation. Experimental results on different terrain types show

similar performance to decimated wavelet-based methods with

upsampling, but with decreased computational complexity.
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NoUpsample Upsample Upsample

Set 1

Relative 7.68 9.34 7.14 28.43
Shift

Deviation 1.29 1.38 1.15 12.33
Index

Spectral 3.45 3.35 3.2 3.95
Angle

Correla- 0.844 0.842 0.861 0.532
tion Index

ERGAS 6.703 6.535 6.16 10.19

Q4 0.684 0.687 0.712 0.554

CPU time 4.23 6.04 9.73 0.94
/frame(sec)

Set 2

Relative 43.18 51.87 41.07 86.87
Shift

Deviation 7.45 8.62 6.48 22.79
Index

Spectral 5.89 5.85 5.58 6.3
Angle

Correla- 0.83 0.83 0.85 0.676
tion Index

ERGAS 9.23 9.03 8.51 10.99

Q4 0.74 0.74 0.76 0.69

CPU time 4.38 6.17 9.49 0.95

/frame(sec)

Set 3

Relative 9.88 11.24 7.22 43.77
Shift

Deviation 1.34 1.48 1.64 16.09
Index

Spectral 2.94 2.97 2.67 5.22
Angle

Correla- 0.76 0.75 0.8 0.2
tion Index

ERGAS 5.8 5.67 5.36 9.97

Q4 0.58 0.58 0.61 0.62

CPU time 4.25 6.077 10.34 1.01

/frame(sec)

[2] Wikipedia, “IKONOS satellite - http://en.wikipedia.org/wiki/IKONOS,”
.

[3] Wikipedia, “QuickBird satellite-http://en.wikipedia.org/wiki/Quickbird,”
.

[4] M.M. Khan, J. Chanussot, L. Condat, and A. Montanvert, “Indusion:
Fusion of multispectral and panchromatic images using the induction
scaling technique,” IEEE Geoscience and Remote Sensing Letters, vol.
5, no. 1, pp. 98–102, 2008.

[5] Y. Zhang and G. Hong, “An IHS and wavelet integrated approach to
improve pan-sharpening visual quality of natural colour IKONOS and
QuickBird images,” Elsevier Information Fusion, vol. 6, no. 3, pp. 225–
234, 2005.

[6] V.P. Shah, N.H. Younan, and R. King, “Pan-sharpening via the contourlet
transform,” in Proc. IEEE Int. Conf. on Geoscience and Remote Sensing

Symposium (IGARSS), 2007, pp. 310 – 313.

[7] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L.M.
Bruce, “Comparison of pansharpening algorithms: Outcome of the 2006
GRS-S data-fusion contest,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 45, no. 10, pp. 3012 – 3021, 2007.

[8] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Context-driven
fusion of high spatial and spectral resolution images based on oversam-
pled multiresolution analysis,” IEEE Transactions on Geoscience and



(a) MS
Sensor

(b) PAN Sensor

(c) Decimated WT - No Upsampling (d) Decimated WT - With Upsam-
pling
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