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1. Introduction 

Multispectral images usually present complimentary information such as visual-band 
imagery and infrared imagery (near infrared or long wave infrared). There are strong 
evidences that the fused multispectral imagery (in gray scales) increases the reliability of 
interpretation (Rogers & Wood, 1990; Essock et al., 2001) and thus good for machine analysis 
(computer vision); whereas the colorized multispectral imagery improves observer 
performance and reaction times (Toet et al. 1997; Varga, 1999; Waxman et al., 1996) and thus 
good for visual analysis (human vision).  
Imagine a nighttime navigation task that may be executed by an aircraft equipped with a 
multispectral imaging system. Analyzing the synthesized (fused or colorized) multisensory 
image will be more informative and more efficient than simultaneously monitoring 
multispectral images such as visual-band imagery (e.g., image intensified, II), near infrared 
(NIR) imagery, and infrared (IR) imagery, which may be displayed either on several split 
panels on a big screen or on several small screens. The focus of this chapter is how to 
synthesize a color presentation of multispectral images in order to enhance night vision. It is 
anticipated that the successful applications of night vision colorization techniques will lead to 
improved performance of remote sensing, nighttime navigation, target detection, and 
situational awareness. This colorization approaches mentioned here involve two main 
techniques, image fusion and colorization, which are briefly reviewed as follows, respectively. 
Image fusion combines multiple-source imagery by integrating complementary data in order 
to enhance the information apparent in the respective source images, as well as to increase 
the reliability of interpretation. This results in more accurate data (Keys et al., 1990) and 
increased utility (Rogers & Wood, 1990; Essock et al., 1999). In addition, it has been reported 
that fused data provides far more robust aspects of operational performance such as 
increased confidence, reduced ambiguity, improved reliability and improved classification 
(Rogers & Wood, 1990; Essock et al., 2001). A general framework of image fusion can be 
found in Reference (Pohl & Genderen, 1998). The discussions of image fusion here are 
limited to pixel-level fusion. 
Two commonly used fusion methods are the discrete wavelet transform (DWT) (Pu & Ni, 
2000; Nunez et al., 1999) and various pyramids (such as Laplacian, contrast, gradient, and 
morphological pyramids) (Jahard et al., 1997; Ajazzi et al., 1998), which both are multiscale 
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fusion methods. Recently, an advanced wavelet transform (aDWT) method (Zheng et al., 
2004) has been proposed, which incorporates principal component analysis (PCA) and 
morphological processing into a regular DWT fusion algorithm. The aDWT method can 
produce a better fused image in comparison with pyramid methods and regular DWT 
methods. Image fusion is a necessary step for the following color fusion and colorization 
methods. 
On the other hand, a night vision colorization technique can produce colorized imagery with a 
naturalistic and stable color appearance by processing multispectral night-vision imagery. 
Although appropriately false-colored imagery is often helpful for human observers in 
improving their performance on scene classification, and reaction time tasks (Essock et al., 
1999; Waxman et al., 1996), inappropriate color mappings can also be detrimental to human 
performance (Toet & IJspeert, 2001; Varga, 1999). A possible reason is lack of physical color 
constancy (Varga, 1999). Another drawback with false coloring is that observers need 
specific training with each of the unnatural false color schemes so that they can correctly 
and quickly recognize objects; whereas with colorized nighttime imagery rendered with 
natural colors, users should be able to readily recognize and identify objects. 
Toet (2003) proposed a night vision (NV) colorization method that transfers the natural 
color characteristics of daylight imagery into multispectral NV images. Essentially, Toet’s 
natural color-mapping method matches the statistical properties (i.e., mean and standard 
deviation) of the NV imagery to that of a natural daylight color image (manually selected 
as the “target” color distribution). However, this color-mapping method colorizes the 
image regardless of scene content, and thus the accuracy of the coloring is very much 
dependent on how well the target and source images are matched. Specifically, Toet’s 
method weights the local regions of the source image by the “global” color statistics of the 
target image, and thus will yield less naturalistic results (e.g., biased colors) for images 
containing regions that differ significantly in their colored content. Another concern of 
Toet’s “global-coloring” method is that the scene matching between the source and target is 
performed manually. To address the aforementioned bias problem in global coloring, 
Zheng et al. (2005; 2008) presented a “local coloring” method that can colorize the NV 
images more like daylight imagery. The local-coloring method will render the 
multispectral images with natural colors segment by segment (i.e., “segmentation-
based”), and also provide automatic association between the source and target images 
(i.e., avoiding the manual scene-matching in global coloring). This local coloring method 
is also referred to as “segmentation-based” colorization in contrast with “channel-based” 
color fusion introduced later. 
In this chapter, we will discuss and explore how to enhance human night vision by 
presenting a color image with a set of multispectral images. Certainly, a color presentation 
of multispectral night vision images can provide a better visual result for human users. 
We would prefer the color images resembling natural daylight pictures that we are used 
to; meanwhile the coloring process shall be efficient enough ideally for real time 
applications. A segmentation-based colorization procedure is first reviewed, and a 
channel-based color fusion is then introduced. The remainder of this chapter is organized 
as follows. The multispectral image preprocessing, registration and fusion are described 
in Section 2. Next, the segmentation-based colorization method is completely discussed in 
Section 3. Then, a new channel-based color fusion method is introduced in Section 4. The 
experiments and discussions are given in Section 5. Conclusions are finally drawn in 
Section 6.  
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2. Multispectral image preprocessing 

The multispectral images that we acquired include visible (RGB color) images, image 
intensified (II, enhanced visible) images, near infrared (NIR; spectral range: 0.9~1.7 μm) 
images, and long-wave infrared (LWIR; spectral range: 7.5~13 μm) images. Before 
performing multispectral colorization, image preprocessing, image registration, and image 
fusion are required. 

2.1 Standard preprocessing  
Standard image preprocessing such as denoising, normalization and enhancement can favorite 

the following processes, i.e., image registration, fusion, and colorization. The noise in digital 

images may be caused by imperfection of imaging sensors, scene contents in FOV (field of 

view, extremely cold or hot objects for infrared imaging), environment (atmosphere) 

disturbance, or poor illumination (for visible band imaging). Noise can be reduced 

according to the nature of the noise sources that depends on a particular application. For 

example, pepper-and-salt noise can be removed by a median filter; periodic noise may be 

reduced by a designed frequency filter in Fourier transformed domain; and a random noise 

can be suppressed by a Gaussian filter or a nonlinear diffusion filter. 

Night-vision images (NIR and LWIR) were acquired under different background and 

conditions, which may cause images to have different background (brightness) and contrast 

(dynamic range). We employed a general image normalization (also called contrast stretching) 

to standardize all multispectral images. 

 Max Min
0 Min Min

Max Min

( )N

L L
I L

I I

-
= - +

-
I I  (1) 

where IN is the normalized image, I0 is the original image; IMin and IMax are the maximum 

and minimum pixel values in I0, respectively; LMin and LMax are the expected maximum and 

minimum pixel values in IN, which normally equal 0 and 1, respectively. After image 

normalization, IN Î [0, 1]. 

The image contrasts of near infrared (NIR) images are significantly affected by illumination 
conditions. Nonlinear enhancement like histogram equalization or histogram matching 
usually increases noises while enhancing a NIR image. A linear enhancement such as 
piecewise contrast stretching is preferred. Eq. (1) is still applicable but just applied within each 
piece of intensity interval. For example, given [IMin, IMax] = [0, 0.8], and [LMin, LMax] = [0, 1.0], 

after piecewise contrast stretching, the pixels within [0, 0.8] will be linearly scaled to [0, 1.0], 

while those pixels originally within (0.8, 1.0] are unchanged. To simply writing, this 

transform can be notated as [0,1.0]
[0,0.8]S  thereafter. 

2.2 Image registration 
Image registration is a required preprocess by image fusion and image colorization. In 

general, image registration aligns multiple images by performing affine transformations that 

allows translation, rotation, and scaling. Similarity metrics are used to decide the optimized 

transformation parameters. Normalized mutual information (NMI) turns out to be the robust 

metric for noisy and multi-modality image registration (Hill & Batchelor, 2001). The 

computation complexity increases with the number of degrees of freedom. For 2D image 
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registration, Fourier-Mellin transform (FMT, Chen et al., 1994) is much faster than NMI-

based registration, but FMT is sensitive to noise. For multispectral night-vision image 

registration, we utilize two registration algorithms, i.e., use the FMT method for translation 

registration, and then use the NMI-based method for scaling and rotation registration.  

We used the FMT method only accounting for translation alignment although it can be 
alternated for scaling and rotation (but not reliable). The image alignment by scaling and 
rotation is accomplished with affine transforms using NMI metric. The image transforming 
parameters can be estimated by maximizing the NMI value. Calculation of NMI and 
interpolation of transforming (e.g., fractional scaling) are quite time consuming. However, 
the searching spaces of parameters (for scaling and rotation) are small because two cameras 
are sitting on the same fixture by turns and aiming at the same target. This expedites the 
registration process on the other hand.  
Different FOV of multispectral images is another challenge for image registration. For 
example, FLIR SC620 camera (used in our experiments) is a two-band imaging device with a 
LWIR camera (640×480 pixels; FOV: 24˚) and a built-in visible camera (2048×1536 pixels; FOV: 
32˚). Before registration with LWIR image cropping the visible image is desired. To find the 
matched block (region) of LWIR on the visible image, (i) scan the visible image block by block 
with step movement 5~10 pixels (Left to Right, Top to Bottom), where the block image is of 
size (960×720, estimated according to view angles); (ii) compute the NMI between the 
scanning block (on the visible image) and LWIR; (iii) select the scanning block (region) with 
maximal NMI as the matched block for the following registration. The framework of general 
image registration was documented elsewhere (Brown, 1992), and the details of our proposed 
course-to-fine registration method will be discussed in a separate paper. 

2.3 Image fusion 
Image fusion is a necessary step for the color fusion discussed in this chapter. Image fusion 

serves to combine multiple-source imagery using advanced image processing techniques. 

Laplacian pyramid and DWT-based fusion methods are briefly reviewed, while the details 

of image fusion were documented elsewhere (Zheng et al., 2005). 

The Laplacian pyramid was first introduced as a model for binocular fusion in human stereo 

vision (Burt & Adelson, 1985), where the implementation used a Laplacian pyramid and a 

maximum selection rule at each point of the pyramid transform.  Essentially, the procedure 

involves a set of band-pass copies of an image is referred to as the Laplacian pyramid due to 

its similarity to a Laplacian operator. Each level of the Laplacian pyramid is recursively 

constructed from its lower level by applying the following four basic steps: blurring (low-

pass filtering); sub-sampling (reduce size); interpolation (expand); and differencing (to 

subtract two images pixel by pixel) (Burt & Adelson, 1983). In the Laplacian pyramid, the 

lowest level of the pyramid is constructed from the original image. 

The regular DWT method is a multi-scale analysis method. In a regular DWT fusion process, 

DWT coefficients from two input images are fused pixel-by-pixel by choosing the average of 

the approximation coefficients (i.e., the low-pass filtered image) at the highest transform scale; 

and the larger absolute value of the detail coefficients (i.e., the high-pass filtered images) at 

each transform scale. Then, an inverse DWT is performed to obtain a fused image. At each 

DWT scale of a particular image, the DWT coefficients of a 2D image consist of four parts: 

approximation, horizontal detail, vertical detail, and diagonal detail. In the advanced DWT 

(aDWT) method (Zheng et al., 2004), we apply PCA (principle component analysis) to the 
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two input images’ approximation coefficients at the highest transform scale. That is, we fuse 

them using the principal eigenvector (corresponding to the larger eigenvalue) derived from 

the two original images, as described in Eq. (2) below:  

 1 2 1 2( ) /( )F A BC a C a C a a= ⋅ + ⋅ +  (2) 

where CA and CB are approximation coefficients (image matrices) transformed from input 
images A and B. CF represents the fused coefficients; a1 and a2 are the elements (scalars) of 
the principal eigenvector, which are computed by analyzing the original input images. Note 
that the denominator in Eq. (2) is used for normalization so that the fused image has the 
same energy distribution as the original input images. 
For the detail coefficients (the other three quarters of the coefficients) at each transform 
scale, the larger absolute values are selected, followed by neighborhood morphological 
processing, which serves to verify the selected pixels using a “filling” and “cleaning” 
operation (i.e., the operation fills or removes isolated pixels locally). Such an operation 
(similar to smoothing) can increase the consistency of coefficient selection thereby reducing 
the distortion in the fused image. 

3. Segmentation-based colorization 

In segmentation-based colorization (i.e., local coloring) method, multispectral night vision 
imagery is rendered segment-by-segment with the statistical color properties of natural scenes 
by using the color mapping technique. Eventually, the colorized images resemble daylight 
pictures. The main steps of segmentation-based colorization are given below: (1) A false-color 
image (source image) is first formed by assigning multispectral (two or three band) images to 
three RGB channels. The false-colored images usually have an unnatural color appearance. (2) 
Then, the false-colored image is segmented using the features of color properties, the 
techniques of nonlinear diffusion, clustering, and region merging. A set of “clusters” are 
formed by analyzing the histograms of the three components of the diffused image in l┙┚ 
color space. Those clusters are merged to “segments” if their similarity values in l┙┚ space 
are greater than a preset threshold. (3) The averaged mean, standard deviation, and 
histogram of a large sample of natural color images are used as the target color properties for 
each color scheme. The target color schemes are grouped by their contents and colors such as 
plants, mountain, roads, sky, water, buildings, people, etc. (4) The association between the 
source region segments and target color schemes is carried out automatically utilizing a 
classification algorithm such as the nearest neighbor paradigm. (5) The color mapping 
procedures (statistic-matching and histogram-matching) are carried out to render natural 
colors onto the false-colored image segment by segment. (6) The mapped image is then 
transformed back to the RGB space. (7) Finally, the mapped image is transformed into HSV 
(Hue-Saturation-Value) space and the “value” component of the mapped image is replaced 
with the “fused NV image” (a grayscale image). Note that this fused image replacement is 
necessary to allow the colorized image to have a proper and consistent contrast. 

3.1 Color space transform 
In this subsection, the RGB to LMS (long-wave, medium-wave and short-wave) transform is 
discussed first. Then, an l┙┚ space is introduced from which the resulting data 
representation is compact and symmetrical, and provides a higher decorrelation than the 
second order. The reason for the color space transform is to decorrelate three color 
components (i.e., l, ┙ and ┚) so that the manipulation (such as statistic matching and 

www.intechopen.com



 
 Image Fusion and Its Applications 

 

40

histogram matching) on each color component can be performed independently. Inverse 
transforms (l┙┚ space to the LMS and LMS to RGB) are needed to complete the proposed 
segmentation-based colorization, which are given elsewhere (Zheng & Essock, 2008). 
The actual conversion (matrix) from RGB tristimulus to device-independent XYZ tristimulus 
values depends on the characteristics of the display being used. Fairchild (1998) suggested a 
“general” device-independent conversion (while non-priori knowledge about the display 
device) that maps white in the chromaticity diagram to white in the RGB space and vice versa.  

 

0.5141 0.3239 0.1604

0.2651 0.6702 0.0641

0.0241 0.1228 0.8444

X R

Y G

Z B

é ù é ù é ù
ê ú ê ú ê ú
ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê ú
ë û ë û ë û

 (3) 

The XYZ values can be converted to the LMS space using the following equation 

 

0.3897 0.6890 0.0787

0.2298 1.1834 0.0464

0.0000 0.0000 1.0000
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M Y

S Z
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 (4) 

A logarithmic transform is employed here to reduce the data skew that existed in the above 
color space: 

 L = log L,    M = log M,     S = log S. (5) 

Ruderman et al. (1998) presented a color space, named l┙┚ (Luminance-Alpha-Beta), which 
can decorrelate the three axes in the LMS space: 
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 (6) 

The three axes can be considered as an achromatic direction (l), a yellow-blue opponent 
direction (┙), and a red-green opponent direction (┚). The l┙┚ space has the characteristics of 
compact, symmetrical and decorrelation, which highly facilitate the subsequent process of 
color-mapping (see Section 3.4).  

3.2 Image segmentation 
The nonlinear diffusion procedure has proven to be equivalent to an adaptive smoothing 
process (Barash & Comaniciu, 2004). The diffusion is applied to the false-colored NV image 
here to obtain a smooth image, which significantly facilitates the subsequent segmentation 
process. The clustering process is performed separately on each color component in the l┙┚ 
color space to form a set of “clusters”. The region merging process is used to merge the 
fragmental clusters into meaningful “segments” (based on a similarity metric defined in 3D 
l┙┚ color space) that will be used for the color-mapping process.  

3.2.1 Adaptive smoothing with nonlinear diffusion 
Nonlinear diffusion methods have been proven as powerful methods in the denoising and 
smoothing of image intensities while retaining and enhancing edges. Barash and Comaniciu 
(2004) have proven that nonlinear diffusion is equivalent to adaptive smoothing and 
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bilateral filtering is obtained from an extended nonlinear diffusion. Nonlinear diffusion 
filtering was first introduced by Perona and Malik (1990). Basically, diffusion is a PDE 
(partial differential equation) method that involves two operators, smoothing and gradient, 
in 2D image space. The diffusion process smoothes the regions with lower gradients and 
stops the smoothing at region boundaries with higher gradients. Nonlinear diffusion means 
the smoothing operation depends on the region gradient distribution. For color image 
diffusion, three RGB components of a false-colored NV image are filtered separately (one by 
one). The number of colors in the diffused image will be significantly reduced and will 
benefit the subsequent image segmentation procedures – clustering and merging. 

3.2.2 Image segmentation with clustering and region merging 
The diffused false-colored image is transformed into the l┙┚ color space. Each component (l, 
┙ or ┚) of the diffused image is clustered in the l┙┚ space by individually analyzing its 
histogram. Specifically, for each intensity component (image) l, ┙ or ┚, (i) normalize the 
intensity onto [0,1]; (ii) bin the normalized intensity to a certain number of levels NBin and 
perform the histogram analysis; (iii) with the histogram, locate local extreme values (i.e., 
peaks and valleys) and form a stepwise mapping function using the peaks and valleys; (iv) 
complete the clustering utilizing the stepwise mapping function. 
The local extremes (peaks or valleys) are easily located by examining the crossover points of 
the first derivatives of histograms. Furthermore, “peaks” and “valleys” are expected to be 
interleaved (e.g., valley-peak-valley-…-peak-valley); otherwise, a new valley value can be 
calculated with the midpoint of two neighboring peaks. In addition, two-end boundaries are 
considered two special valleys. In summary, all intensities between two valleys in a histogram 
are squeezed in their peak intensity and the two end points in the histogram are treated as 
valleys (rather than peaks). If there are n peaks in a histogram, then an n-step mapping 
function is formed. If there are two or more valley values (including the special valley at the 
left end) at the left side of the leftmost peak, then use the special (extreme) valley intensity. 
Clustering is done by separately analyzing three components (l, ┙ & ┚) of the false-colored 
image, which may result in inconsistent clusters in the sense of colors. Region merging is 
necessary to incorporate the fragmental “clusters” into meaningful “segments” in the sense 
of colors, which will improve the color consistency in a colorized image. If two clusters are 
similar (i.e., Qw(x,y) > TQ (a predefined threshold)), these two clusters will be merged. 
Qw(x,y) is a similarity metric between two clusters, x and y, which is defined in the l┙┚  color 
space as follows: 

 
{ , , }

( , ) [ ( , )]w k k
k l

Q x y w Q x y
a b=

= ⋅å  (7a) 

where wk is a given weight for each color component. Qk(x,y) is formulated below:  
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where x  and xs  are the mean and the standard deviation of cluster x in a particular 

component, respectively. Similar definitions are applied to cluster y. The sizes (i.e., areas) of 

two clusters (x and y) are usually unequal. Notice that Qk(x,y) is computed with regard to 

the diffused false-color image. 
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3.3 Automatic segment recognition 
A nearest neighbor (NN) paradigm (Keysers et al., 2002) is demonstrated to classify the 
segments obtained from the preceding procedure (described in Section 3.2). To use the NN 
algorithm, a distance measure between two segments is needed. The similarity metric 
Qw(x,y) (as defined in Eqs. (7)) between two segments, x and y, is used as the distance 
measure. Thus, the closer two segments in l┙┚ space, the larger their similarity.  
Similar to a training process, a look up table (LUT) has to be built under supervision to 

classify a given segment (sj) into a known color group (Ci), i.e., Ci = T(sj), (i ≤ j), where sj is a 

feature vector that distinguishingly describes each segment; Ci stands for a known color 

scheme (e.g., sky, clouds, plants, water, ground, roads, etc.); and T is a classification function 

(i.e., a trained classifier). We use segment color statistics (e.g., mean and deviation of each 

channel) as features (of six statistical variables). The statistical features (sj) are computed 

using the diffused false-color images and the color mapping process is carried out between a 

false-color segment and a daylight color scheme. The reason for using the diffused false-

color images here is because the diffused images are less sensitive to noise. In a training 

stage, a set of multispectral NV images are analyzed and segmented such that a sequence of 

feature vectors, {sj} can be computed and the LUT (mapping) between {sj} and {Ci} can be 

manually set up upon the experimental results. In a classifying (testing) stage, all Qw(xk, sj) 

values (for j = 1, 2, 3, …) are calculated, where xk means the current classified segment and sj 

represents one of the existing segments from the training stage. Certainly, xk is automatically 

classified into the color group of the largest Qw (similarity). For example, if Qw(x1, s5) is the 

maximum, then the segment of x1 will be colorized using the color scheme T(s5) that is the 

color used to render the segment of s5 in the training stage. 

3.4 Color mapping 
3.4.1 Statistic matching 
A “statistic matching” is used to transfer the color characteristics from natural daylight 
imagery to false color night-vision imagery, which is formulated as: 

 
k

k k k kT
C S S Tk

S

= ( - )× +
σ

I I μ μ
σ

,            for k = { l, ┙, ┚ }, (8) 

where IC is the colored image, IS is the source (false-color) image in l┙┚ space; μ denotes the 
mean and σ denotes the standard deviation; the subscripts ‘S’ and ‘T’ refer to the source and 
target images, respectively; and the superscript ‘k’ is one of the color components: { l, ┙, ┚}.  
After this transformation, the pixels comprising the multispectral source image have means 

and standard deviations that conform to the target daylight color image in l┙┚ space. The 

color-mapped image is transformed back to the RGB space through the inverse transforms 

(l┙┚ space to the LMS, exponential transform from LMS to LMS, and LMS to RGB, refer to 

Eqs. (3-6)) (Zheng & Essock, 2008). 

3.4.2 Histogram matching 
Histogram matching (also referred to as histogram specification) is usually used to enhance an 
image when histogram equalization fails (Gonzalez & Woods, 2002). Given the shape of the 
histogram that we want the enhanced image to have, histogram matching can generate a 
processed image that has the specified histogram. In particular, by specifying the histogram 
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of a target image (with daylight natural colors), a source image (with false colors) resembles 
the target image in terms of histogram distribution after histogram matching. Similar to 
statistic matching, histogram matching also serves for color mapping and is performed 
component-by-component in l┙┚ space. Histogram matching and statistic matching can be 
applied separately or jointly. 

4. Channel-based color fusion 

The segmentation-based colorization described in Section 3 can usually produce colorized 
night-vision images closely resembling natural daylight pictures. However, this segmentation-
based coloring procedure involves many processes and heavy computations such as histogram 
analysis, color space transform, image segmentation, and pattern classification. It will be a 
grand challenge for real time applications. Therefore, we propose a fast color fusion method, 
termed as channel-based color fusion, which is efficient enough ideally for real time applications. 
Notice that the term of “color fusion” means combing multispectral images into a color-
version image with the purpose of resembling natural scenes. Relative to “night vision 
colorization”, color fusion trades the realism of colors with speed. On the other hand, false 
coloring techniques have no intention of resembling natural color scenery. 
The general framework of channel-based color fusion is as follows, (i) prepare for color 
fusion, preprocessing (denoising, normalization and enhancement) and image registration; 
(ii) form a color fusion image by properly assigning multispectral images to red, green, and 
blue channels; (iii) then fuse multispectral images (gray fusion) using aDWT algorithm (see 
Section 2.3); and (iv) replace the value component of color fusion in HSV color space with the 
gray-fusion image, and finally transform back to RGB space.  
In night vision imaging, there may be two or several bands of images available, for example, 
visible (RGB), image intensified (II), near infrared (NIR), medium wave infrared (MWIR), 
long wave infrared (LWIR, also called thermal). The discussions of following subsections 
focus on how to form a channel-wise color fusion with the available multispectral images. 

4.1 Color fusion with two-band images 
Upon the available images and common applications, we will discuss two-band color fusion 
of (II Å  LWIR), (NIR Å  LWIR), (RGB Å  LWIR), and (RGB Å  NIR), although other 
combinations of two bands may be possible in some applications. The symbol ‘Å ’ denotes 
the fusion of multiband images. 

4.1.1 Color fusion of (II Å  LWIR) 

Suppose a color fusion image (FC) consists of three color planes, FR, FG, FB, the color fusion of 
II and LWIR images are formed by using the following expressions, 

 FR = [0,0.7]
[0,1.0]S (ILWIR), (9a) 

 FG = [0.2,1]
[0.1,I_Gmax]S (III), (9b) 

 FB = [0.1,0.75]
[0,1.0]S ([1.0- ILWIR] � III), (9c) 

 VF = Fus(III, ILWIR); (9d) 
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where [0.2,1]
[0.1,I_Gmax]S  denotes piecewise contrast stretching defined in Eq. (1) and I_Gmax = 

min([ II II3m s+ ],0.8), µ and σ are the mean and standard deviation of an II image; [1.0- ILWIR] 

is to invert LWIR image; symbol ‘�’ means element-by-element multiplication; VF is the 

value component of FC in HSV space, Fus() means image fusion operation using aDWT 

algorithm. Although the limits given in contrast stretching are obtained empirically 

according to the night vision images that we had, it is viable to formulate the expressions 

and automate the fusion based upon a set of conditions (imaging devices, imaging time, and 

application location). Notice the transform parameters in Eqs. (9) were applied to all color 

fusions in our experiments. 

4.1.2 Color fusion of (NIR Å  LWIR) 

A color fusion of NIR and LWIR is formulated by, 

 FR = [0.2,0.9]
[0,1.0]S (ILWIR), (10a) 

 FG = [0.2,1]
[0.1,I_Gmax]S (INIR), (10b) 

 FB = [0.1,0.7]
[0,1.0]S ([1.0- ILWIR] � INIR); (10c) 

 VF = Fus(INIR, ILWIR); (10d) 

where I_Gmax = min([ NIR NIR2m s+ ],0.8), min() is an operation to get the minimal number. 

Other notes are the same as that in Eqs. (9). 

4.1.3 Color fusion of (RGB Å  LWIR) 

Two-band color fusion of RGB and LWIR is described as follows, 

 FR = [0,I_Rmax]
[0,1.0]S (max[ILWIR, IRed]), (11a) 

 FG = IGreen, (11b) 

 FB = IBlue; (11c) 

where IRed, IGreen and IBlue are the three channel images of a RGB image; I_Rmax = 

min([ Red Red8m s+ ],0.6), min() is an operation to get the minimal number; max[ILWIR, IRed] is to 

take the maximal pixel values between ILWIR and IRed. In fact, this color fusion only modifies the 

red channel in a RGB image, where the piecewise contrast stretching in Eq. (11a) is to keep a 

good color balance and contrast. No image fusion is used because the RGB images captured at 

night time are usually very noisy. Of course, no HSV transform is performed. 

4.1.4 Color fusion of (RGB Å  NIR) 

The color fusion of RGB and NIR is defined as, 

 FR = IRed, (12a) 
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 FG = [0,I_Gmax]
[0,1.0]S (max[INIR, IGreen]), (12b) 

 FB = IBlue; (12c) 

where I_Gmax = min([ Green Green6m s+ ],0.6). Other notes are the same as that in Eqs. (11). This 

color fusion actually modifies the green channel in a RGB image. No image fusion and no 
HSV transform are performed. The color fusion of (RGB Å  NIR) is not used as often as the 

fusion of (RGB Å  LWIR). 

4.2 Color fusion with three-band images 
Due to the available image databases, we only discuss one application of three-band color 

fusions, (RGB Å  NIR Å  LWIR). A color fusion of RGB, NIR and LWIR can be described  

as, 

 FR = [0,0.6]
[0,1.0]S (ILWIR), (13a) 

 FG = [0.1,0.9]
[0.1,I_Gmax]S (INIR), (13b) 

 FB = [0.2,1]
[0,I_Bmax]S (IBlue); (13c) 

 VF = Fus(INIR, ILWIR); (13d) 

where I_Gmax = min([ NIR NIR2.5m s+ ],0.8), I_Bmax = min([ Blue Blue3m s+ ],0.85), IBlue is the blue 

channel image of a RGB image. The other two channels (red and green) are not used for the 

color fusion. 

5. Experimental results and discussions 

Two sets of multispectral images were used in our experiments, which were taken at night 

time and referred as to “NV-set 1” and “NV-set 2”. In NV-set 1, three pairs of multispectral 

images (as shown Figs. 1-3), image intensified (II) and long wave infrared (LWIR), were 

analyzed by using the aDWT fusion algorithm and segmentation-based colorization (also 

referred as to “local coloring”) algorithm as described in Section 3. The results of 

segmentation-based colorization are illustrated in Figs. 1-3. Note that there was no post-

processing imposed on the resulted fusion and colorization images.  

The two input images and the fused images used in the coloring process are shown in Figs.  

1-3a, Figs. 1-3b and Figs. 1-3c, respectively. The image resolutions are given in figure captions. 

Two input images in NV-set 1 were preregistered. The false colored images (not shown in Figs. 

1-3) were obtained by assigning image intensified (II) images to blue channels, infrared (IR) 

images to red channels, and providing averaged II and IR images to green channels. The 

rationale of forming a false-color image is to assign a long-wavelength NV image to the red 

channel and to assign a short-wavelength NV image to the blue channel. The number of false 

colors were reduced with the nonlinear diffusion algorithm with AOS (additive operator 

splitting for fast computation) implementation that facilitated the subsequent segmentation. 

The segmentation was done in l┙┚ space through clustering and  
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         (a)    (b)          (c) 

     
(d)        (e)              (f) 

Fig. 1. Segmentation-based colorization with Sample #1 (531×401 pixels) in NV-set 1: (a) and 
(b) are II and LWIR images; (c) Fused image by aDWT; (d) is the segmented image from a 
false-colored image (not shown), where 16 segments were merged from 36 clusters; (e) is the 
colored image, where six auto-classified color schemes (sky, clouds, plants, water, ground 
and others) were mapped by jointly using histogram-matching and statistic-matching; (f) 
Channel-based color fusion of (IIÅ LWIR). 
 

     
(a)     (b)                        (c) 

     
(d)     (e)                        (f) 

Fig. 2. Segmentation-based colorization with Sample #2 (360×270 pixels) in NV-set 1: (a) and 
(b) are II and LWIR images; (c) Fused image by aDWT; (d) is the segmented image of 12 
segments merged from 21 clusters; (e) is the colored image with five auto-classified color 
schemes (plants, roads, ground, building and others); (f) Channel-based color fusion of 
(IIÅ LWIR). 
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(a)     (b)                        (c) 

     
(d)     (e)                        (f) 

Fig. 3. Segmentation-based colorization with Sample #3 (360×270 pixels) in NV-set 1: (a) and 
(b) are II and LWIR images; (c) Fused image by aDWT; (d) is the segmented image of 14 
segments merged from 28 clusters; (e) is the colored image with three auto-classified color 
schemes (plants, smoke and others); (f) Channel-based color fusion of (IIÅ LWIR). 

merging operations (the clustered images are not shown in Figs. 1-3). The parameter values 
used in clustering and merging are NBin = [24 24 24], wk = [0.25 0.35 0.40] and TQ = 0.90. To 
emphasize two chromatic channels (due to more distinguishable among segments) in l┙┚ 
space, relatively larger weights were assigned in wk. With the segment map as shown in 
Figs. 1-3d, the histogram-matching and statistic-matching were performed segment by 
segment in l┙┚ space. The source region segments were automatically recognized and 
associated with proper target color schemes (after the training process is done). The finally 
colored images by segmentation-based colorization are shown in Figs. 1-3e. From a visual 
examination, the colored images appear very natural, realistic, and colorful. The comparable 
colorization results by using global coloring algorithm are presented in Reference (Zheng & 
Essock, 2008). This segmentation-based coloring process is fully automatic and well 
adaptive to different types of multispectral images.  
Two-band channel-based color fusion (described in Eqs. (9)) was applied to the II and LWIR 

images (shown in Figs. 1-3a, b), and the results are illustrated in Figs. 1-3f. The color fusion 

results are very good especially in representing vegetation. Compared to the segmentation-

based colorization results, the channel-based color fusion seems less realistic such as the sky 

and roads shown in Figs. 1-2f. However, the processes of channel-based color fusion 

eliminate the needs of segmentation and classification, and also reduced the color 

transforms. The processing speed of is much faster than that of segmentation-based 

colorization. 

In NV-set 2, four pairs of multispectral images (as shown Figs. 4-7), color RGB, near infrared 

(NIR) and long wave infrared (LWIR), were analyzed by using the channel-based color 

fusion algorithm as described in Section 4. The results of channel-based color fusion are 

presented in Figs. 4-8. 
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The three-band input images used in the color fusion process are shown in Figs. 4-7a, b and 
c, respectively. The image resolutions are given in figure captions. The RGB images and 
LWIR images were taken by a FLIR SC620 two-in-one camera, which has LWIR camera (of 
640×480 pixel original resolution and 7.5~13 μm spectral range) and an integrated visible-
band digital camera (2048×1536 pixel original resolution). The NIR images were taken by a 
FLIR SC6000 camera (640×512 pixel original resolution and 0.9~1.7 μm spectral range). Two 
cameras (SC620 and SC6000) were sat on the same fixture by turns and aimed at the same 
direction. The images were captured during sunset time and dusk time in fall season. Of 
course, image registration as described in Section 2.2 was applied to the three band images 
shown in Figs. 4-7, where manual alignments were employed to the RGB images shown in 
Figs. 6-7a since those visible images are so dark and noisy. To better present the RGB 
images, contrast and brightness adjustments (as described in figure captions) were applied. 

Notice that piecewise contrast stretching (Eq. (1)) was used for NIR enhancements. The 

fused images using aDWT algorithm was shown in Figs. 4-7d. Two-band channel-based 
color fusion (Eqs. (10)) was applied to the NIR and LWIR images (shown in Figs. 4-7b, c), 
and the results are illustrated in Figs. 4-7e; while three-band color fusion (Eqs. (13)) of 
(RGBÅ NIRÅ LWIR) are shown in Figs. 4-7f. Relative to gray-fusion (Figs. 4-7d), the images 

shown in two-band color fusion (Figs. 4-7e) resemble natural colors, which makes scene 
classification much easier. In the color-fusion images, the trees and grasses can be easily 
distinguished from grounds (parking lots) and sky. The car and person are easily identified 
in Figs. 6-7e. In Fig. 6e, the water area (between ground and trees, shown in cyan color) is 
clearly noticeable, but it is hard to realize the water area in the gray-fusion image (Fig. 6d). 
There is some improvement in three-band color fusion of (RGBÅ NIRÅ LWIR) in Figs. 4-5f 

when the light condition is good. For example, the tree, sky and ground shown in Figs. 4-5f 
are represented in more realistic colors than that in Figs. 4-5e. However, there is no 
significant difference between two-band and three-band color fusions as shown in Figs. 6-7 
because the RGB images were taken at poor lighting condition.  
The two-band channel-based color fusion of (RGBÅ LWIR) as defined in Eq. (11) is 

demonstrated in Fig. 8a-c; while the color fusion of (RGBÅ NIR) as defined in Eq. (12) is 

illustrated in Fig. 8d-f. No additional brightness or contrast adjustments were applied to 
these color-fusion images. In Fig. 8, the top-row images appear reddish, while the bottom-
row images show greenish. These color-fusion images (under poor illumination) are not 
very realistic but have better representations and visibilities than the original RGB images 

(Figs. 4-6a). No color fusions of (RGBLWIR) or (RGBNIR) using the images shown in 

Fig. 7 are presented here due to the poor quality of RGB image (Fig. 7a). 
The segmentation-based colorization demonstrated here took two-band multispectral 

images (II and LWIR) as inputs. Actually, this segmentation-based colorization procedure 

can accept two or three input images (e.g., II, NIR, LWIR). If there are more than three bands 

of images available (e.g., II, NIR, MWIR, LWIR), we may choose the low-light intensified 

(visual band) image and two bands of IR images. As far how to choose two bands of IR 

images, we may use the image fusion algorithm as a screening process. The two selected IR 

images for colorization should be the two images that can produce the most (maximum) 

informative fused image among all possible fusions.  For example, given three IR images, 

IR1, IR2, IR3, the two chosen images for colorization, IC1, IC2, should satisfy the following 

equation: Fus(IC1, IC2) = max{Fus(IR1, IR2), Fus(IR1, IR3), Fus(IR2, IR3)}, where Fus stands for 

the fusion process and max means selecting the fusion of maximum information. 
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            (a)                                  (b)                                   (c) 

     
                       (d)                                  (e)                                   (f) 

Fig. 4. Channel-based color fusion with Sample #1 (Case# AT008 – sunset time; 640×480 
pixels) in NV-set 2: (a) Color RGB image (contrast increased by 10%); (b) NIR image; (c) 
LWIR image; (d) Fused image of (b) & (c) by aDWT algorithm; (e) Channel-based color 
fusion of (NIRÅ LWIR); (f) Channel-based color fusion of (RGBÅ NIRÅ LWIR). 

 

     
                       (a)                              (b)                                   (c) 

     
                      (d)                   (e)                                   (f) 

Fig. 5. Channel-based color fusion with Sample #2 (Case# AT010 – after sunset; 640×480 
pixels) in NV-set 2: (a) Color RGB image (brightness and contrast both increased by 10%); 
(b) NIR image; (c) LWIR image; (d) Fused image of (b) & (c) by aDWT algorithm; (e) 
Channel-based color fusion of (NIRÅ LWIR); (f) Channel-based color fusion of 

(RGBÅ NIRÅ LWIR). 
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                        (a)                   (b)                                  (c) 

     
                       (d)                   (e)                                  (f) 

Fig. 6. Channel-based color fusion with Sample #3 (Case# AT012 – dusk time; 640×480 
pixels) in NV-set 2: (a) Color RGB image (brightness and contrast both increased by 10%); 
(b) NIR image; (c) LWIR image; (d) Fused image of (b) & (c) by aDWT algorithm; (e) 
Channel-based color fusion of (NIRÅ LWIR); (f) Channel-based color fusion of 
(RGBÅ NIRÅ LWIR). 

 

     
                      (a)                   (b)                                   (c) 

     
                     (d)                   (e)                                   (f) 

Fig. 7. Channel-based color fusion with Sample #4 (Case# AT013 – dusk time; 640×480 
pixels) in NV-set 2: (a) Color RGB image (brightness and contrast both increased by 10%); 
(b) NIR image; (c) LWIR image; (d) Fused image of (b) & (c) by aDWT algorithm; (e) 
Channel-based color fusion of (NIRÅ LWIR); (f) Channel-based color fusion of 

(RGBÅ NIRÅ LWIR). 
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                          (a)                   (b)                                       (c) 

     

                          (d)                    (e)                                       (f) 

Fig. 8. Two-band channel-based color fusion: (a-c) Color fusion of (RGBÅ LWIR); (d-f) Color 

fusion of (RGBÅ NIR). Original images are shown in Figs. 4-6a, b, and c. 

 

We exhibited the channel-based color fusion with possible combinations of two-band and 

three-band multispectral images. The processing speed of channel-based fusion is much 

faster than segmentation-based colorization, while the colors in channel-based fusion are 

less natural than the colors in segmentation-based colorization. Parameter settings in 

channel-based color fusion (Eqs. (9-13)) may be varied with different bands of images and 

with image capturing time and season, which can be conducted and stored before a field 

application. 

6. Conclusions 

In this chapter, a set of color fusion and colorization approaches are presented to enhance 

night vision for human users, which can be performed automatically and adaptively 

regardless of the image contents. Experimental results with multispectral imagery showed 

that the colored images contain clear information, and realistic colors. Specifically, the 

segmentation-based colorization (local-coloring) procedure is based on image segmentation, 

pattern recognition, and color mapping, which produces more colorful and more realistic 

colorized night-vision images. On the other hand, the channel-based color fusion procedure 

generates very impressive color-fusion images using linear transforms and channel 

assignments, which can be implemented very efficiently for real-time applications. The 

synthesized multispectral imagery with proposed colorizing approaches will eventually 

lead to improved performance of remote sensing, nighttime navigation, and situational 

awareness. 
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