225 research outputs found

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    A novel adaptive state of charge estimation method of full life cycling lithium-ion batteries based on the multiple parameter optimization.

    Get PDF
    The state of charge (SoC) estimation is the safety management basis of the packing lithium-ion batteries (LIB), and there is no effective solution yet. An improved splice equivalent modeling method is proposed to describe its working characteristics by using the state-space description, in which the optimization strategy of the circuit structure is studied by using the aspects of equivalent mode, analog calculation, and component distribution adjustment, revealing the mathematical expression mechanism of different structural characteristics. A novel particle adaptive unscented Kalman filtering algorithm is introduced for the iterative calculation to explore the working state characterization mechanism of the packing LIB, in which the incorporate multiple information is considered and applied. The adaptive regulation is obtained by exploring the feature extraction and optimal representation, according to which the accurate SoC estimation model is constructed. The state of balance evaluation theory is explored, and the multiparameter correction strategy is carried out along with the experimental working characteristic analysis under complex conditions, according to which the optimization method is obtained for the SoC estimation model structure. When the remaining energy varies from 10% to 100%, the tracking voltage error is less than 0.035 V and the SoC estimation accuracy is 98.56%. The adaptive working state estimation is realized accurately, which lays a key breakthrough foundation for the safety management of the LIB packs

    A novel weight coefficient calculation method for the real‐time state monitoring of the lithium‐ion battery packs under the complex current variation working conditions.

    Get PDF
    A novel real-time state monitoring method is proposed to realize the real-time energy management of the lithium-ion battery packs, which is conducted in the iterative computational calculation process by introducing an improved weighting factor-unscented Kalman filtering algorithm. The accurate state monitoring treatment is investigated by applying a new iterate calculation thought, in which the improved weight coefficient parameter is constructed and its numerical stability is improved. Meanwhile, the recursive calculation is derived by using the real-time measured factors, according to which the state-of-charge estimation is realized accurately. Aiming to adapt the complex current variation working conditions, the nonlinear treatment is introduced to construct the mathematical unscented transforming function. As can be known from the experimental results, the state-of-charge estimation accuracy is 98.34% under the complex current charge-discharge working conditions. Meanwhile, the effective closed-circuit voltage trackage is also investigated accurately and its tracking error is within 3.51% in the complex working conditions, which provides a good security guarantee for the reliable energy supply of the lithium-ion battery packs

    Unified Evaluation Framework for Stochastic Algorithms Applied to Remaining Useful Life Prognosis Problems

    Get PDF
    A unified evaluation framework for stochastic tools is developed in this paper. Firstly, we provide a set of already existing quantitative and qualitative metrics that rate the relevant aspects of the performance of a stochastic prognosis algorithm. Secondly, we provide innovative guidelines to detect and minimize the effect of side aspects that interact on the algorithms’ performance. Those aspects are related with the input uncertainty (the uncertainty on the data and the prior knowledge), the parametrization method and the uncertainty propagation method. The proposed evaluation framework is contextualized on a Lithium-ion battery Remaining Useful Life prognosis problem. As an example, a Particle Filter is evaluated. On this example, two different data sets taken from NCA aged batteries and two semi-empirical aging models available in the literature fed up the Particle Filter under evaluation. The obtained results show that the proposed framework gives enough details to take decisions about the viability of the chosen algorithm

    A novel power state evaluation method for the lithium battery packs based on the improved external measurable parameter coupling model.

    Get PDF
    The power state evaluation plays a decisive influence on the safety implication of the lithium battery packs, and there is no effective online evaluation method so far due to the imbalance phenomenon among the internal connected battery cells, which cannot be abstained by the advancement of the materials and techniques. A novel power state mathematical evaluation method is proposed in this paper by investigating the improved external parameter coupling treatment, in which the mutual relationship description is conducted by the parameter information feature decomposition together with the Bayesian sequential decision algorithm. The complicated power state evaluation model with the coupling relationship decomposition is constructed by investigating the non-convex optimization treatment under complex working conditions for the lithium battery packs. The evidence combination is realized by introducing the information fusion strategy, according to which the multi criteria decision is realized by using the evidence theory. As can be seen from the experimental results, the voltage difference is within 10 mV in both of the first and the second phases, which increases rapidly in the third phase and reaches a maximum of 120 mV. Meanwhile, its power state evaluation accuracy is 95.00% and has a good output voltage tracking effect in the complex working conditions. The power state evaluation can be realized effectively by the proposed model constructing method, which is suitable for the complex battery cell combination structures and environmental influences, protecting the reliable and hierarchical working state monitoring and management of the lithium battery packs. It provides safety protection and energy management basis for the reliable power supply in the cleaner production of the power lithium battery packs

    Kalman filter applied to Thevenin’s modeling of a lead-acid battery

    Get PDF
    This article determines the internal parameters of a battery analyzed from its circuit equivalent, reviewing important information that can help to identify the battery’s state of charge (SOC) and its state of health (SOH). Although models that allow the dynamics of different types of batteries to be identified have been developed, few have defined the lead-acid battery model from the analysis of a filtered signal by applying a Kalman filter, particularly taking into account the measurement of noise not just at signal output but also at its input (this is a novelty raised from the experimental). This study proposes a model for lead-acid batteries using tools such as MATLAB¼ and Simulink¼. First, a method of filtering the input and output signal is presented, and then a method for identifying parameters from 29 charge states is used for a lead-acid battery. Different SOCs are related to different values of open circuit voltage (OCV). Ultimately, improvements in model estimation are shown using a filter that considers system and sensor noise since the modeled and filtered signal is closer to the original signal than the unfiltered modeled signal

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    HEALTH ESTIMATION AND REMAINING USEFUL LIFE PREDICTION OF ELECTRONIC CIRCUIT WITH A PARAMETRIC FAULT

    Get PDF
    Degradation of electronic components is typically accompanied by a deviation in their electrical parameters from their initial values. Such parametric drifts in turn will cause degradation in performance of the circuit they are part of, eventually leading to function failure due to parametric faults. The existing approaches for predicting failures resulting from electronic component parametric faults emphasize identifying monotonically deviating parameters and modeling their progression over time. However, in practical applications where the components are integrated into a complex electronic circuit assembly, product or system, it is generally not feasible to monitor component-level parameters. To address this problem, a prognostics method that exploits features extracted from responses of circuit-comprising components exhibiting parametric faults is developed in this dissertation. The developed prognostic method constitutes a circuit health estimation step followed by a degradation modeling and remaining useful life (RUL) prediction step. First, the circuit health estimation method was developed using a kernel-based machine learning technique that exploits features that are extracted from responses of circuit-comprising components exhibiting parametric faults, instead of the component-level parameters. The performance of kernel learning technique depends on the automatic adaptation of hyperparameters (i.e., regularization and kernel parameters) to the learning features. Thus, to achieve high accuracy in health estimation the developed method also includes an optimization method that employs a penalized likelihood function along with a stochastic filtering technique for automatic adaptation of hyperparameters. Second, the prediction of circuit’s RUL is realized by a model-based filtering method that relies on a first principles-based model and a stochastic filtering technique. The first principles-based model describes the degradation in circuit health with progression of parametric fault in a circuit component. The stochastic filtering technique on the other hand is used to first solve a joint ‘circuit health state—parametric fault’ estimation problem, followed by prediction problem in which the estimated ‘circuit health state—parametric fault’ is propagated forward in time to predict RUL. Evaluations of the data from simulation experiments on a benchmark Sallen–Key filter circuit and a DC–DC converter system demonstrate the ability of the developed prognostic method to estimate circuit health and predict RUL without having to monitor the individual component parameters

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs
    • 

    corecore