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 This article determines the internal parameters of a battery analyzed from its 

circuit equivalent, reviewing important information that can help to identify 

the battery’s state of charge (SOC) and its state of health (SOH). Although 

models that allow the dynamics of different types of batteries to be identified 

have been developed, few have defined the lead-acid battery model from the 

analysis of a filtered signal by applying a Kalman filter, particularly taking 

into account the measurement of noise not just at signal output but also at its 

input (this is a novelty raised from the experimental). This study proposes a 

model for lead-acid batteries using tools such as MATLAB® and Simulink®. 

First, a method of filtering the input and output signal is presented, and then 

a method for identifying parameters from 29 charge states is used for a lead-

acid battery. Different SOCs are related to different values of open circuit 

voltage (OCV). Ultimately, improvements in model estimation are shown 

using a filter that considers system and sensor noise since the modeled and 

filtered signal is closer to the original signal than the unfiltered modeled 

signal. 
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1. INTRODUCTION 

Different battery technologies are currently used in today’s implementations, which include the 

following: sodium sulfur batteries (NaS), redox flow batteries, lithium-ion, lead-acid batteries, and nickel 

iron [1]. The different reactions and materials of the batteries, regardless of their nature, give rise to different 

mathematical models, electrochemical circuits [2]–[5]. This allows batteries to be characterized according to 

different levels of energy demand, which make it possible to permanently monitor the charge capacity and its 

wear level. Circuit models can be characterized by the union of voltage sources and resistance circuits and 

capacitors (RC) according to battery dynamics of charge and discharge. 

First-order models are generally insufficient to describe battery dynamic behavior, but second-order 

models can produce voltage responses that closely match actual experimental responses. Third order or 

higher order models may further reduce the root mean square error, but the parameters are too sensitive to 

noise and measurement error [6]. Open circuit voltage (OCV) and state of charge (SOC) are key battery 

parameters [7]. There is a strong non-linear relationship between OCV and SOC in lithium batteries [8]. 

An accurate battery model is ideal to obtain values close to the batteries’ inherent characteristics [9]. 

Equivalent circuit models are widely used due to their relatively simple mathematical structure and small 

computational requirement. The model is simple, clear in physical meaning, and can be used to simulate 
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battery charge and discharge characteristics [2]. The accurately established battery model is critical for 

estimating its SOC. 

Today, commonly used equivalent battery circuit models include the internal resistance model, the 

Thevenin model from a first-order RC circuit widely used in lithium batteries [10]–[13]. Or of higher order, 

as studied by Lai et al. [9], and in lithium or lead acid batteries, as studied by Aurilio et al. [14] and 

Devarakonda and Hu [6], and in Hidalgo-Leon et al. [15]. Have used the method of extracting parameters in 

the time domain to obtain the estimated values of the resistances and capacitors in an equivalent second-order 

system. 

Rapid identification of impedance and OCV parameters can be performed based on charge and 

discharge curves, which is an effective method for SOH development [16]. In the model, the main parameters 

are R0, R, and C. Since these parameters depend on the states of charge/discharge, current, temperature, and 

SOC, they must be recursive as conditions change. There are many methods for recursive adaptation of 

parameters such as a neural network, Kalman filter and adaptive filter [17]. SOC determination must take 

state of health (SOH) into account, since the actual charge value in the current count differs between a 100% 

battery and an aged battery [18] 

The parameters that characterize battery behavior from circuit models are obtained by means of a 

current excitation as input and output response in voltage according to SOC. Thus, this current excitation can 

be arbitrary [6], [18] or specific-size pulses that can deliver the discharge values such as those in Figure 1 [2]. 

In this type of study, the parameters of battery internal resistance due to the abrupt change of the BC segment 

are analyzed as shown in Figure 1, as well as the dynamic values defined by the DC and EF sector dependent 

on the branches of resistors and capacitors in parallel as shown in Figure 2, adapted from [14] and proposed 

as a second order model in [19], [20]. 

 

 

  

 

Figure 1. Pulse download image adapted from [2] 

 

Figure 2. Second order circuit model for some batteries 

 

 

The coulomb count (Ah) method can be easily performed for online SOC measurements but, due to 

the accumulation of measurement errors, particularly with inaccurate SOC estimates of the initial battery, 

precise estimation is still difficult [21]. To eliminate the error of the information provided by the sensor, a 

Kalman 1D filter can be used, such as the one used by Botero et al. [22], who using a Kalman filter based on 

the (1), (2), and (3), reduced the noise in an accelerometer in a controlled mobile system with Gaussian noise, 

Kalman filter serves as a frequency damper due to noise that can be used to smooth the signal readings [23]. 

The Kalman filter is a mathematical technique that provides an efficient recursive means to estimate the 

states of a process in such a way that it minimizes the root mean square error [23], [24]. 

 

𝑃𝑘 =
𝑃𝑘

𝑃𝑘 + 𝑅
 

(1) 

  

�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘(𝑍𝑘 − �̂�𝑘−1) (2) 

  
𝑃𝑘 = (1 − 𝐾𝑘)𝑃𝑘−1 (3) 

 

The current expected value �̂� (estimated measure) and (covariance of process), depends on the 

expected value in the previous state and the measured value. This indicates that the measured value has a 

noise component that differs slightly from the real value and, therefore, an estimated value is made, adding 

the Kalman constant. It depends on the value of the covariance of process P, the error of the covariance of the 

observation R, obtained from the static process in the case of the acceleration sensor [22]. In general, the 

Kalman filter is a mathematical procedure that operates by means of a prediction and correction mechanism. 
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This algorithm predicts the new state of the system from its previous estimate, adding a correction term 

proportional to the prediction error in such a way that the latter is statistically minimized [25]. 

In this case, the Kalman filter was applied to soften the output voltage signals of a lead-acid battery 

that is discharged by an electronic charge at a rate of 4 Ah for a battery with SOH (70%). The Kalman filter 

is applied using the measurement noise from the voltage sensor as well as the noise from the current signal. 

These noises are independent due to the nature of the sensor. The average temperature during the discharge 

process was 26 °C. A model is obtained by approximating parameters using a lookup table for 29 SOC values 

for both the original and the filtered data and with the same initial conditions, obtaining greater similarity 

between the filtered data modeled and the original data than with the original data modeled with its 

unmodeled equivalent. To adjust the value of the consumption or discharge current, an electronic load such 

as the one developed in [26] is used, to determine the characteristics of a solar panel, this idea can also be 

used to adjust the consumption of a battery to a certain value in an experimental process [27]. Improvements 

in the estimation of the Kalman model are achieved by using a filter that considers system and sensor noise, 

since the modeled and filtered signal is closer to the original signal than the unfiltered modeled signal. 
 

 

2. RESEARCH METHOD 

To obtain the battery model, a system that controls battery discharge is required, another that 

acquires the signal by hardware, a system that allows filtering the signal, and another to find the parameters 

that identify the battery (through a software). Each of these stages is described. 

 

2.1.  Electronic upload and variable acquisition 

The developed electronic charge allows maintaining an approximately constant battery discharge 

current, and it is the input parameter that will be taken into account in the model. Despite having an 

approximately constant current, the electronic charge developed for this investigation as shown in Figure 3 

depends on ambient temperature, which is why a ventilation system was used to keep the temperature 

approximately stable for a constant current. The temperature ranged from 25-27 °C. Even so, there were 

small fluctuations that appear as measurement noise due to the environment and the sensor itself, which is 

one of the parameters to take into account to be filtered before modeling the output signal on the loaded 

voltage. The elements that increase the temperature as current is demanded from the battery are mainly the 

insulated-gate bipolar transistor (IGBT) and the power resistor marked at 1 as shown in Figure 3. Number 2 

is the analog comparison stage by means of operational amplification and the connection to the control 

system. Number 3 is the thermal dissipation system through the use of an aluminum heatsink and ventilation 

to maintain a maximum temperature of 40 °C. The acquisition of voltage and current as shown in Figure 4 is 

carried out by means of a data acquisition card using Arduino Nano as a control system and peripheral 

elements of voltage adaptation, current sensors, real-time clock, and storage system using micro memory SD. 

 

 

  
 

Figure 3. Electronic voltage 

 

Figure 4. Data acquisition system 

 

 

2.2.  Data filtering and battery modeling 

Taking into account that the voltage signal at a constant test current used to determine 𝑅_𝑣𝑐 was 

approximately Gaussian as shown in Figure 5, the data was filtered using the 1D Kalman filter. It follows the 

algorithm of Figure 6, Where �̂�𝑘 is the actual estimated measure, R is the heat of the variance of the 

measured data, P is the process covariance, 𝑅_𝑣𝑐 is the variance of a constant test current modified for 

Kalman filter, with respect to the original algorithm. The electronic load was configured to deliver a constant 

current of approximately 4 Amps, 𝑛𝑒𝑤_𝑠𝑖𝑔𝑛𝑎𝑙 is the vector that stores the initial data to model.  
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Figure 5. Frequency histogram of the voltage obtained by the test current 

 

 

 
 

Figure 6. Kalman filtering sequence 

 

 

Filtered and unfiltered data was modeled using the second-order structure as in Figure 2, which is 

implicit in a Simulink® block which supports lookup table data for different battery discharge states. SOC 

were 29 from full charge to almost total discharge of the battery using the acquisition system and electronic 

charging. The Simulink® system as shown in Figure 7 compares the output data with adjusted values 

according to the input current of the voltage values Voc, R0, R1, R2, C1 and C2 through the application of 

parameter estimation, from the solution of (4). Figure 8 shows the voltage signal for the arbitrary initial 

parameters of Voc and R0, R1, R2, C1, and C2, and the desired curve in this case. In this case, the data to 

which the Kalman filter was applied is represented. 
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𝑉𝑏𝑎𝑡𝑡 = 𝑉𝑂𝐶 − 𝐼𝑅1 [1 − 𝑒(−
𝑡
𝜏1
)] − 𝐼𝑅2 [1 − 𝑒(−

𝑡
𝜏2

)] − 𝐼𝑅0 
(4) 

 

 

 
 

Figure 7. Scheme in Simulink® to identify the parameters 

 

 

 
 

Figure 8. Curve to model and curve for initial parameters (red) 

 

 

3. RESULTS AND DISCUSSION 

The parameter obtaining system carried out using Simulink® is a long process dependent on the 

processor and the choice of the initial parameters. In this case, the determination of the parameters took  

12 hours for the model of the unfiltered signal and 9 hours for the filtered signal. It must be affirmed that the 

initial conditions or parameters were the same when the two models were run. 

After determining the parameters for each SOC, the values of R, C, and Voc were found, similar to 

the values of the filtered signal and its respective model. Figure 9 shows the model curves of the filtered data 

and the original filtered data in the last two SOCs. The concordance of the curves and the change in 

concavity of both can be seen, indicating that the second-order model was adequate, even if it is more 

noticeable in the last two steps for discharge than for this case, which was 4A. The data were also modeled 

based on the unfiltered signal, noting that the model of the filtered signal on the black curve in Figure 10 is 

closer to the original signal (red curve) than the same unfiltered model (green curve). When the battery 

discharge is interrupted, it returns to the Voc as shown in Figure 11, a better approximation to the original 

signal for the filtered signal model. The initial conditions for the unfiltered signal model may have fallen to a 
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local maximum value of optimization and, therefore, it may not be able to better identify the signal compared 

to the filtered signal. 

 

 

  
  

Figure 9. Last two download sectors comparing 

filtered signal and filtered-modeled signal 

Figure 10. Comparative original, filtered patterned 

and patterned unfiltered signal 

 

 

 
 

Figure 11. Comparative original, filtered modeled and unfiltered patterned signal on return to Voc 

 

 

4. CONCLUSION 

The process of obtaining parameters is quite long, requiring higher speed processors and even more 

so if the expectation is to model with an order system greater than two. An option that was not considered in 

this article is obtaining parameters through parallel programming, a resource present in the used software. 

Although the Kalman filter used was adjusted to the original data, the additive noise to the covariance 

P (𝑅_𝑣𝑐) is still an empirical method that can be validated in future investigations. While the patterned 

filtered signal approaches the original signal, it may have been even closer if the gap at the end due to the 

Kalman filter was considered. 
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