4,832 research outputs found

    AO-OpenCom: an AO-Middleware architecture supporting flexible dynamic reconfiguration

    No full text
    Middleware has emerged as a key technology in the construction of distributed systems. As a consequence, middleware is increasingly required to be highly modular and configurable, to support separation of concerns between services, and, crucially, to support dynamic reconfiguration: i.e. to be capable of being changed while running. Aspect-oriented middleware is a promising technology for the realisation of distributed reconfiguration in distributed systems. In this paper we propose an aspect-oriented middleware platform called AO-OpenCom that builds AO-based reconfiguration on top of a dynamic component approach to middleware system composition. The goal is to support extremely flexible dynamic reconfiguration that can be applied at all levels of the system and uniformly across the distributed environment. We evaluate our platform by the capability in meeting flexible reconfiguration and the impact of these overheads

    Constraint-based runtime prediction of SLA violations in service orchestrations

    Get PDF
    Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing

    Engineering Secure Adaptable Web Services Compositions

    Get PDF
    Service-oriented architecture defines a paradigm for building applications by assembling autonomous components such as web services to create web service compositions. Web services are executed in complex contexts where unforeseen events may compromise the security of the web services composition. If such compositions perform critical functions, prompt action may be required as new security threats may arise at runtime. Manual interventions may not be ideal or feasible. To automatically decide on valid security changes to make at runtime, the composition needs to make use of current security context information. Such security changes are referred to as dynamic adaptation. This research proposes a framework to develop web services compositions that can dynamically adapt to maintain the same level of security when unforeseen security events occur at runtime. The framework is supported by mechanisms that map revised security requirements arising at runtime to a new security configuration plan that is used to adapt the web services composition

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Dynamic adaptation of service compositions with variability models

    Full text link
    Web services run in complex contexts where arising events may compromise the quality of the whole system. Thus, it is desirable to count on autonomic mechanisms to guide the self-adaptation of service compositions according to changes in the computing infrastructure. One way to achieve this goal is by implementing variability constructs at the language level. However, this approach may become tedious, difficult to manage, and error-prone. In this paper, we propose a solution based on a semantically rich variability model to support the dynamic adaptation of service compositions. When a problematic event arises in the context, this model is leveraged for decision-making. The activation and deactivation of features in the variability model result in changes in a composition model that abstracts the underlying service composition. These changes are reflected into the service composition by adding or removing fragments of Business Process Execution Language (WS-BPEL) code, which can be deployed at runtime. In order to reach optimum adaptations, the variability model and its possible configurations are verified at design time using Constraint Programming. An evaluation demonstrates several benefits of our approach, both at design time and at runtime.This work has been developed with the support of MICINN under the project everyWare TIN2010-18011 and co-financed with ERDF.Alférez Salinas, GH.; Pelechano Ferragud, V.; Mazo, R.; Salinesi, C.; Díaz, D. (2014). Dynamic adaptation of service compositions with variability models. Journal of Systems and Software. 91:24-47. https://doi.org/10.1016/j.jss.2013.06.034S24479

    Engineering of service-oriented automation systems: a survey

    Get PDF
    The evolution of manufacturing systems and the emergence of decentralised control require flexibility at various levels of their lifecycle. New emerging methods, such as multi-agent and service-oriented systems are major research topics in the sense of revitalizing the traditional production procedures. This paper takes an overview of the serviceoriented approach in terms of platform and engineering tools, from the perspective of automation and production systems. From the basic foundation to the more complex interactions, service-oriented architectures and its implementation in form of web services provide diverse and quality proved features that are welcome to different states of the production systems’ life-cycle. Key elements are the concepts of modelling and collaboration, which enhance the automatic binding and synchronisation of individual low-value services to more complex and meaningful structures. Such interactions can be specified by Petri nets, a mathematically well founded tool with features that enhance towards the modelling of systems. The right application of different methodologies together should motivate the development of service-oriented manufacturing systems that embrace the vision of collaborative automation.The authors would like to thank the European Commission and the partners of Network of Excellence “Innovative Production Machines and Systems” (http://www.iproms.org/) and the SOCRADES project (http://www.socrades.eu) for their support.info:eu-repo/semantics/publishedVersio

    Kuksa*: Self-Adaptive Microservices in Automotive Systems

    Full text link
    In pervasive dynamic environments, vehicles connect to other objects to send operational data and receive updates so that vehicular applications can provide services to users on demand. Automotive systems should be self-adaptive, thereby they can make real-time decisions based on changing operating conditions. Emerging modern solutions, such as microservices could improve self-adaptation capabilities and ensure higher levels of quality performance in many domains. We employed a real-world automotive platform called Eclipse Kuksa to propose a framework based on microservices architecture to enhance the self-adaptation capabilities of automotive systems for runtime data analysis. To evaluate the designed solution, we conducted an experiment in an automotive laboratory setting where our solution was implemented as a microservice-based adaptation engine and integrated with other Eclipse Kuksa components. The results of our study indicate the importance of design trade-offs for quality requirements' satisfaction levels of each microservices and the whole system for the optimal performance of an adaptive system at runtime
    • 

    corecore