
Association for Information Systems
AIS Electronic Library (AISeL)

CONF-IRM 2016 Proceedings International Conference on Information Resources
Management (CONF-IRM)

2016

Engineering Secure Adaptable Web Services
Compositions
Peter T. Nkomo
University of Johannesburg, pnkomo@gmail.com

Marijke Coetzee
University of Johannesburg, marijkec@uj.ac.za

Follow this and additional works at: http://aisel.aisnet.org/confirm2016

This material is brought to you by the International Conference on Information Resources Management (CONF-IRM) at AIS Electronic Library
(AISeL). It has been accepted for inclusion in CONF-IRM 2016 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For
more information, please contact elibrary@aisnet.org.

Recommended Citation
Nkomo, Peter T. and Coetzee, Marijke, "Engineering Secure Adaptable Web Services Compositions" (2016). CONF-IRM 2016
Proceedings. 51.
http://aisel.aisnet.org/confirm2016/51

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301369206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fconfirm2016%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2016?utm_source=aisel.aisnet.org%2Fconfirm2016%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2016%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2016%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2016?utm_source=aisel.aisnet.org%2Fconfirm2016%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2016/51?utm_source=aisel.aisnet.org%2Fconfirm2016%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

26. Engineering Secure Adaptable Web Services Compositions

Peter T Nkomo

University of Johannesburg

pnkomo@gmail.com

Marijke Coetzee

University of Johannesburg

marijkec@uj.ac.za

Abstract
Service-oriented architecture defines a paradigm for building applications by assembling autonomous

components such as web services to create web service compositions. Web services are executed in

complex contexts where unforeseen events may compromise the security of the web services composition.

If such compositions perform critical functions, prompt action may be required as new security threats

may arise at runtime. Manual interventions may not be ideal or feasible. To automatically decide on valid

security changes to make at runtime, the composition needs to make use of current security context

information. Such security changes are referred to as dynamic adaptation. This research proposes a

framework to develop web services compositions that can dynamically adapt to maintain the same level

of security when unforeseen security events occur at runtime. The framework is supported by mechanisms

that map revised security requirements arising at runtime to a new security configuration plan that is used

to adapt the web services composition.

Keywords
Adaptation, Security, Web services composition, Monitoring, Policies, Runtime, Strategy, Aspect,

Variability

1. Introduction

Service-oriented architecture (SOA) (Erl 2008) has gained attention as a unifying architecture that

addresses the challenges of deploying applications where rapidly changing business requirements are

present. SOA applications are built by assembling or composing autonomous components called web

services (Erl 2008) to create a web services composition. Such web services may be owned and maintained

by different service providers spanning many administrative boundaries. It is therefore possible for a web

services composition to invoke third party web services without any guarantee that the web service being

invoked meets the expected security requirements. Enforcement of the security properties of a web

services composition, using mechanisms such as authentication, authorization, confidentiality and

integrity, can be affected and may need to be changed at runtime (Hoque et al. 2013). When such changes

occur, it becomes necessary for a web services composition to ensure that the expected security is

maintained. When a specific web service poses a security risk to the entire web services composition, the

ability of the web services composition to dynamically replace such a web service with a more suitable

and secure web service becomes a desirable feature. Even if such a web service supports the required level

of security, and does not pose a security risk, the web services composition may still need to be

reconfigured to implement new security mechanisms to support possible changes in the security

properties.

Despite the recognized need to handle unexpected security events that can occur at runtime, the ability to

dynamical reconfigure the web services composition due to unforeseen security events is still an open and

challenging research topic (Alferez & Vicente 2013). Most existing approaches to secure web services

compositions focus on capturing and enforcing security requirements at design time without paying

attention to how a web services composition could dynamically adapt to cope with unanticipated security

requirements that may arise at runtime. From a security perspective, the web services composition may

often be left incomplete and insecure.

This paper proposes a high level framework to allow a services composition to dynamically adapt its

security by reacting to changing security requirements that arise at runtime. The contribution of this paper

is a set of steps to create models that sufficiently describe a web services composition’s security context

to enable runtime security requirements to be mapped to flexible runtime security configurations. The

framework further provides concrete mechanisms to automatically generate and enforce a security

adaptation strategy to ensure the security of the web services composition.

This paper is organized as follows: Section 2 introduces the motivating scenario. Section 3 identifies the

security challenges of web services compositions and section 4 lists requirements for a secure and

adaptable composition. Section 5 gives a review of literature that attempts to satisfy the security

requirements discussed in section 4. In section 6 a framework to create a web services composition that

can adapt when changes on the security context occur is presented. Section 7 concludes the paper.

2. Illustrative scenario
In order to understand the challenges encountered when developing secure and adaptable web services

compositions that are able to react to unexpected runtime events, a motivating example of a virtual

wholesaler services composition, consisting of Retailers, Suppliers and a Bank is presented in Figure 1.

Figure 1. Virtual wholesaler services composition model

The web services composition enables different retailers to place orders and make payments for inventory

sourced from different product suppliers. The virtual wholesaler web services composition is a typical

SOA based application that uses a workflow defined using the Business Process Execution Language

(BPEL) (Song et al. 2011). The composing is designed with a set of security requirements which include

(i) encrypt sensitive information in all communications, (ii) only invoke partner web services with valid

digital signatures, (iii) authenticate all parties in all interactions among web services and (iv) retailers with

a valid digital certificate can access the web services composition.

Each web service participant in the virtual wholesaler composition is described in an interface document

using the Web Services Description Language (WSDL) (Curbera et al. 2002). The security requirements

of each web service is defined in XML-based WS-Policy (Rosenberg & Remy 2004) and WS-

SecurityPolicy (Rosenberg & Remy 2004) policy documents and referenced from the WSDL of the web

service at the operation or endpoint level. Figure 2 gives a snippet of the retail web service security policy

that requires that all interactions to and from it use Security Assertion Markup Language (SAML)

(Rosenberg & Remy 2004) authentication mechanisms.

When attempting to find a third party web service to use in a web services composition, the Universal

Description, Discovery, and Integration (UDDI) (Curbera et al. 2002) registry can be searched. A web

service is chosen based on a match of the functionality it provides, and whether it supports the security

requirements of the web services composition. For example, consider the security configuration of a

retailer web service that satisfies all the web services composition SAML authentication security

requirements listed above. When a user accesses functionality provided by the web services composition

via the retailer web portal, he/she logs in using a username token. Via a single sign-on mechanism, the

user credential is submitted to the web services composition as a SAML assertion, which is one or more

statements about the user. The private key linked to the portal signs both the assertion and the SOAP

message body. The portal thus vouches for contents of the user message and the SAML assertion.

Securing a web services composition such as the virtual wholesaler is not trivial for a number of reasons.

The next section discusses the security challenges of such a composition.

Figure 2. Retail security policy

3. Runtime security challenges
Web services compositions such as the virtual wholesaler are deployed in complex environments using

technologies that may be prone to security attacks (Tiwari & Singh 2011). For example, WSDL

documents, used to describe web services, can be generated automatically by current web services

frameworks to reveal the entire application programming interface. This may provide enough information

to mount a successful web service attack at runtime. Many UDDI registries do not provide robust

mechanisms to verify the author of a web service, potentially allowing the addition of malicious web

services to the registry. Such malicious web services could later be bound to the runtime of unsuspecting

web services compositions. The SOAP messaging framework supports intermediary nodes between the

sender and receiver making Secure Socket Layer or Transport Layer Security (SSL/TLS) unsuitable to use

as it only functions using a point-to-point messaging model.

The challenge with a web services composition is that security of the entire composition depends on the

security capabilities of each of the composed web services. This dependency occur within the context of

the complex and dynamic relationship between the composition and the composed web services. In the

case of the virtual wholesaler composition, it is shared between the various participating retailers, product

suppliers and banks. Ensuring the security of such a web services composition is non-trivial. Various

events and changes can occur within the web service composition runtime context that can affect its

security. It is therefore desirable to rely on mechanisms to dynamically adapt the security of a web services

composition during runtime, according to problematic events that occur in those specific contexts (Hoque

et al. 2013). As there is a strong possibility that such problematic events can occur, it is important for the

web services composition to understand and keep track of security properties of each of the participant

web services at runtime. Understanding the lifecycle of a web service’s security properties allows a web

services composition to make an informed judgment about the likelihood that such a web service will be

able to meet expected security requirements.

In order to understand the development of a secure adaptable web services composition, adaptation

requirements of a web services composition are discussed in the next section.

4. Adaptation requirements

Traditionally, the development cycle of a web services composition involves gathering of functional and

non-functional requirements, modelling of the web services composition, searching and selection of web

services at design time, and finally binding and invocation of selected web services at runtime (Immonen

& Pakkala 2014). Research by IBM has defined an architectural blueprint for self-adaptive systems

(Kephart et al. 2007) that gives an understanding of the characteristics of a system that can dynamically

react to problematic events in an execution context. From the architectural blueprint, this research

identifies three properties that are applicable to secure dynamic web services compositions namely self-

healing, self-protecting and self-configuring.

Self-healing is the ability to discover, diagnose and take proper actions to prevent a failure (Kephart et al.

2007). Self-protecting is the capability to anticipate, detect, identify and protect against threats. In the

virtual wholesale web services composition, self-healing and self-protecting ensures that the web services

composition proactively identifies security threats and reacts appropriately without manual intervention.

Self-configuring is the ability to dynamically adapt to changing environments by composing or

decomposing web services. Figure 3, adapted from the work by Immonen & Pakkala (2014) shows the

design and runtime phases of a web services composition that reacts to runtime security changes. At the

left, composition requirements are gathered, to finally be used in composition runtime adaptation and

monitoring processes.

Using self-healing, self-protecting and self-configuring properties three adaptation requirements are now

identified as follows:

 Events that affect security need to be identified or detected at runtime using monitoring mechanisms.

 Security requirements that arise at runtime need to be captured and enforced by having support for

runtime security requirements.

 The security of the web services composition needs to be reconfigured to maintain its level of

assurance by using adaptation mechanisms.

Figure 3: Web services composition design time and runtime phases

The next three sections discuss these adaptation requirements in more detail.

4.1 Monitoring mechanisms
To enable a web services composition to adapt to its security context it needs to capably detect changes

in its operating context (Zhou et al. 2012). For example, when the retail web service in the virtual

wholesale composition changes its security requirements and updates its security policies, the virtual

wholesale web services composition need to dynamically detect such changes and react accordingly. The

web services composition is therefore required to monitor itself and its context, detect problematic

changes, decide how to react and act to satisfy its security requirements. This research refers to methods

and mechanisms to monitor and detect changes as monitoring mechanisms. Monitoring mechanisms are

deployed to monitor security property instances of web services at runtime.

4.2 Support for runtime security requirements
New security requirements may arise at runtime as security properties of participant web services change

and new web services are added to the web services composition. When a participant web service has new

security requirements at runtime, the web service is expected to update its security policy. If the security

policy is updated, a compatibility check again the security policy of the web services composition is

necessary to ensure that the web service still satisfies the security requirements of the web services

composition. When selecting a new web service, the security policies of a set of candidate web services

are matched against the security policy of the virtual wholesale web services composition, to identify a

web service that satisfies the security requirements. Security policy matching and security policy

compatibility checks require a vocabulary and a logical construction of security knowledge using

relationships between classes and their subclasses in a way that supports formal reasoning (Cao et al.

2014). An ontology can provide such security vocabulary and knowledge and is therefore necessary to be

able to support runtime security requirements.

4.3 Adaptation Mechanisms
When problematic security events are detected at runtime, it is important how well the web services

composition decides to react and acts to satisfy security requirements. The ability to decide and to act

constitute the web services compositions’ adaptation mechanisms. Adaptation mechanisms include the

definition and creation of a runtime strategy or plan of action that outlines a set of changes that need to

be applied to the existing security configuration of the web services composition.

5. Related work on adaptation requirements
Research on adaptation requirements is an active field of research. The next sections briefly reviews

current literature on monitoring mechanisms, support for runtime requirements and adaptation

mechanisms in order to motivate the framework defined by this research. Finally, a gap analysis is given.

5.1 Monitoring mechanisms

The monitoring web services compositions to detect security violations is an active research area. Khaxar

and Jalili (2012) propose that web services composition monitoring specifications can automatically be

generated from descriptions of the web services composition. The challenge is that such specifications

cannot be used to monitor choreographed services. Asim et al (2014) defines a monitoring framework that

allows different user-specified policies to be monitored simultaneously. The challenge of this approach is

that policies are defined in ConSpec language, which does not have clean semantics and is not a

standardized security policy language.

5.2 Support for runtime security requirements

Methods to annotate security requirements on models has been explored by Menzel et al (2010) but has

not yet been extended to capture runtime security requirements for a services composition. Aspect oriented

technics to enforce security requirements have been explored by Yahyaoui et al (2012) and Almorsy et al

(2014), however WS-SecurityPolicy based models are not considered. Various policy language have been

proposed to define security policies by research such as Shah et al (2014). The main challenge identified

is how to translate security models from one language to another.

5.3 Adaptation mechanisms

Research to address the challenge of adaptation mechanisms have focused on service discoverability,

matching and selection of services. Chhun et al (2014) have attempted to solve the challenge of

discovering web services, but they do not address searching by incorporating web services security

policies. Cao et al (2014) proposes to match security capabilities as part of the process of selecting services

but the automatic transformation of WS-Policy to an ontology model is not addressed. The concept of

Software Product Lines (SPL) to define dynamic adaptation of services compositions have been adopted

by Alférez et al (2014), however this approach does not consider the security of a web services

composition.

5.4 Gap Analysis
A gap analysis on current literature presented here reveals the following:

 Proposed models used to describe the security context of a web services composition do not

sufficiently support dynamic security contexts. This limits the ability to map runtime security

requirements to flexible runtime security patterns using security policies.

 There is lack of concrete mechanisms to automatically generate and enforce a security adaptation plan

which is necessary for secure dynamic adaptable compositions.

In order to create secure adaptable composition, the above two gaps should be resolved. Currently there

is no complete solution that holistically address the challenge of engineering secure adaptable web services

composition. In the next section, a high level framework for dynamic adaptation of secure web services

composition is presented.

6. Framework for dynamic adaptation of secure compositions

The premise of the framework proposed here is based on the observation that the security of a web services

composition can be considered as a set of security properties and their enforcement mechanisms that offer

a certain level of security that should be preserved at runtime. Adapting a web services composition to

preserve a certain level of security can be viewed as:

 Dynamically replacing a web service, where its security mechanisms that enforce a security property

have changed in such a way, that the level of protection provided by the web service no longer satisfies

the security requirements of the web services composition.

 Dynamically configure new security mechanisms for the web service, to enforce a security property,

in order to continue using the web service in the web services composition.

To be able to address these features, various models are created by the proposed framework to provide

abstractions of the security of the web services composition and the composition runtime behavior. These

models are defined in six steps, discussed next.

Step 1: Definition of the web services composition model
To be able to analyze and understand the security of a web services composition, a WS-BPEL model is

first defined to abstract the web services composition as logical units of behavior, as specified by

functional requirements. WS-BPEL is chosen because it is an XML-based industry standard language that

provides a notation and semantics to specify business process behavior based on web services. WS-BPEL

orchestrates web services by assigning responsibilities and sequencing calls to web services to create a

conversation flow chart based on message exchanges. Exchanged messages are described in the WSDL.

The web services composition model links all web services that the composition interacts with partner

links. The wholesaler web services composition can then be viewed as a WS-BPEL model.

Step 2: Definition of a security context model
Next, a WS-SecurityPolicy based policy is defined to capture security requirements. WS-SecurityPolicy

is a widely accepted security standard that describes a set of rules used to define security objectives to be

satisfied when web services interact. A challenge encountered when comparing WS-SecurityPolicy based

policies is that WS-SecurityPolicy only supports the syntactic matching of policies, which depend on the

policy intersection mechanisms provided by WS-Policy standard. Syntactically different security

assertions with the same meaning are found incompatible, which hinders compatibility checks between

security assertions. This limitation can be addressed by extending WS-Policy with ontology classes

defined in Web Ontology Language (OWL) (www.w3.org/2004/OWL). OWL is chosen because it is W3C

recommendation, is expressive and support formal reasoning. Changes that occur on security policies of

participating web services are detected by converting security policies of web services into an OWL

ontology at runtime and then formal reasoning is performed on the semantically enriched policies. When

the changes requires the web services composition to be reconfigured or adapted, an XML-based file

which contain information about security property changes is generated. Figure 4 below shows a snippet

of a file generated when SupplierB updates the AlgorithmSuite elements on its security policy from

Basic128Rsa15 to TripleDesSha256Rsa15. In this instance, SupplierB still satisfies the web services

composition security requirements as the supported level of security is similar. The web services

composition needs to ensure that a new key is used when communicating with SupplierB. We will refer

to this file as the security properties changes file.

Figure 4: Security properties changes

Step 3: Creation of a web service security variability model
In order to capture the lifecycle of security properties defined for a participating web services, a model

needs to be defined. For example, the general concept of access control, defined for the retailer web service

in the virtual wholesaler composition, can be implemented by authentication and authorization

mechanisms using username tokens or digital certificates. These two options can be considered as variants

or variation points of the access control property and may require a different application programming

interface to enforce. When enforcement mechanisms of a security property changes at runtime, the

dynamic adaptation of the virtual wholesaler web services composition can be described in terms of the

activation or deactivation of security property enforcement mechanisms.

The existence of variations to enforce security properties of a web service makes it possible to use

software engineering approaches that have been successfully used to design variants at design time and

then assigning concrete implementation to variants at runtime. Dynamic Software Product Lines (DSPLs)

manages both variants and dynamic adaptation (Park et al. 2014) and is therefore chosen in the framework

as a technology to model security properties of composed services. Using DSPL, security properties such

as authentication, authorization, authenticity, confidentiality and integrity are expressed using the

Common Variability Language (CVL). A tool for CVL is available as an Eclipse IDE plugin (Haugen et

al. 2012). Using CVL, a variation specification (VSpec) tree structure of the security of a participating

web service is decomposed into access control, data security and message security as shown in Figure 5,

adapted from Horcas et al (2014). Security properties are thus decomposed into an available set of

enforcement mechanisms. The security configuration of a security property can therefore be defined as a

selection of a set of choices on the VSpec tree structure model. The tree structure model is referred to as

the security variability model in this framework.

Figure 5. Security Variability Model

The low-level enforcement mechanisms are the variations points on the security variability model.

Variation points express decisions leading to different methods and algorithms chosen at runtime to

enforce security properties. When changes for example on the confidentiality security property depicted

in Figure 4 are detected at runtime, the composition is reconfigured by re-binding the confidentiality

variation points on the security variability model with a new enforcement mechanisms of the new

confidentiality requirements.

Generally, functionality to enforce security properties at runtime on a WS-BPEL engine is defined in an

external security library and is made accessible using an applicable programming interface (API), a

reusable component. For example, on Apache Orchestration Director Engine (ODE), Rampart, an Axis 2

security module is used (http://axis.apache.org/axis2/java/rampart). The information about such modules

and the API they offer to provide low-level implementation of security property is captured in a model

referred to as the security base model in the proposed Framework. Figure 6 below shows the security base

model. Using confidentiality component as an example, the component contains the actual programming

logic to encrypt message using a given algorithm suite to ensure message protection.

Figure 6: Security base model

Step 4: Generation of security reconfiguration model
One of the advantages of CVL is that it is executable. This makes it possible to automatically generate

new models from an existing model. The security variability model provide information about security

properties and the security base model provide information about security components that enforce the

security properties. By executing the security base model and security variable model together and

incorporating the information from the security properties changes stored in the file created in step 2, a

security reconfiguration model is generated. Figure 7 below shows the process to generate the security

reconfiguration plan using model-to-model transformation techniques by delegating to an Atlas

Transformation Language (ATL) engine (Jouault & Kurtev, 2006).

Figure 7: Security reconfiguration model generation

The generated security reconfiguration model provides information that is used to adapt WS-BPEL based

process of a web services composition. If a web service is to be replaced, the security reconfiguration

model will contain the applicable WS-BPEL fragments specifying the selected partner link to be replaced

and the context conditions which specifies the conditions that determine the instantiation of the WS-BPEL

fragments to be added. Use of the security configuration model to adapt the composition is discussed in

the next step.

Step 5: Creation of security adaptation plan

A plan of action referred to as the security adaptation plan is required to adapt a WS-BPEL web services

composition. The security adaptation plan defines actions that need to be performed to transition a WS-

BPEL process configuration to a new configuration that guarantees security. The initial step to prepare a

WS-BPEL process is to use CVL to augment WS-BPEL processes with variability so that the concept of

a DSPL is used. The process variables, activities and partner links necessary to support the mandatory

business process features define the WS-BPEL process base model. The partner links elements on the

business process represents the BPEL variability model. Adaptation of the WS-BPEL process can then be

viewed as substitution of WS-BPEL process elements. By executing the WS-BPEL base model and WS-

BPEL variability model and incorporating the information from the security reconfiguration model created

in the previous step, a new WS-BPEL model referred as the resolved WS-BPEL model is generated. The

resolved WS-BPEL model represent the expected WS-BPEL process model after adaptation.

Once the resolved WS-BPEL model is generated, the security adaptation plan is calculated by applying a

difference operator between the model of the currently active WS-BPEL web services composition and

the resolved WS-BPEL model using the Atlas Model Weaver by applying the approach defined by Del

Fabro et al (2006). At the implementation level, model differences are changes in the enforcement

mechanisms of the security properties. When the action needed to adapt the composition requires

replacement of a web service, the security adaptation plan contains information that refers to a partner

links in the BPEL process base model where new partner links are added to replace an existing process

element or fragments. When the action needed to adapt the composition require dynamically configuring

new mechanisms to enforce security properties, aspects are defined and populated with information

necessary to intercept methods on the respective security component on the security base model.

Step 6: Enforcement of the adaptation plan on the WS-BPEL
Replacing a web service in a composition at runtime is not a trivial process because it requires adapting

WS-BPEL process at runtime. Blocking of any task on the process to apply changes should not interrupt

any running conversations, unless all internal state variables are in a consistent state and the necessary

transactions scope that encapsulate the service are completed. The framework adopts DyBPEL, a tool that

compliments activeBPEL execution engine with runtime adaptation capabilities (Baresi et al. 2012). Using

the adaptation plan created in step 5, a new process definition is created at runtime by replacing the

partner links with new partner links. This is possible since BPEL specifications are XML documents and

XPath is a natural choice to identify partner links on the BPEL process. After creating a new process

definition, the process is deployed and DyBPEL handles the WS-BPEL process migration.

When the web services composition is required to dynamically configure new mechanisms to enforce

security properties, Aspect-Oriented Programming (AOP) is used to enforce the adaption plan. AOP is

chosen because it was designed explicitly to address the modularization of crosscutting concerns like

security. AOP introduces a unit of modularity, called an aspect, which can be used to modularize the

security properties using join points, pointcuts and advices. Join points is a method defined on the security

component in the security base model where the aspect will be weaved. A set of join points create a

pointcut. An advice is a piece of code that is executed whenever a join point is reached. Advice, joint

points and pointscut are contained in the adaptation model created in the previous section. To enforce new

mechanisms when the BPEL composition invokes a composed service, a SOAP message being sent to a

composed service is intercepted by the external security module. Using aspects, security configuration is

weaved when the methods that provide security functionality are executed.

7. Conclusion
This paper proposed a high-level framework to engineer dynamic adaption of a web services composition

within its security context. The framework uses web services composition models created at design time

to abstract the security of a web services composition and to provide security meta-information at runtime.

The security meta-information provides rich semantic information to monitor and reason about runtime

security changes and is used by the framework to facilitate better web services composition adaptation

using an automatically generated adaptation strategy. Mechanisms to transform the composition by

weaving new security configuration into the web services composition has also been proposed. Unlike

most existing approaches that focus on capturing and enforcing security requirements at design time, the

proposed approach contributes a framework that pays attention to how a web services composition could

dynamically adapt to cope with unanticipated security requirements that may arise at runtime. Future work

will focus on ensuring that the adaptation strategy is coordinated across the web services interface and

other layers of the application so that changes on one layer does not affect the security of other layers.

Finally, the framework will be implemented in a prototype to determine how viable the framework is.

References

Alferez, G.H. and Pelechano, V (2013) “Facing uncertainty in web service compositions” Web Services

(ICWS), IEEE 20th International Conference on, pp. 219-226

Alférez, G.H., Pelechano, V., Mazo, R., Salinesi, C. and Diaz, D (2014) “Dynamic adaptation of service

compositions with variability models”, Journal of Systems and Software, pp.24-47.

Almorsy, M., Grundy, J. and Ibrahim, A.S (2014) “Adaptable, model-driven security engineering for

SaaS cloud-based applications” Automated Software Engineering, 21(2), pp.187-224.

Asim, M., Zhou, B., Llewellyn-Jones, D., Shi, Q. and Merabti, M (2014) “Dynamic Monitoring of

Composed Services” Cyberpatterns, Springer International Publishing, pp. 235-245

Avanesov, T., Chevalier, Y., Mekki, M.A., Rusinowitch, M. and Turuani, M (2012) “Distributed

orchestration of web services under security constraints”, Data Privacy Management and

Autonomous Spontaneus Security, Springer Berlin Heidelberg, pp. 235-252

Bocciarelli, P. and D'Ambrogio, A (2011) “A BPMN extension for modeling nonfunctional properties of

business processes”, Proceedings of the 2011 Symposium on Theory of Modeling & Simulation:

DEVS Integrative M&S Symposium, Society for Computer Simulation International, Society for

Computer Simulation International, pp. 160-168

Cao, Tuan-Dung, and Nguyen-Ban Tran. "Enhance Matching Web Service Security Policies with

Semantic." In Knowledge and Systems Engineering, pp. 213-224. Springer International

Publishing, 2014.

Chhun, S., Moalla, N. and Ouzrout, Y (2014) “QoS ontology for service selection and reuse”, Journal of

Intelligent Manufacturing, pp.1-13.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S (2002) “Unraveling the

Web services web: an introduction to SOAP, WSDL, and UDDI””, IEEE Internet computing, (2),

pp.86-93.

Del Fabro, M.D., Bézivin, J. and Valduriez, P (2006) “Weaving Models with the Eclipse AMW plugin”

Eclipse Modeling Symposium, Eclipse Summit Europe (Vol. 2006)

Erl, T., 2008. Soa: principles of service design (Vol. 1). Upper Saddle River: Prentice Hall.

Hoque, S., Rahim, A., Llewellyn-Jones, D. and Merabti, M (2013) “Security Property Lifecycle

Management for Secure Service Compositions” In Cyber Security and Privacy, Springer Berlin

Heidelberg, pp. 67-78

Horcas, J.M., Pinto, M. and Fuentes, L (2014) “Runtime Enforcement of Dynamic Security Policies”

In Software Architecture Springer International Publishing, pp. 340-356

Immonen, A. and Pakkala, D (2014) “A survey of methods and approaches for reliable dynamic service

compositions” Service Oriented Computing and Applications, 8(2), pp.129-158

Jouault, F. and Kurtev, I (2006) “Transforming models with ATL”, Satellite events at the MoDELS 2005

Conference, Springer Berlin Heidelberg,pp. 128-138.

Kephart, J., Kephart, J., Chess, D., Boutilier, C., Das, R., Kephart, J.O. and Walsh, W.E (2007) “An

architectural blueprint for autonomic computing” IEEE internet computing, 18(21).

Khaxar, M. and Jalili, S (2012) “WSCMon: runtime monitoring of web service orchestration based on

refinement checking”, Service Oriented Computing and Applications, 6(1), pp.33-49

Menzel, M., Warschofsky, R. and Meinel, C (2010) “A pattern-driven generation of security policies for

service-oriented architectures”, Web Services (ICWS), IEEE International Conference, pp. 243-

250

Rosenberg, J. and Remy, D (2004) “Securing Web Services with WS-Security: Demystifying WS-

Security, WS-Policy, SAML, XML Signature, and XML Encryption”, Pearson Higher Education.

Shah, S.Y. and Szymanski, B.K (2014) “Dynamic policy enforcement using restriction set theoretic

expressions (rste)”, Military Communications Conference (MILCOM), IEEE, pp. 198-203

Song, W., Ma, X., Cheung, S.C., Hu, H., Yang, Q. and Lu, J (2011) “Refactoring and publishing WS-

BPEL processes to obtain more partners” Web Services (ICWS), IEEE International Conference,

pp. 129-136

Tiwari, S. and Singh, P (2011) “Survey of potential attacks on web services and web service

compositions”, Electronics Computer Technology (ICECT), 2011 3rd International Conference

on (Vol. 2, pp. 47-51). IEEE.

Xiao, Z., Cao, D., You, C. and Mei, H (2011) “Towards a constraint-based framework for dynamic

business process adaptation” Services Computing (SCC), IEEE International Conference, pp. 685-

692

Yahyaoui, H., Mourad, A., Almulla, M., Yao, L. and Sheng, Q.Z (2012) “A synergy between context-

aware policies and AOP to achieve highly adaptable Web services”, Service Oriented Computing

and Applications, 6(4), pp.379-392

Zhou, B., Llewellyn-Jones, D., Shi, Q., Asim, M., Merabti, M. and Lamb, D (2012) “Secure service

composition adaptation based on simulated annealing”, 6 th Layered Assurance Workshop pp. 49

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2016

	Engineering Secure Adaptable Web Services Compositions
	Peter T. Nkomo
	Marijke Coetzee
	Recommended Citation

	Proceedings Template - WORD

