
Autonomic Re-Configuration of Pervasive Supervision Services

The CASCADAS Approach

Peter Deussen

Fraunhofer Institute for Open

Communication Systems

Berlin, Germany

peter.deussen@fokus.fraunhofer.de

Matthias Baumgarten, Maurice Mulvenna

School of Computing & Mathematics

University of Ulster, Belfast, UK

m.baumgarten@ulster.ac.uk

md.mulvenna@ulster.ac.uk

Antonio Manzalini, Corrado Moiso

Telecom Italia

Torino, Italy

antonio.manzalini@telecomitalia.it

corrado.moiso@telecomitalia.it

Abstract — This paper describes a supervision system for

autonomic distributed systems (e.g. a cloud computing

environment). It is designed as a supplementary service and is

structured as an ensemble of components that implement an

autonomic control loop, which does not require any a priori

knowledge on the structure of the supervised system. The

architecture devised is highly modular and can be configured

towards individual needs. In addition, the supervision system is

able to re-configure itself according to the changes of the

supervised system.

Keywords: autonomic computing, pervasive supervision,

autonomic communication, fault management,

self-reconfiguration

I. INTRODUCTION

Networks today are composed of a wide variety of
network elements that introduce a high degree of
heterogeneity. Telecommunications Management Network
(TMN) is a model defined by ITU-T for supervising open
systems in a communications network, implementing the
FCAPS (Fault, Configuration, Accounting, Performance and
Security) management areas. The TMN model can hardly
meet the requirements of future trends of
Telecommunication, ICT and the Future Internet (e.g.
emerging of Cloud Computing): as a matter of fact pervasive
diffusion of powerful users’ devices and systems
heterogeneity are complicating the management and control
of the whole network and service infrastructures. As such,
there is a need for finding technology and solutions to
simplify the management whilst also reducing, at the same
time, operational expenses. These are the main directions of
Autonomic Computing (AC) [10]. In 2001, IBM’s manifesto
on AC argued that, due to the increasing complexity of large-
scale computing systems, computers and applications need to
learn how to manage themselves in accordance with high-
level policies specified by human operators. This vision took
inspiration from the biological characteristics of the human
Autonomic Nervous Systems, where the autonomic system
makes decisions on its own, using high-level policies; it will
constantly check and optimize its status and automatically
adapt itself to changing conditions.

In AC, autonomic managers define a control loop
(MAPE-K loop) performing the functions of monitoring,
analyzing, planning and executing. Autonomic managers
continuously monitor the managed system and handle events

that need action to be taken. Nevertheless, in this model all
autonomic “intelligence” is contained in the network of
autonomic managers. This paper describes a novel approach
where the supervision system is structured as an ensemble of
communicating autonomic components, whose control loop
does not require any a priori knowledge on the structure of
the supervised system. The supervision system is also able to
re-configure itself according to the changes of the
configuration of the system under supervision and the
environment; moreover it provides features for a more long-
term orientated supervision mechanism that aims at
predicting possible evolutions of the system under
supervision.

The remainder of this work is structured as follows.
Section II describes pervasive supervision as a model for the
supervision of distributed systems. Section III describes the
supervision proposed approach, its main components and the
peculiarities on dynamic re-configuration of the supervision
ensemble. Section IV discusses the novelties of the pervasive
supervision approach in relation to the current state of the
art. Section V introduces an experimental prototype
validating the proposed approach. Section VI outlines
potential application scenarios before Section VII gives some
final remarks and possible future works.

II. SUPERVISION PERVASION

This paper is proposing an innovative approach for the
supervision of distributed systems empowered with
autonomic capabilities that are structured as several
interacting Autonomic Communication Elements (ACEs), an
example of AC developed by IST Project CASCADAS [2].
Figure 1 shows the structure of an ACE highlighting
individual ACE organs. Here, autonomic behavior is
achieved mainly through the Facilitator, which utilizes
self-models that describe the business logic each ACE
implements as well as how an ACE reacts to
internal/external events.

The CASCADAS approach takes the perspective that
services are provided by (potentially large) ensembles of
relatively simple entities that are realized as ACEs. The
functional composition of these entities is done in a
self-organized way, using the goal needed/goal achievable
(GN/GA) protocol as the basic discovery protocol. Through
GN/GA dynamic service composition is facilitated by
matching a GN to available GAs, which both semantically
describe the type of service or function an ACE desires and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287022536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

offers, respectively. After discovery, ACEs may establish
contracts among each other to provide efficient and secure
message exchange over multilateral communication
channels, which collectively provide a specific service.

Figure 1 Autonomic Communication Element (ACE)

Conforming to this architecture, supervision capabilities
are also realized as ACEs and offered to the system in form
of supplementary services. A supervisor itself is an ensemble
of other ACEs, which are dynamically re-configured through
the flexible discovery of required services (ACEs) and,
subsequently, self-organized via the establishment of flexible
contracts, which define the relation among individual
components. Thus, basic supervision functions can be
provided as default services to allow for e.g. event filtering,
data correlation, and the processing of events that are
produced by the supervised ACEs, and for autonomously
elaborating corrective or optimization actions.

Figure 2 Organization of supervision components

Figure 2 depicts the architecture of a supervisor, where
the use of the interaction protocols is indicated through
individual arrows. For the sake of simplicity, only one
instance of each component is shown, while in practice there
will be always a number of supervised ACEs, sensors,
effectors, etc. In addition to the basic supervision functions,
supervisors may include other components in order to
perform e.g. predictions, contingency planning, etc.

This service centric perspective allows formulating and
implementing supervision infrastructures which go beyond
the supervision of singular ACEs towards a more flexible
and dynamic set of autonomic control (MAPE-like) loops
which are able to adjust their own structure and function to
the structure of the supervised system, thus forming
enhanced service configurations which are able to secure
themselves against faults, performance problems, etc. To
emphasize the close relationship and organizational
similarity between the supervised system and supervisor,
those infrastructures were named supervision pervasions.

Therefore, the supervised ACEs and the supervisor ACEs
work synergistically thus realizing a pervasive supervision
where:

• The supervisors’ autonomic behavior co-operatse with
and complements the autonomic behavior of supervised
ACEs.

• The structure of the supervisor is interwoven with the one
of the supervised system and as such is also aligned with
its changes.

• Supervision can be performed based on internal and
external stimuli as well as in accordance to
service-specific management policies.

III. ARCHITECTURE AND COMPONENTS

A. Basic Control Loops.

As introduced in the previous section, the pervasive
structure of a supervisor enhances the system under
supervision by “completing” it through ACEs that implement
basic supervision capabilities. Supervision is based on the
establishment of an interface for observation and control
mechanism between the system under supervision and the
supervisor. ACEs are built upon an event-driven architecture
where effectively all processes are controlled by events that
are propagated through the internal communication bus (for
intra-ACE communication between organs), and the gateway
(for cross-ACE communication, i.e. GN/GA based discovery
and contract based message exchange). Observing and
controlling the bus and the gateway provides sufficient
information to understand and to influence all ongoing
processes within an ACE. Thus, effective observation and
control can be performed by interception, removal, and
insertion of events that are sent over the above mentioned
communication channels. This functionality is provided by
so-called supervision checker (SC) objects (a gateway
checker object – GCO, and a bus checker object – BCO),
which
• provide basic filtering functionalities to distinguish

between events that are of interest for supervision, and
those which are not,

• can be used to query specific information about the
ACEs under supervision such as its current internal state
or the plans which are currently executed,

• provide control functionalities to steer the internal
processes of ACEs (see below), and

• establish a communication channel to sensors and
effectors.

SC objects can be deployed at run-time by a supervisor
(the deployment process is handled by the supervision organ
of an ACE). This mechanism therefore provides a very
flexible and generic way to set-up task specific interfaces for
monitoring and actuation.

Sensors, correlators, and assessors form the analytical
part of the supervision service and can be summarized as
follows:

Sensors link the supervision system with the ACE under
supervision by deploying SC objects to the ACEs under
supervision and by establishing a dedicated communication
channel for monitoring. Their goal is to translate events
delivered by the SC objects into the internal message format
used by the supervision infrastructure, and to distribute them
to other components of the supervision infrastructure, in
particular to correlators and predictors. A description of the
communication mechanisms internal to supervision
pervasions is given in Section III.C

Correlators are responsible to aggregate monitored data
from distributed sources and to correlate them with other
information in order to extract meaningful indicators of the
current condition of the system under supervision.

Assessors make assumptions on the current (or future)
system health based on the output of correlators, and invoke
associated effectors if necessary.

Effectors are responsible to distribute contingency
actions to the SC objects of the various ACEs under
supervision, where they are used to steer the execution of the
ACE under supervision.

The reactive part can be further extended by additional
components such as planners. A detailed discussion of such
functionality is however outside the scope of this paper; the
interested reader is referred to [3].

B. Long-term supervision

Special considerations have to be made if long-term
supervision and adaptation is desired. Applications of such
supervision require a temporal aspect to be taken into
account that can otherwise be discarded. In relation to ACEs,
relevant concepts to be analyzed include the detection of
drift behavior as well as the modeling, monitoring and
prediction of events, states or situation an ACE can step into
or reach in the future. Thus, the general objective of
long-term supervision components can be summarized as to
observe and analyze numerical as well as symbolic concepts
over time in order to predict future properties, behavior and
situations. This would ultimately allow counteracting any
form of behavior that could potentially lead to critical or
undesired states before they are actually reached / occur.

For that, three types of services have been devised that
are each capable of performing a long-term supervision task,
which can be requested by a supervisor in the same fashion
as any of the standardized supervision services:

Drift Analysers (DA) allow facilitating flexible
long-term supervision by analyzing and forecasting
numerical concepts that reflect the boundaries a system
should operate in or, alternatively, an ideal state of operation
that reflects the most optimum performance. Such numerical
properties can refer to business goals or to operational

parameters of a supervised ACE and its environment. The
rationale of DA’s is that underlying numerical concepts are
likely to change constantly over time and that there is a
strong desire to keep them within certain boundaries that
reflect the correct or optimum behavior of the system. Thus,
detecting if a parameter slowly drifts towards its operational
boundaries or away from its ideal state of operation would
allow corresponding countermeasures to be applied before
any more serious “violation” occurs.

Event Predictors (EP) predict the time window in which
a certain event is most likely to occur next. Based on the
monitoring of past events it computes static as well as
dynamic time statements around which a given type of event
may reoccur. The static service provides the mean distance
between events as its prediction, whereas the dynamic
service is based on the time of calculation/request, thus
taking into account the time elapsed since that last event has
been registered. This service is of particular interest for
periodic services and it would allow for both, the validation
of correct behavior (e.g. an event should occur periodically)
or, alternatively, for the detection of fraudulent behavior (e.g.
if an event occurs outside of its predicted time window).

State Predictors (SP) are aiming at observing and
predicting the execution logic of ACEs as represented by
their self-models. In particular, (a) they allow monitoring the
execution of ACEs, (b) build an execution model based on
these observations and (c) based on an observed state change
predict potential next states / transitions. SP’s operate based
on the observation of past and/or mass behavior as inspired
by e.g. [8] For instance an SP could monitor the execution of
all ACEs (services) of a certain type and would, over time,
construct a model that reflects how this particular type of
service operates. If a new instance of this type of service is
requested then the associated SP could provide
recommendations of how the service should perform or
behave, which would be based on the successful execution of
past instances of the same service type. This would allow
preventing illegal or dangerous behavior of an ACE and
would also allow for the optimization of service execution in
the long term. Based on the concept of ACE’s and the
associated self-model two distinct types of SP’s have been
designed. Firstly, a meshed SP (MSP) that only takes into
account a single state change thus discarding all preceding
activity and, secondly, the directed SP (DSP) that takes into
account the entire execution path from a defined start to a
defined end state. Thus the former can be used to validate
stateless operational behavior as defined by individual states
and transitions of a given selfmodel whereas the latter is
more appropriate to analyze business behavior as reflected
by service compositions where the path of execution is
relevant.

Figure 3 (a) and (b) show an example execution model
for the MSP and the DSP respectively. As can be seen the
full path of execution is maintained in (b) whereas (a) only
takes into account a single state change as described by the
triple source state – destination state – transition traversed.
Based on this and the properties of each state/transition,
which reflect how often they have been visited or traversed
in the past by the same service type, the likelihood of

states/transitions to occur next can be computed. Thus an SP
indicates how a service is most likely to continue based on
its past behavior or based on the behavior of other instances
of the same service. Such information can be directly used to
e.g. initialize subsequent behavior, provide system guidance,
detect system violations etc.

Considering the modular architecture of the supervision
architecture both of the state predictor models could be
combined into a single more powerful supervision service
capable of supervising a complex service at various levels of
granularity. Furthermore, within the overall supervision
control flow, the outputs of SP components, jointly with the
correlators’ outputs, can be used by assessors, to make
assumptions on the current (or future) system health, and
invoke e.g. a Planner component if necessary.

C. Automatic Configuration of Pervasion

The configuration of a supervision pervasion is done in a
number of steps:

Contracting: As supervision is a supplementary service
to be used by ACE ensembles that provide service(s) to a
user (or another ACE ensemble). The first step consists in
contracting all the components (sensors, effectors,
correlators, etc.) to be involved in the supervision pervasion.
This is done via a special controller ACE, which commits a
supervision contract with the system to be supervised. Then
the controller discovers the remaining ACEs, and sets up
another contract for communication within the supervision
pervasion. Finally, it obtains relevant configuration
information (in particular the identities and addresses of the
ACEs to be supervised) which are necessary to establish an
SC based monitoring and control channel as discussed next.

SC Deployment: SC objects (GCO and BCO) are
deployed by sensors. To this end, a temporary contract is
established between sensor and an ACE at which an SC
object has to be deployed. The SC object itself is sent as part
of a specific message, which is handled by the supervision
organ of the ACE to be supervised. After deployment, the
SC objects establish a connection to the sensor and effector.

Subscription: A publish/subscribe based interaction
mechanism is used as a general communication paradigm
within the supervision pervasion. Each component of the
pervasion publishes a set of so-called topics, i.e. categories
of information that this component is able to provide. Other

components can subscribe to these topics in order to be
notified if new data is published. For instance, correlators as
well as state predictors subscribe to information published by
sensors (where the specific selection of topics obviously
depends on the supervised system and the supervision tasks
to be performed). Hence, the publish/subscribe protocol
provides a data-flow driven group communication schema,
where groups are defined by topics.

Re-configuration: Changes in the architectural structure
of the supervised system can be detected in several ways.
The most generic approach is to use the BCO to intercept
events steering the reconfiguration (contract cancellation,
discovery, new contract establishments, etc.) on the internal
communication bus, and to forward this information via
sensors to a specialized correlator. In some cases it is
however easier to simply notify the supervisor ACEs about
an ongoing reconfiguration.

The supervision pervasion reacts to the reconfiguration of
the ACE ensemble under supervision by performing
reconfiguration operation on itself. In particular it removes
SC objects from ACEs which are not longer part of the
supervised system, and deploys new once in newly
introduced ACEs. Moreover, it adapts its internal structure to
reflect the new architecture of the supervised ensemble using
the mechanisms (contracting, subscription) as described
above.

Termination: Supervision activities are terminated (or
suspended in the case of long-term supervision) when the
ACE ensemble under supervision decides to break the
supervision contract, which is usually the case when the
service contract grouping this ensemble is terminated. The
controller ACE notifies all components of the supervision
pervasion, and breaks the contract between them. As for the
long-term supervision components, a contract can be
re-instantiated to the same statefull supervision object.

IV. ADVANCES BEYOND THE STATE OF THE ART

ACE based systems provide services by means of
interactions of a probably large distributed set of ACEs with
a dynamically adapted interaction structure and task
diversification [6][13]. Hence, the basic assumption
underlying to traditional supervision approaches (see for
instance [11][5][9][1][7]) that the system under supervision

(a) (b)

Figure 3 State Predictor Variants – (a) MSP, (b) DSP

maintains a static architectural structure (i.e. does not
perform run-time architecture adaptations) is not longer valid
for ACE based services.

 This notion of a service providing system makes a novel
approach for the formulation and deployment of autonomic
control loops necessary, which do not require any a priori
knowledge on the structure of the supervised system. In
order to address this need, the pervasive supervision
approach includes a novel scheme to set-up those control
loops that are based on the interaction of various ACEs
forming a supervision ensemble. Evidently, the structure of
the supervision pervasion adapts itself dynamically to the
changes of the actual structure of the supervised system.

Another novel achievement is the use of a common
technological basis (namely the ACE software component)
both for the system under supervision and the supervision
system, which promotes self-similarity among components.
This has a number of advantages: Firstly, the introduction of
additional technologies does always increase the complexity
of a system, hence a reduction of operational efforts by using
a supervision system technologically different from the
supervision system is at least questionable. On the other
hand, for the supervision system described in this paper, a
number of basic functions necessary for supervision already
had been provided by the ACE component platform itself: A
service discovery and contracting mechanism based on the
GN/GA protocol, supporting dynamic adaptation as
described above, the separation between process logic
(provided by ACE self-models) and function implementation
(provided by ACE functional repositories), as well as the
built-in monitoring and control mechanisms the ACE
supervision organ offers. Note that generic supervision tasks
(such as liveliness validation as described in the case study in
the Section V.B) can be applied to the components of a
supervision pervasion as well. Thus, self-supervision can be
performed through the proposed approach.

The temporal supervision of quantitative as well as
symbolic based parameters and behavior is provided as a set
of long term supervision components: a more complex
supervision ensemble can be enhanced through a flexible
configuration / orchestration of these components with the
one offering basic supervision features. These components
have been specialized to work with the ACE model and its
declarative execution logic (i.e., based on self-models). For
instance, StatePredictors have been specifically designed to
address individual features of the ACE self-model / plan
philosophy to model detailed ACE behavior over time and
subsequently provide detailed predictions of potential future
behavior.

V. EXPERIMENTAL VALIDATION

A. Supervision prototype

A prototype of the pervasive supervision has been
implemented: it is integrated with the Cascadas ACE Toolkit
[2] and it is available as open source. Within the prototype,
each of the supervision components is a separate ACE. In
particular, the supervision toolkit includes a set of generic
ACEs, one for each component thus providing basic and

long-term supervision features (i.e., sensor, effector,
correlator, assessor, drift analyser, planner, state predictor,
event predictor). These components must be specialized in
order to implement the logic to supervise specific systems
requirements. Moreover, the toolkit includes communication
and interaction protocols (request/reply, notification,
publish/subscribe) to set-up and (re-)configure a supervision
pervasion, and its components.

Figure 4 Dynamic Reconfiguration Scenario

B. Service scenarios

The described supervision approach has been applied to
supervise a video service implemented as a set of distributed
ACEs. Pervasive supervision has been introduced in order to
handle failures of ACEs implementing the video client and
one of several available video providers (see Figure 4).

Subject of the supervision activities is the liveliness of
the contract between the client ACE and the provider ACE.
Supervision is done by issuing an exchange of heartbeat
signals between these two ACEs, hence, if the contract is
malfunctioning in one or both directions, this fault can be
detected by comparing the time stamps of sending and
receiving a heartbeat signal. Heartbeats are handled by
GCOs injected into the supervised ACEs, hence the
liveliness validation mechanism is transparent to self-models
of supervised ACEs where dynamic reconfiguration of the
supervision pervasion takes place if the provider changes. In
this case, the structure depicted in Figure 4 is automatically
adapted to work with the new service contracts.

For long-term supervision, the MSP computes the
probability of subsequent states based on observed state
changes within the execution logic of the system under
supervision (in our case, the video player ACE). Hence, in
the above scenario predictions are related the probability that
a certain channel will be selected or the probability that a
fault will occur. The former is of particular interest, as it
would allow a system to determine the channel that has been

selected most in the past, which in turn could be selected if
the currently selected channel becomes unavailable or if the
selection procedure develops a fault.

VI. APPLICATION SCENARIOS

A possible application scenario for the pervasive
supervision is the management of computing clouds, i.e.,
infrastructures consisting of reliable services delivered
through next-generation data centers built to compute and
store virtualization technologies and data respectively.
Autonomic supervision can support load balancing, dynamic
configuration, fault detection and recovery as well as SLAs
fulfillment. Moreover, the autonomic supervision could also
be extended to the management of end-users devices, which
dynamically use the services executed by the cloud. For
example, an important task is periodically informing
supervisors about execution check points to allow dynamic
re-configuration of the execution power. Furthermore,
supervision strategies should also face the problem of
handling the proper number of data duplications for the
requested persistency or for the performance needs in data
access.

A second application scenario is the supervision of
distributed service provisioning platforms, where different
actors can develop, provide, connect and interact, in a secure
and reliable way, for selling, buying, negotiating, exchanging
and trading any content, information, services and service
components. In such a context where components are
dynamically negotiated and aggregated, in addition to equip
service components with self-management capabilities,
pervasive supervision could be used by an actor creating a
service by aggregating a cluster of components to enforce
service-specific management policies, or by a provider of
service components to supervise the instances of a service

VII. CONCLUSIONS AND FINAL REMARKS

One of the most serious technological challenges of
future Telecommunication, ICT and Internet will be
interconnection and management of a huge amount of
heterogeneous systems and small devices tied together in
networks of networks. Autonomic Computing already argued
that, due to the increasing complexity of large-scale
computing systems, computers and applications need to learn
how to manage themselves in accordance to high-level
policies as specified by human operators. Nevertheless
current autonomic solutions don’t exploit the real biological
metaphor in distributed systems. This paper presented a
novel autonomic supervision system, which is structured as
an ensemble of components that implement an autonomic
control loop, which does not require any a priori knowledge
on the structure of the supervised system. The architecture
devised is highly modular and can be configured towards
individual needs. In addition, the supervision system is able
to re-configure itself according to the changes of the
supervised system. The solution was experimentally
validated by the development of a prototype, which has been
made available as open source.

A possible evolution of the prototype would include the
definition of the management policies through a specific
language. The long-term supervision components could be
enhanced to facilitate the dynamic orchestration into more
advanced hierarchical supervision pervasions.

The pervasive supervision approach is mainly orientated
to the supervision of clusters of ACEs implementing specific
services in accordance to service-specific management
policies. Considerations on how to extend the basic
supervision pervasions that are described in this paper to a
global supervision backbone have been made in [4].

 ACKNOWLEDGMENT

Authors would like to acknowledge European
Commission for funding the IP CASCADAS (IST-027807)
(FET Proactive Initiative, IST-2004-2.3.4 Situated and
Autonomic Communications).

REFERENCES

[1] Baresi L., Ghezzi C., Guinea S.; “Towards Self-healing Compositions
of Services”, Proc. of 1st Conf. on PRIciples of Software Engineering

(PRISE’04), pp. 11 – 20, 2004.

[2] CASCADAS Project, ACE Toolkit open source,

http://sourceforge.net/projects/acetoolkit/.

[3] Deussen P. H., "Model Based Reactive Planning and Prediction for
Autonomic Systems", INSERTech '07: Proceedings of the 2007

Workshop on INnovative SERvice Technologies: 1-10, 2007.

[4] Deussen P. H., "Supervision of Autonommic Systems --- Tutorial",
Proc. Budapest Tutorial and Workshop on Autonomic

Communications and Component-ware, 2008. Published on CD.

[5] Deussen P. H., Valetto G., Din G., Kivimaki T., Heikkinen S.,
Rocha A.; Continuous On-Line Validation for OptimizedService

Management, in EURESCOM Summit 2002, Hiedelberg, Germany,
October 21–24, 2002.

[6] Devescovi D., Di Nitto E., Dubois D., Mirandola R.;

Self-organization algorithms for autonomic systems in the SelfLet
approach. In Proceedings of the 1st international Conference on

Autonomic Computing and Communication Systems. Autonomics,
vol. 302, Institute for Computer Sciences Social-Informatics and

Telecommunications Engineering), pp. 1 – 10, 2007.

[7] Garlan D., Cheng S., Huang A., Schmerl B., Steenkiste P.; “Rainbow:
Architecture-based Self-adaptation with Reusable Infrastructure”,

IEEE Computer, 37(10):46-54, Oct. 2004.

[8] Han J., Pei J.; “Mining Frequent Patterns by Pattern-Growth:

Methodology and Implications”; ACM SIGKDD Explorations
Newsletter, Volume 2, Issue 2, , pp 14 – 20, 2000.

[9] Kaiser G., Parekh J., Gross P., Valetto G.; “Retrofitting Autonomic

Capabilities onto Legacy Systems”; Journal of Cluster Computing,
Vol. 9, No. 2, 2006, pp. 141–159.

[10] Kephart J., Chess D.; “The Vision of Autonomic Computing”, IEEE

Computer, Vol. 36, No. 1, 2003, pp. 41–52.

[11] Knight J. C., Sullivan K. J., Elder M. C., Wang C.; “Survivability
Architectures: Issues and Approaches”; In Proceedings of the

DARPA Information Survivability Conference and Exposition, IEEE
Computer Society Press, pp. 157 – 171, 2000.

[12] Manzalini A., Zambonelli F., Baresi L., Di Ferdinando A.; “The

CASCADAS Framework for Autonomic Communications”;
“Autonomic Communication”; A. Vasilakos, M. Parashar, S.

Karnouskos, W. Pedrycz (Eds.), Springer book, 2009.

[13] Shackleton M., Saffre F., Tateson R., Bonsma E., Roadknight C.:
“Autonomic Computing for Pervasive ICT - A Whole-System

Perspective”; BT Technology Journal 22, 3, pp. 191-199, 2004.

