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Abstract — This paper describes a supervision system for 

autonomic distributed systems (e.g. a cloud computing 

environment). It is designed as a supplementary service and is 

structured as an ensemble of components that implement an 

autonomic control loop, which does not require any a priori 

knowledge on the structure of the supervised system. The 

architecture devised is highly modular and can be configured 

towards individual needs. In addition, the supervision system is 

able to re-configure itself according to the changes of the 

supervised system. 
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I. INTRODUCTION 

Networks today are composed of a wide variety of 
network elements that introduce a high degree of 
heterogeneity. Telecommunications Management Network 
(TMN) is a model defined by ITU-T for supervising open 
systems in a communications network, implementing the 
FCAPS (Fault, Configuration, Accounting, Performance and 
Security) management areas. The TMN model can hardly 
meet the requirements of future trends of 
Telecommunication, ICT and the Future Internet (e.g. 
emerging of Cloud Computing): as a matter of fact pervasive 
diffusion of powerful users’ devices and systems 
heterogeneity are complicating the management and control 
of the whole network and service infrastructures. As such, 
there is a need for finding technology and solutions to 
simplify the management whilst also reducing, at the same 
time, operational expenses. These are the main directions of 
Autonomic Computing (AC) [10]. In 2001, IBM’s manifesto 
on AC argued that, due to the increasing complexity of large-
scale computing systems, computers and applications need to 
learn how to manage themselves in accordance with high-
level policies specified by human operators. This vision took 
inspiration from the biological characteristics of the human 
Autonomic Nervous Systems, where the autonomic system 
makes decisions on its own, using high-level policies; it will 
constantly check and optimize its status and automatically 
adapt itself to changing conditions.  

In AC, autonomic managers define a control loop 
(MAPE-K loop) performing the functions of monitoring, 
analyzing, planning and executing. Autonomic managers 
continuously monitor the managed system and handle events 

that need action to be taken. Nevertheless, in this model all 
autonomic “intelligence” is contained in the network of 
autonomic managers. This paper describes a novel approach 
where the supervision system is structured as an ensemble of 
communicating autonomic components, whose control loop 
does not require any a priori knowledge on the structure of 
the supervised system. The supervision system is also able to 
re-configure itself according to the changes of the 
configuration of the system under supervision and the 
environment; moreover it provides features for a more long-
term orientated supervision mechanism that aims at 
predicting possible evolutions of the system under 
supervision. 

The remainder of this work is structured as follows. 
Section II describes pervasive supervision as a model for the 
supervision of distributed systems. Section III describes the 
supervision proposed approach, its main components and the 
peculiarities on dynamic re-configuration of the supervision 
ensemble. Section IV discusses the novelties of the pervasive 
supervision approach in relation to the current state of the 
art. Section V introduces an experimental prototype 
validating the proposed approach. Section VI outlines 
potential application scenarios before Section VII gives some 
final remarks and possible future works. 

II. SUPERVISION PERVASION 

This paper is proposing an innovative approach for the 
supervision of distributed systems empowered with 
autonomic capabilities that are structured as several 
interacting Autonomic Communication Elements (ACEs), an 
example of AC developed by IST Project CASCADAS [2]. 
Figure 1  shows the structure of an ACE highlighting 
individual ACE organs. Here, autonomic behavior is 
achieved mainly through the Facilitator, which utilizes  
self-models that describe the business logic each ACE 
implements as well as how an ACE reacts to 
internal/external events.  

The CASCADAS approach takes the perspective that 
services are provided by (potentially large) ensembles of 
relatively simple entities that are realized as ACEs. The 
functional composition of these entities is done in a  
self-organized way, using the goal needed/goal achievable 
(GN/GA) protocol as the basic discovery protocol. Through 
GN/GA dynamic service composition is facilitated by 
matching a GN to available GAs, which both semantically 
describe the type of service or function an ACE desires and 
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offers, respectively. After discovery, ACEs may establish 
contracts among each other to provide efficient and secure 
message exchange over multilateral communication 
channels, which collectively provide a specific service.   

 
Figure 1  Autonomic Communication Element (ACE) 

Conforming to this architecture, supervision capabilities 
are also realized as ACEs and offered to the system in form 
of supplementary services. A supervisor itself is an ensemble 
of other ACEs, which are dynamically re-configured through 
the flexible discovery of required services (ACEs) and, 
subsequently, self-organized via the establishment of flexible 
contracts, which define the relation among individual 
components. Thus, basic supervision functions can be 
provided as default services to allow for e.g. event filtering, 
data correlation, and the processing of events that are 
produced by the supervised ACEs, and for autonomously 
elaborating corrective or optimization actions. 

 
Figure 2  Organization of supervision components 

Figure 2  depicts the architecture of a supervisor, where 
the use of the interaction protocols is indicated through 
individual arrows. For the sake of simplicity, only one 
instance of each component is shown, while in practice there 
will be always a number of supervised ACEs, sensors, 
effectors, etc. In addition to the basic supervision functions, 
supervisors may include other components in order to 
perform e.g. predictions, contingency planning, etc.  

This service centric perspective allows formulating and 
implementing supervision infrastructures which go beyond 
the supervision of singular ACEs towards a more flexible 
and dynamic set of autonomic control (MAPE-like) loops 
which are able to adjust their own structure and function to 
the structure of the supervised system, thus forming 
enhanced service configurations which are able to secure 
themselves against faults, performance problems, etc. To 
emphasize the close relationship and organizational 
similarity between the supervised system and supervisor, 
those infrastructures were named supervision pervasions.  

Therefore, the supervised ACEs and the supervisor ACEs 
work synergistically thus realizing a pervasive supervision 
where: 

• The supervisors’ autonomic behavior co-operatse with 
and complements the autonomic behavior of supervised 
ACEs. 

• The structure of the supervisor is interwoven with the one 
of the supervised system and as such is also aligned with 
its changes. 

• Supervision can be performed based on internal and 
external stimuli as well as in accordance to  
service-specific management policies. 

III. ARCHITECTURE AND COMPONENTS 

A. Basic Control Loops.  

As introduced in the previous section, the pervasive 
structure of a supervisor enhances the system under 
supervision by “completing” it through ACEs that implement 
basic supervision capabilities. Supervision is based on the 
establishment of an interface for observation and control 
mechanism between the system under supervision and the 
supervisor. ACEs are built upon an event-driven architecture 
where effectively all processes are controlled by events that 
are propagated through the internal communication bus (for 
intra-ACE communication between organs), and the gateway 
(for cross-ACE communication, i.e. GN/GA based discovery 
and contract based message exchange). Observing and 
controlling the bus and the gateway provides sufficient 
information to understand and to influence all ongoing 
processes within an ACE. Thus, effective observation and 
control can be performed by interception, removal, and 
insertion of events that are sent over the above mentioned 
communication channels. This functionality is provided by 
so-called supervision checker (SC) objects (a gateway 
checker object – GCO, and a bus checker object – BCO), 
which  
• provide basic filtering functionalities to distinguish 

between events that are of interest for supervision, and 
those which are not, 

• can be used to query specific information about the 
ACEs under supervision such as its current internal state 
or the plans which are currently executed,  

• provide control functionalities to steer the internal 
processes of ACEs (see below), and  

• establish a communication channel to sensors and 
effectors.  



SC objects can be deployed at run-time by a supervisor 
(the deployment process is handled by the supervision organ 
of an ACE). This mechanism therefore provides a very 
flexible and generic way to set-up task specific interfaces for 
monitoring and actuation. 

Sensors, correlators, and assessors form the analytical 
part of the supervision service and can be summarized as 
follows: 

Sensors link the supervision system with the ACE under 
supervision by deploying SC objects to the ACEs under 
supervision and by establishing a dedicated communication 
channel for monitoring. Their goal is to translate events 
delivered by the SC objects into the internal message format 
used by the supervision infrastructure, and to distribute them 
to other components of the supervision infrastructure, in 
particular to correlators and predictors. A description of the 
communication mechanisms internal to supervision 
pervasions is given in Section III.C 

Correlators are responsible to aggregate monitored data 
from distributed sources and to correlate them with other 
information in order to extract meaningful indicators of the 
current condition of the system under supervision.  

Assessors make assumptions on the current (or future) 
system health based on the output of correlators, and invoke 
associated effectors if necessary. 

Effectors are responsible to distribute contingency 
actions to the SC objects of the various ACEs under 
supervision, where they are used to steer the execution of the 
ACE under supervision. 

The reactive part can be further extended by additional 
components such as planners. A detailed discussion of such 
functionality is however outside the scope of this paper; the 
interested reader is referred to [3]. 

B. Long-term supervision 

Special considerations have to be made if long-term 
supervision and adaptation is desired. Applications of such 
supervision require a temporal aspect to be taken into 
account that can otherwise be discarded. In relation to ACEs, 
relevant concepts to be analyzed include the detection of 
drift behavior as well as the modeling, monitoring and 
prediction of events, states or situation an ACE can step into 
or reach in the future. Thus, the general objective of  
long-term supervision components can be summarized as to 
observe and analyze numerical as well as symbolic concepts 
over time in order to predict future properties, behavior and 
situations. This would ultimately allow counteracting any 
form of behavior that could potentially lead to critical or 
undesired states before they are actually reached / occur.  

For that, three types of services have been devised that 
are each capable of performing a long-term supervision task, 
which can be requested by a supervisor in the same fashion 
as any of the standardized supervision services: 

Drift Analysers (DA) allow facilitating flexible  
long-term supervision by analyzing and forecasting 
numerical concepts that reflect the boundaries a system 
should operate in or, alternatively, an ideal state of operation 
that reflects the most optimum performance.  Such numerical 
properties can refer to business goals or to operational 

parameters of a supervised ACE and its environment. The 
rationale of DA’s is that underlying numerical concepts are 
likely to change constantly over time and that there is a 
strong desire to keep them within certain boundaries that 
reflect the correct or optimum behavior of the system. Thus, 
detecting if a parameter slowly drifts towards its operational 
boundaries or away from its ideal state of operation would 
allow corresponding countermeasures to be applied before 
any more serious “violation” occurs. 

Event Predictors (EP) predict the time window in which 
a certain event is most likely to occur next. Based on the 
monitoring of past events it computes static as well as 
dynamic time statements around which a given type of event 
may reoccur. The static service provides the mean distance 
between events as its prediction, whereas the dynamic 
service is based on the time of calculation/request, thus 
taking into account the time elapsed since that last event has 
been registered. This service is of particular interest for 
periodic services and it would allow for both, the validation 
of correct behavior (e.g. an event should occur periodically) 
or, alternatively, for the detection of fraudulent behavior (e.g. 
if an event occurs outside of its predicted time window). 

State Predictors (SP) are aiming at observing and 
predicting the execution logic of ACEs as represented by 
their self-models. In particular, (a) they allow monitoring the 
execution of ACEs, (b) build an execution model based on 
these observations and (c) based on an observed state change 
predict potential next states / transitions. SP’s operate based 
on the observation of past and/or mass behavior as inspired 
by e.g. [8] For instance an SP could monitor the execution of 
all ACEs (services) of a certain type and would, over time, 
construct a model that reflects how this particular type of 
service operates. If a new instance of this type of service is 
requested then the associated SP could provide 
recommendations of how the service should perform or 
behave, which would be based on the successful execution of 
past instances of the same service type. This would allow 
preventing illegal or dangerous behavior of an ACE and 
would also allow for the optimization of service execution in 
the long term.  Based on the concept of ACE’s and the 
associated self-model two distinct types of SP’s have been 
designed. Firstly, a meshed SP (MSP) that only takes into 
account a single state change thus discarding all preceding 
activity and, secondly, the directed SP (DSP) that takes into 
account the entire execution path from a defined start to a 
defined end state. Thus the former can be used to validate 
stateless operational behavior as defined by individual states 
and transitions of a given selfmodel whereas the latter is 
more appropriate to analyze business behavior as reflected 
by service compositions where the path of execution is 
relevant. 

Figure 3 (a) and (b) show an example execution model 
for the MSP and the DSP respectively. As can be seen the 
full path of execution is maintained in (b) whereas (a) only 
takes into account a single state change as described by the 
triple source state – destination state – transition traversed. 
Based on this and the properties of each state/transition, 
which reflect how often they have been visited or traversed 
in the past by the same service type, the likelihood of 



states/transitions to occur next can be computed. Thus an SP 
indicates how a service is most likely to continue based on 
its past behavior or based on the behavior of other instances 
of the same service. Such information can be directly used to 
e.g. initialize subsequent behavior, provide system guidance, 
detect system violations etc.  

Considering the modular architecture of the supervision 
architecture both of the state predictor models could be 
combined into a single more powerful supervision service 
capable of supervising a complex service at various levels of 
granularity. Furthermore, within the overall supervision 
control flow, the outputs of SP components, jointly with the 
correlators’ outputs, can be used by assessors, to make 
assumptions on the current (or future) system health, and 
invoke e.g. a Planner component if necessary.  

C. Automatic Configuration of Pervasion 

The configuration of a supervision pervasion is done in a 
number of steps: 

Contracting: As supervision is a supplementary service 
to be used by ACE ensembles that provide service(s) to a 
user (or another ACE ensemble). The first step consists in 
contracting all the components (sensors, effectors, 
correlators, etc.) to be involved in the supervision pervasion. 
This is done via a special controller ACE, which commits a 
supervision contract with the system to be supervised. Then 
the controller discovers the remaining ACEs, and sets up 
another contract for communication within the supervision 
pervasion. Finally, it obtains relevant configuration 
information (in particular the identities and addresses of the 
ACEs to be supervised) which are necessary to establish an 
SC based monitoring and control channel as discussed next. 

SC Deployment: SC objects (GCO and BCO) are 
deployed by sensors. To this end, a temporary contract is 
established between sensor and an ACE at which an SC 
object has to be deployed. The SC object itself is sent as part 
of a specific message, which is handled by the supervision 
organ of the ACE to be supervised. After deployment, the 
SC objects establish a connection to the sensor and effector. 

Subscription: A publish/subscribe based interaction 
mechanism is used as a general communication paradigm 
within the supervision pervasion. Each component of the 
pervasion publishes a set of so-called topics, i.e. categories 
of information that this component is able to provide. Other 

components can subscribe to these topics in order to be 
notified if new data is published. For instance, correlators as 
well as state predictors subscribe to information published by 
sensors (where the specific selection of topics obviously 
depends on the supervised system and the supervision tasks 
to be performed). Hence, the publish/subscribe protocol 
provides a data-flow driven group communication schema, 
where groups are defined by topics. 

Re-configuration: Changes in the architectural structure 
of the supervised system can be detected in several ways. 
The most generic approach is to use the BCO to intercept 
events steering the reconfiguration (contract cancellation, 
discovery, new contract establishments, etc.) on the internal 
communication bus, and to forward this information via 
sensors to a specialized correlator. In some cases it is 
however easier to simply notify the supervisor ACEs about 
an ongoing reconfiguration. 

The supervision pervasion reacts to the reconfiguration of 
the ACE ensemble under supervision by performing 
reconfiguration operation on itself. In particular it removes 
SC objects from ACEs which are not longer part of the 
supervised system, and deploys new once in newly 
introduced ACEs. Moreover, it adapts its internal structure to 
reflect the new architecture of the supervised ensemble using 
the mechanisms (contracting, subscription) as described 
above. 

Termination: Supervision activities are terminated (or 
suspended in the case of long-term supervision) when the 
ACE ensemble under supervision decides to break the 
supervision contract, which is usually the case when the 
service contract grouping this ensemble is terminated. The 
controller ACE notifies all components of the supervision 
pervasion, and breaks the contract between them. As for the 
long-term supervision components, a contract can be 
re-instantiated to the same statefull supervision object.  

IV. ADVANCES BEYOND THE STATE OF THE ART 

ACE based systems provide services by means of 
interactions of a probably large distributed set of ACEs with 
a dynamically adapted interaction structure and task 
diversification [6][13]. Hence, the basic assumption 
underlying to traditional supervision approaches (see for 
instance [11][5][9][1][7]) that the system under supervision 

(a) (b)

Figure 3  State Predictor Variants – (a) MSP, (b) DSP 



maintains a static architectural structure (i.e. does not 
perform run-time architecture adaptations) is not longer valid 
for ACE based services. 

 This notion of a service providing system makes a novel 
approach for the formulation and deployment of autonomic 
control loops necessary, which do not require any a priori 
knowledge on the structure of the supervised system. In 
order to address this need, the pervasive supervision 
approach includes a novel scheme to set-up those control 
loops that are based on the interaction of various ACEs 
forming a supervision ensemble. Evidently, the structure of 
the supervision pervasion adapts itself dynamically to the 
changes of the actual structure of the supervised system. 

Another novel achievement is the use of a common 
technological basis (namely the ACE software component) 
both for the system under supervision and the supervision 
system, which promotes self-similarity among components. 
This has a number of advantages: Firstly, the introduction of 
additional technologies does always increase the complexity 
of a system, hence a reduction of operational efforts by using 
a supervision system technologically different from the 
supervision system is at least questionable. On the other 
hand, for the supervision system described in this paper, a 
number of basic functions necessary for supervision already 
had been provided by the ACE component platform itself: A 
service discovery and contracting mechanism based on the 
GN/GA protocol, supporting dynamic adaptation as 
described above, the separation between process logic 
(provided by ACE self-models) and function implementation 
(provided by ACE functional repositories), as well as the 
built-in monitoring and control mechanisms the ACE 
supervision organ offers. Note that generic supervision tasks 
(such as liveliness validation as described in the case study in 
the Section V.B) can be applied to the components of a 
supervision pervasion as well. Thus, self-supervision can be 
performed through the proposed approach.  

The temporal supervision of quantitative as well as 
symbolic based parameters and behavior is provided as a set 
of long term supervision components: a more complex 
supervision ensemble can be enhanced through a flexible 
configuration / orchestration of these components with the 
one offering basic supervision features. These components 
have been specialized to work with the ACE model and its 
declarative execution logic (i.e., based on self-models). For 
instance, StatePredictors have been specifically designed to 
address individual features of the ACE self-model / plan 
philosophy to model detailed ACE behavior over time and 
subsequently provide detailed predictions of potential future 
behavior. 

V. EXPERIMENTAL VALIDATION 

A. Supervision prototype 

A prototype of the pervasive supervision has been 
implemented: it is integrated with the Cascadas ACE Toolkit 
[2] and it is available as open source. Within the prototype, 
each of the supervision components is a separate ACE. In 
particular, the supervision toolkit includes a set of generic 
ACEs, one for each component thus providing basic and 

long-term supervision features (i.e., sensor, effector, 
correlator, assessor, drift analyser, planner, state predictor, 
event predictor). These components must be specialized in 
order to implement the logic to supervise specific systems 
requirements. Moreover, the toolkit includes communication 
and interaction protocols (request/reply, notification, 
publish/subscribe) to set-up and (re-)configure a supervision 
pervasion, and its components.  

 
Figure 4  Dynamic Reconfiguration Scenario 

B. Service scenarios 

The described supervision approach has been applied to 
supervise a video service implemented as a set of distributed 
ACEs. Pervasive supervision has been introduced in order to 
handle failures of ACEs implementing the video client and 
one of several available video providers (see Figure 4 ).  

Subject of the supervision activities is the liveliness of 
the contract between the client ACE and the provider ACE. 
Supervision is done by issuing an exchange of heartbeat 
signals between these two ACEs, hence, if the contract is 
malfunctioning in one or both directions, this fault can be 
detected by comparing the time stamps of sending and 
receiving a heartbeat signal. Heartbeats are handled by 
GCOs injected into the supervised ACEs, hence the 
liveliness validation mechanism is transparent to self-models 
of supervised ACEs where dynamic reconfiguration of the 
supervision pervasion takes place if the provider changes. In 
this case, the structure depicted in Figure 4 is automatically 
adapted to work with the new service contracts. 

For long-term supervision, the MSP computes the 
probability of subsequent states based on observed state 
changes within the execution logic of the system under 
supervision (in our case, the video player ACE). Hence, in 
the above scenario predictions are related the probability that 
a certain channel will be selected or the probability that a 
fault will occur. The former is of particular interest, as it 
would allow a system to determine the channel that has been 



selected most in the past, which in turn could be selected if 
the currently selected channel becomes unavailable or if the 
selection procedure develops a fault.  

VI. APPLICATION SCENARIOS 

A possible application scenario for the pervasive 
supervision is the management of computing clouds, i.e., 
infrastructures consisting of reliable services delivered 
through next-generation data centers built to compute and 
store virtualization technologies and data respectively. 
Autonomic supervision can support load balancing, dynamic 
configuration, fault detection and recovery as well as SLAs 
fulfillment. Moreover, the autonomic supervision could also 
be extended to the management of end-users devices, which 
dynamically use the services executed by the cloud. For 
example, an important task is periodically informing 
supervisors about execution check points to allow dynamic 
re-configuration of the execution power. Furthermore, 
supervision strategies should also face the problem of 
handling the proper number of data duplications for the 
requested persistency or for the performance needs in data 
access. 

A second application scenario is the supervision of 
distributed service provisioning platforms, where different 
actors can develop, provide, connect and interact, in a secure 
and reliable way, for selling, buying, negotiating, exchanging 
and trading any content, information, services and service 
components. In such a context where components are 
dynamically negotiated and aggregated, in addition to equip 
service components with self-management capabilities, 
pervasive supervision could be used by an actor creating a 
service by aggregating a cluster of components to enforce 
service-specific management policies, or by a provider of 
service components to supervise the instances of a service  

VII. CONCLUSIONS AND FINAL REMARKS 

One of the most serious technological challenges of 
future Telecommunication, ICT and Internet will be 
interconnection and management of a huge amount of 
heterogeneous systems and small devices tied together in 
networks of networks. Autonomic Computing already argued 
that, due to the increasing complexity of large-scale 
computing systems, computers and applications need to learn 
how to manage themselves in accordance to high-level 
policies as specified by human operators. Nevertheless 
current autonomic solutions don’t exploit the real biological 
metaphor in distributed systems. This paper presented a 
novel autonomic supervision system, which is structured as 
an ensemble of components that implement an autonomic 
control loop, which does not require any a priori knowledge 
on the structure of the supervised system. The architecture 
devised is highly modular and can be configured towards 
individual needs. In addition, the supervision system is able 
to re-configure itself according to the changes of the 
supervised system. The solution was experimentally 
validated by the development of a prototype, which has been 
made available as open source.  

A possible evolution of the prototype would include the 
definition of the management policies through a specific 
language. The long-term supervision components could be 
enhanced to facilitate the dynamic orchestration into more 
advanced hierarchical supervision pervasions.   

The pervasive supervision approach is mainly orientated 
to the supervision of clusters of ACEs implementing specific 
services in accordance to service-specific management 
policies. Considerations on how to extend the basic 
supervision pervasions that are described in this paper to a 
global supervision backbone have been made in [4].  
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