5,322 research outputs found

    Comparison of different reliability improving investment strategies of Finnish medium-voltage distribution systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Improving the reliability performance of medium voltage networks

    Get PDF
    The aim of this dissertation is to investigate alternative, more reliable and cost effective ways of improving the reliability performance of medium voltage networks. Customers are mainly affected by faults on the distribution MV network, to which, consequently, we have to pay particular attention. A major requirement on electricity supply systems is high supply reliability for the customer which is mainly determined by the distribution networks. Power system reliability is an essential factor in the quality of supply and is directly related to the number and duration of outages. By analysing the power system properly, the weaknesses will then be identified and improvements can be introduced to minimise the occurrence of outages. A decrease in the outage rate will result in an improvement in reliability and quality of supply of the distribution MV network. The dissertation focuses on improving the network management by increasing the level of network automation and control which improves the operating efficiency of medium voltage distribution networks. Steps are shown how to equip the network according to progressive investment capability, from Fault Path Indicators (FPIs) and remote control Pulseclosing technologies to automatic FuseSavers and Tripsavers used in a feeder automation scheme to minimise the number of disturbances and the outage durations experienced when they occur. The results of a study analysing the impact of different intelligent automation solutions on the reliability performance of Medium Voltage distribution networks are presented in the dissertation. The respective system topologies are modelled and the resulting system reliability performance is determined by reliability calculations such as the SAIDI and SAIFI values. The results show that the distribution automation technologies can have a very significant impact on both the SAIDI and SAIFI performance of the systems. Further, selected details related to the implementation of such intelligent automation schemes are presented in this dissertation

    On an Information and Control Architecture for Future Electric Energy Systems

    Full text link
    This paper presents considerations towards an information and control architecture for future electric energy systems driven by massive changes resulting from the societal goals of decarbonization and electrification. This paper describes the new requirements and challenges of an extended information and control architecture that need to be addressed for continued reliable delivery of electricity. It identifies several new actionable information and control loops, along with their spatial and temporal scales of operation, which can together meet the needs of future grids and enable deep decarbonization of the electricity sector. The present architecture of electric power grids designed in a different era is thereby extensible to allow the incorporation of increased renewables and other emerging electric loads.Comment: This paper is accepted, to appear in the Proceedings of the IEE

    Risk-based assessment for distribution network via an efficient Monte Carlo simulation model

    Get PDF
    Given the fact that Smart Grid technologies are implemented mainly in distribution networks, it is essential to build a risk-based assessment tool which can model the operational characteristics of distribution networks operation. This thesis presented a distribution network model which captures the features of distribution network restoration, based on approximations of real-time switching actions. It enables the evaluation of complex distribution network reliability with active network control. The development of an explicit switching model which better reflects actual network switching actions allows for deliberate accuracy and efficiency trade-offs. Combined with importance sampling approach, a significant improvement in computational efficiency has been achieved with both simplified and detailed network switching models. The assessment model also provides flexibility for users to analyse system reliability with various levels of complexity and efficiency. With the proposed assessment tool, different network improvement technologies were investigated for their values of substituting traditional network constructions and impacts on network reliability performances. It has been found that a combination of different technologies, according to specific network requirements, provide the best solution to network investments. Models of customer interruption cost were analysed and compared. The study shows that using different cost models will result in large differences in results and lead to different investment decisions. A single value of lost load is not appropriate to achieve an accurate interruption cost quantification. A chronological simulation model was also built for evaluating the implications of High Impact Low Probability events on distribution network planning. This model provides the insights for the cost of such events and helps network planners justify the cost-effectiveness of post-fault corrections and preventive solutions. Finally, the overall security of supply for GB system was assessed to investigate the impacts of a recent demand reduction at grid supply points (for transmission networks) resulting from the fast growing of generation capacity in distribution networks. It has been found that the current security standard may not be able to guarantee an acceptable reliability performance with the increasing penetration of distributed generation, if further balancing service investment is not available.Open Acces

    Fault Location, Isolation and Network Restoration as a Self-Healing function

    Get PDF
    One of the main emphasis of the smart grid is the interaction of power supply and power customer in order to provide a reliable supply of power as well as to improve the flexibility of the network. Along with this, the increased energy demand, coupled with strict regulations on the quality and reliability of supply intensifies the pressure on distribution network operators to maintain the integrity of the network in its faultless operation mode. Additionally, regardless of the huge investments already made in replacing aging infrastructure and translating “the old-fashioned grid” in a “Smart Grid” to minimize the probability for equipment failure, the chances of failure cannot be completely eliminated. In accordance, in the event of faults in the network, apart from the high penalty costs in which network operators may incur, certain safety factors must be taken into consideration for particular customers (for example, hospitals). In view of that, there is a necessity to minimize the impact on customers without supply and maintain outages times as brief as possible. Within this scenario comes the concept of self-healing grid as one of the key-technologies in the smart grid environment which is partly due to the rapid development of distribution automation. Self-healing refers to the capacity of the smart grid to restore efficiently and automatically power after an outage. Self-healing main goals comprise supply maximum load affected by the fault, take the shortest time period possible for restoration of the load, minimizing the number of switching operations and keeping the network capacity within its operating limits. This research has explored insights into the smart grid in terms of the self-healing functionality within the distribution network with main emphasis on self-healing implementation types and its applicability. Initially a detailed review of the conception of the smart grid in order to integrate the self-healing and thus fault location, isolation and service restoration capabilities was conducted. This was complemented with a detailed discussion about the electricity distribution system automatic fault management in order to create a framework around which the aim of the research is based. Finally the self-healing problem coupled with current practical implementation cases was addressed with the objective of exploring the means of improvement and evolution in the automation level in the distribution network using Fault Location Isolation and Service Restoration (FLISR) applicability as a medium

    Reliability evaluation of smart distribution grids

    Get PDF
    The term "Smart Grid" generally refers to a power grid equipped with the advanced technologies dedicated for purposes such as reliability improvement, ease of control and management, integrating of distributed energy resources and electricity market operations. Improving the reliability of electric power delivered to the end users is one of the main targets of employing smart grid technologies. The smart grid investments targeted for reliability improvement can be directed toward the generation, transmission or distribution system level. However, radial operating status, aging infrastructures, poor design and operation practices and high exposure to environmental conditions have caused the electric power distribution systems to be addressed as the main contributor to the customer reliability problems. Therefore, developing a smart distribution grid can be an attractive reliability enhancement solution for the electric utilities. Whenever the targeted reliability enhancement solutions are limited to the simple conventional solutions, the available reliability assessment techniques can be easily used for purposes of the value-based reliability planning. However, the electric utilities face a challenge when the reliability enhancement solutions include sophisticated measures such as those of the smart grid technologies. Generally, the available reliability assessment approaches cannot be employed directly for such purposes. In this situation, it is necessary to develop a reliability evaluation approach for predicting the reliability performance of the electric power distribution systems when employing such sophisticated solutions. A novel approach is proposed and demonstrated in this thesis for reliability assessment of an electric power distribution system when employing the advanced reliability enhancement technologies. In the proposed reliability evaluation approach, the overall impacts of the targeted reliability enhancement solutions on the sustained interruptions, momentary interruptions and voltage sags experienced by the customers are taken into account. The results of various reliability case studies directed in this thesis show that employing a suitable set of the smart grid technologies in the functional zone of an electric power distribution system can virtually mitigate all the reliability indices. It is also possible to reduce the range of variation of the reliability indices among different customers. In addition, there is a possibility to reduce the burden on the utility repair crews

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    Distributed Power Generation in Europe: Technical Issues for Further Integration

    Get PDF
    The electric power sector in Europe is currently facing different changes and evolutions mainly in response to the three issues at EU level - environmental sustainability, security of supply, and competitiveness. These issues, against a background of growing electricity demand, may represent drivers for facilitating the further deployment of Distributed Power Generation technologies in Europe. The present Report focuses on the potential role of Distributed Power Generation (or simply Distributed Generation, DG) in a European perspective. More specifically, this work aims to assess the technical issues and developments related to DG technologies and their integration into the European power systems. As a starting point the concept of Distributed Generation is characterised for the purpose of the study. Distributed Generation, defined as an electric power source connected to the distribution network, serving a customer on-site or providing network support, may offer various benefits to the European electric power systems. DG technologies may consist of small/medium size, modular energy conversion units, which are generally located close to end users and transform primary energy resources into electricity and eventually heat. There are, however, major issues concerning the integration of DG technology into the distribution networks. In fact, the existing distribution networks were not generally designed to operate in presence of DG technologies. Consequently, a sustained increase in the deployment of DG resources may imply several changes in the electric power system architecture in the near future. The present Report on Distributed Generation in Europe, after an overview of the basic elements of electric power systems, introduces the proposed definition and main features of DG. Then, it reviews the state-of-the-art of DG technologies as well as focuses on current DG grid integration issues. Technical solutions towards DG integration in Europe and developments concerning the future distribution systems are also addressed in the study.JRC.F.7-Energy systems evaluatio

    Cooperative Cognitive Automobiles

    Get PDF
    Safety requirements are among the most ambitious challenges for autonomous guidance and control of automobiles. A human-like understanding of the surrounding traffic scene is a key element to fulfill these requirements, but is a still missing capability of today's intelligent vehicles. Few recent proposals for driver assistance systems approach this issue with methods from the AI research to allow for a reasonable situation evaluation and behavior generation. While the methods proposed in this contribution are lend from cognition in order to mimic human capabilities, we argue that in the long term automated cooperation among traffic participants bears the potential to improve traffic efficiency and safety beyond the level attainable by human drivers. Both issues are major objectives of the Transregional Collaborative Research Centre 28 'cognitive automobiles,' TCRC28 that is outlined in the paper. Within this project the partners focus on systematic and interdisciplinary research on machine cognition of mobile systems as the basis for a scientific theory of automated machine behavior

    Resilience Enhancement for the Integrated Electricity and Gas System

    Get PDF
    corecore