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ABSTRACT FOR THE THESIS 

Given the fact that Smart Grid technologies are implemented mainly in distribution networks, 

it is essential to build a risk-based assessment tool which can model the operational 

characteristics of distribution networks operation. This thesis presented a distribution 

network model which captures the features of distribution network restoration, based on 

approximations of real-time switching actions. It enables the evaluation of complex 

distribution network reliability with active network control. The development of an explicit 

switching model which better reflects actual network switching actions allows for deliberate 

accuracy and efficiency trade-offs. Combined with importance sampling approach, a 

significant improvement in computational efficiency has been achieved with both simplified 

and detailed network switching models. The assessment model also provides flexibility for 

users to analyse system reliability with various levels of complexity and efficiency. 

With the proposed assessment tool, different network improvement technologies were 

investigated for their values of substituting traditional network constructions and impacts on 

network reliability performances. It has been found that a combination of different 

technologies, according to specific network requirements, provide the best solution to 

network investments. Models of customer interruption cost were analysed and compared. 

The study shows that using different cost models will result in large differences in results and 

lead to different investment decisions. A single value of lost load is not appropriate to achieve 

an accurate interruption cost quantification. A chronological simulation model was also built 

for evaluating the implications of High Impact Low Probability events on distribution network 

planning. This model provides the insights for the cost of such events and helps network 

planners justify the cost-effectiveness of post-fault corrections and preventive solutions. 

Finally, the overall security of supply for GB system was assessed to investigate the impacts of 

a recent demand reduction at grid supply points (for transmission networks) resulting from 

the fast growing of generation capacity in distribution networks. It has been found that the 

current security standard may not be able to guarantee an acceptable reliability performance 

with the increasing penetration of distributed generation, if further balancing service 

investment is not available. 
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IS Importance Sampling 

NSMCS Non-sequential Monte Carlo Simulation 

TSMCS Time-sequential Monte Carlo Simulation 

RBTS Roy Billinton Test System 

RTS Reliability Test System 

GSP Grid Supply Point 

COV Coefficient Of Variation 

MTTR Mean Time To Repair 
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CDF Cumulative Distribution Function 

CCDF Complementary Cumulative Distribution Function 

CDF Customer Damage Function 

ECC Equivalent Circuit Capacity 

SAIFI System Average Interruption Frequency Index 

SAIDI System Average Interruption Duration Index 

PV Photovoltaic 

WTA Willingness To Accept 

WTP Willingness To Pay 

GVA Gross Value Added 
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Chapter 1 INTRODUCTION 

1.1 MOTIVATIONS 

1.1.1 NEED FOR A FUTURE LOW CARBON POWER SYSTEM 

There is an increasing consensus that to ensure a sustainable human future, a low carbon 

energy system is required to be built. To address global climate change, commitments have 

been made in a number of countries to radically reduce CO2 emission and deploy more 

renewable energy resources. Some of the related initiatives are: 

 From the Climate Change Act 2008 [1], the UK government is committed to reducing 

greenhouse gas emissions by at least 80% by 2050, relative to 1990 levels.  

 It is expected by DECC that in the UK, electricity sectors would be significantly 

decarbonised by 2030.  

 The EU has set the legislation to achieve 40% cut in greenhouse gas emission, 27% 

energy production from renewables and 27% improvement in energy efficiency by the 

year 2030 [2]. 

 On 30 June 2015, China submitted its Intended Nationally Determined Contribution 

(INDC), lower the carbon emissions per dollar of economic output by 60% to 65% 

below 2005 levels, and increase the proportion of non-fossil in total primary energy 

supply to around 20%, by the year 2030 [3]. 

 Japan sets a target that by 2030 carbon emission from all sectors will be reduced to 

80 percent of those in 2013 [4]. 

 Other main CO2 emitting countries like the US have also set up their legislation 

framework to ensure a low carbon system development. 

To deliver these ambitious targets, tighter regulations and generous incentives have been set 

to promote and stimulate the transition from conventional fossil fuels to lower carbon 

technologies. For instance,  

 The Zero Carbon Buildings policy [5] requires that from 2016 all new homes in the UK 

need to achieve zero carbon emission for energy consumption including heating and 

lighting. 
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 Feed-in tariffs [6] have been set in a number of countries in the EU for subsidising the 

wind and solar energy generation installed by domestic and commercial electricity 

consumers. 

 Low CO2 emission cars can be exempt from road tax in the UK [7]; Full electric vehicles 

are free from congestion zone fee in London [8] and free to park and recharge in the 

City of Westminster [9]. 

The fast growing incorporation of heat and transport sectors can lead to a sharp increase in 

electricity demand. However, most electricity networks in the UK, EU and other developed 

countries have been in service from the booming construction era in the late 1950s to 1960s. 

These network infrastructures are approaching their designed useful lifetime and are waiting 

for decommissioning and replacement. To meet the ever increasing electricity demand and 

prevent customers from shortages and outages, the network capacity requires urgent 

upgrades.  

1.1.2 NEED FOR A BETTER NETWORK INVESTMENT EFFICIENCY  

In the UK, the system security and quality of supply standards (SQSS) [10] for transmission 

networks and Engineering Recommendation P2 [11] for distribution networks are based on 

the “n-k” criteria for system reliability. The methodology is that a system needs sufficient 

redundancy capacity to ensure a reliable supply for a set of specific system failures. 

In this traditional asset-based philosophy, substantial generation installation and grid 

construction are required to meet the rising demand. The current planning standard has 

delivered secure and reliable electricity services to end users in the last century, the key 

concern is whether it can deliver reliable service economically. 

Rather than increasing system capacity by building more centralised generators to produce 

power, upgrading the rating of grid lines in transmission and distribution networks to deliver 

power to customers, the concept of Smart Grid proposes another route to achieve a 

potentially better investment efficiency.  
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FIGURE 1-1 AN EXAMPLE OF THE VISION OF SMART GRID [12] 

By integrating renewable distributed energy resources (DER) (including photovoltaic panel, 

wind turbine, biomass power plant, and other types of DG) and flexible demand side response 

(DSR) (including smart demand control in domestic appliances, electric cars, heat pumps and 

energy storage) into distribution networks, in combination with active network control and 

automation, the Smart Grid may be able to achieve a higher utilisation of existing network 

assets and therefore deliver a cheaper alternative to traditional asset-based solutions. 

1.1.3 NEED FOR EFFICIENT DISTRIBUTION NETWORK ASSESSMENT TOOLS 

Even if the Smart Grid is able to deliver an economic solution for meeting the booming 

electricity demand whilst avoiding/reducing extra network asset constructions, it is essential 

to ensure that network reliability is not compromised. A distribution network reliability 

assessment model is required that is able to reflect the operational characteristics of 

distribution network service operation and restoration and also the stochastic performance 

for long term planning. 

Distribution network operation includes complex network restoration schemes [13]. Up to 

recently, substantial works [14]–[21] have been focused on optimising specific network failure 

service restorations, minimising load shedding and the number of switching actions. These 

works are usually for analysing the operational properties of system security but not for long 

term time domain interruption and restoration characteristics. The analysis of probabilistic 



CHAPTER 1 

Page 23 of 193 
 

study on distribution network reliability for planning has also been developed for decades 

[22]–[24]. However, most studies investigating system performances make approximations 

which simplify network restoration and compromise the accuracy of modelling chronological 

distribution network operation in system planning. The bottle-neck is that the mixed integer 

optimisation for determining the optimal switching actions in distribution network operation 

brings huge computational burden and long-term chronological simulation is very slow to 

converge for large and complex distribution networks. 

The operation of Smart Grid technologies such as the charging and discharging of energy 

storage is naturally a time domain optimisation problem. Capturing the chronological 

characteristics of these technologies in combination with active distribution network control 

requires efficient distribution network assessment tools. 

1.2 SCOPE OF THE WORK 

This thesis focuses on the challenges of reliability assessment for complex time domain 

distribution network operations. The research aims to develop an efficient distribution 

network operation model that allows, via Monte Carlo simulations, the implications of Smart 

Grid technologies, various customer interruption cost models and high impact low probability 

events to be analysed. The following research questions were identified: 

A. How to model distribution network reliability performance considering the essential 

aspects of real-time operations? 

 

It is required to develop a network reliability model which captures the stochastic 

characteristics of network components’ failure, repair and maintenance, and reflects 

key features of real-time service restoration actions including fault clearing, fault 

isolation and supply rerouting. This model needs to determine the optimal switching 

actions in real time distribution network operations, whilst satisfying network 

constraints and minimising load curtailment at all times. 

 

B. How to overcome the computational challenges in evaluating distribution network 

reliability metrics?  

 

Optimal switching actions are determined by solving mixed integer optimisation 

problems with multiple objectives including restoring as many customers as possible 

by network reconfiguration, employing minimal number of switching actions, 
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maintaining power flows within line ratings, keeping radial network topology, 

minimising network losses, etc. Meanwhile, for a network with n switches (including 

controllable circuit breakers, switches and NOPs), there exist at least 2𝑛  possible 

switching combinations, in which each switch is either closed or open. The number of 

possible solutions expands exponentially with the growing size of networks. 

Such an optimisation problem brings a huge computational burden. To assess 

predictive reliability properties for distribution networks, it may need to simulate 

thousands of years, and in each simulation year there exist a large number of system 

states, each of which requires solving the corresponding optimisation problems.  

Therefore, there is a need for efficient methods that allow for deliberate accuracy and 

efficiency trade-offs. 

 

C. What are the impacts of different network improvement options on reliability 

performance in distribution networks? 

 

Apart from upgrading the capacity limit of substation transformers and distribution 

lines/cables, there exist a number of network improvement options. These include 

but are not limited to installing DG and energy storage in the LV network, replacing 

switches operated manually by automatic switches that operated remotely with very 

short response time, allocating mobile generation for emergency supply for 

disconnected areas. These options, via the proposed simulation tool, are investigated 

and compared for their different impacts on ENS, CI and CML, the main security of 

supply indicators monitored by the UK DNOs [25].   

 

D. What are the implications of customer interruption cost (CIC) on network planning? 

 

OFGEM and DECC have set a headline weighted-average value of lost load of 

£16940/MWh for peak winter workdays in GB. This figure is used as a reference for 

security of supply calculations including for setting capacity levels and calculating cost 

in cash-out [26]. However, a general consensus on the value of customer interruption 

cost has not been yet achieved as the values proposed by different sources vary 

significantly. The value of CIC is affected by unsupplied energy, the timing (time of day, 

day of week, month of year) of the supply interruption, the duration of the supply 

interruption, the frequency of interruptions, the availability of advance warning 
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before the interruption takes place and the category of different customers. The 

dependency of the interruption cost to customers on these factors needs to be 

thoroughly evaluated by chronological simulations. Our studies have demonstrated 

that the adopted model and estimate of interruption costs can have a profound 

impact on the obtained planning solution. 

 

E. What is the importance of assessing impacts of high impact low probability (HILP) 

events on distribution network reliability? 

 

Reliability indices used for assessing the reliability performance of electricity networks 

are usually based on predictive “average” or “expected” values derived from historical 

data. This methodology is not valid for those exceptionally rare events whose 

probability of occurrence is not predictable. Those events with large impacts, even 

though occurring infrequently, can lead to significant changes in the dynamic 

behaviour of the network and result in prolonged interruptions of supply. It is of great 

importance to understand the reason and consequences of HILP events and identify 

the role and quantify the value of emergency operation actions and emergency 

network development. This requires tools for estimating reliability performances 

including HILP events. 

 

F. Is the transition in distribution networks making any difference to the whole GB 

system security of supply under the current reliability standard, i.e. 3h/year LOLE? 

 

OFGEM has set 3h/year LOLE for GB electricity system as the generation adequacy 

standard. It is expected that under the 3h LOLE standard [27], the system operator 

should be able to achieve a secure and reliable supply to customers, with the current 

level of balancing service. However, there has been an ever expanding reduction in 

demand at grid supply points (from the transmission networks’ perspective) due to 

the fast growing embedded capacity from distribution networks. It is essential to 

understand, under the same reliability standard, the impacts on system security of 

supply, and to inspect whether the standard is appropriate and the amount of 

balancing service is sufficient. 

1.3 ORIGINAL CONTRIBUTIONS 

The original contributions of this thesis are described in chapters 2, 3, 4 and 5.  
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Chapter 2 proposes an implicit switching model for the reliability analysis of active distribution 

networks. The resulting reliability model is approximate, but has the following advantageous 

properties:  

 The model captures the qualitative benefits of network restoration by switching but 

foregoes explicit computation of switching actions. 

 Complex distribution network composition and topologies can be represented using 

the graphical method in a simplified fashion whilst switching operations such as 

failure isolation, network rerouting, restoration can still be modelled;  

 The impact of a given state does not depend on its history but the current state of 

network components. This property enables the use of state sampling Monte Carlo 

schemes (a ‘snapshot’ analysis of network states) and associated variance reduction 

schemes (e.g. importance sampling) so that very large speedups can be obtained; 

 Network constraints and load shedding can be conveniently embedded using a simple 

linear optimisation; 

 The approximations in network restoration are gradually becoming less artificial as 

future networks become smarter and deploy technologies such as soft open points 

and demand response. 

The existing studies on distribution network reliability either oversimplify restoration actions, 

or consider step by step operations in details. The former methods include analytical analyses 

such as failure mode effect analysis (FMEA) which calculates the impact of each possible 

system contingency on reliability performance and weighting the impact with the 

corresponding probability of occurrence to obtain the expected annual reliability indices. An 

important shortfall is that due to the size of network, it is infeasible to consider all possible 

contingency events so that approximations on the model need to be taken including ignoring 

overlapping failures and specific restoration processes. The latter methods consider exact 

network restoration actions in detailed sequences. The optimal switching action is obtained 

by solving mixed integer programming which can be very time consuming in long-term 

predictive reliability analysis. The proposed implicit switching model is able to consider 

overlapping failures and network restoration operations and also presents a good 

computational efficiency by applying importance sampling in non-sequential Monte Carlo 

analyses.  

In Chapter 3, the implicit switching model of Chapter 2 is extended to include the explicit 

operation of network switches. Optimal network reconfigurations in service restoration are 
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determined by mixed integer optimisation to minimise demand curtailment, whilst 

maintaining network constraints and a radial topology.  

 An exact mathematical model for finding the optimal radial topology is proposed in 

this chapter. The radiality constraints ensure every node has a maximum one 

upstream node connection to achieve radial distribution network topology.  

 The sampling of system states is still independent of its history so that large speedups 

are available in reliability assessment benefits from state sampling Monte Carlo 

methods with variance reduction techniques. 

It is worth noting that, an exact mathematical optimisation for radial network topology is 

considered complicated and extremely time-consuming in [28]–[30]. Heuristic algorithms for 

network restoration optimisation have been rapidly developed in the recent decades can 

provide a near-optimal solution but the radiality constraints are controlled implicitly [31]. In 

this chapter, an exact mathematical model for radiality constraints is formulated which does 

not compromise the precision of switching optimisation and a high simulation efficiency is still 

able to be achieved by applying state sampling Monte Carlo with importance sampling.  

Chapter 4 contains three parts. Firstly, a real-time operation model for DG and a ‘greedy’ 

energy storage model - aiming for maximising their ability in improving reliability were 

formulated. Based on the proposed implicit switching model with time-sequential Monte 

Carlo simulation, non-network solutions for enhancing distribution network 

reliability/capacity have been analysed taken into consideration the real-time distribution 

network restoration. Different network improvement options including automatic switching, 

mobile generation, energy storage and DG were assessed for their impacts on network 

reliability performances in terms of ENS, CI and CML. Based on the results, it has been found 

that non-network solutions can greatly contribute to distribution network capacity. However, 

the impacts on network performance indices can vary significantly with different technologies. 

According to the results and analyses for different non-network solutions, it can be concluded 

that the optimal network reinforcement for matching the future demand growth should be a 

combination of various network and non-network solutions.  

Part Two focuses on assessing the impacts of customer interruption cost on network planning. 

This part has firstly discussed the main methodologies previously employed for the 

quantification of CIC. Secondly, it has discussed the highlights of a comprehensive literature 

survey on CIC and VoLL quantification, demonstrating the significant variations and the lack 



CHAPTER 1 

Page 28 of 193 
 

of consensus. The main outcomes of the latest relevant studies in the UK context have been 

discussed and form the core of the customers’ supply valuation assumptions adopted 

throughout this chapter. Furthermore, different modelling approaches to customer 

interruption costs have been presented and discussed, including constant VoLL as well as 

interruption duration-dependent VoLL in the form of customer damage functions. Our study 

has demonstrated that the adopted model and estimate of interruption costs can have a 

profound impact on the obtained planning solution.  

The third part study models the impact of HILP events. The reliability performance of a test 

distribution network has been evaluated through time-sequential Monte Carlo simulation. 

Impacts of HILP events with different severity levels have been studied considering the 

contribution of an emergency generation with different supply rate and preparation time as 

mitigation measures. The results demonstrate that severe HILP events can lead to significant 

cost of lost load which may justify development of more resilient networks, e.g. 

transformation to underground (UG) network, supported by the provision of fast and high 

capacity emergency generation, especially during very severe HILP events.  

Chapter 5 evaluates the security of supply for a generic GB electricity system. From the 

analysis, it is found that there is a relatively low-level risk of customer interruptions given a 3 

hours LOLE system where the System Operator has access to balancing services (for the 

current level around 2GW). However, the drop in peak demand in recent years mainly from 

the contribution of fast growing embedded generation and rising demand response services 

in distribution networks can expose the system to fewer minor but more serious customer 

disconnections. The analysis has shown that the 3h LOLE standard for a high wind penetration 

system may not be able to ensure an acceptable level of security of supply, especially for 

adverse events when high demand coincides with lower available generation capacity. The 

potential solution can be a more stringent reliability standard or increased capacity of 

balancing services. 

It needs noting that, following publications form the basis of this thesis: 

 Chapter 2 is based on the material of the paper  

Y. Yang, S. Tindemans, G. Strbac, “An implicit Switching Model for Distribution 

Network Reliability Assessment”, accepted by the 19th Power System Computation 

Conference 2016. 

 Chapter 2, Chapter 3 and part 1 of Chapter 4 are from the material of paper  
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Y. Yang, S. Tindemans, G. Strbac, “Snapshot Model for Distribution Network Reliability 

Analysis with Variable Restoration Accuracy”, submitted to IEEE Transaction on Power 

Systems. 

 Part 2 and Part 3 of Chapter 4 present the material that has been published in the 

consultation report “Review of Distribution Network Security Standards - Extended 

Report”, authored by Goran Strbac, Predrag Djapic, Rodrigo Moreno, Ioannis 

Konstantelos, Dimitrios Papadaskalopoulos, Jose Calvo, Danny Pudjianto, Simon 

Tindemans, Sana Kairudeen, Yang Yang, Hadi Karimi, Enrique Ortega, Marko Aunedi, 

submitted the Energy Network Association. I was the main contributor to sections 

reproduced in this thesis (section 2.4, 2.11, 2.12, 9.4, 13.2 of the report) 

 Chapter 5 is formed from the material of the paper  

Y. Yang, S. Tindemans, G. Strbac, “Generation System Adequacy Performance Under 

the Current UK Reliability Standard” to be submitted to IET Generation, Transmission 

& Distribution. 

1.4 THESIS STRUCTURE 

The structure of this thesis is outlined below: 

Chapter 2: This chapter proposes an approximate reliability analysis method where switching 

actions are modelled implicitly.  It can be used graphically as a model reduction method, and 

simulated using time-sequential or state sampling Monte Carlo methods. The method is 

illustrated on a simple distribution network, and reliability indices are reported both as 

averages and distributions. Large speedups result from the use of biassed non-sequential 

Monte Carlo sampling. 

Chapter 3: In this chapter, we propose an extended model where switching actions are explicit. 

Optimal switching actions for each switching devices are determined to minimise demand 

curtailment, maintain network constraints and radial topology. Although simulation time 

consumption is compromised for conducting mix integer optimisation, most of the benefits 

achieved by the implicit model in Chapter 2 are maintained that it can still be used graphically 

as a model reduction method, and simulated using time-sequential or state sampling Monte 

Carlo methods which enable potential large speedups in reliability assessment. 

Chapter 4: In this chapter, we propose three aspects of studies on distribution network 

reliability evaluation via the proposed implicit switching model. In the first part, the impacts 

of non-network solutions including automatic switching, mobile generation, energy storage 
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and DG on distribution network reliability/capacity are analysed. Part Two focuses on the 

evaluation of VoLL and CIC. Impacts of different customer interruption cost models on 

network planning are investigated by conducting time-sequential Monte Carlo simulation with 

the proposed assessment model. Various customer damage functions are applied and 

compared for different customer categories. The third part is for distribution network 

reliability in High Impact Low Probability events (HILP). In the final section of this chapter, the 

impact of HILP on reliability performance is investigated and the preventive and corrective 

mode of investment are compared. 

Chapter 5: In this chapter, we use chronological Monte Carlo simulations to analyse a 

simplified GB electricity system for its reliability performance at the level of the GB Reliability 

Standard, i.e. LOLE=3h/year. The effects of the drop in peak demand in recent years mainly 

from the contribution of fast growing embedded generation and rising demand response 

services in distribution networks are analysed. 

Chapter 6: The final chapter summarises the main conclusions and indicates research 

questions for future researches.
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Chapter 2 AN IMPLICIT SWITCHING MODEL 

FOR DISTRIBUTION NETWORK RELIABILITY 

ASSESSMENT 

 

Abstract 

Modern active distribution networks make use of intelligent switching actions to restore 

supply to end users after faults.  This complicates the reliability analysis of such networks, as 

the number of possible switching actions grows exponentially with network size. This chapter 

proposes an approximate reliability analysis method where switching actions are modelled 

implicitly.  It can be used graphically as a model reduction method, and simulated using time-

sequential or state sampling Monte Carlo methods. The method is illustrated on a simple 

distribution network, and reliability indices are reported both as averages and distributions. 

Large speedups result from the use of biassed non-sequential Monte Carlo sampling – a 

method that is hard to combine with explicit switching models. 
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2.1 INTRODUCTION 

An understanding of network reliability performance relies significantly on quantitative 

reliability modelling of distribution networks because distribution networks are the source of 

the majority of outages that affect end users [23]. Distribution networks are undergoing 

significant changes with increased penetration of distributed generation, flexible demand and 

new monitoring and automation technologies, and their adoption is further affected by 

changes in transmission networks and market arrangements [13]. Developing realistic future 

network scenarios thus necessitates rapidly assessing the reliability performance for a large 

range of parameters and network configurations. This, in turn, requires the use of reliability 

assessment methods that are both flexible and efficient.  

Reliability modelling of complex distribution systems has been extensively discussed in [32]. 

The minimal cut-set technique is a common method employed for system simplification, and 

failure mode effect analysis (FMEA) is well developed for evaluating the impact of specific 

failure modes. It is pointed out in [13] that FMEA requires the development of a complete 

table of failure modes with their probability and the corresponding reliability impact. FMEA 

has been used for network reliability evaluation in [23], [32] and [22]. 

Whereas FMEA and other analytical methods typically take a passive view of the network, 

realistic distribution networks take a more active approach to fault management. For 

maximising distribution network reliability, system protection and restoration actions 

including failure isolation, network rerouting, load shedding and restoration are achieved by 

coordination of circuit breakers (CBs), sectionalizing switches and normally open points 

(NOPs). The active operation of networks, therefore, requires real-time decision-making with 

the objective to improve reliability for end users. 

A particular computational challenge stems from the range of discrete switching actions 

available to network operators, including control of normally open points, fault isolation and 

restoration and load shedding. In [16], the (near) optimal post-fault network configuration is 

first identified by applying load acceptance and load transfer algorithms and then a switching 

synthesis algorithm is employed to create (near) optimal switching sequences. In general, the 

optimal allocation and control of switches results in mixed integer optimisation problems (see 

e.g. [20]), which result in a significant computational burden especially for large and 

increasingly controllable networks. 



CHAPTER 2 

Page 33 of 193 
 

In this chapter, a simplified model for distribution network reliability analysis is proposed. Its 

defining feature is the implicit incorporation of switching actions instead of direct control of 

switches in the network. This is done by splitting and portioning the network into sets of 

components that are separated by switches (normally closed or normally open) or circuit 

breakers. These sets are represented by nodes, connected by links where switchable 

components are located.  

When a fault occurs it propagates to the nearest enclosing circuit breakers or NOPs. After a 

characteristic switching time, it is assumed that network switches are operated to locally 

isolate the fault, converting the affected node to a non-conducting node. Remaining nodes 

are assumed to be supplied if a conductive path to a grid supply point exists, even if it passes 

through a NOP (closing it is implicit).  

The resulting reliability model is approximate, but has the following advantageous properties:  

 Complex distribution network composition and topologies can be represented using 

the graphical method in a simplified fashion whilst switching operations such as 

failure isolation, network rerouting, restoration can still be (approximately) modelled;  

 The impact of a given state does not depend on its history. This property enables the 

use of state sampling Monte Carlo schemes and associated variance reduction 

schemes (e.g. importance sampling);  

 Network flow constraints and load shedding can be embedded using a simple linear 

optimisation. 

2.2 DISTRIBUTION NETWORK RELIABILITY MODELLING 

UK distribution networks are composed of EHV, HV and LV voltage levels. EHV (132kV-33kV) 

is mainly used for connecting the national transmission network and usually in meshed 

distribution network, and residential end users are supplied at the LV level (0.4kV). This 

chapter focuses on the intermediate HV level (33kV-11kV) at which most protection and 

restoration actions take place [23].  
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FIGURE 2-1 AN ILLUSTRATIVE HV DISTRIBUTION NETWORK 

An example of a radially operated HV distribution network is shown in Figure 2-1. The HV 

network is connected to an EHV network through a primary substation which is composed of 

bus-bars, 33-11kV transformers, switches and circuit breakers. At the 11kV level, the 

substation is connected to feeders equipped with a protection circuit breaker (indicated by a 

cross). Two feeders (F1 and F2) are connected in this example but more feeders can be 

supplied by the same substation. Feeder sections can be overhead lines or underground 

cables depending on local requirements. Sections are equipped with sectionalizing switches 

(diagonal lines) at one or both ends. The LV network is represented as load points (L1, L2,…) 

in this example, connecting to the HV network via an 11-0.4 kV distribution transformer and 

a circuit breaker or fuse for protection. Although the network is radially distributed, a normally 

open point (NOP; a circuit breaker or switch) is deployed for alternative connection when 

needed. 

Reliability analysis of such a network must consider a number of possible failure modes. When 

a 33-11kV transformer (T1 or T2) fails, the circuit breakers/switchgears isolate the transformer 

so that other parts of the network will not be affected. These transformers usually satisfy the 

N-1 criterion so that one transformer is adequate to supply the peak demand of network. 

When a short circuit fault occurs in HV lines or cables, the corresponding fault clearing device, 

usually the circuit breaker connecting the substation, will trip the downstream branch 

instantly without interrupting upstream or other branches. This fault clearing action may 

disconnect an entire feeder, so a switching action is required to restore the power supply to 



CHAPTER 2 

Page 35 of 193 
 

as many customers as possible. In this example network, the 11kV network is operated as a 

radial network with a normally open circuit breaker (NOP) that connects different branches 

for back-feeding during an outage. Furthermore, all network lines/cables are equipped with 

normally closed switchgears at both sides. When the fault location is identified, a switching 

action is performed. First, the failed line/cable is isolated by opening the nearest sectionalizing 

switches (upstream and downstream). Second, the affected downstream load points can then 

be resupplied by closing the NOP to the adjacent branch. At the same time, the upstream 

circuit breaker can be reclosed to supply upstream load points. At the LV level, a circuit 

breaker or fuse serves to disconnect the load point from the HV network. This way, the HV 

network is not affected by faults of the LV transformer or LV network.  

There are a number of challenges for quantitative reliability analysis of distribution networks. 

Analytical methods are not well-suited to analyse multi-step processes, such as fault-

restoration sequences, or duration-dependent interruption costs. Furthermore, in complex 

networks, the number of possible switching actions grows exponentially, and the optimal 

sequence of switching actions often depends on historical decisions. Modelling this in detail 

requires running a simulation with an embedded mixed integer optimisation problem for 

switching actions, which is computationally very demanding. 

2.3 IMPLICIT SWITCHING MODEL 

2.3.1 FEATURES OF THE PROPOSED MODEL 

A simplified reliability analysis model is proposed that qualitatively captures the ability to 

reroute power using switches, but does not require explicit computation of the switching 

actions. The model is based on the following observations and assumptions:  

 Connected components between switches and circuit breakers are always in the same 

electrical state. We label such an aggregation an ‘electrical node’. It is similar to the 

concept of a ‘section’ in [20]. 

 When a short circuit fault occurs within a node, the fault propagates to all connected 

electrical nodes, until it is stopped by a circuit breaker, NOP or isolated network section. 

The affected nodes are immediately disconnected from the electricity supply. 

 After a fault occurs, there is a characteristic switching time before the fault is diagnosed 

and switching actions are initiated. These consist of node isolation (opening sectionalizing 

switches) and restoration (closing CBs and NOPs). Switches are operated simultaneously. 

 It is assumed that NOPs and sectionalizing switches are intelligently controlled so that if a 

node can be supplied then the power to the node will be restored.  
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 The operation of CBs, NOPs and switches is assumed to be 100% reliable. 

 Lack of available capacity due to network constraints does not prevent switching but 

results in load curtailment so that the constraint is satisfied. 

2.3.2 NETWORK COMPOSITION AND OPERATION MODELLING 

2.3.2.1 NODE MODEL 

System components and the associated switches are aggregated into electrical nodes. The 

fault state of each node is modelled as a four-state Markov process shown in Figure 2-2 and 

the associated transition rates:  

 

FIGURE 2-2 NODE STATE IN MARKOV MODEL 

a) “Up state”: the component is working 

b) “Fault clearing state”: the component is faulty; the fault has been cleared by opening 

the corresponding feeder circuit breaker, and therefore also affects neighbouring 

nodes. 

c) “Repair state”: switching action has been taken to isolate the component for repair. 

This allows neighbouring nodes to be resupplied if possible. 

d) “Maintenance state”: the component is in scheduled service and it is isolated. 

It is worth noting that, the Markov model for system components can be more complicated 

according to different purposes. For example, the faults studied here refer to permanent 

faults but if temporary faults are considered, the effect of network recloser can be analysed 

in an extended Markov model shown in Appendix B Figure B-3. 

2.3.2.2 NETWORK MODEL CONVERSION 

In order to use the implicit switching model for reliability analysis, distribution network 

models must be expressed in a graph representation with four node types: 

a) Electrical nodes with fallible components, as described above. Their reliability 

parameters depend on the physical components they represent. In the case of 

Fault clearing Repair 

Up Maintenance 

𝜆𝑓 𝜇𝑟 

𝜆𝑚 

𝜇𝑚 

𝜇𝑠 



CHAPTER 2 

Page 37 of 193 
 

transformers, it may be convenient to embed circuit breakers in this component, thus 

effectively skipping the ‘fault clearing’ state in Figure 2-2. 

b) Supply nodes that represent the EHV network supply points. 

c) Load nodes that represent end users (the LV network). 

d) Circuit breaker / NOP nodes that arrest faults on the network. 

 

FIGURE 2-3 GRAPH REPRESENTATION OF HV NETWORK FOR RELIABILITY ASSESSMENT 

Figure 2-3 depicts the graph representation of the example network in Figure 2-1. Different 

node colours are used to indicate that the underlying components have different reliability 

parameters. Arcs represent logic linkage of the network topology. The following steps are 

taken to translate a real network into its corresponding node representation.  

a) Network data requisition: The physical network is described in terms of its 

components (with their attributes, including reliability parameters) and their 

connections. 

b) Construct full node + link network: Convert the component data into a graph, where 

the nodes are physical components and logical links represent their connections.  
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FIGURE 2-4 REAL COMPONENT NETWORK CONSTRUCTED FROM NETWORK DATA 

c) Merge components into electrical nodes: Identify electrical components that have no 

intermediary switches/NOPs/CBs and merge them into electrical nodes. For the 

purpose of the model a node operates as a single component, so its constituent 

reliability parameters, i.e. length, failure rate, switching time, repair time, should be 

aggregated. Load points at this step are not aggregated with other network 

components. Shown in Figure 2-4, between two switches there is only one line 

component which can be several line sections in raw network data but connected 

directly without switching components. Line sections are aggregated for network 

simplification whilst not compromising any original network switching property. 

 

FIGURE 2-5 COMPONENTS MERGES TO FORM NODES; SWITCHES ARE REMOVED SINCE THEY ARE MODELED IMPLICITLY IN 

NODES 

d) Remove switches: At this step, the graph consists of circuit 

breakers/NOPs/sectionalizing switches, supply nodes, load points and aggregated 

electrical nodes (on the left of Figure 2-5, before removing switches). Shown in the 

right part of Figure 2-5 sectionalizing switches are removed because their actions can 

be represented implicitly in the electrical nodes. Circuit breakers connected to 

transformers can also be removed since transformers are assumed to be isolated 

immediately after a fault happens without affecting other parts of the network (i.e. 

they have no ‘fault clearing’ state). NOPs are modelled the same as circuit breakers 

that work as fault clearing devices (which can trip network instantly), so for NOPs and 

circuit breakers a ‘CB’ type of node will be used. The connection part between 
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distribution transformer circuit breaker and line section sectionalising switches is 

represented as a node which will never fail. 

 

FIGURE 2-6 REMOVE NO-ACTION NODES TO ACHIEVE FEWER NODES OR LINKS, THUS SIMPLER STRUCTURE 

e) Complete connections: After removing switches, the physical connections once 

linking back-to-back switches remain. These may remain as no-action nodes (cannot 

fail, only serve to connect other nodes) or be replaced by links (see for example the 

triangular motifs in Figure 2-6) for fewer nodes in the network and therefore smaller 

size of problem formulation in optimisation. 

2.3.2.3 NODE STATUS MODELLING 

The electrical status of a node is a dynamic property that is affected by the fault state of the 

node itself, and that of other nodes. There are four possible states: 

a) “Supplied”: The node is not faulty and a live route from this node to a power source 

exists. 

b) “Interrupted”: The component at this node is affected by an active fault that caused 

a circuit breaker to interrupt the power supply. This happens if the node itself or a 

connected node is in the ‘fault clearing’ state.  

c) “Isolated”: The component node has experienced a fault and is being repaired. In 

practice, this usually results from switchgear at the ends of the component being 

opened. In this state, the node interrupts power flow but does not otherwise affect 

flows in the network, thus allowing neighbouring nodes to be reconnected using load 

transfer via a normally open point if a live route to a power source exists.  

d) “Unsupplied”: The node has no live route to a power source, and is, therefore, 

unsupplied. 

The electrical state of a node is determined as follows from the node fault states and the 

network topology. Network searches are performed using a depth-first network searching 

algorithm [33]. 
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a) Tag all nodes as unsupplied 

b) Tag all nodes that are in the “repair state” or “maintenance state” as isolated. 

c) Tag all nodes that are in the “fault clearing state” as interrupted. 

d) From each interrupted node, iteratively search and tag all connected nodes as 

interrupted until an isolated node, or a circuit breaker/NOP node is encountered.  

e) From each node power supply node, iteratively search and tag all connected node as 

supplied until an isolated or interrupted node is encountered. 

 

FIGURE 2-7 A) TAG ALL NODES AS UNSUPPLIED 

 

FIGURE 2-8 IF NO FAULT, DO E) PROPAGATE FROM POWER SOURCE TO EACH NODE 
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FIGURE 2-9 IF A FAULT OCCURS, DO C) AND D) FAULT CLEARING PROPAGATE TO NEAREST CB/NOP; OTHER NODES SUPPLIED 

BY POWER SOURCE BY DOING E) 

 

FIGURE 2-10 IF THE FAULT IS ISOLATED DO B); OTHER NODES SUPPLIED BY POWER SOURCE BY DOING E) 

The status of each node can be identified by applying this tagging method, and then the load 

curtailment can be computed by solving optimisation for the connected areas. It is worth 

noting that, even though a single fault example is given here, this model can also analyse 

multiple faults overlapping in the network with the tagging and network searching method. 

2.3.2.4 NETWORK CONSTRAINTS  

Capacity constraints for lines, circuit breakers and transformers need be considered in 

planning and operation of the distribution network. When there is a fault, switching actions 

may happen to restore interrupted customers that could potentially be resupplied by other 

network power sources. In this situation, the capacity constraints for system components may 

limit the system restoration ability. In a model where switching actions are explicitly 

considered, this may result in a decision not to restore power to a section of the network. In 
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this implicit switching approach, we instead curtail demand in order to satisfy capacity 

constraints.  

The constraint-driven load curtailment can be formulated as a linear optimisation problem. 

The input parameters are: 

𝐿𝑖 load level sampled from load profile at node i 

𝑓𝑘
𝑚𝑎𝑥  flow constraint between nodes connected by link k 

𝜋𝑖𝑘 directed incidence matrix of node i and link k: 1 if out from node i; -1 if towards node 

i; otherwise 0 

The optimisation objective is to minimise load curtailment: 

min
{𝑐𝑖,𝑓𝑘}

∑ 𝑐𝑖 ∙ 𝐿𝑖

𝑖

 (2.1) 

 

subject to the constraints 

−𝑓𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘 ≤ 𝑓𝑘

𝑚𝑎𝑥,           ∀𝑘 (2.2) 

 

𝑐𝑖 ∙ 𝐿𝑖 − ∑ 𝜋𝑖𝑘 ∙ 𝑓𝑘

𝑘

= 𝐿𝑖 ,     ∀𝑖 (2.3) 

where 𝑓𝑘 is the power flow between the nodes connected by link k. 𝑐𝑖 represents the fraction 

of curtailed demand at node i. In a passive distribution network, load points can be 

disconnected by opening circuit breaker/switch at the LV transformer when a power shortage 

happens. In that case, 𝑐𝑖 ∈ {0,1} are binary variables indicating the interruption of load points. 

With the development of active network technologies, flexible demand control could be used 

to reduce the load in smaller steps. For those smart networks, 𝑐𝑖 is continuous between 0 and 

1 – allowing for reduced curtailment and faster computation. 

It is worth noting that, throughout this thesis, the commercial mathematics software MATLAB 

[34] and the open source OPTimization Interface (OPTI) Toolbox [35] were used for 

constructing and solving optimisation problems. The relevant solvers are supplied within OPTI 

and the default solvers were used for solving the optimisation problems in this thesis, despite 
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that users can flexibly choose different supplied solvers or use interfaced solvers from other 

sources. 

2.4 MONTE CARLO SIMULATION 

The reliability of the model introduced in the previous section is analysed using Monte Carlo 

(MC) sampling. Both state-based (non-sequential) and time-sequential MC sampling are 

discussed. 

2.4.1 NON-SEQUENTIAL MONTE CARLO SIMULATION (NSMCS) 

With the proposed network switching model, network switching actions are implicit and the 

electrical status of nodes does not depend on the history of the system. This feature enables 

the application of non-sequential MC simulation. The reliability indices are estimated as follow:

 

�̂�(𝐻) =
1

𝑁
∑ 𝐻(𝑋𝑖)𝑁

𝑖=1 (2.4) 

where H is the estimation function of a reliability index such as energy not supplied (ENS); N 

is the number of simulated system states; 𝑋𝑖  represents a sampled system state which 

includes the fault states of all components in the network according to their Markov model 

and the load profile for each load point. 

Network components such as line sections and transformers are usually very reliable. This 

means that unbiased sampling of states will be very inefficient, as most sampled states will 

have no components in the fault state – and will therefore not contribute to the result. To 

improve simulation computational efficiency, one of the variance reduction techniques, 

Importance Sampling (IS) [36][37], is applied in company with the proposed implicit switching 

model for a considerably faster convergence. No load is assumed shed if all components are 

in the ‘up’ state. Therefore, the sampling is biased by forcing at least one component to be in 

a ‘down’ (i.e. not-‘up’) state. For each sample, one component is randomly selected according 

to its probability to be in the ‘down’ state. This component is forced to be in the ‘fault clearing’, 

‘maintenance’ or ‘repair’ state according to their relative probabilities. All other components 

are sampled without bias. After reliability indices are quantified for the sampled system state, 

a weighting factor is used to correct the bias from the adjusted sampling distribution.  

The weighting factor is derived as the ratio of the probability of a system state in original 

distribution and that in the adjusted distribution. For independent components, it can be 

shown that the relation is: 
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𝑃𝑟′(𝑋𝑖) =
𝑁𝑓(𝑋𝑖)

∑ 𝑢𝑘
𝑃𝑟(𝑋𝑖) (2.5) 

 

𝑃𝑟(𝑋𝑖) is the probability of system state 𝑋𝑖  in the original sampling distribution.  𝑃𝑟′(𝑋𝑖) is 

the probability of system state 𝑋𝑖  in the adjusted sampling distribution. 𝑁𝑓(𝑋𝑖) is the number 

of ‘down’ components in system state 𝑋𝑖. ∑ 𝑢𝑘 is the sum of unavailabilities (i.e. probability 

of being in the ‘down’ state) of all components. If we denote by 𝑋′𝑖 sampled states that have 

been sampled according to the adjusted distribution, reliability indices can be calculated as: 

�̂�(𝐻) =
1

𝑁
∑ 𝐻(𝑋′

𝑖)

𝑁

𝑖=1

𝑃𝑟(𝑋′
𝑖)

𝑃𝑟′(𝑋′
𝑖)

(2.6) 

 

2.4.2 TIME SEQUENTIAL MONTE CARLO SIMULATION (TSMCS) 

The time-sequential Monte Carlo simulation is a method in which time-dependent system 

operation is reproduced by sampling stochastic sequences and durations of system states. The 

system states are sampled according to the Markov models of the system components. By 

randomly sampling durations of component states, a random sequence of system states is 

produced. The stochastic sampling of system states for period of one year is described below: 

Step 1: Generate the initial state of each system component according to the steady state 

probability distribution of its Markov model. The initial load state is generated by randomly 

sampling a starting time in a year and selecting the corresponding load level from the load 

profile. 

Step 2: Sample the transition time from the current state to the next possible state for each 

component. For those components that have multiple possible transitions, choose the first 

transition event. The transition time for the load state is obtained by calculating the time to 

the next half hour boundary. 

Step 3: List and sort all component transition times in ascending order. The set of all 

component states is the current system state and its duration is the shortest component 

transition time 𝑇𝑚𝑖𝑛. Set system simulation time as 𝑇 = 𝑇𝑚𝑖𝑛. 

Step 4: Identify the status for each node in the system and conduct the capacity constraint 

optimisation so that, at each load point, reliability indices can be computed for the current 

system state. 
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Step 5: Deduct the shortest transition time from all component transition times and update 

the component state as the next sampled state. Sample the time to the next transition for the 

recently switched component. 

Step 6: Repeat steps 3-5 until the system simulation time exceeds 1 year. In step 3, set the 

system simulation time as 𝑇 = 𝑇 + 𝑇𝑚𝑖𝑛. If step 5 results in load point switching from supplied 

to unsupplied status, the counter of customer interruption events is incremented by 1; 

otherwise it is recognised as a continued interruption. A disconnection priority order is 

established to prevent spurious rotation of disconnections across load points.  

Step 7: Evaluate and record the reliability indices of the system for this year. 

The expectation value and distribution of reliability indices can be evaluated by repeating the 

above sampling for N independent years. Using the coefficient of variation, the convergence 

of simulation result is monitored, which has been used as the stopping criterion.  

The unbiased estimation of coefficient of variation is calculated as below: 

𝑣(𝑥) =
1

𝑁 − 1
∑ (𝑥𝑖 −

1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

)

𝑁

𝑖=1

2

(2.7) 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
𝜎

𝜇
≈

√𝑣(𝑥)

1
𝑁

∑ 𝑥𝑖
𝑁
𝑖=1

(2.8) 

The coefficient of variation is computed after each iteration and the simulation stops when 

the coefficient of variation reaches a certain level (e.g. smaller than 1%). 

2.5 CASE STUDY 

The proposed implicit switching model is applied using non-sequential and sequential MCS in 

different distribution networks to test its accuracy, efficiency and applicability. 

2.5.1 THE ILLUSTRATIVE HV NETWORK 

The illustrative HV network is shown in Figure 2-1, and in reduced form in Figure 2-3. The 

network consists of two branches, each with five load points connected through distribution 

transformers and line sections. Each line is equipped with sectionalizing switches at both ends. 

A NOP is employed to connect the ends of both branches as an alternative supply route. The 

network parameters are given in Table 2-1. The network data used in this thesis are calculated 

from data received from several UK DNOs. Those data are available from Regulatory Reporting 
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Pack [38] and Quality of Service Reporting [39] for up to 5 years. The analysis of raw data is 

given in APPENDIX E. 

TABLE 2-1 PARAMETERS OF THE ILLUSTRATIVE NETWORK 

Parameters Values 

Failure rate for lines 0.2 occ./km.year 

Failure rate for transformers 0.006 occ./year 

Maintenance rate for primary transformer 0.2occ./year 

Switching time  30 min 

MTTR for lines 24 hours 

MTTR for primary transformers 299 hours 

MTTR for distribution transformers 24 hours 

Maintenance restoration time for primary 

transformer 

24 hours 

Line section length 0.25 km 

Line capacity constraint 5MW (N-1) / 2.5MW (N-0) 

 

Each load point is assumed to connect 500 customers, with a peak demand of 500kW, or 

2.5MW per feeder. A normalised UK load profile with 17520 levels for each half hour is used. 

For line sections and 33-11kV transformers, a capacity constraint of 5MW and 2.5MW is 

applied for N-1 (regular utilisation, with redundancy at peak load) and N-0 (full utilisation at 

peak load), respectively.  

With the proposed implicit switching model, the impact of a given state does not depend on 

the history. This property enables the use of state sampling Monte Carlo schemes and 

associated variance reduction schemes. In Table 2-2, a comparison study for the illustrative 

HV network and N-0 loading level is taken for testing the computational efficiency of different 

simulation methods. It is clear that the computations with discrete load shedding (columns 3-

4) are generally slower due to the use of binary variables in the optimisation. The resulting 

EENS values are also higher than those corresponding to ‘smart’ systems (continuous𝑐𝑖 ). 

Furthermore, for the same coefficient of variation (CoV) of 1%, applying importance sampling 

reduces the convergence time to 140s, which is only 0.2% that of conventional NSMCS. TSMCS 

in this case is still faster than NSMCS since the time sequence sampling also “forces” the next 

state after an “all good state” to be a state with fault, not the same as the current state. But 
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the convergence speed is significantly restricted by the half-hourly load profile: the simulation 

must update the load level each half hour. 

TABLE 2-2 COMPARISON OF COMPUTATIONAL EFFICIENCY FOR DIFFERENT MONTE CARLO SIMULATIONS 

Computation time 

Continuous 𝑐𝑖 Discrete 𝑐𝑖 

CoV 

 

EENS 

(MWh/y) 

Time 

(s) 

EENS 

(MWh/y) 

Time 

(s) 

NSMCS 4.11 78978 5.22 108541 1% 

NSMCS+IS 4.10 140 5.14 204 1% 

TSMCS 4.14 7114 5.23 12139 1% 

 

 

TABLE 2-3 EENS FOR DIFFERENT HV NETWORK LINE FAILURE RATES AND LOADING LEVELS 

Network EENS  
Line Failure Rate 

(occ./km.year) 

N-1 N-0 

Continuous 

(MWh/y) 

Discrete 

(MWh/y) 

Continuous 

(MWh/y) 

Discrete 

(MWh/y) 

 

0.02 0.04 0.04 0.41   0.58 

0.05 0.11  0.10 1.00  1.38 

0.1 0.22  0.22 2.04  2.76 

0.2 0.44  0.44 4.14  4.96 

 

TABLE 2-4 EXPECTED CUSTOMER INTERRUPTION (ROUNDED) FOR DIFFERENT HV NETWORK LINE FAILURE RATES AND 

LOADING LEVELS 
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Network 

ECI  

Line Failure 

Rate 

(occ./km.year) 

N-1 N-0 

Continuous 

(occurrence/

100custusto

mer/y) 

Discrete 

(occurrence/

100custusto

mer/y) 

Continuous 

(occurrence/

100custusto

mer/y) 

Discrete 

(occurrence/

100custusto

mer/y) 

 

0.02 3 3 3   3 

0.05 7  7 7 7 

0.1 14  14 15  15 

0.2 28  28 28  28 

 

TABLE 2-5 EXPECTED CUSTOMER MINUTE LOST (ROUNDED) FOR DIFFERENT HV NETWORK LINE FAILURE RATES AND LOADING 

LEVELS 

Network 

ECML  

Line Failure 

Rate 

(occ./km.year) 

N-1 N-0 

Continuous 

(min/customer

/y) 

Discrete 

(min/custom

er/y) 

Continuous 

(min/custo

mer/y) 

Discrete 

(min/custo

mer/y) 

 

0.02 1 1 7 9 

0.05 2 2 16 22 

0.1 4 4 33 44 

0.2 9 9 66 80 

 

In the UK, distribution network reliability performance is reviewed by regulatory authority 

OFGEM with three main indices [40]: Energy Not Supplied (ENS) [used implicitly for the P2 

distribution reliability standard], Customer Interruption (CI) 1  and Customer Minute Lost 

                                                           
1 “The number of customers interrupted per year (CI). This is the number of customers whose supplies 
have been interrupted per 100 customers per year over all incidents, where an interruption of supply 
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(CML)2. Table 2-3, Table 2-4, and Table 2-5 show the expected values of these 3 indices with a 

different failure rate and loading levels using TSMCS (1% coefficient of variation). Results are 

given for both active (continuous 𝑐𝑖 ) and passive (discrete 𝑐𝑖 ) networks. The higher N-0 

loading level results in a significant increase in ECML and EENS compared to the N-1 case, but 

the frequency of interruptions (ECI) is unaffected.  

TABLE 2-6 EENS COMPOSITION 

Network EENS  

N-1  

(MWh/y) 

N-0  

(MWh/y) 

Fault clearing  0.43 0.43 

Thermal constraint 0.00 3.71 

Single failure 0.43 4.13 

Double overlapping 

failure 
0.01 0.01 

 

It is worth noting that the implicit switching model also enables the recognition of different 

types of failures in the network. Table 2-6 shows the EENS composition (for the active network 

with continuous 𝑐𝑖) for the case with a line failure rate of 0.2occ/year.km. At the N-0 loading 

level, EENS from fault clearing is 0.43MWh/y, similar to that of N-1, for the outages that occur 

when a circuit breaker trips the whole feeder. EENS from thermal constraints is the load 

curtailment after switching actions when the alternative network capacity is not able to fully 

supply the restored areas. The result shows that, at the N-0 loading level, thermal constraints 

are the main source of undelivered energy to customers. Table 2-6 also breaks down the 

contributions caused by single and overlapping failures, for system planners to check the 

network performance of rare overlapping failures. 

The proposed method can be used to obtain probability distributions of network reliability 

indices, although this does require the use of a sequential method (TSMCS). An example is 

                                                           
lasts for three minutes or longer, excluding re-interruptions to the supply of customers previously 
interrupted during the same incident.” This is defined in OFGEM RIIO report [40] 
2 “The duration of interruptions to supply per year (CML). This is the average customer minutes lost per 
customer per year, where an interruption of supply to customer(s) lasts for three minutes or longer.”  
[40] 
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presented for the case where the network feeder capacity conforms with N-0. Figure 2-11 

shows the complementary CDF distribution of annual ENS for various cable failure rates. 

 

FIGURE 2-11 CCDF OF ANNUAL ENS FOR FAILURE RATE OF 2%, 5%, 10%, 20%/KM.YEAR 

2.5.2 RBTS BUS 4 NETWORK 

A second case study was carried out on the well-known distribution network RBTS Bus 4 [24]. 

Its graphical representation is shown in Figure 2-13. Active load shedding (continuous 𝑐𝑖) has 

been assumed for all calculations, and computed reliability indices are listed in Table 2-7 for 

two scenarios, labelled ‘N-1’ and ‘N-0’. The capacity limit of each feeder line is equal to the 

peak demand of all load points in the associated branch for ‘N-0’ and double of that for ‘N-1’. 

The half-hourly load profile is applied instead of the average data in [24]. Table 2-8 compares 

the time required using different simulation approaches to compute the ENS with a coefficient 

of variation of 1% for the ‘N-0’ scenario. Mirroring the results for the smaller network, the 

importance sampling variant of the non-sequential method is vastly more efficient than both 

other methods.  
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FIGURE 2-12 RBTS BUS 4 NETWORK [24] 



CHAPTER 2 

Page 52 of 193 
 

 

FIGURE 2-13 THE GRAPHICAL REPRESENTATION FOR RBTS BUS 4 

TABLE 2-7 RELIABILITY PERFORMANCE OF RBTS BUS 4 

 Reliability indices N-1 N-0 

EENS (MWh/y) 11.5 16.5 

ECI (occ./100cust./y) 57.5 56.7 

ECML (min/cust./y) 31.2 43.2 
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TABLE 2-8 COMPARISON OF COMPUTATIONAL EFFICIENCY FOR DIFFERENT MONTE CARLO SIMULATIONS FOR RBTS BUS 4 

Computational 

Efficiency EENS (MWh/y) Time (s) 

Coefficient of 

Variation 

NSMCS 16.33 57615 1% 

NSMCS+IS 16.52 118 1% 

TSMCS 16.29 1900 1% 

 

2.6 CONCLUSIONS 

A simplified model has been introduced for the reliability analysis of active distribution 

networks. The model captures the qualitative benefits of restoration by switching but 

foregoes explicit computation of switching actions. Instead, a simplified implicit switching 

approach is used to approximate the fault clearing, isolation and restoration processes. In 

addition, power flow constraints can be assigned to network bottlenecks, potentially limiting 

restorative power flow adjustments.  Although the implicit switching model is based on a 

number of approximations, these are gradually becoming less artificial as future networks 

become smarter and deploy technologies such as soft open points and demand response.  

The approximations greatly simplify the analysis and – among other things – enable a 

‘snapshot’ analysis of network states that only depends on the current state of network 

components. This snapshot analysis forms the basis of a non-sequential Monte Carlo 

technique. In combination with importance sampling approach, very large speedups were 

obtained, versus sequential simulations and – especially – unbiased non-sequential 

simulations. The significant improvement in computational efficiency is achieved by enforcing 

the non-sequential MCS to sample those “important” system states which are with at least 

one fault and ignore those “all good” states which do not contribute to the final results. This 

is done by disturb the probability distribution of a randomly picked component in the system. 

Because of the interference to the original probability distribution, the simulation will sample 

the “more desired” states more often. However, this also introduces distortion to the final 

results and so requires a weighting factor to restore them. The mathematical formula for 

distorting distribution function and results restoration have been provided in section 2.4.1. 
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There exist drawbacks with the application of Importance Sampling. Since the original 

probability distribution functions of components are deliberately modified, the distribution 

functions of final reliability indices are distorted and hard to restore. In the case that the 

variability of the indices is required, the time-sequential simulation described in section 2.4.2 

can be used to obtain the unbiased distributions of reliability measures. 

In the implicit model, switching actions are represented implicitly. This approximation enables 

efficient network analysis but can also bring inaccuracy to the final results. Chapter 3 proposes 

an extended model in which switching actions are explicitly analysed. The study will compare 

these two models with their strengths and drawbacks.  

Thanks to the simplicity of the proposed switching model, various active network technologies 

can be modelled in an efficient way. Future studies include the extension of the linear 

optimisation considering distributed generation, storage and responsive demand in the 

system, which is introduced in Chapter 4 section 1.  Furthermore, in combination with time-

sequential Monte Carlo simulations, the method can be used to analyse customer interruption 

costs with non-linear customer damage functions, which is demonstrated in Chapter 4 section 

2. 
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Chapter 3 AN EXPLICIT SWITCHING MODEL 

FOR DISTRIBUTION NETWORK RELIABILITY 

ASSESSMENT 

 

Abstract 

In this chapter, an extended model is proposed where switching actions are explicit. Optimal 

switching actions for each switching devices are determined to minimise demand curtailment, 

maintain network constraints and radial topology. Although simulation time consumption is 

compromised for conducting mix integer optimisation, most of the benefits achieved by the 

implicit model in Chapter 2 are maintained that it can still be used graphically as a model 

reduction method, and simulated using time-sequential or state sampling Monte Carlo 

methods which enable potential large speedups in reliability assessment. 

This chapter builds on the node-link model and Monte Carlo simulations for distribution 

network reliability introduced in the implicit switching model. For a full description, the reader 

is referred to Chapter 2. 
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3.1 INTRODUCTION 

In Chapter 2, a simplified model was applied in which switching actions are reflected implicitly, 

based on the assumption that in future distribution networks power flow and switches can be 

fully and intelligently controlled by system operators. However, this may be over-optimistic 

for a less active network. To investigate the reliability performance of such a network, specific 

requirements of distribution network topology and reconfiguration are crucial to consider. 

Finding the optimal real-time switching for loss reduction, load balancing and service 

restoration can be very complex. First, the optimal solution of the switching action decision 

comes from a large number of options. For a network with n switches (including controllable 

circuit breakers, switches and NOPs), there exist at least3 2𝑛 possible switching combinations, 

in which each switch is either closed or open. The number of possible solutions expands 

exponentially with the growing size of networks. Second, switching actions must be 

determined not to violate any network constraints. The service restoration can be a series of 

switching actions; in each step all constraints must be considered. The work in this problem 

can be found in [14], [15], [16]. Third, distribution network need to be maintained as radial 

topology to minimise any potential outages affecting large areas. Fourth, switching actions 

need to recover the service to as many customers affected as possible whilst employing as 

few switching operations as possible, since a higher number of devices being switched means 

a higher risk the network is exposed to [18], [19]. However, in a real case shown in [41], 

restoration can be multiple stages instead of fewer operations to achieve a better network 

reliability. 

Many studies have been proposed in this area for decades. The most recent studies include 

[20], and [21] in which heuristic algorithms (sometimes referred to as evolutionary algorithms) 

are used for finding a near-optimal solution for distribution network switching decisions whilst 

achieving multiple objectives including minimising load disconnection, minimising number of 

switching operation, minimising loops in the network, maintaining network constraints. It is 

worth noting that, in [21] one of the most recent publications, it requires 3 min for analysing 

one possible system state (in the paper, for a branch is faulty and removed) and 92 hours for 

enumerating all N-1 states for their test network which contains 460 branches. It shows that 

the significant computational burden for analysing long-term operation in distribution 

                                                           
3 Some switches can be connecting more than 2 terminals. 
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network planning, especially for large and increasingly controllable networks, can be 

unacceptable. 

In this chapter, an extended model is proposed where switching actions are explicit. Optimal 

switching actions for each switching device are determined to minimise demand curtailment, 

not violate flow constraints and maintain the radial topology. Although, simulation time 

consumption is longer compared with the implicit model in Chapter 2 for conducting mix 

integer optimisation, most of benefits achieved by the implicit model are maintained that it 

can still be used graphically as a model reduction method, and simulated using time-

sequential or state sampling Monte Carlo methods which enable potential large speedups in 

reliability assessment. 

In this explicit switching model, the node-link model is stilled used as introduced in Chapter 2. 

By splitting and portioning the network into sets of components that are separated by 

switches (normally closed or normally open) or circuit breakers, we are able to represent the 

network by nodes, connected by links and status of switches are determined by solving mixed 

integer optimisation problems. For details, please see Chapter 2. 

3.2 EXPLICIT SWITCHING MODEL 

3.2.1 FEATURES OF THE PROPOSED MODEL 

A reliability analysis model is proposed which captures the ability to reroute power using 

switches, but also determine optimal explicit the switching actions. The model is based on the 

assumptions introduced in section 2.3 but also include:  

 Switching actions for the connected areas where there exists a live route to the grid 

are determined by solving mixed integer optimisation with objectives to minimise 

load point curtailment, maintain radial topology, and not violate network constraints. 

 Upstream and downstream switches are operated simultaneously. 

 Lack of available capacity due to network constraints does not prevent switching but 

can result in load curtailment when load point disconnection is continuous so that the 

constraint is satisfied. 

3.2.1.1 NODE STATUS MODELLING 

The electrical status of a node is a dynamic property that is affected by the fault state of the 

node itself, and that of other nodes. There are four possible states: 
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a) “Potentially supplied”: The node is not faulty and a live route from this node to a 

power source exists. A potentially supplied node in this explicit switching model can 

still be unsupplied if the optimal solution of switching action decides to isolate this 

node. 

b) “Interrupted”: The component at this node is affected by an active fault that caused 

a circuit breaker to interrupt the power supply. This happens if the node itself or a 

connected node is in the ‘fault clearing’ state.  

c) “Isolated”: The component node has experienced a fault and is being repaired. In 

practice, this usually results from switchgear at the ends of the component being 

opened. In this state, the node interrupts power flow but does not otherwise affect 

flows in the network, thus allowing neighbouring nodes to be reconnected using load 

transfer via a normally open point if a live route to a power source exists.  

d) “Unsupplied”: The node has no live route to a power source, and is, therefore, 

unsupplied. 

3.2.1.2 NETWORK OPTIMISATION MODEL 

Using the node status tagging method above, the nodes which are potentially supplied can be 

identified. In the implicit switching model, which assumes full control on power flow and 

switching actions, load curtailment can be obtained by solving the optimal flow and load point 

disconnection. In this explicit switching model, to better reflect switching actions and 

operational network constraints, a network optimisation model is built to determine optimal 

switching actions, search for load points that are actually supplied and minimise overall load 

disconnection subject to: 

 power flow constraints between nodes 

 discrete network switching for radial network topology 

 discrete/continuous load point disconnection 

Parameters for the model: 

𝑖  index of node;  

𝑘  index of link;  

𝜋𝑖𝑘  directed incidence matrix of node i and link k: 1 if the link is oriented away from node 

i; -1 if towards node i; 0 if not connected; 

𝑓𝑘
𝑚𝑎𝑥  flow constraint between nodes connected by link k 
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𝐿𝑖  load level at node i; 

𝐺𝑆𝑃 the set of nodes that are grid source points, i.e. transmission / EHV network feeders 

Variables for the model: 

𝑐𝑖  the fraction of curtailed demand of node i;  

𝑓𝑘  power flow between nodes connected by link k, positive if flow in the direction 

defined by 𝜋𝑖𝑘;  

𝑤𝑖𝑘  1 if node i is connected with an upstream node through link k, and the switch of the 

connection is closed; otherwise, 0; 

𝑠𝑘  the status of physical connection, i.e. switch status between nodes connected by link 

k; 

𝑢𝑘  1 if the intrinsic orientation of link k is towards upstream; 0 for downstream; 

As described in the introduction, the network model in this chapter aims to determine the 

optimal switching actions to achieve minimal load curtailment whilst respecting in network 

constraints and maintaining radial topology. 

Capacity constraints for lines, circuit breakers and transformers need be considered in 

planning and operation of the distribution network. When there is a fault, switching actions 

may happen to restore interrupted customers that could potentially be resupplied by other 

network power sources. In this situation, the capacity constraints for system components may 

limit the system restoration ability. In a model where switching actions are explicitly 

considered, this may result in a decision not to restore power to a section of the network.  

The optimisation objective is to minimise load curtailment: 

min
{𝑐𝑖,𝑓𝑘}

∑ 𝑐𝑖 ∙ 𝐿𝑖

𝑖

(3.1) 

Subject to constraints: 

1. Switching on/off and flow limit 

Switches are explicit in the model of this chapter. To reflect switching actions, a binary variable 

𝑠𝑘 is associated with each link. The status of switches be OPEN or CLOSED gives additional 

constraint to power flow between nodes. 
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−𝑠𝑘𝑓𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘 ≤ 𝑠𝑘𝑓𝑘

𝑚𝑎𝑥 ,           ∀𝑘 (3.2) 

𝑠𝑘 ∈ {0,1} 

The power flow through link k is limited by the corresponding capacity constraint 𝑓𝑘
𝑚𝑎𝑥. The 

binary variable 𝑠𝑘 represent the status of the switch between the nodes connected by link 𝑘. 

If 𝑘 is open, the value of 𝑠𝑘 becomes 0 and the flow limit through link k 𝑓𝑘 is therefore limited 

as 0. 

2. Power balancing 

The power available at node 𝑖 must be balanced with the supplied demand. 

𝑐𝑖 ∙ 𝐿𝑖 − ∑ 𝜋𝑖𝑘 ∙ 𝑓𝑘

𝑘

= 𝐿𝑖,          ∀𝑖 (3.3) 

𝑐𝑖 ∈ [0,1] 𝑜𝑟 𝑐𝑖 ∈ {0,1} 

𝑐𝑖 ∙ 𝐿𝑖  is the curtailed demand at node 𝑖 . The directed incidence matrix 𝜋𝑖𝑘  is positive for 

direction point out from node 𝑖, thus ∑ 𝜋𝑖𝑘 ∙ 𝑓𝑘𝑘  represents the sum of power flows out from 

node 𝑖 . 𝑐𝑖  represents the fraction of curtailed demand at node i. In a passive distribution 

network, load points can be disconnected by opening circuit breaker/switch at the LV 

transformer when a power shortage happens. In that case, 𝑐𝑖 ∈ {0,1} are binary variables 

indicating the interruption of load points. With the development of active network 

technologies, flexible demand control could be used to reduce the load in smaller steps. For 

those smart networks, 𝑐𝑖 is continuous between 0 and 1 – allowing for reduced curtailment 

and faster computation. 

3. Radial topology 

Distribution networks are commonly built in radial topology for rural areas since this topology 

is simple and does not require complex protection systems which are cost prohibitive [13]. 

For areas which require higher reliability, meshed network topology could be designed with 

much more interconnection within the network. But these networks are commonly operated 

radially with NOP for lower operation cost and reduced impact from fault clearing.  

For areas with the highest reliability requirements (e.g. London central business district), 

highly interconnected spot network topology may be built. These networks are usually 

equipped with fast response protection devices that multiple failures would not interrupt the 
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continuity of supply [42]. The study of these networks is out of the scope of this thesis, 

nevertheless, they can be analysed using the implicit switching model. 

The radial topology of distribution networks is represented by two auxiliary variables 𝑢𝑘 and 

𝑤𝑖𝑘  with the corresponding constraints below. 

In a radial or radially operated network, each component has a unique route to the grid feeder. 

The direction towards the feeder is upstream and that away from the feeder is downstream. 

This direction can be reflected by links that the intrinsic orientation of each link is either 

upstream or downstream. To describe the direction of upstream or downstream, an auxiliary 

variable 𝑢𝑘  is created for each link.  𝑢𝑘  is a binary variable showing whether the intrinsic 

orientation of link 𝑘 defined by 𝜋𝑖𝑘 points to upstream: 1 for upstream and 0 for downstream. 

Particularly, the direction away from a power source node is always downstream, thus it 

satisfies: 

𝑢𝑘 =
1

2
(1 − 𝜋𝑖𝑘), ∀𝑖 ∈ {𝐺𝑆𝑃}, 𝜋𝑖𝑘 ≠ 0 (3.4) 

𝑢𝑘 ∈ {0,1} 

For all grid source point (GSP) nodes, the connected nodes are all downstream. Therefore, if 

𝜋𝑖𝑘  is 1 for the intrinsic orientation of link 𝑘 is away from GSP node 𝑖, the value of 𝑢𝑘  is 0 

showing the orientation points to downstream; if 𝜋𝑖𝑘 is -1 for the intrinsic orientation towards 

GSP node 𝑖, the value of 𝑢𝑘  is 1 showing the orientation points to upstream; if 𝜋𝑖𝑘  is 0, it 

means no connection exists for link 𝑘 and node 𝑖. The value of 𝑢 for other links (not connected 

to GSP nodes) will be determined by other constraints. 

In a radially operated network, since each component has a unique route to the grid feeder, 

each node cannot have more than one upstream connection. An auxiliary variable 𝑤𝑖𝑘  is 

introduced for representing the connection property of node 𝑖  and link 𝑘 . 𝑤𝑖𝑘  is a binary 

variable as 1 if node 𝑖 is connecting to a node through link 𝑘 to upstream; 0 to downstream. 

In radial topology, there should exist no more than one upstream connection for all nodes, 

thus it satisfies: 

∑ 𝑤𝑖𝑘

𝑘

≤ 1, ∀𝑖 (3.5) 

𝑤𝑖𝑘 ∈ {0,1} 
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In order to identify the value of 𝑤𝑖𝑘 which represents the relation between a link and a node, 

link 𝑘 is an upstream link of node 𝑖 is defined by: 

𝑠𝑘 = 1 𝐴𝑁𝐷 𝜋𝑖𝑘 ∙ (2𝑢𝑘 − 1) = 1 (3.6) 

Hence, 𝑤𝑖𝑘 = 1 should be the sufficient and necessary condition to the equations above. 

a. If 𝑠𝑘 = 1 𝐴𝑁𝐷  𝜋𝑖𝑘 ∙ (2𝑢𝑘 − 1) = 1  is true, then 𝑤𝑖𝑘 = 1 . This is achieved by the 

inequality: 

𝑤𝑖𝑘 ≥ 1 − (1 − 𝑠𝑘) − (1 − 𝜋𝑖𝑘(2𝑢𝑘 − 1)), ∀𝑖, 𝑘 (3.7) 

When 𝑠𝑘 = 1 𝐴𝑁𝐷  𝜋𝑖𝑘 ∙ (2𝑢𝑘 − 1) = 1 is true, the binary variable 𝑤𝑖𝑘 ≥ 1, thus it can 

only be 1. If either condition is not true, 𝑤𝑖𝑘 is not constrained. 

b. If either 𝑠𝑘 = 1 𝑂𝑅  𝜋𝑖𝑘 ∙ (2𝑢𝑘 − 1) = 1 is not true, then 𝑤𝑖𝑘 = 0. This is achieved by 

the inequality: 

𝑤𝑖𝑘 ≤
1

3
(𝑠𝑘 + 𝜋𝑖𝑘(2𝑢𝑘 − 1) + 1), ∀𝑖, 𝑘 (3.8) 

When 𝑠𝑘 = 1 𝐴𝑁𝐷  𝜋𝑖𝑘 ∙ (2𝑢𝑘 − 1) = 1 is true, the binary variable 𝑤𝑖𝑘 ≤ 1, thus 𝑤𝑖𝑘  is 

not constrained. If either 𝑠𝑘 = 1 𝑂𝑅  𝜋𝑖𝑘 ∙ (2𝑢𝑘 − 1) = 1 is not true, the binary variable 

𝑤𝑖𝑘 ≤ a number smaller than 1 but larger than 0, thus the binary variable 𝑤𝑖𝑘 must be 0. 

With the constraints introduced above, the studied distribution network is ensured to be 

radial topology. This is a stronger constraint than that in the implicit model of Chapter 2, 

where different branches can be implicitly connected as a ring or meshed topology for service 

restoration. Therefore, the assessment results from the explicit model are less optimistic than 

that of the implicit model. 

This optimisation model enables us to find the optimal switching actions to minimise load 

curtailment and maintain radial topology whilst not violate flow limit. A simplification of this 

model is that we do not determine the sequence of switching actions from the original 

network (before switching) to the target (final optimal switching status). The model effectively 

assumes that all switching actions can be done simultaneously so that the switching actions 

do not depend on the history of the system, which enables us to apply state-sampling 

techniques in Monte Carlo simulations for network planning assessments.  
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3.3 CASE STUDY 

The same as Chapter 2, the proposed explicit switching model is applied using non-sequential 

and sequential MCS in different distribution networks to test its accuracy, efficiency and 

applicability. 

3.3.1 THE ILLUSTRATIVE HV NETWORK 

The illustrative HV network is shown in Figure 2-1, and in reduced form in Figure 2-3. The 

network consists of two branches, each with five load points connected through distribution 

transformers and line sections. Each line is equipped with sectionalizing switches at both ends. 

A NOP is employed to connect the ends of both branches as an alternative supply route. The 

network parameters used in this chapter has been given in Table 2-1. 

With the proposed explicit switching model, the impact of a given state does not depend on 

the history. This property enables the use of state sampling Monte Carlo schemes and 

associated variance reduction schemes.  

In Table 3-1, a comparison study for the illustrative HV network and N-0 loading level is taken 

for testing accuracy and the computational efficiency of the implicit switching model and the 

explicit switching model. It is clear from the table that the computations with discrete load 

shedding (columns 3-4) are generally slower due to the use of binary variables in the 

optimisation with the implicit switching model. However, the time difference is less obvious 

with the explicit switching model. This may result from that the explicit switching model is 

already a mixed integer optimisation problem, having discrete load shedding only add in more 

binary variables. 
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TABLE 3-1 COMPARISON OF COMPUTATIONAL EFFICIENCY FOR DIFFERENT SWITCHING MODELS 

Computation time 

Continuous 𝑐𝑖 Discrete 𝑐𝑖 

CoV 

 

EENS 

(MWh/y) 

Time 

(s) 

EENS 

(MWh/y) 

Time 

(s) 

Implicit switching 

NSMCS+IS 4.10 140 5.14 204 1% 

Explicit switching 

NSMCS+IS 4.14 20856 5.28 21453 1% 

Explicit switching 

TSMCS 4.2 68839 5.6 70846 10% 

 

The resulting EENS values are also higher for less active load point disconnection (discrete 𝑐𝑖) 

than those corresponding to ‘smart’ systems (continuous 𝑐𝑖). For the explicit switching model 

with non-sequential Monte Carlo simulation, the time required for achieving the same 

coefficient of variation (CoV) is much longer as 20856s and 21453s for continuous and discrete 

load shedding, respectively. However, for a worse CoV of 10%, applying Time Sequential 

Monte Carlo simulation, the required simulation time is even longer than 68839s. It means 

that although the explicit switching model compromises its computational efficiency for 

solving mixed integer optimisation, applying state sampling combined with variance reduction 

techniques, it still enables great speed up for distribution network reliability assessment. 

Although there exists some difference in results among the three simulations, it is believed 

that this comes from Monte Carlo simulation error and the EENS values are actually very close 

if not the same.  

In the following part, we repeat the sensitivity study conducted in the previous chapter but 

using the explicit switching model. 
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TABLE 3-2 EENS FOR DIFFERENT HV NETWORK LINE FAILURE RATES AND LOADING LEVELS 

Network EENS  
Line Failure Rate 

(occ./km.year) 

N-1 N-0 

Continuous 

(MWh/y) 

Discrete 

(MWh/y) 

Continuous 

(MWh/y) 

Discrete 

(MWh/y) 

 

0.02 0.04 0.04 0.41   0.58 

0.05 0.11  0.10 1.00  1.38 

0.1 0.22  0.22 2.04  2.76 

0.2 0.44  0.44 4.14  4.96 

 

TABLE 3-3 EXPECTED CUSTOMER INTERRUPTION (ROUNDED) FOR DIFFERENT HV NETWORK LINE FAILURE RATES AND 

LOADING LEVELS 

Network 

ECI  

Line Failure 

Rate 

(occ./km.year) 

N-1 N-0 

Continuous 

(occurrence/

100custusto

mer/y) 

Discrete 

(occurrence/

100custusto

mer/y) 

Continuous 

(occurrence/

100custusto

mer/y) 

Discrete 

(occurrence/

100custusto

mer/y) 

 

0.02 3 3 3   3 

0.05 7  7 7 7 

0.1 14  14 15  15 

0.2 28  28 28  28 
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TABLE 3-4 EXPECTED CUSTOMER MINUTE LOST (ROUNDED) FOR DIFFERENT HV NETWORK LINE FAILURE RATES AND LOADING 

LEVELS 

Network 

ECML  

Line Failure 

Rate 

(occ./km.year) 

N-1 N-0 

Continuous 

(min/customer

/y) 

Discrete 

(min/custom

er/y) 

Continuous 

(min/custo

mer/y) 

Discrete 

(min/custo

mer/y) 

 

0.02 1 1 7 9 

0.05 2 2 16 22 

0.1 4 4 33 44 

0.2 9 9 66 80 

 

Similarly, Table 3-2, Table 3-3, Table 3-4 show the expected values of Energy Not Supplied 

(ENS), Customer Interruption (CI) and Customer Minute Lost (CML) with a different failure rate 

and loading levels using TSMCS (1% coefficient of variation). Results are given for both active 

(continuous 𝑐𝑖) and passive (discrete 𝑐𝑖) networks. The higher N-0 loading level results in a 

significant increase in ECML and EENS compared to the N-1 case, but the frequency of 

interruptions (ECI) is unaffected.  

TABLE 3-5 EENS COMPOSITION 

Network EENS 

(MWh/y) 
N-1 N-0 

Fault clearing  0.43 0.43 

Thermal constraint 0.00 3.71 

Single failure 0.43 4.13 

Double overlapping 

failure 
0.01 0.01 
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It is worth noting that the both implicit and explicit switching models also enable the 

recognition of different types of failures in the network. Table 3-5 shows the EENS 

composition (for the active network with continuous 𝑐𝑖) for the case with a line failure rate of 

0.2occ/year.km. At the N-0 loading level, EENS from fault clearing is 0.43MWh/y, similar to 

that of N-1, for the outages that occur when a circuit breaker trips the whole feeder. EENS 

from thermal constraints is the load curtailment after switching actions when the alternative 

network capacity is not able to fully supply the restored areas. The result shows that, at the 

N-0 loading level, thermal constraints are the main source of undelivered energy to customers. 

Table 3-5 also breaks down the contributions caused by single and overlapping failures, for 

system planners to check the network performance of rare overlapping failures. 

The proposed method can be used to obtain probability distributions of network reliability 

indices, although this does require the use of a sequential method (TSMCS). We present an 

example for the case where the network feeder capacity conforms to N-0. The figure below 

shows the complementary CDF distribution of annual ENS for various cable failure rates. 

 

FIGURE 3-1 CCDF OF ANNUAL ENS FOR FAILURE RATE OF 2%, 5%, 10%, 20%/KM.YEAR 

3.3.2 RBTS BUS 4 NETWORK 

Similarly, a second case study was carried out on the well-known distribution network RBTS 

Bus 4 [24]. Its implicit switching representation is shown in Figure 2-13. Active load shedding 

(continuous 𝑐𝑖) has been assumed for all calculations, and computed reliability indices are 

listed in Table 3-6 for two scenarios, labelled ‘N-1’ and ‘N-0’. The capacity limit of each feeder 

line is equal to the peak demand of all load points in the associated branch for ‘N-0’ and double 
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of that for ‘N-1’. The half-hourly load profile is applied instead of the average data in [24]. 

Table 3-6 and Table 3-7 compare the accuracy and the simulation time required with implicit 

and explicit switching model to compute the ENS and SAIDI for the ‘N-0’ scenario.  

TABLE 3-6 EENS COMPOSITION OF THE IMPLICIT AND EXPLICIT MODELS FOR RBTS BUS 4 

EENS 

Continuous 𝑐𝑖 Discrete 𝑐𝑖 

CoV 

 

EENS 

(MWh/y) 

Time 

(s) 

EENS 

(MWh/y) 

Time 

(s) 

Implicit switching 

NSMCS+IS 16.5 118 17.0 445 1% 

Explicit switching 

NSMCS+IS 21 3711 36 5102 5% 

 

 

TABLE 3-7 SAIDI COMPOSITION OF THE IMPLICIT AND EXPLICIT MODELS FOR RBTS BUS 4 

SAIDI 

Continuous 𝑐𝑖 Discrete 𝑐𝑖 

CoV 

 

SAIDI 

(min/customer/y) 

Time 

(s) 

SAIDI 

(min/customer/y) 

Time 

(s) 

Implicit switching 

NSMCS+IS 46.2 118 47.4 445 1% 

Explicit switching 

NSMCS+IS 48 3711 99 5102 5% 

 

Table 3-6 shows that for RBTS network, the explicit switching model may lead to a worse 

reliability result in terms of EENS. This can be caused by that, the illustrative network has only 

2 branches and if outages happen, network reconfiguration does not create a loop, in other 
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words, still a radial network. However, in RBTS a more complex network, when failures occur 

there exist multiple combinations of network switching to form a loop that can resupply 

adjacent disconnected branches. The explicit switching model limits this to happen for 

maintaining a radial topology, but the implicit model allows it as long as a conducting route 

can be found to the grid feeder. This mean that the explicit model can lead to more load 

curtailment (but better reflect the reality of less-active distribution networks). 

Table 3-7 demonstrates the results of SAIDI for RBTS network. Similarly, the values of SAIDI 

are worse with the explicit switching model. Discrete load point disconnection can also lead 

to prolonged outages. The SAIDI for this network with the implicit model and continuous 

switching is 46.2 min/customer/year, which is very close to the value obtained in Chapter 2 

for CML as 43 min (in the computation of CML, interruptions shorter than 3min are ignored). 

Considering that CML can only be obtained by running time-sequential Monte Carlo 

simulation (aiming for excluding interruptions shorter than 3min), which is very inefficient 

with explicit switching, we can use snapshot Monte Carlo simulation with importance 

sampling to efficiently obtain the SAIDI for an approximate CML value.  

3.4 CONCLUSIONS 

We have introduced an extended model for the reliability analysis of active distribution 

networks where switching actions are explicit. Optimal switching actions for each switching 

devices are determined to minimise demand curtailment, whilst respecting network 

constraints and enforcing a radial topology through switches. Combined with the node-link 

network model developed in Chapter 2, the explicit model can benefit from the 

approximations that greatly simplify the analysis and – among other things – enable a 

‘snapshot’ analysis of network states that only depends on the current state of network 

components. Although the explicit switching model, which is based on mixed integer 

optimisation, compromises the simulation time consumption compared with the implicit 

model, it is still able to be analysed by snapshot simulation. In combination with importance 

sampling approach, very large speedups were obtained, versus sequential simulations and – 

especially – unbiased non-sequential simulations. This suggests that the explicit switching 

model can be used for complex distribution networks considering realistic topology 

constraints.  

Compared with the implicit model, the explicit switching model better reflects the actual 

switching actions in distribution networks. The studies simulated for the illustration network 

show that very close results can be obtained by the two models. However, for larger and more 
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complex networks such as RBTS Bus 4, the results are different – worse reliability performance 

has been obtained with the explicit switching model. This results from that the RBTS Bus 4 can 

form meshed topology during network restoration and the radiality constraint in the explicit 

model prevents it to happen, which leads to more load curtailment. It, therefore, can be 

concluded that for a large and complex network which must keep radial topology the implicit 

model which allows meshed network topology could bring inaccuracy. In that case, the explicit 

switching model should be applied for accurate reliability assessment and relatively good 

computational efficiency can be achieved using non-sequential Monte Carlo methods with 

variance reduction techniques (e.g. importance sampling). However, the analysis of time 

dependent operations (e.g. energy storage) which needs time-sequential Monte Carlo can be 

very slow to run. 

Considering the development of active network control, future distribution networks may be 

allowed to have meshed or ring topology during contingency restoration. In a system with 

smart control, the implicit switching model can be applicable and achieve a considerable 

higher computational efficiency and still good accuracy (close results shown in the illustration 

network).  
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Chapter 4 APPLICATIONS OF DISTRIBUTION 

NETWORK RELIABILITY EVALUATION VIA THE 

PROPOSED ASSESSMENT MODEL 

 

Abstract 

In this chapter, a number of studies on distribution network reliability evaluation were 

proposed via the proposed implicit switching model. 

In the first part, non-network solutions on enhancing distribution network reliability/capacity 

are analysed. A mathematical model for optimising the operation of DG and storage to reduce 

load curtailment is created. Four network improvement options including automatic switching, 

mobile generation, energy storage and DG are assessed for their impact on network reliability 

performances. 

Part Two explores various models for customer interruption cost (CIC) quantification. 

Different CIC models are investigated by conducting time-sequential Monte Carlo simulation 

with the proposed assessment model. The CICs using customer damage functions (CDF) for 

different customer sectors, interruption durations are evaluated and compared. The 

implications of choosing CIC models on network planning are also discussed. 

The third part models distribution network reliability in High Impact Low Probability events 

(HILP). A chronological simulation model is built to analyse different severity HILP events when 

component failure rates are radically increased and repair durations prolonged. Based on this 

model, the role and value of emergency operation actions and network development is 

discussed. 

  



CHAPTER 4 

Page 72 of 193 
 

4.1 DISTRIBUTION NETWORK RELIABILITY EVALUATION FOR DISTRIBUTED 

GENERATION AND ENERGY STORAGE VIA THE PROPOSED MODEL 

4.1.1 INTRODUCTION 

Traditionally, network security of supply relies on the redundancy of system capacity. Security 

standards in the UK have been designed to deterministically use the level of asset redundancy 

as the planning criteria. In Engineering Recommendation P2/6 [43], the regained level of 

system security is defined in terms of the available redundant capacity for the different size 

of group demand, which is the aggregation of all demand at the same and lower voltage levels. 

The planning criteria relying on capacity redundancy, though delivered good service to 

customers, may result in very high expenditure. Decreasing asset utilisation means that the 

corresponding cost of upgrades to end customers could become unacceptable. 

To deliver an economic power supply, power systems need to be designed in a more advanced 

way based on Smart Grid technologies which envisage a penetration of various forms of 

distribution energy resources (DER), such as demand side response (DSR) technologies in 

distribution networks, including demand-led DSR in the form of controllable / responsive loads 

and generation-led DSR in the form of DGs and energy storage (ES) technologies. DSR and ES 

devices are growing in their role in facilitating cost-effective evolution to lower carbon 

systems due to their ability to provide a wide array of services across all voltage levels. 

A crucial emerging question is centred on assessing the contribution of these DER technologies 

to network security i.e. their ability to displace network reinforcement. An illustrative example 

of this issue is indicated in Figure 4-1, in which several solutions are considered: (a) traditional 

network reinforcement through network-based solutions (the third transformer is for 

illustrative purposes only), (b) distributed generation-based solution, (c) storage-based 

solution and (d) demand-side management-based approach (which can for instance include 

flexible commercial demand). 
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 a) b) c) d) 

FIGURE 4-1 RANGE OF NETWORK AND NON-NETWORK SOLUTIONS FOR RESOLUTION OF NETWORK SECURITY PROBLEMS 

In the case of load increase, as indicated in Figure 4-1, traditional planning approaches would 

require network reinforcement (e.g. installation of a third transformer) as indicated in the 

solution (a) of Figure 4-1. Regarding the other three non-network solutions, the challenge lies 

in assessing the ability of these alternative solutions to substitute network reinforcement. In 

one approach, the network planners will need to determine the “capacity value” of the 

alternative non-network solutions, which requires assessment of the reliability performance.  

The present distribution network planning standard, Engineering Recommendation P2/6 [43] 

employs the concept of Equivalent Circuit Capacity (ECC) that is used to quantify the security 

contribution of DG without considering the reliability properties of the actual distribution 

network. Since the reliability delivered to end consumers is ultimately a property of the 

system as a whole, including the combined effects of the distribution network and DER, the 

P2/6 approach offers limited insight into the actual reliability implications associated with the 

use of DER in particular scenarios. 

This section aims at quantitatively assessing the security contribution of non-network 

solutions include automatic switching, emergency supply, DG and ES technologies by 

accounting for the combined effects of the distribution network and non-network properties. 

Sensitivity analyses have been carried out in this section to investigate the impact of different 

levels of network redundancy.  

The evaluation of the capacity credit of DG is based on the representation of demand through 

load duration curves. This is driven by the assumptions that DG would have no restrictions 

regarding fuel availability and their operation is not coupled to past system states. ES is 

different to DG technologies in a variety of ways. First of all, whereas DG is solely constrained 

30 30

Demand 30 MW

Demand 
grows to 
35 MW

30

Demand 35 MW

Network Solution

30 T3 30

Demand 35 MW with DSM

DSM Solution

3030

Demand 35 MW

DG Solution

30 G

10MW
30

Demand 35 MW

Storage Solution

30 Storage



CHAPTER 4 

Page 74 of 193 
 

by its technical availability, ES facility must have both sufficient power output capability and 

energy stored to supply the load. In other words, whereas conventional resources, such as DG, 

typically face only power constraints, storage facilities can face both power and energy 

constraints. A second point is that whereas fuel supply of DG is considered unconstrained (e.g. 

diesel generators operating for relatively short periods of time are considered to have no fuel 

limitations, but this assumption may be reconsidered when extended operation is required) 

or stochastic (e.g. wind generators), ES’s state-of-charge (SOC) is tightly linked to the 

network’s available transfer capability as well as preceding events. The former consideration 

relates to the fact that ES does not generate power but rather make use of existing network 

assets (i.e. transformers) to draw power from the upstream grid. The degree to which this 

import capability is limited or not determines how much energy can be stored in a given period, 

for subsequent discharging at a time of need. As such, the supply headroom of network is an 

important factor to ES contributions. In addition, whereas transformer outages do not have 

an impact on DG’s output capability, in the case of ES they do influence substantially its ability 

to store energy. Given that the ES state-of-charge is coupled to preceding operating points 

and outage events, the proposed implicit switching model with Time-Sequential Monte Carlo 

simulation is employed for evaluating network reliability performances.  

4.1.2 DG AND ENERGY STORAGE MODEL 

Parameters for the model: 

𝑖  index of node;  

𝑘  index of link;  

𝜋𝑖𝑘  intrinsic incidence matrix of node i and link k: 1 if out from node i; -1 if towards node 

i; 0 if no connection; 

𝑓𝑘
𝑚𝑎𝑥  flow constraint between nodes connected by link k 

𝐺𝑖
𝑚𝑎𝑥 maximum generation available at node i 

𝑒𝑖
𝑚𝑎𝑥 energy rating of the storage at node i 

∆𝑡 time to next system state transition 

𝐿𝑖  load level at node i; 

𝑒𝑖 energy stored in the storage at node i 



CHAPTER 4 

Page 75 of 193 
 

𝜀 weighting factor, e.g. 0.001 

Variables for the model: 

𝑐𝑖  fraction of curtailed demand of node i;  

𝑓𝑘  power flow between nodes connected by link k, positive if flow in the direction of pre-

set orientation of link k;  

𝑔𝑖 generation output at node i 

𝑝𝑖  power of charging (discharging if negative) of the energy storage at node i 

Based on the implicit switching model, this section proposes an operation model to optimise 

the reliability for networks with DG and storage units.  

The model introduced in Chapter 2 is used for this section, in which the switching actions are 

modelled implicitly to realise network fault isolation, load rerouting and service restoration. 

Capacity constraints for lines, circuit breakers and transformers need be considered in 

planning and operation of the distribution network. When there is a fault, switching actions 

may happen to restore interrupted customers that could potentially be resupplied by other 

network power sources. In this situation, the capacity constraints for system components may 

limit the system restoration ability. In a model where switching actions are implicitly 

considered, this may result in a decision not to restore power to a section of the network.  

In addition to the existing network constraints, the power output limitation of distributed 

generation and the rating of power and energy stored in energy storages are also considered 

in the model in this chapter. 

In order to optimise the network reliability, two objectives are set in the objection function: 

 Minimise load curtailment; 

 Maximise the state of charge of energy storage (as 2nd priority) 

min
{𝑐𝑖,𝑓𝑘}

∑ 𝑐𝑖 ∙ 𝐿𝑖 − 𝜀 ∙ 𝑝𝑖

𝑖

(4.1) 

The second part of this multi-objective function −𝜀 ∙ 𝑝𝑖 is aiming for a system in which storage 

devices would be charged at the largest possible rate to maintain a maximum state of charge, 

whilst not increasing curtailment. Such a system, sometimes referred to as the “greedy” 
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storage operation, is used for investigating the extreme (maximum) value of energy storage 

on network reliability.  

When the network is in normal condition, load curtailment of the network is 0 so that the 

optimisation of objective function will lead to maximise the charging power of storages. This 

allows storage devices to be charged in advance when the network has capacity surplus. When 

there is a deficit of capacity to meet the demand, the optimisation aims to minimise load 

curtailment. A weighting factor 𝜀 is used in the objective function to ensure the minimum load 

curtailment as the first priority. The value of 𝜀 should be small enough so the charging of 

storage would not affect the minimised load curtailment – when load curtailment happens, 

storage devices won’t be charged to make the situation worse. 

It is worth noting that, the value of weighting factor would be system specific. Using an 

inappropriate 𝜀 may bring inaccuracy to the optimal result. A precise solution to this issue is 

applying the first part of the objective function as the constraints of the second part, in the 

form of the Karush-Kuhn-Tucker (KKT) conditions. A discussion is given for the future work in 

section 6.2. 

In practice, storage appliances can be operated for other purposes, e.g. energy arbitrage, load 

shedding and etc. The state of charge would not be always at its possible maximum. An 

appropriate storage operation scheme should consider the balance between the profitability 

from energy arbitrage and the ability for restoring outage during contingencies. 

Constraints: 

4. Active power flow limit 

−𝑓𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘 ≤ 𝑓𝑘

𝑚𝑎𝑥,           ∀𝑘 (4.2) 

The power flow through link k is limited by the corresponding capacity constraint 𝑓𝑘
𝑚𝑎𝑥.  

5. Power balancing 

𝑔𝑖 + 𝑐𝑖 ∙ 𝐿𝑖 − ∑ 𝜋𝑖𝑘 ∙ 𝑓𝑘

𝑘

− 𝑝𝑖 = 𝐿𝑖 ,          ∀𝑖 (4.3) 

𝑐𝑖 ∈ [0,1] 𝑜𝑟 𝑐𝑖 ∈ {0,1} 

The power available at node 𝑖  must be balanced with the supplied demand. 𝑐𝑖 ∙ 𝐿𝑖  is the 

curtailed demand at node 𝑖. The directed incidence matrix 𝜋𝑖𝑘 is positive for direction point 
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out from node 𝑖 , thus ∑ 𝜋𝑖𝑘 ∙ 𝑓𝑘𝑘  represents the sum of power flow out from node 𝑖 .  𝑐𝑖 

represents the fraction of curtailed demand at node i. In a passive distribution network, load 

points can be disconnected by opening circuit breaker/switch at the LV transformer when a 

power shortage happens. In that case, 𝑐𝑖 ∈ {0,1}  are binary variables indicating the 

interruption of load points. With the development of active network technologies, flexible 

demand control could be used to reduce the load in smaller steps. For those smart networks, 

𝑐𝑖 is continuous between 0 and 1 – allowing for reduced curtailment and faster computation. 

6. DG constraints 

0 ≤ 𝑔𝑖 ≤ 𝐺𝑖
𝑚𝑎𝑥 (4.4) 

In this study, we assume distributed generation can be controllable when required within its 

rated generation limit. In general, the DG in distribution network can be the wind, 

photovoltaic (PV), biomass and other conventional generations. It is worth noting that, not all 

generation technologies are fully flexible, especially renewable generations are often 

intermittent.  

Islanding situations may happen when no conductive route is available from DGs to the grid. 

Islanded operation of DG is not permitted in this study, though this situation may further 

reduce demand curtailment and achieve a better network reliability. In our study for this 

chapter, if a DG is not connected to the grid, it is assumed not contributing to mitigating load 

curtailment. However, in reality, this situation may happen under specific regulations and 

contracts. 

7. Energy storage constraints 

max (−𝑝𝑖
𝑚𝑎𝑥, −

𝑒𝑖

∆𝑡
) ≤ 𝑝𝑖 ≤ min (𝑝𝑖

𝑚𝑎𝑥,
𝑒𝑖

𝑚𝑎𝑥 − 𝑒𝑖

∆𝑡
) (4.5) 

This inequality implicitly includes the constraint to the energy stored in storage devices, 0 ≤

𝑒𝑖 ≤ 𝑒𝑖
𝑚𝑎𝑥 and the constraint to the charging/discharging power, −𝑝𝑖

𝑚𝑎𝑥 ≤ 𝑝𝑖 ≤ 𝑝𝑖
𝑚𝑎𝑥. ∆𝑡 is 

the time length of the system state (time to the next state transition). It is assumed that the 

storage would charge/discharge at a constant rate during the period of the system state. Since 

a half-hourly load profile is applied in this study, the period of a system state is usually shorter 

than or equal to 30 min (the time period for electricity market is cleared in the UK), the 

assumption of constant charging/discharging is reasonable. 𝑒𝑖  is the state of charge at the 
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start of the system state, therefore, at the end of the state the stored energy in the storage 

unit will be 𝑒𝑖 ≔ 𝑒𝑖 + 𝑝𝑖 ∙ 𝑡. 

4.1.3 CASE STUDY 

As introduced in Chapter 2, case studies are conducted with the illustrative distribution 

network in Figure 2-1. The network data used in this thesis are calculated from data received 

from several UK DNOs. Those data are available from Regulatory Reporting Pack [38] and 

Quality of Service Reporting [39] for up to 5 years. The analysis of raw data is given in 

APPENDIX E. 

TABLE 4-1 PARAMETERS OF THE ILLUSTRATIVE NETWORK 

Parameters Values 

Failure rate for lines 0.05 occ./km.year 

Failure rate for transformers 0.006 occ./year 

Maintenance rate for primary transformer 0.2occ./year 

Switching time  30 min for manual, 3 min for automatic 

MTTR for lines 24 hours 

MTTR for primary transformers 299 hours 

MTTR for distribution transformers 24 hours 

Maintenance restoration time for primary 

transformer 

24 hours 

Line section length 1 km 

Load point peak demand level 500kW (N-1), 625kW (N-0.75), 750kW 

(N-0.5), 875kW (N-0.25), 1000kW (N-0) 

DG availability 85% 

DG mean time to repair 100 h 

DG peak generation capacity 200 kW 

Energy Storage charging / energy rating 200 kW / 400 kWh 

Emergency generation capacity 500 - 1000 kW according to load point 

 

Each load point is assumed to connect 500 customers, with a peak demand of 500kW (N-1), 

625kW (N-0.75), 750kW (N-0.5), 875kW (N-0.25), 1000kW (N-0). A normalised UK load profile 

with 17520 levels for each half hour is used. For line sections and 33-11kV transformers, a 
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capacity constraint of 5MW is applied for N-1 (for each load point as 500kW, in total 5MW for 

the network).  

Non-network reliability enhancement solutions: 

 Base case: The original illustrative network with manual switching which can be 

finished averagely in 30min, the probability of switching time is exponentially 

distributed. 

 Automatic switching: network switching actions for service restoration can be finished 

in 2min after a fault occurs. 

 Emergency generation: emergency generators can be arranged to supply interrupted 

load points after a waiting time of 3h. It is assumed that a mobile generator can fully 

supply any single load point that is fully or partly curtailed. 

 Energy storage: Storage power/capacity rating in this study is 200kW/400kWh. It is 

assumed to be fully reliable. Storage units are operated to be fully charged when 

possible and used for only reliability purposes. Storage in this study is assumed 

connected to load directly, e.g. in room battery. The energy stored can be utilised 

during load curtailment before switching is finished (allows for islanded operation). 

 Distributed generation: DG in this study is assumed to have an availability of 85%, 

mean time to repair as 100h, and peak generation as 200kW. DG is assumed to be 

isolated from the rest of network when it is faulty and would not incur an interruption 

to the network. 

Comparison studies are performed for the base case and the 4 network improvement options, 

including automatic switching, mobile supply, storage and DG. In Table 4-2, the expected 

results of ENS, CI and CML are demonstrated for different demand levels. Different from the 

study in Chapter 2 where N-0 is with an unchanged demand but lowered line rating, 

demanding levels reflect the increase of demand but the line rating is constant. 

It is worth noting that all studies in this section are based on the implicit switching model, 

assuming that load points can be curtailed partly according to the level of power shortages 

(continuous 𝑐𝑖) rather than tripped entirely (discrete 𝑐𝑖). 

It can be seen from the table, in the base case, with increased demand at load points, ENS and 

CML are raising significantly. After switching actions, the fault is isolated and the affected 

customers are supplied via available routes. The branch with no faulted line has to supply 

customers in two branches (partly for the faulted branch). When demand level is N-1, the line 
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rating is safe to restore all customers, thus ENS is very low for the network but non-zero for 

curtailment during the fault clearing stage. When network redundancy is low, even if service 

restoration is available after switching, the number of recovered customer is limited by the 

line rating.  

The differences of CI between demand levels are small. With a low network redundancy, it is 

expected to experience more interruptions to customers, since the lack of redundant capacity 

may lead to load curtailment that one power source cannot fully supply the whole of restored 

area after a fault. The result of nearly unchanged CI for different redundancy levels, however, 

is caused by the specific methodology for the computation of CI. Since for DNOs in the UK, the 

number of customer service interruption will be counted once for a network failure. If the 

service is recovered but suspended again for the same fault, it would not be counted as a 

second interruption for the affected customers [40]. Meanwhile, if the available capacity is 

not sufficient for all connected customers, the DNO would first disconnect the customers from 

the faulted branch, which won’t be recorded as a new interruption (this is reflected in our 

model by applying priority orders to the already affected and unaffected load points). The 

small differences between the results are likely to be simulation errors (the coefficient of 

variation is 2.5% for this study), and the real values of CI are generally unchanged. 
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TABLE 4-2 RELIABILITY PERFORMANCES FOR FOUR NETWORK IMPROVEMENT OPTIONS AT DIFFERENT DEMAND LEVELS 

 
Demand 

level 
ENS 

(MWh/y) 
CI4 

(occ/100customer/y) 
CML5 

(min/customer/y) 

Base case N-1 0.44 28.0 8.4 

  N-0.75 0.67 27.9 9.8 

  N-0.5 1.77 28.5 19.4 

  N-0.25 4.24 27.8 38.5 

  N-0 7.93 28.3 63.6 
Automatic 
switching N-1 0.04 0.0 0.2 

  N-0.75 0.18 0.3 1.6 

  N-0.5 1.19 1.6 11.2 

  N-0.25 3.72 4.0 30.3 

  N-0 7.40 7.0 55.8 

Mobile supply N-1 0.46 28.2 8.8 

  N-0.75 0.57 28.4 8.9 

  N-0.5 0.81 28.3 10.1 

  N-0.25 1.22 28.3 12.1 

  N-0 1.69 28.0 14.6 

Storage/DR N-1 0.17 9.0 2.9 

  N-0.75 0.30 13.3 4.3 

  N-0.5 1.01 16.0 10.7 

  N-0.25 2.90 18.6 25.8 

  N-0 6.12 20.1 48.1 

DG N-1 0.43 27.8 8.2 

  N-0.75 0.54 28.2 8.1 

  N-0.5 0.66 28.3 8.2 

  N-0.25 1.12 27.8 11.1 

  N-0 2.38 28.5 19.2 
 

For comparison study between different options and the base case, Figure 4-2, Figure 4-3 and 

Figure 4-4 present the improvement (shown as positive) of ENS, CI and CML from the base 

case, respectively. 

                                                           
4 “The number of customers interrupted per year (CI). This is the number of customers whose supplies 
have been interrupted per 100 customers per year over all incidents, where an interruption of supply 
lasts for three minutes or longer, excluding re-interruptions to the supply of customers previously 
interrupted during the same incident.” This is defined in OFGEM RIIO report [40] 
 
5 “The duration of interruptions to supply per year (CML). This is the average customer minutes lost per 
customer per year, where an interruption of supply to customer(s) lasts for three minutes or longer.” 
[40] 
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FIGURE 4-2 THE ENS IMPROVEMENT FOR FOUR OPTIONS AT DIFFERENT DEMANDING LEVELS 

From Figure 4-2, automatic switching can reduce the energy curtailed during switching action 

preparation, the period starting from the fault’s happening to the completion of switching 

actions. The switching time in a traditional distribution network is 30 min (it can be shorter or 

longer depending on the importance of the network). The automatic switching can shorten 

this interruption to 3 min before the network isolates the faulted line and restores customers 

affected. However, this option of network improvement cannot help reduce ENS for the 

period after switching actions are completed. When demand level increases, the ENS for the 

whole system is rising (shown in Table 4-2), but the improved ENS (ENS reduction) from 

exploiting automatic switching is almost unchanged at around 0.5MWh/y, the amount due to 

the reduction in the whole branch fault clearing outage. 

Mobile generation and DG can significantly reduce the ENS, especially for low network 

redundancy cases. This may be mainly for that generators are not restricted with energy 

constraints (we assume, in this study, that resources for generators are unlimited). When the 

capacity from the feeder, which supplies its own branch and the recovered customer in the 

other branch where a fault happened, is not sufficient, DG and mobile generators can help 

prevent customers from disconnection, thus lowering the potential energy curtailment. Given 

the fact that mobile generators can fully supply load points (with a peak as 500kW-1000kW) 

but DG used in this study is merely 200kW, DG performs similarly to mobile generation for 

high redundancy cases. It may result from that load deficiency in high redundancy is still 

relatively low and real-time demand level is not always at peak so that 200kW DG capacity is 

sufficient to greatly reduce load curtailments. Additionally, DG can resupply the load 

immediately after switching actions are completed, rather than waiting for 3h to arrange 
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mobile generators. However, for low redundancy such as the N-0 situation when outages are 

more likely longer and deeper, mobile generators with the ability to fully supply the whole 

load points can make a greater contribution to lower energy curtailment. 

Storage/DR are usually installed with loads at LV level (there are, however, grid level storages 

which are out of the scope of this thesis). It is assumed in our study that these devices, e.g. 

battery in building or electric vehicles, can help mitigate load curtailment immediately after 

an outage occurs (working in islanding mode). From the results in the figure, 200kW/400kWh 

storage/DR performs well for high redundancy levels (N-1 and N-0.75) when mobile 

generators and DG cannot make a decent improvement in ENS. When load level is increased, 

the reduction of energy curtailment from storage is relatively humble. Considering that the 

storage has the same power rating at 200kW as the DG, the energy constraint of storages is 

the main factor limiting their ability to improve ENS further. 

 

FIGURE 4-3 THE CI IMPROVEMENT FOR FOUR OPTIONS AT DIFFERENT DEMANDING LEVELS 

Shown in Figure 4-3, among all 4 network improvement options, automatic switching is found 

to be the best way to improve (lower) CI. This is caused by that, in the UK, an interruption is 

not recorded as a customer interruption if shorter than 3 minutes [40]. By upgrading manual 

switching which lasts for averagely 30min to automatic switching as 2min, most interruptions 

due to fault clearing (trip the whole branch) no longer contribute to CI (even though customer 

still experience them, they are not shown in CI measurement). The CI reduction slides down 

with higher demanding levels since in those cases interruptions can happen after switching 

actions due to the lack of capacity from the adjacent feeder. For those cases, automatic 

switching is less effective in improving CI. 
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Storage/DR can also help in reducing CI since these devices/services are immediately available 

at LV so that the customers at load points are not affected or only partly affected before 

switching actions are complete; after network reconfiguration is finished, storages can be 

connected to the grid and start charging if redundant capacity is still available.  As network 

redundancy level lowers, the improvement in CI will be restricted by the capacity of 

storage/DR services. 

The results for mobile generators and DG show that their contribution in improving CI is 

negligible. The small measured differences exist are believed to be simulation error 

(coefficient of variation as 2.5%). These results are caused by that when a fault happens, the 

corresponding fault clearing device (circuit breaker connected to the substation) trips the 

whole branch and generators are assumed not working when disconnected from the grid (no 

islanding mode). After switching actions are finished, generators can work to supply the 

network but the customers who have experienced the fault clearing are recorded for CI. When 

network redundancy becomes lower, the recovered area could face another interruption if all 

connected load points cannot be supplied by one feeder. However, as a network operator, it 

is reasonable to first disconnect the customers in the branch who have been already recorded 

for CI. Thus, no matter how much capacity is available from DG or mobile generators, CI would 

not be affected. 

Nevertheless, for the same reason, we can expect that DG is potentially able to reduce CI 

further if automatic switching is available. Since with automatic switching, customers in the 

branch with a fault are not recorded to increase CI for the switching is shorter than 3 minutes. 

When network redundancy is low, DG can significantly reduce the possibility to have a 

shortage in the recovered area, thus improve CI.  

However, for mobile generators, even they can resupply the recovered area if a shortage 

exists due to low redundancy, customer disconnection is inevitable before the service is ready 

(which averagely take 3h). Thus, even automatic switching is available, mobile generators still 

cannot effectively reduce CI. 
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FIGURE 4-4 THE CML IMPROVEMENT FOR FOUR OPTIONS AT DIFFERENT DEMANDING LEVELS 

Similar to Figure 4-2, in Figure 4-4, automatic switching can considerably reduce the average 

duration of interruption by about 8min per customer a year. The improvement is achieved 

since the period of fault clearing is reduced from 30min to 2min. However, this option of 

network improvement does not help reduce CML for the period after switching actions are 

completed. When demand level increases, the CML for the whole system is rising (shown in 

Table 4-2), but the improved CML from exploiting automatic switching is almost unchanged 

at around 8min/customer/y. 

Mobile generation and DG can significantly reduce the CML, especially for low network 

redundancy cases. This is mainly because generators are not restricted with energy 

constraints (we assume, in this study, the resources for generators are unlimited). When the 

capacity from the feeder, which supplies its own branch and the recovered customer in the 

other branch where a fault happened, is not sufficient, DG and mobile generators can help 

prevent customers from disconnection, thus shorten customer interruptions. Given the fact 

that mobile generators can fully supply load points (500kW-1000kW peak demand) but DG 

used in this study is 200kW, DG performs similarly to mobile generation for high redundancy 

cases. The similarity of results may be due to the fact that load deficiency in high redundancy 

is still relatively low and real-time demand level is not always at peak so that 200kW DG 

capacity is sufficient to greatly reduce load curtailments. Additionally, DG can resupply the 

load immediately after switching actions are completed, rather than waiting for 3h to arrange 

mobile generators. However, for low redundancy such as the N-0 situation when outages are 

more likely longer and deeper, mobile generators with the ability to fully supply the whole 
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load points can make a greater contribution to reducing the duration of customer 

disconnections. 

Storage/DR are usually installed with loads at LV level. We assume in our study these devices 

can help mitigate load curtailment immediately after an outage occurs. From the results in 

the figure, 200kW/400kWh storage/DR performs well for high redundancy levels (N-1 and N-

0.75) when mobile generators and DG cannot make a decent improvement in CML. When load 

level is increased, the reduction of energy curtailment from storage is relatively humble. 

Considering that the storage has the same power rating at 200kW as the DG, the energy 

constraint of storages is the main factor limiting their ability to improve CML further. 

4.1.4 CONCLUSIONS 

In this section, a number of studies for the values of non-network solutions on improving 

distribution network reliability/capacity were analysed. The reliability assessment model for 

DG and energy storage was created based on the proposed implicit switching network 

framework in Chapter 2. With the illustrative distribution network, four network reliability 

improvement options including automatic switching, mobile generation, energy storage and 

DG were investigated via time-sequential Monte Carlo simulation. ENS, CI and CML were used 

as the standard reliability indices for DNOs in the UK. 

It was found that automatic switching can significantly reduce CI since fault clearing can be 

shortened to 2min so that the interruption before switching actions are not recorded in CI. 

The contribution is less effective for lower network redundancy since that automatic switching 

is not able to mitigate the power shortage. The contribution from automatic switching to 

reduction of ENS and CML is rather humble. 

Energy storage units can also greatly improve network CI performance since they are usually 

available at LV level and can immediately supply the loads even when a fault happens. But if 

operated without islanding operation, the ability of storage in reliability enhancement can be 

limited. Storage can be an effective option to lower ENS and CML, but this ability is constrained 

by not only the power rating but also the maximum energy that can be stored. 

Mobile generators for emergency supply, which in our study is assumed to be available in 3 

hours after an outage happens, are found effective in improving ENS and CML, especially for 

low network redundancy situations. The effect on CI from mobile generators is negligible. 
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Similar to mobile generators, considerable contribution in improving ENS and CML can be 

achieved with increased network demand by installing DG. Different from mobile generators, 

if combined with automatic switching, DG can potentially have a significant contribution to CI 

reduction since it does not require a long waiting time to supply. 

4.2 QUANTIFICATION AND IMPLICATIONS OF CUSTOMER INTERRUPTION COST 

(CIC) 

Historically, electricity networks are planned on the basis that all consumers place the same 

value on continuity of supply and use of their appliances when required.  Furthermore, it has 

been assumed that the continuity of supply is binary: electricity supply is 100% available under 

normal operating conditions (all devices can be used) or not at all under outage conditions 

(none of the devices are used). This approach is usually characterised by valuing avoided 

interruptions using a single value of the value of lost load (VoLL) [44], which is widely 

recognised as an oversimplification.  First of all, the estimation of VoLL is subject to 

considerable uncertainty, driven by the fact that the damage caused by interruptions is 

different for different classes of consumers, different locations, durations, and different times 

of the year, week and day.  Furthermore, in future distribution networks, smart metering 

coupled to in-home energy management devices could change the way customers value 

supply continuity through facilitating reliability-based consumption choices. By setting design 

standards that allow networks to be planned in accordance with the differing priorities of 

different categories of in-house demand, it may be possible to develop and operate networks 

at lower costs to customers. 

4.2.1 SIGNIFICANCE OF CUSTOMER INTERRUPTION COST 

The basis of network planning standards lies in balancing the cost of network investments 

against the customer interruption cost (CIC) in order to identify network capacity levels 

minimising the total expenditure. This network planning process is illustrated in Figure 4-5. As 

the level of network capacity and redundancy increases, the reliability of supply for the served 

customers is increased (i.e. customer interruption costs are decreased) at the expense of 

higher network investment costs. The optimal network capacity achieves the best trade-off 

between these two cost components. The CIC can be quantified through different measures, 

such as the cost per interruption (£/interruption), the cost per unit peak demand/annual 

energy consumption (£/kW, £/MWh) and the Value of Lost Load (VoLL) (£/MWh), 

representing the estimated value a consumer puts on an unsupplied unit of energy [45]. 
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FIGURE 4-5 BALANCING OF NETWORK INVESTMENT COSTS AGAINST CUSTOMER INTERRUPTION COSTS FOR NETWORK 

PLANNING 

4.2.2 METHODOLOGIES FOR CIC QUANTIFICATION 

The published key CIC data summarised in [46] are from Canada [47]–[57], USA [58]–[62], 

Austria [63], [64], Denmark [65], Finland [65], Netherlands [66], Norway [67], Iceland [65], 

Italy [68], Ireland [69], Spain [70], Sweden [71]–[73], Germany [74] and United Kingdom [26], 

[45], [75]–[77] are tabulated in Appendix A in Table A.1. Additional information could be found 

in [78], [79] and for other jurisdictions in [80]–[84]. European guidelines for estimating the 

cost of interruptions can be found in [85]. A literature survey of consumer interruption cost is 

presented in [86],[46]. Customer survey design is described in [87]–[93]. This part of data for 

CDFs are tabulated in Appendix A in Table A.2. 

Various methodologies for CIC data acquisition are discussed in [46] and these are 

summarised below: 

 Ratio of Gross Economic Output to Energy Consumption (EO/C)  is a very rough 

estimate of VoLL and it is calculated by dividing a gross economic measure by the total 

energy consumed, 

 Customer surveys (CS) provide the evaluation of the statistically significant VoLL by 

different customer sectors from data provided directly by the end users, 

 Amalgamated Customer Surveys (ACS)  combine multiple sets of survey data from 

various regions of a country, 

 Mapped Customer Surveys (MCS)  approach maps data from one country and 

modifies it to suit the context of another country, 
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 Black Out Case Study (BOCS)  approach is mainly the post-event analysis of 

blackouts providing more detailed cost estimates. 

As discussed in [46], the EO/C approach is simple since it uses readily available data but it does 

not account for all drivers. CS is the preferred approach but it is costly and time intensive. ACS 

is less expensive and less time intensive than CS but only captures common key features and 

lose regional differences. MCS might not capture differences between countries. BOSC 

provides more detailed cost estimates but findings are limited to the geographic region and 

to the characteristics of the considered outage. The information such probability of 

occurrence can be also difficult to obtain because of the rarity of blackout events. 

A large number of studies have employed different approaches to quantify the CIC. However, 

a general consensus on the value of CIC has not been achieved, as the values proposed by 

different sources vary significantly. The main reason is that CIC depends on a large number of 

diverse factors, the cost implications of which cannot be unambiguously quantified even by 

the consumers themselves. These factors include the activities affected by unsupplied energy, 

the categories of customer sectors, the timing (time of day, day of week, month of year), the 

duration, the frequency of interruptions and the availability of advance notification before the 

interruption takes place.  

This lack of consensus is aggravated by the fact that CIC have been quantified in different 

currencies and different years in the past, introducing significant difficulties in comparative 

analysis. This lack of consensus gives network planners a great deal of freedom in their choice 

of the CIC parameters for system models. The final selection might be based on averaging 

different available values or on the values giving the “most sensible” results. 

4.2.3 CUSTOMER DAMAGE FUNCTION AND VOLL 

The dependency of the CIC on the factors aforementioned is modelled by the customer 

damage function (CDF). The original data of CDF in published key literature is presented in 

Appendix A. A common format of CDF represents the value of customer interruption cost with 

respect to interruption duration for different customer categories. The value of lost load (VoLL) 

which is “the value an average customer puts on an unsupplied kWh” [44][94], is effectively a 

particular function of CDF for an interruption of one hour [36], [45]. In this section, the latest 

published data for CDF and VoLL for the UK is introduced below. 

The data of CDF for the UK was obtained from the survey presented by Kariuki and Allan in 

[45], [95], [96], which is based on a Preparatory Action survey of British Regional Electricity 

Company areas. For Large Users (consumers with demand of at least 8 MW), the cost of an 
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interruption lasting 20 minutes is only slightly higher than the cost of a momentary 

interruption (<1sec). The industrial processes of these users can be interrupted by a very short 

outage, and it can take a significant amount of time to restore operations after the power 

supply is restored. As a result, interruptions costs are fairly insensitive to the duration of the 

outage.  

Table 4-3 shows four customer damage functions adopted from the UK Survey [45] and all 

values are indexed by RPI-X [97] for 2012. The function represents the cost of per unit peak 

demand of load point according to various demand sectors and interruption durations. 

TABLE 4-3 UK SURVEY [45]  

Time 
Customer damage function (£/kW) 

Residential Commercial Industrial Large user 

momentary 0.27 1.76 10.95 12.00 

1 minute 0.27 1.82 11.51 12.00 

20 minutes 0.27 6.92 25.40 12.21 

1 hour 0.96 18.95 44.96 12.78 

4 hours 6.62 69.48 128.53 15.77 

8 hours 14.17 139.98 213.76 17.28 

24 hours 44.35 177.94 267.63 23.76 

 

Kariuki and Allan [45] use the results of a UK Survey to convert the customer interruption cost 

(given in £ per interruption) into a customer damage function (given in £/kW per unit peak 

demand and £/MWh per-unit annual energy consumption). Both parameters are given as a 

function of interruption durations. Even though from the survey they found CIC in the UK is 

less related to unserved energy than interruption duration, which is contrary to the concepts 

of ‘implied cost per kilowatt-hour saved’ and VoLL, they have identified an expected VoLL of 

£19,363/MWh across all outage durations with VoLL for a one-hour interruption being 

£32,480/MWh by converting the CDF obtained in their survey (data shown here are indexed 

by RPI-X). 

Furthermore, a recent report by London Economics [26] estimates the VoLL for domestic, 

small and medium-sized enterprises (SME) and industrial and commercial (I&C) electricity 

users. They estimate the VoLL in terms of willingness-to-accept (WTA) payment for an outage 

and willingness-to-pay (WTP) to avoid an outage. The WTA estimates are larger than the 

respective WTP estimates since customers desire a larger monetary amount in order to bear 

a loss of supply than the one they are willing to pay to retain it. For domestic customers, the 
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statistically significant estimate of the VoLL ranges from £1,651/MWh (WTP) to £11,820/MWh 

(WTA) for a one-hour electricity outage during Winter Peak conditions with a headline figure 

of £10,289/MWh. For SME the respective range is from £19,271/MWh (WTP) to 

£39,213/MWh (WTA) for all conditions with a headline figure of £35,488/MWh. For I&C 

customers the overall value is about £1,400/MWh obtained using the gross value added (GVA) 

method. They have derived the load-share weighted average VoLL across domestic and small 

and medium enterprise users for winter, peak, and weekday as £16,940/MWh. The summary 

is shown in Table 4-4. 

TABLE 4-4 HEADLINE VOLL IN £/MWH [26]  

Domestic 

customers 

Small and medium 

enterprise (SME) 

Load-share weighted average 

across domestic and SME 

Industrial and 

commercial 

10,289 35,488 16,940 1,400 

 

4.2.4 IMPACT OF CDF ON NETWORK PLANNING 

Models for evaluating customer interruption cost are developed such as (i) the value of 

interruptions is simply at VoLL, (ii) the valuation of avoided interruptions is represented by a 

customer damage function such that value depends on the customer type(s) affected and 

duration of the outage. The Monte Carlo simulation approach described in Chapter 2 is used 

to assess the cost of interruptions in terms of expected values and distributions.  

To understand the implications of CDF on the value of interruptions, different customer 

damage functions (CDFs) are considered: 

 CDF0: Constant value £17,000/MWh (headline value of the VoLL for load-share of 

residential and small and medium enterprise customers) 

 CDF1: Constant value £10,289/MWh (headline value for residential customers) 

 CDF2: Constant value £35,488/MWh (headline value for small and medium enterprise 

customers) 

 CDF3: Linearly increasing without capping starting from 0, reaching £54,000/MWh for 

a duration of 18 hours and continuing further 

 CDF4: Linearly increasing without capping starting from 0, reaching £108,000/MWh 

for a duration of 18 hours and linearly increasing at a slower rate by adding 

£54,000/MWh for each additional day 

 CDF5: Linearly increasing starting from £13,500/MWh, reaching £54,000/MWh for a 

duration of 18 hours and linearly increasing further without capping.  
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 CDF6: using ‘residential’ customer damage function from Table 4-3 

 CDF7: using ‘commercial’ customer damage function from Table 4-3 

 CDF8: using ‘industrial’ customer damage function from Table 4-3 

 CDF9: using ‘large user’ customer damage function from Table 4-3 

Figure 4-6 illustrates the curves of customer interruption cost corresponding to CDF0 - CDF5 

during the first 24 hours of an interruption. These CDFs have been expressed as VoLL with 

regard to interruption duration that the y-axis is representing interruption cost per unit 

unserved energy. It can be seen that CDF0 - CDF2 are constant VoLL for all interruption 

durations. CDF3 - CDF5 are duration-dependent VoLL and representing three possible trends. 

 

FIGURE 4-6 GENERIC CUSTOMER INTERRUPTION COSTS FOR CONSTANT AND DURATION DEPENDENT VOLL  

Customer damage functions for different customer categories presented in [45] and shown in 

Table 4-3 are used for this analysis as CDF6-9. Different from the Voll, the quantification of 

CIC using these CDFs does not relate to unserved energy but the duration of interruptions and 

the peak demand/annual energy consumption of load points. It is worth noting that, the data 

in Table 4-3 gives values of critical interruption durations. The data for other durations is 

obtained with linear interpolation between critical durations and linear extrapolation for 

beyond 24h.  

Case studies 

In this section, time-sequential Monte Carlo simulation with the implicit switching model 

introduced in Chapter 2 is applied with the test illustrative network for conducting the 

evaluation of customer interruption costs using input parameters shown in Table 4-5. 
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TABLE 4-5 CASE STUDY PARAMETERS FOR CIC EVALUATION, HV LEVEL 

Parameters Values 

Failure rate for overhead lines (%/km.year) 8.4 

Switching time (minutes) 30  

Normal repair time (hours) 120 

Restoration time (hours) 24 

Section length (km) 1 

Peak demand of each load point (kW) 500, 625, 750, 875, 1000 

Loading level N-1, N-0.75, N-5, N-0.25, N-0 

Feeder capacity (MVA) 5 

 

 

FIGURE 4-7 CUSTOMER INTERRUPTION COST WITH CONSTANT AND OUTAGE DURATION DEPENDENT VOLL, HV LEVEL 

Figure 4-7 shows the customer interruption cost calculated using different CDFs. It can be 

observed that for less network redundancy, customer interruption costs increase with all CDFs 

due to increased customer disconnection. Costs corresponding to CDF0 to CDF2 (constant 

VoLL) are increased more than 4 times when redundancy decreases from N-1 to N-0, same as 

EENS. 

CIC corresponding to duration-dependent CDF3 to CDF5 show that for N-1 the interruption 

costs can be very low since in a sufficient redundancy network interruptions are rare and short. 

The results for low redundancy become worse but still generally better than that of CDF0 and 

CDF2. It may be caused by that the durations of interruptions for this particular network are 

usually shorter than 12h according to Figure 2.2. 
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Costs corresponding to CDF6 to CDF9 increase as system redundancy decreases even though 

the cost using these methods is not related to unserved energy. This indicates that the 

duration of outages is increasing as redundancy decreases for the studied network. The cost 

to residential customers (using CDF6) is lower than that to commercial, industrial or large 

users (using CDF7, CDF8 and CDF9, respectively). The cost to commercial sectors is lower than 

that to larger users for N-1 redundancy but higher for N-0 redundancy which might indicate 

that commercial customers will be affected more by longer outages than large users. This 

table provides an insight of implications of different durations on the cost of per unit unserved 

energy. 

Table 4-6 presents the interruption costs corresponding to the different CDFs as a percentage 

of the costs corresponding to the use of a constant VoLL of £17,000/MWh. This table provides 

an insight of implications of different durations on the cost of per unit unserved energy. 

TABLE 4-6 INTERRUPTION COSTS RELATIVE TO VOLL=£17,000/MWH  

Redundancy CDF0 CDF1 CDF2 CDF3 CDF4 CDF5 CDF6 CDF7 CDF8 CDF9 

N-1 100% 61% 209% 10% 20% 87% 8% 186% 565% 229% 

N-0.75 100% 61% 209% 11% 22% 88% 9% 186% 556% 222% 

N-0.5 100% 61% 209% 18% 36% 93% 10% 181% 514% 192% 

N-0.25 100% 61% 209% 27% 54% 100% 11% 176% 463% 157% 

N-0 100% 61% 209% 33% 66% 104% 12% 174% 432% 133% 

 

Shown in Table 4-6, the percentages corresponding to CDF0-CDF2 remain constant with the 

redundancy level given that these CDF are constant with the interruption duration. The 

percentages corresponding to CDF3 and CDF4 increase about 3 times as the level of 

redundancy decreases from N-1 to N-0. The percentage for CDF5 increases about 20%, 

showing a mild growth which is consistent with its flatter trend shown in Figure 2.1.  

The percentage value for CDF6, representing residential customers, increases about 50%, 

while the percentage value for CDF7 to CDF9, representing commercial, industrial and large 

users respectively, decreases. These results are in line with Table 4-3 that, for residential 

customers, interruption costs are not as high as other business but sensitive to duration 

increases. This is because domestic customers are usually not able to change their living style 

(e.g. cannot put off washing or heating for very long) but other business sectors may be able 

to rearrange their production schedule to reduce the cost for longer outages.  
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The selection of CDFs can have a profound impact on the planning solution. Use of 

conservative CDFs would underestimate the interruption cost to end users and result in a 

lower optimal degree of redundancy. The impact of the differentiated estimation of customer 

interruption costs is demonstrated through a simple example on the LV network of Figure 4-8. 

The planning problem lies in whether to design a system with a reserve cable and selecting 

the optimal number of feeder sections. 

 

a) network with no reserve cable  

 

b) network with reserve cable to enhance the security of supply 

FIGURE 4-8 TEST NETWORK A) WITHOUT AND B) WITH RESERVE CABLE 

Test network design a) consists of four radial feeders which do not provide for redundancy in 

case of a fault while design 2) can provide back-feed to some customers depending on the 

number of sections on a feeder. 

The following two figures compare the planning solutions for two different selections of the 

VoLL, namely the ones corresponding to CDF6 and CDF0, respectively. In the first case 

presented in Figure 4-10, the low VoLL reduces the customer interruption costs and as a result, 

the optimal planning solution lies in not investing in extra reserve cable and switchgears.  
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FIGURE 4-9 PLANNING SOLUTION CORRESPONDING TO CDF6 

In the second case, shown in Figure 4-10, the relatively higher VoLL increases the customer 

interruption cost and as a result, the optimal planning solution lies in investing in reserve cable 

and creating three feeder sections.  

 

FIGURE 4-10 PLANNING SOLUTION CORRESPONDING TO CDF0 

This example indicates that the selection of different interruption cost models (CDFs) can 

change fundamentally the obtained planning solution. 

4.2.5 CONCLUSIONS 

A large number of studies have employed different approaches to quantify the customer 

interruption costs (CIC) for different categories of consumers. However, a general consensus 

on the value of these costs has not been yet reached, as the values proposed by different 

sources vary significantly. The main reason is that CIC depends on a large number of diverse 

factors, the cost implications of which cannot be unambiguously quantified even by the 

consumers themselves. These factors include the activities affected by unsupplied energy, the 

timing (time of day, day of week, month of year) of the supply interruption, the duration of 

the supply interruption, the frequency of interruptions and the availability of advance warning 
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before the interruption takes place. This lack of consensus is aggravated by the fact that CIC 

have been quantified in different currencies and different years in the past, introducing 

significant difficulties in comparative analysis. 

This section has firstly discussed the main methodologies previously employed for the 

quantification of CIC. Secondly, it has discussed the highlights of a comprehensive literature 

survey on CIC and VoLL quantification, demonstrating the significant variations and the 

previously discussed lack of consensus. The main outcomes of the latest relevant study in the 

UK context, by London Economics, have been discussed and form the core of the customers’ 

supply valuation assumptions adopted throughout this chapter. Furthermore, different 

modelling approaches to CIC have been presented and discussed, including constant VoLL as 

well as interruption duration-dependent VoLL in the form of customer damage functions. Case 

studies have demonstrated that the adopted model and estimate of interruption costs can 

have a profound impact on the obtained planning solution.  

4.3 RELIABILITY ASSESSMENT FOR DISTRIBUTION NETWORKS CONSIDERING HIGH 

IMPACT LOW PROBABILITY (HILP) EVENTS 

4.3.1 INTRODUCTION  

Traditionally, the reliability parameters used for assessing the reliability performance of 

electricity networks are based on “average” characteristics derived from historical data. This 

kind of assessment is typically employed for selecting a set of network designs that meet the 

reliability criteria. However, exceptional rare events such as extreme weather conditions 

leading to floods could have an effect on the dynamic reliability parameters. For example, it 

could increase the failure rates of network components affected by the events and also 

increase repair times. HILP events, even if anticipated, can lead to significant and prolonged 

interruptions of supply.  

In this context, a set of studies has been carried out with the objective to: 

 Assess the consequences of HILP events with different severity, focusing on the 

impact of extreme weather conditions on the increased failure rate of network 

components and prolonged restoration system,  

 Consider how to include HILP explicitly in network design optimisation through 

considering robust network operation and design measures, taking into account 

emergency operation actions such as the provision of emergency supply (mobile 

generation) to improve the restoration process, and 
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 Identify the role and quantify the value of emergency operation actions and 

emergency network development. 

4.3.2 IMPACT OF HILP ON RELIABILITY PERFORMANCE AND THE USE OF EMERGENCY 

GENERATION AS A MITIGATION MEASURE 

Case studies have been carried out to investigate the impact of a HILP event with different 

severity on the reliability performance of the system. During a HILP event (e.g. very adverse 

weather), the failure rate of line sections is increased and the repair time of component is 

accordingly prolonged. There are 2 HILP failure factors used in the studies: (i) 10 and (ii) 50 

(the latter is 5 times more severe than the former). A HILP failure factor of 10 and 50 means 

that the asset failure rate is 10 times and 50 times higher than the average, respectively. As 

the HILP events may also prolong the restoration or repair time, the studies also investigate 3 

different HILP factors that affect the MTTR: 2, 5 and 10. This means the MTTR during the HILP 

events will be 2x, 5x or 10x larger than the MTTR in normal operating conditions (24h is used 

as a reference value). The example is illustrative and should provide insights into the issues 

that would be important to consider in the context of future network design standards. 

The studies also investigate the impact of the availability of emergency supply schemes 

(mobile generation). Two parameters, i.e. the waiting time for deploying emergency (mobile) 

generation and the supply rate, are varied. For the waiting time, the values used in the studies 

are 3 h and 24 h. Typically, the deployment time for mobile emergency generation is about 

4.5 h on average, which is within the range of the studies. In terms of the supply rate, the 

emergency power may not be able to fully supply the load interrupted, therefore two 

scenarios with supply rate of 25% and 100% of full demand are studied. Depending on the size 

of the network in outage, the amount of mobile generation which could be deployed might 

be lower than 25%. In this illustrative example with a total affected region of 5 MW during the 

peak period, the assumption that 100% of the demand could be picked up by mobile 

generation is considered reasonable.  

HILP events (e.g. gale, flooding and even earthquake) can last for varied time length from 1 

day to weeks. In this study, the duration of a HILP event is assumed to be 2 days (nonetheless, 

sensitivity studies can be produced). It is worth noting that, even an adverse weather 

condition stops, the impact of the condition on networks may exist longer. To analyse the 

detailed dynamic characteristics of network reliability performance during a HILP event, a 

chronological simulation model is developed: 
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Step 1: Generate the initial state of each system component enforcing that all components 

are normal. The initial load state is generated by randomly sampling a starting time in a year 

and selecting the corresponding load level from the load profile. 

Step 2: Sample the transition time from the current state to the next possible state for each 

component using the transition rate in normal condition. The transition time for the load state 

is obtained by calculating the time to the next half hour boundary. 

Step 3: A HILP event starts when the first fault is identified in the network (recorded as T0). 

The failure rate and repair time for all components are increased by applying HILP factors. The 

transition time of each component is then resampled with the increased rates. 

Step 4: Evaluate load point curtailment for each system state using the proposed implicit 

switching model as described in this thesis. 

Step 5: Sort the list of transition time and find the next transition state, update transition time 

list using the method introduced in Chapter 2, section 2.4.2. 

Step 6: Repeat step 4-5 until the system simulation time exceeds T0+48h (the 48h can vary for 

sensitivity study). If at t=T0+48h, there exist failures in the network, the simulation will 

continue until all faults are repaired. 

Step 7: Evaluate and record the reliability indices of the system for the HILP event. Repeat the 

simulation for statistic results. 

A set of parameters used in the studies is shown in Table 4-7. 
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TABLE 4-7 CASE STUDY PARAMETERS 

Parameters Values 

Failure rate for overhead lines (%/km.year) 10 

Switching time (minutes) 30 

Restoration time (hours) 24 

Section length (km) 2 

Peak demand of each load point (kW) 500 

Loading level N-0 

HILP failure factor 10, 50 

HILP repair factor 2, 5, 10 

Emergency generator preparing time (h) 3, 24 

Emergency generator supply rate 25%, 100% 

Value of Lost Load (£/MWh) 17,000 

HILP event duration (h) 48 

 

The studies have been carried out on a HV distribution network shown in Figure 2-1. The 

studies assume that each HV section has installed disconnectors on both sides. This allows any 

single circuit fault to be isolated and supply restored in switching time which reduces the 

supply interruption. The 11 kV network is designed as a radial network with a normally open 

circuit breaker (NOP) that connects the two main feeders for back-feeding during 

contingencies. The part of the network affected by the fault(s) can be isolated by opening the 

corresponding switchgear and the affected load points can be resupplied by the adjacent 

branch. At each load point, a distribution transformer is connected. 

The studies have been carried out using the year-round load profile with 30-min time 

resolution. 

Results 

Time-sequential Monte Carlo method is conducted to model the impact of HILP events on 

network reliability performances. The results of the studies are presented in Table 4-8. 

It is worth noting that, the “event” for EENS/cost is referring to the whole period of a HILP 

situation lasting for 48h or longer until all faults are repaired. Therefore, here the “event” is 

not an outage or interruption, it is possible to have multiple faults overlapping but also 

possible that there is no fault/interruption in the network for a short while. 
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TABLE 4-8 SYSTEM RELIABILITY AND COST PERFORMANCES UNDER VARIOUS HILP AND PROVISION OF EMERGENCY SUPPLY 

SCENARIOS 

Network Reliability 
No 

HILP 
HILP FRx10 HILP FRx50 

HILP MTTR x1 x2 x5 x10 x2 x5 x10 

No emergency 
supply 

EENS 
(MWh/event) 

1.33 3.2 5.1 11.6 15.4 55.2 157.8 

Cost of EENS 
(k£/event) 

22.6 54.4 86.7 197.2 261.8 938.4 2,682.6 

25% 
emergency 

supply 
rate 

3h 

EENS 
(MWh/event) 

1.29 2.5 3.3 7.4 9.8 33.4 111.2 

Cost of EENS 
(k£/event) 

21.9 42.5 56.1 125.8 166.6 567.8 1,890.4 

24h 

EENS 
(MWh/event) 

1.33 2.9 4.3 9.2 13.2 39.6 126.5 

Cost of EENS 
(k£/event) 

22.6 49.3 73.1 156.4 224.4 673.2 2,150.5 

100% 
emergency 

supply 
rate 

3h 

EENS 
(MWh/event) 

1.26 1.6 1.8 1.8 3.2 4.7 5.7 

Cost of EENS 
(k£/event) 

21.4 27.2 30.6 30.6 54.4 79.9 96.9 

24h 

EENS 
(MWh/event) 

1.32 2.6 3 4.2 11.1 19.2 27.2 

Cost of EENS 
(k£/event) 

22.4 44.2 51 71.4 188.7 326.4 462.4 

 

Table 4-8 shows the results of case studies for distribution network reliability with different 

HILP factors and emergency supply. Expected Energy Not Supplied (EENS) and cost of ENS are 

computed to summarise the reliability performance and related cost of HILP events. It can be 

seen that under normal weather conditions, i.e. no HILP event, the EENS for each failure event 

is relatively low, in the range between 1.26 MWh (with emergency supply) and 1.33 MWh 

(without emergency supply). The improvement of EENS due to the emergency supply is 

relatively modest, i.e. 0.06 MWh or £1.2k cost savings. Marginal improvement of the EENS 

performance and the small benefit obtained indicate that the emergency supply may not be 

justified in normal conditions. 

When a HILP situation happens, the failure rate of network components increases by 10 or 50 

times of the original and repair time is prolonged to 2, 5, 10 times of the original as 2 days, 5 

days, 10 days (as high impact may cause significant damage to overhead lines that would 

require long repair times). If no emergency supply is available, the system EENS can be as high 

as 157.8 MWh/event and the corresponding cost is £2.68m/event for a case with the HILP 
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failure factor of 50 and the repair factor of 10. The system EENS increases when the failure 

rate goes up and repair time increases.  If emergency supply is available in the HILP event, the 

system EENS can be significantly reduced. For example, for a case with the HILP failure factor 

of 10 and the repair factor of 2, the EENS in a case with no emergency supply is 3.2 MWh and 

with the emergency supply, it can be reduced down to 1.6 MWh, i.e. a reduction of 50%. The 

improvement is considerably higher for a severe HILP event. For a case with the HILP failure 

factor of 50 and the repair factor of 10, the EENS with emergency supply is down to 5.7MWh 

which is merely 4% of the original 157.8 MWh, saving £2.58m for reducing the duration of 

supply interruptions. Considerable improvement of the EENS performance and the savings 

obtained indicate that the emergency supply is an effective method to mitigate the impact of 

HILP situations. 

In order to show more clearly the impact of HILP with different severity, the reliability 

performances of the system for cases with HILP failure factor of 10 and 50 are compared in 

Figure 4-11. 

 

FIGURE 4-11 RELIABILITY PERFORMANCES OF THE SYSTEM FOR HILP CASES CONSIDERED IN THE STUDIES 

The results demonstrate that higher EENS would be associated with more severe HILP 

situation, longer repair time, lower supply rate and longer deployment time of mobile 

generation. Improvement of the EENS can be made by shortening the deployment time of the 

emergency generation and increasing the supply rate. 
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Figure 4-12 shows the cost of EENS using VoLL of £17,000/MWh for cases with HILP failure 

factor of 10 and 50. When there is no emergency supply, the costs of EENS vary between 

£54.2k and £2683k in different conditions. If the emergency generation is available, the cost 

savings in the case with the HILP failure factor of 10, the repair factor of 2, 25% supply rate 

and 24h deployment time are relatively low, i.e. £4.3k (£54.2k-£49.9k). This savings increase 

to £2.586m (£2683k-£96.9k) in the case where the HILP failure factor is 50, the repair factor 

is 10, with 100% supply rate and 3h waiting time. 

 

FIGURE 4-12 COST OF EENS FOR HILP CASES CONSIDERED IN THE STUDIES 

This kind of analysis can also be used to inform the development of alternative actions for 

improving the resilience of the system, for example, by transforming the overhead network 

which is prone to extreme weather conditions to an underground network. Considering the 

cost per km for replacing overhead lines with underground cables is £110k/km, the cost of 

transforming the test network is 22km*£110k/km=£2.42m. From the above study, during a 

HILP event (e.g. a storm), the expected interruption cost can be as high as £2.682m. In that 

case, the loss incurred in a HILP event can justify the cost of transforming the network. As an 

alternative, the provision of emergency mobile generators, especially when these can be 

deployed fast, could improve considerably the reliability performance of the system affected 

by a HILP event and reduce the associated cost of EENS. 

In order to get more insight on the impact of improving the deployment time of Figure 4-13 

shows the distribution function of ENS for different deployment times of emergency 
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generation, i.e. 3, 6, 12 and 24 h in cases with HILP repair factor of 2 and HILP failure factor of 

50. 

 

FIGURE 4-13 CUMULATIVE PROBABILITY DISTRIBUTION OF ENS FOR HILP EVENTS 

The analysis demonstrates that decreasing deployment time of emergency generation would 

significantly reduce the probability of high levels of ENS. For example, there is 90% chance 

that the ENS due to the HILP event is smaller than 10 MWh, 17 MWh, 19 MWh, 22 MWh, 

35 MWh, 56 MWh for cases with an emergency generation deployment time of 3h, 6h, 12h, 

24h and no emergency generation, respectively.  

4.3.3 CONCLUSIONS 

This study modelled the impact of HILP events. The reliability performance of a test 

distribution network has been evaluated through time-sequential Monte Carlo simulation. 

Impacts of HILP events with different severity levels have been studied considering the 

contribution of an emergency generation with different supply rate and preparation time as 

mitigation measures. The results demonstrate that severe HILP events can lead to the 

significant cost of lost load which may justify development of a more resilient network 

(transformation to UG network), supported by the provision of fast and high capacity 

emergency generation, especially during very severe events.  
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Chapter 5 GENERATION SYSTEM ADEQUACY 

PERFORMANCE ASSESSMENT 

 

 

 

Abstract 

In this chapter, the chronological Monte Carlo model was used to analyse GB electricity 

system. It is aimed to investigate a simplified GB system with reliability performance at the 

level of the GB Reliability Standard, i.e. LOLE=3h/year, to evaluate the system characteristics 

such as the frequency and duration and magnitude of the shortfall in energy and power, as 

well as the variability around expected indices. System risks are analysed for different yearly 

demand profiles, generator properties, system margins, balancing services under the OFGEM 

reliability standard. The effect of the recent years’ reduction in demand due to the increase 

in renewable (mainly wind) generation is also analysed and compared. 

This work was cooperated with the Department of Energy and Climate Change (DECC). 
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5.1 INTRODUCTION 

Generation adequacy is the ability of a system with installed generators to meet electricity 

demand. A power system is expected to be built adequately that sufficient generation capacity 

can meet the load consumption considering demand fluctuation and expansion, weather 

changing, generator planned and unplanned outages, and other possible unexpected issues 

in a long term time span. Building a system with absolutely sufficient capacity, which always 

meets the demand, is senseless in terms of the investment cost, whilst a system with 

insufficient capacity will lead to frequent blackouts which interrupt industrial production and 

domestic needs. Therefore, it is important to determine the suitably installed capacity that 

will give an acceptable system reliability performance while considering the cost of 

construction and operation.  

The assessment of generation adequacy enables the evaluation of performances for 

alternative system planning for specific customer demand and requirements, which is 

essential for planners in the decision of building sufficient generation capacity when various 

investments are available.  

The determination criterion of generation adequacy was firstly proposed in terms of a 

percentage reserve. A system is considered to be adequate if the installed capacity margin, 

the excess of total installed generation over the peak demand, meets or exceeds a given level 

of a percentage of the peak demand.  

In the UK, the similar concept used in National Grid capacity assessment is the de-rated margin. 

Instead of the total installed generation, the de-rated margin is the average excess of the 

available generation over peak demand [98]. 

This criterion is simple to understand and straightforward to apply in system capacity planning 

and assessment. However, the methodology is deterministic and it ignores the various 

characteristics of the system in two aspects: 1. only the peak demand is used that it ignores 

the differences in demand profiles with the same peak demand; 2. Considering only the total 

installed generation ignores the generator properties including the availability, size, type, 

repair time and etc. For the same installed generation, the effective capacity and its 

corresponding reliability performance can vary significantly. 

Another generation adequacy performance indicator, applied in National Grid capacity 

assessment, sometimes referred to as the risks to the security of supply, is the Loss of Load 

Expectation (LOLE). This index reflects the expected number of hours per year a system is 
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insufficient in power supply. This insufficient status means that the sum of all available 

generators’ output is lower than the system demand for the moment. In industry, this index 

is usually under the context that system intervention actions are not applied by the system 

operator. While in academia, LOLE can also be computed for comparing the impact of various 

intervention actions on system performances. 

In the UK, the government has set the level of generation adequacy for the Great Britain (GB) 

electricity system referred to as the Reliability Standard [27], which sets a 3 hour/year LOLE 

as an acceptable/target reliability level for the GB system. Expectation values of risks to the 

security of supply are straightforward in understanding system reliability performances. 

However, a single value of LOLE ignoring the variability of the index can be very limited to 

represent the whole system reliability. The LOLE is the average time length of capacity 

shortage which, by definition, excludes the property of shortage event frequency. For instance, 

a 3 hour/year LOLE system can result from an average of three 1-hour outages in a year or six 

half-a-hour outages in a year. The frequency and duration of system outage are not recognised 

within LOLE. The LOLE in different years can also vary significantly in a real system. It can be 3 

h/year for all single years, but also possible to have many very reliable years (LOLE is near 0 

hour/year) and some very serious (LOLE is much higher than 3h). A single expectation value 

cannot reflect these variations, thus may eventually lead to inferior system planning. 

For reliability indices quantification, the analytical methods which enumerate all system states 

with their probabilities and the corresponding impact of the state has been well applied in 

power system planning. Through analytical methods, only expectation values of reliability 

performances can be obtained. Monte Carlo simulation is a method via stochastic sampling to 

analyse system performance. Using this method, probability distributions of indices can also 

be achieved in addition to expectation values. Furthermore, the sequential Monte Carlo 

simulation, which simulates the chronological behaviours of system components including 

generators and demand, is naturally suitable to estimate the frequency and duration of 

system outages. Thus, the system status in real time can be thoroughly assessed and other 

reliability properties evaluated.  

In this chapter, we use the chronological Monte Carlo model to analyse GB electricity system. 

We aim to investigate a simplified GB system with reliability performance at the level of the 

GB Reliability Standard, i.e. LOLE=3h/year, evaluate the system characteristics such as the 

frequency and duration and magnitude of the shortfall in energy and power, as well as the 

variability around expected indices. System risks are analysed for different yearly demand 
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profiles, generator properties, system margins, balancing services under the same reliability 

standard. The effect of the recent years’ demand reduction due to the increase in renewable 

(mainly wind) generation in distribution systems is also analysed and compared. 

5.2 METHODOLOGY 

5.2.1 GENERATION MODEL 

To assess the reliability performance of a power system and investigate its behaviours as a 

function of time, the available generation needs to be simulated chronologically. 

 

FIGURE 5-1 TWO-STATE MARKOV MODEL FOR CONVENTIONAL GENERATOR 

The operations of conventional generators are modelled as a two-state Markov process, i.e. 

up and down. 

The failure rate of a generator, λ, represents the average rate of outage per year for a 

generator to occur. 𝜆 = 1/𝑚, where m is the mean time for generator to stay in the up state. 

The repair rate of a generator, µ, reflects the rate of a generator being repaired from failure 

state. The mean time to repair (MTTR) is the expected time required for repairing a generator, 

usually using hour as the unit, which is more common in the industry to represent µ that 𝜇 =

1/𝑟, r is MTTR. 

 

FIGURE 5-2 STATE TRANSITION OF A GENERATOR AS A FUNCTION OF TIME 

The state transition of generators is modelled as Markov process and it is found in [32] that 

the failures can be reasonably modelled exponentially distributed. Although [32] also pointed 

out that repair times may not be always conforming to exponential distribution. For simplicity 
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and the relatively small impact from using exponential distribution, in this thesis, we assume 

all generator failures and repairs are exponentially distributed. 

5.2.2 LOAD MODEL 

With sequential Monte Carlo simulation, system behaviours in real time are enabled to be 

simulated. Rather than using load duration curve, which provides only the demand levels and 

their corresponding probabilities, chronological demand profile has been applied in this study.  

The demand in this chapter is firstly using the normalised yearly demand profile of IEEE 

Reliability Test System [99] as a typical system demand model. The hourly demand profile is 

scaled to a desired peak demand level.   

In the second part, National Grid Company historical demand data for the year 1995-2011 is 

exploited for investigating the yearly difference in reliability performance. This demand profile, 

excluding demand by pumped storage plants but including losses, has been scaled to a 

common level of underlying demand in each year, currently 331 TWh. The scaling is in 

proportion to the weather–adjusted TWh demand for that year, conforming to average cold 

spell (ACS) conditions. This should preserve day-to-day variations from weather and chance 

events. There has been no attempt to correct for changes in the mix of demand over time (e.g. 

de-industrialisation).  

A sharp drop of about 6 GW in ACS peak demand has been found between winter 2005/06 

and winter 2014/15 seen from NGC transmission network [100]. The reduction in demand is 

believed to be mainly from the contribution of fast growing embedded generation and rising 

demand response services in distribution networks. In this study wind generation was used to 

represent the embedded capacity from distribution networks. Wind factors are derived from 

the Virtual Wind Turbine Model [101]. The wind capacity in the model is a mix of existing and 

planned turbines, onshore, offshore and Round 3 sites [102]. The mix represents National 

Grid’s Gone Green Scenario, with 13.7 GW onshore and 12.6 GW offshore. The wind output is 

derived as a continuous hourly profile for years from 1995 to 2011, corresponding to the NGC 

load profile. The impact of the wind on the whole system security of supply is then analysed. 

5.2.3 RELIABILITY INDICES 

 Loss of Load Expectation (LOLE) 

𝐿𝑂𝐿𝐸 =
∑ ∑ 𝑙𝑜𝑙𝑑𝑖,𝑘

𝑁𝑖
𝑘=1

𝑁
𝑖=1

𝑁
(5.1) 
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Where 𝑁 is the total number of simulation years, 𝑖 is the index of simulation year, 𝑁𝑖  is the 

total number of system states in simulation year 𝑖, 𝑘 is the index of system state in year 𝑖. 

𝑙𝑜𝑙𝑑𝑖,𝑘 is the loss of load duration for the 𝑘𝑡ℎ system state in 𝑖𝑡ℎ year, if the total generation 

in the state is lower than load level, then 𝑙𝑜𝑙𝑑𝑖,𝑘 = 𝑡𝑖,𝑘, 𝑡𝑖,𝑘 is the duration of that system state, 

otherwise 0. 

𝐿𝑂𝐿𝐷𝑖 = ∑ 𝑙𝑜𝑙𝑑𝑖,𝑘

𝑁𝑖

𝑘=1
(5.2) 

𝐿𝑂𝐿𝐷𝑖 is the total interruption duration for 𝑖𝑡ℎ year. 

 Energy Not Supplied (ENS) per year 

𝐸𝑁𝑆 =
∑ ∑ 𝑝𝑛𝑠𝑖,𝑘 ∗ 𝑡𝑖,𝑘

𝑁𝑖
𝑘=1

𝑁
𝑖=1

𝑁
(5.3) 

𝑝𝑛𝑠𝑖,𝑘 is the power curtailed for the 𝑘𝑡ℎ system state in 𝑖𝑡ℎ year. If the total generation in the 

state is higher or equal to load level, then 𝑝𝑛𝑠𝑖,𝑘 = 0. 

 Loss of Load Frequency (LOLF) 

𝐿𝑂𝐿𝐹 =
∑ ∑ 𝑙𝑙𝑜𝑖,𝑘

𝑁𝑖
𝑘=1

𝑁
𝑖=1

𝑁
(5.4) 

𝑙𝑙𝑜𝑖,𝑘 is the loss of load occurrence for the 𝑘𝑡ℎ system state in 𝑖𝑡ℎ year, if the total generation 

in the state is lower than load level for the state, and in (𝑘 − 1)𝑡ℎ system state the total 

generation is higher or equal to load level so the corresponding state, then 𝑙𝑙𝑜𝑖,𝑘 = 1 , 

otherwise 0. 

 Outage Duration 

𝑂𝑢𝑡𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
∑ 𝑑𝑚

𝑁𝑜𝑢𝑡𝑎𝑔𝑒

𝑚=1

𝑁𝑜𝑢𝑡𝑎𝑔𝑒

(5.5) 

Where 𝑁𝑜𝑢𝑡𝑎𝑔𝑒 is the total number of simulated outage events, 𝑚 is the index of outage, 𝑑𝑚 

is the time length of the 𝑚𝑡ℎ simulated outage. In a chronological simulation, a simulated 

outage event represents a set of adjacent system states in all of which total generation is 

lower than demand level for their corresponding state. 𝑑𝑚 is the sum of durations of all these 

system states. 

 Energy Not Supplied (ENS) per event 
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𝐸𝑁𝑆 𝑝𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 =
∑ 𝑒𝑛𝑠𝑚

𝑁𝑜𝑢𝑡𝑎𝑔𝑒

𝑚=1

𝑁𝑜𝑢𝑡𝑎𝑔𝑒

(5.6) 

𝑒𝑛𝑠𝑚  is the energy not supplied in the 𝑚𝑡ℎ simulated outage. 𝑒𝑛𝑠𝑚  is the sum of energy 

curtailed in all system states in the outage event. 

 Power Not Supplied (PNS) per event 

𝑃𝑁𝑆 𝑝𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 =
∑ 𝑝𝑛𝑠𝑚

𝑁𝑜𝑢𝑡𝑎𝑔𝑒

𝑚=1

𝑁𝑜𝑢𝑡𝑎𝑔𝑒

(5.7) 

𝑝𝑛𝑠𝑚 is the power not supplied of the 𝑚𝑡ℎ simulated outage. Since an outage event could 

contain multiple system states, the value of 𝑝𝑛𝑠𝑚 is obtained by choosing the highest power 

not supplied in all these states. 

5.3 IMPLEMENTATION 

In this chapter, the chronological Monte Carlo model was used to analyse a generalised GB 

electricity system. A case study was firstly analysed to investigate the system performance of 

a generic power system. As a world widely well-known system in academia, the IEEE-RTS load 

profile was used as a reference system. Following that the study was extended to explore the 

reliability properties for GB system with the load profile data from National Grid Company. 

We aimed to investigate a typical GB system with reliability performance at the level of the 

GB Reliability Standard, i.e. LOLE=3h/year, to evaluate the system characteristics such as the 

frequency and duration and magnitude of the shortfall in energy and power, as well as the 

variability around expected indices. System risks were analysed for different yearly demand 

profiles, generator properties, system margins, balancing services under the same reliability 

standard. The effect of the recent years’ reduction in demand due to the increase in 

renewable (e.g. wind) generation was also analysed and compared. 

5.3.1 CASE STUDY 1: GENERATION ADEQUACY WITH ONE-YEAR DEMAND PROFILE 

5.3.1.1 ORIGINAL BASE CASE SYSTEM 

Assumptions for a UK power system are given as: 

 Generators are standardised as 500MW unit  

 Generator availability is 85% 

 Generator MTTR as 100h 

 Yearly peak demand is 50GW 
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 System target LOLE as 3 hour/year 

In reality, generator parameters vary significantly for different individual generation plant. To 

investigate the generation reliability performance of UK power system, in this section, the 

studied system was simplified to be comprised of identical generators.  

The standardised generation was obtained from [103] that Combined Cycle Gas Turbine (CCGT) 

plants, which are the majority of the Capacity Agreements provisionally awarded in the UK, 

are averagely 473MW per unit. The average generator size for nuclear is 492MW and 318MW 

for coal/biomass plants. Therefore, 500MW was chosen as the generator capacity size in this 

study and 300MW was also investigated in sensitivity studies. 

The chosen generator availability relies on the data from OFGEM report [100] which provides 

the generator availability achieved in the UK is from 82% to 89%. Thus, 85% has been used for 

the base system and 90% in sensitivity analysis. 

From [104], a technical assessment report for UK conventional generator including coal and 

gas fired plants, the average mothball timescale is given for CCGT and coal as 2 days and 4 

days, respectively. According to this data, 100h generator mean repair time (MTTR) was 

chosen for the base system and 50h was used in sensitivity studies. 

With generator availability and MTTR, the failure and repair rate can be obtained using the 

following formula: 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜇

𝜆 + 𝜇
=

1
𝑀𝑇𝑇𝑅

𝜆 +
1

𝑀𝑇𝑇𝑅

 (5.10) 

Therefore, the generator failure and repair rate can be derived as 

𝜆 = 15.45 𝑜𝑐𝑐 𝑦𝑒𝑎𝑟⁄ (5.11) 

𝜇 = 87.6𝑜𝑐𝑐/𝑦𝑒𝑎𝑟 (5.12) 

In this section, a normalised IEEE RTS hourly load profile with 8760 values is used to represent 

a year. It is shown in Figure 5-3. 
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FIGURE 5-3 HALF-HOURLY LOAD PROFILE FOR A YEAR, NORMALISED [99] 

The available generation in this system is assumed independent from the demand.  In Table 

1, the installed generation is determined by adjusting the number of generators in the system 

to achieve a nearest LOLE value to 3h per year. Other than only LOLE, the yearly ENS and 

interruption frequency are obtained in this table. In all simulation time, the average duration, 

ENS and PNS of outage/shortage events are also computed. The system is simulated with the 

coefficient of variation as 1%. 

TABLE 5-1 THE ADEQUACY INDICES FOR THE GENERALISED GB POWER SYSTEM 

Installed 
Generation 
[GW] 

LOLE 
[h/year] 

ENS 
[GWh/year] 

LOLF 
[occ/year] 

Duration 
[h/event] 

ENS 
[MWh/event] 

PNS 
[MW/event] 

60.5 3.11 2.87 2.85 1.09 1008.0 928.9 

 

Apart from expectation values, the probability distribution of system adequacy indices is 

estimated by the sequential MSC. To aid interpretation, results are shown in histograms 

depicting the expected number of occurrence in 100 years. It is worth noting that, bar with x-

axis value as 0 representing indices equal to 0. Bars with x-axis value as N (N is not 0) 

representing indices larger than N-1 and equal or smaller than N. For example, the bar 

𝐿𝑂𝐿𝐷 = 1ℎ/𝑦𝑒𝑎𝑟 represents 𝐿𝑂𝐿𝐷 ∈ (0, 1] ℎ/𝑦𝑒𝑎𝑟. 
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FIGURE 5-4 LOLD PER YEAR OCCURRENCE DISTRIBUTION IN 100 YEARS 

From Figure 4, it can be seen that even LOLE is 3h/year, in 100 years there are still 18 years 

the LOLD is actually 0 meaning that no outage happens in these years. Similarly, there are very 

high occurrences for LOLD less than 2h/year. However, for a system conforms to the target 

Reliability Standard, there are still inevitable occurrences of very serious reliability 

performances. LOLD per year can be above 20h from this graph which means that the average 

3h LOLE system cannot prevent very long yearly shortage in a single year. 

 

FIGURE 5-5 ENS PER YEAR OCCURRENCE DISTRIBUTION IN 100 YEARS 
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Figure 5 shows the occurrence distribution of ENS. ENS equals or smaller than 1 GWh/year 

(excluding 0) happens 31 times in 100 years, approximately once in 3 years. The occurrence 

of yearly ENS is then decreasing for higher ENS. 

 

FIGURE 5-6 LOLF OCCURRENCE DISTRIBUTION IN 100 YEARS 

In Figure 6, yearly LOLF distribution shows a similar trend as LOLD. The same occurrence of 0 

outage as 18 times in 100 years. The most possible frequency of outage is once in a year. Still, 

a number of outages up to 19 in a year was observed in simulations. 

 

FIGURE 5-7 INTERRUPTION DURATION OCCURRENCE DISTRIBUTION IN 100 YEARS 

From Figure 7, the indices are for per event rather than per year. The occurrence of a 1-hour 

interruption in 100 years is around 200 means on average 2 interruptions lasting for 1 hour 
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are expected in a simulation year. From the same graph, it can be found that except for 1-

hour shortages, the number of a longer shortage is less than 1 in a year. 

 

FIGURE 5-8 INTERRUPTION ENS PER EVENT OCCURRENCE DISTRIBUTION IN 100 YEARS 

Similarly, the occurrence of 1GWh/year ENS event is slightly higher than 200 in 100 years. The 

occurrence of larger ENS events slides down dramatically. A shortage event with ENS as 

10GWh is approximately the total consumption of 2500 UK households in a year or that of 

21.9 million UK households for an hour on average. 

 

FIGURE 5-9 INTERRUPTION PNS PER EVENT OCCURRENCE DISTRIBUTION IN 100 YEARS 
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The PNS occurrence distribution shows that most of the interruption event has a PNS less than 

6 GW/event. In other words, the studied system can avoid almost all interruptions if a 6 GW 

capacity is standing by for all time. 

5.3.1.2 SENSITIVITY TO DIFFERENT LOLE LEVELS 

Even though the target UK reliability standard is set as 3h/year for LOLE, this value can be 

questioned may not guarantee a suitable level of security of supply. In power systems, system 

operators can apply balancing services during a system shortage to prevent a real blackout to 

customers. It is, therefore, essential to investigate the occurrence of extreme events when 

customer disconnection would have to happen.  

In this section, 5 systems with different LOLE levels are assessed to find out how much impact 

can be on reliability performances for extreme events. The reliability indicator is shown as the 

likelihood of controlled disconnections in the metric format of 1 in n years [100]. 

TABLE 5-2 PROBABILITY OF OCCURRENCE IN A GENERIC GB SYSTEM MEETING DIFFERENT RELIABILITY STANDARDS 

 Probability of occurrence in a generic GB system meeting a reliability 

standard of: 

Event 6.9 h/year 

LOLE 

4.6 h/year 

LOLE 

3.0 h/year 

LOLE 

1.3 h/year 

LOLE 

0.8 h/year 

LOLE 

LOLD > 10h/year 4 6 1 in 12 years 39 75 

>10GWh energy 

unserved in one year 
4 7 1 in 13 years 38 70 

2 or more power 

shortages in one year 
2 3 1 in 4 years 11 19 

Interruption 

lasting >10 hrs 
11 17 1 in 30 years 79 135 

Interruption 

of >10GWh unserved 

energy per event 

5 9 1 in 16 years 44 75 

Interruption of >4GW 

power not served 
12 20 1 in 35 years 102 182 

 

Table 5-2 summarises results across 5 systems which meet increasingly stringent reliability 

standard from left to right. The central case shows the probability of occurrence in 100 years 
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of a number of “extreme events” in a system meeting the current GB 3 hours LOLE reliability 

standard. 

With less stringent reliability standard (i.e. a smaller number of hours’ shortage), there is less 

installed capacity required, and therefore the occurrence of unserved energy events increases.  

While a more stringent reliability standard does reduce the probability of consumer 

interruptions, it does not completely insure against unserved energy. 

Results show that in all systems, regardless of the target LOLE, some risk of unserved energy 

will exist. This is due to the probability of plants being unavailable at the same time from 

planned and unplanned outages.  

However, unserved energy events do not necessarily lead to consumer disconnections. In 

reality, the System Operator is able to call on a number of “balancing services” to avoid 

resorting to consumer disconnections. 

5.3.1.3 EFFECTS OF BALANCING SERVICE 

There are three types of balancing services the system operator (SO) can use to prevent 

consumer disconnections: voltage reduction, max gen service and Emergency Assistance from 

interconnectors [27].  

Table 5-3 summarises results presented across 3 systems which meets a reliability standard 

of 3 hrs LOLE, where the SO has access to (a) no balancing services, (b) 1 GW or (c) 2 GW of 

balancing services (a realistic assumption given Grid’s current tools; however, procurement 

volume for balancing service is decided by National Grid and DECC and can be higher in other 

cases). 

 

 

 

 

 

 



CHAPTER 5 

Page 119 of 193 
 

TABLE 5-3 PROBABILITY OF OCCURRENCE IN A 3H/YEAR LOLE SYSTEM 

 Probability of occurrence in a 3hrs LOLE system with 

Event No balancing 

services 

1 GW of balancing 

services 

2 GW of balancing 

services 

Yearly LOLD > 10hrs 1 in 12 years 1 in 53 1 in 267 

>10GWh energy 

unserved in one year 
1 in 13 1 in 51 1 in 226 

2 or more power 

shortages in one year 
1 in 4 1 in 14 1 in 67 

Interruption lasting >10 

hrs 
1 in 30 1 in 97 1 in 361 

Interruption 

of >10GWh unserved 

energy per event 

1 in 16 1 in 57 1 in 236 

Interruption of >4GW 

power not served 
1 in 35 1 in 151 1 in 840 

Overall, results show that the existence of balancing services significantly reduces the risk of 

consumer disconnections. With 2GW of balancing services available, the probability of 

occurrence of extreme consumer interruptions is very low in a generic 3 hours LOLE system, 

as they could occur less than once in 226 years in all categories. 

Therefore, the analysis shows that there is a relatively low level risk of consumer interruptions 

given a 3 hours LOLE system where the SO has access to balancing services. 

5.3.1.4 SENSITIVITY TO GENERATOR AND PEAK DEMAND VARIATIONS 

In the original base case system, 100h MTTR, 500MW unit size, 85% availability and 50GW 

peak demand are chosen for a generic UK power system. In reality, generator parameters can 

vary considerably as well as peak demand changes in different years. These parameters may 

affect the whole system reliability performance even under the same LOLE standard. 

 Generator average repair time sensitivity 
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FIGURE 5-10 PROBABILITY OF OCCURRENCE WITH MTTR AS 50H AND 100H 

In Figure 10, when changing the assumed plants’ Mean Time To Repair (MTTR) from the 

original 100 hours down to 50 hours, the same LOLE level can be achieved on average (with 

the same overall plant availability of 85%), however, the probability of most extreme events 

becomes even lower.  

For example, the probability of large LOLE materialising in a given year (e.g. probability of a 

LOLE exceeding 10 hours) changes from 1 in 267 with 100 hours MTTR, to 1 in 1000 with 50 

hours MTTR. While it increases the frequency of interruptions, reducing the mean repair times 

of plant also reduces the average length of a given interruption. 

Indeed, with reduced repair time, plants fail more often, but come back online more rapidly 

as well. This results in a reduced average amount of unserved energy in a given year, i.e. the 

probability that we get >10Gwh of energy unserved in one year changes from 1 in 226 years 

to 1 in 500 years. 

Results of sensitivity analysis show that these conclusions are robust to changing assumptions 

about plant repair times. 

 Generator size sensitivity 

Similarly, a sensitivity analysis was also conducted on the assumed size of plants on the system 

and the results shown in Figure 11. Moving from the central assumptions of a generic 500MW 
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plant size to 300 MW units also changes the risks of the consumer disconnections for a given 

3 hours LOLE target, as the expected average frequency, duration and size of interruptions 

changes. 

 

FIGURE 5-11 PROBABILITY OF OCCURRENCE WITH PLANT SIZE AS 300MW AND 500MW 

With smaller plants on the system, a 3 hours LOLE target on average is associated with more 

frequent but smaller and shorter interruptions. The probability of large unserved energy 

amounts within one year is decreased since smaller plants mean more frequent failures (larger 

in number of generators), but if independent from each other, less capacity gets disconnected 

at a single time, reducing the depth of interruptions. 

This is an interesting finding, as these suggest that with large units on the system (e.g. large 

nuclear), while the occurrence of power shortages would be less frequent, each interruption 

could be more damaging to consumers. 

 Sensitivity to peak demand 

Figure 12 shows the expectation values of system adequacy indices for a system with the same 

load profile but different peak demand. The number of generators is adjusted to achieve the 

nearest possible LOLE to 3h/year. It can be found a slightly higher LOLE (less than 10%) with 

the 60GW system. For that, we expect these two systems have very similar performance while 

the 60GW may be slightly less reliable in terms of LOLE.  
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FIGURE 5-12 SYSTEM ADEQUACY INDICES WITH PEAK DEMAND AS 50GW AND 60GW 

Under the 3h LOLE condition, compared with the base case, when peak demand is increased 

from 50GW to 60GW (20% increase), the ENS and LOLF are 20% higher than the former. The 

rise of these values is aligned with the increase of system size, though as aforementioned the 

larger system is slightly less reliable in terms of LOLE. 

The average outage duration decreases from 3.12 to 2.74 h/event, about 10% lower. ENS for 

each interruption event is almost unchanged. PNS per event increases as the increase of LOLE. 

This can be explained that averagely PNS is increased with the LOLE but with a shorter 

duration, the change in ENS per event is neutralised. It can be found that, under the same 

reliability standard (by adjusting the number of generators), average yearly ENS and LOLF can 

be higher and duration of outages shorter with increased peak demand.  
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FIGURE 5-13 PROBABILITY OF OCCURRENCE WITH PEAK DEMAND AS 50GW AND 60GW 

Similarly, when peak demand is increased from 50GW to 60GW, the occurrence of large ENS 

and LOLF are higher than before conforms to the increase of LOLE (a slightly less reliable 

system due to discrete generation increasing). The same as expectation values, increase in 

high yearly ENS and LOLF is more obvious than that of LOLE. 

Long outage events are much rarer within the 60GW system that occurrence falls from 3.35 

to 2.61 times in 100 years. Different from an unchanged average ENS per event and slightly 

increased PNS per event, extreme ENS and PNS events are much more frequent than the base 

case. 

It can be concluded that, under the same 3h/year LOLE, increased peak demand, or in other 

words a larger system, would lead to more frequent but averagely shorter outages. With the 

unchanged generator size in a larger system, the size of generator compared with the size of 

the whole system relatively shrinks. This finding is then aligned with the sensitivity study of 

generator size in which smaller generator means a larger number of outage frequency (for a 

larger number of generators).  

With regard to the magnitude of shortage, the increased occurrence of large ENS event in a 

larger system is due to the increased frequency of shortage (considering that the expectation 

values are close); extreme events in the larger system have a higher probability to last shorter 

but more serious in depth.  
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 Sensitivity to generator availability 

In this part, system reliability is assessed with 2 generator availability levels: 0.85 and 0.90. 

Similarly, both systems are under then 3h LOLE standard by adjusting the number of 

generators. Repair time and generator size are kept the same as the base case system.  

 

FIGURE 5-14 SYSTEM ADEQUACY INDICES WITH GENERATOR AVAILABILITY AS 0.85 AND 0.90  

In Figure 14, the system with 0.90 availability generators is with a slightly lower LOLE at 

2.77h/year (about 10% lower than the base case system). This results from the discrete 

generator number in achieving the closest 3h LOLE (subtracting one generator from the 

system may lead to a LOLE much higher than 3h).   

ENS per year is decreased from 2.72 to 2.16 GWh/year, a larger fall than that of LOLE. The 

frequency of outage is much depressed, whilst duration of interruption per event is much 

longer. Although, PNS per event is down as LOLE, the average ENS per event goes up in the 

0.90 system. 

The frequency of shortage in 0.90 availability system is lower can be resulted from the smaller 

number of generators – the system requires fewer generators to achieve the same LOLE if 

they are more reliable. This result can also be related to the decreased failure rate of this 

generator. 
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𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜇

𝜆 + 𝜇
=

1
𝑀𝑇𝑇𝑅

𝜆 +
1

𝑀𝑇𝑇𝑅

 (5.13) 

Hence,  

𝜆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦=0.85 = 15.5 𝑜𝑐𝑐/𝑦𝑒𝑎𝑟 (5.14) 

𝜆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦=0.90 = 9.7𝑜𝑐𝑐/𝑦𝑒𝑎𝑟 (5.15) 

 

 

FIGURE 5-15 PROBABILITY OF OCCURRENCE WITH GENERATOR AVAILABILITY AS 0.85 AND 0.90 

Figure 15 shows the indices for large events between 0.85 and 0.90 availability. When the 

single generator is more reliable (a higher availability), the occurrence of yearly shortage over 

10h is increased, considering that the average LOLE is slightly lower in 0.90 system. The same 

as average yearly ENS, the occurrence of large ENS events is less frequent with reliable 

generator system. An obvious improvement is achieved in shortage frequency that the LOLF 

over once a year has fallen from 25 to 15 occurrence in 100 years, and the large PNS events 

are also much rarer. The drawback of the 0.90 system is that shortages over 10h can be much 

more frequent to occur. 

This is an interesting finding that better generators can guarantee a big fall in expected 

frequency of outages and the number of very serious events in terms of power unserved. But 

8.60

7.90

25.03

3.35

6.43

33.6

8.87

6.37

15.64

6.37

6.14

19.7

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

LOLD>10h/year
[occurrence in 100 years]

ENS>10GWh/year
[occurrence in 100 years]

LOLF>=2occ/year
[occurrence in 100 years]

Duration>10h/event
[occurrence in 100 years]

ENS>10GWh/event
[occurrence in 100 years]

PNS>2GW/event
[occurrence in 100 years]

Probability of occrrence when increasing generator 
availability

Availability 0.85

Availability 0.90



CHAPTER 5 

Page 126 of 193 
 

the duration of such outages can double of that before. If the prolonged but light in depth 

shortage can be limited or dealt with actions to shorten the duration, better generators can 

contribute to a very healthy reliability performance. 

5.3.2 CASE STUDY 2: GENERATION ADEQUACY WITH 17 YEARS DEMAND PROFILE 

In this section, the demand profile is based on National Grid Company data from 1995 to 2011, 

excluding demand by pumped storage plants but including losses. The profile has been scaled 

to a common level of underlying demand in each year, currently 331 TWh. The scaling is in 

proportion to the weather–adjusted TWh demand for that year. This should preserve day-to-

day variations from weather and chance events. There has been no attempt to correct for 

changes in the mix of demand over time (e.g. de-industrialisation). The rescaled peak demand 

for each year is shown in Figure 16. The estimated output from embedded wind stations is 

excluded in this figure but added back to demand in the study of 3.2.2. 

The wind generation profile in this study has been derived from the Virtual Wind Turbine 

Model [101]. It is for a mix of existing and planned turbines, onshore, offshore and Round 3 

sites. The mix represents National Grid’s Gone Green Scenario, with 13.7 GW onshore and 

12.6 GW offshore. 

5.3.2.1 17 YEARS VS INDIVIDUAL YEAR PERFORMANCE (500MW+100H) 

Rather than section 3.1 in which normalised IEEE RTS yearly demand profile is used and scaled 

to preferred level (50GW), the NGC historic demand profile in this section contains specific 

demand levels in function of time for each hour from the year 1995 to 2011 for GB electricity 

system. The system security can, therefore, be assessed with the whole continuous 17 years’ 

demand profile. 
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FIGURE 5-16 YEARLY PEAK DEMAND FOR GB ELECTRICITY SYSTEM 1995 TO 2011 

System reliability performance of individual years can vary significantly. Shown in Figure 16, 

yearly peak demand can change over 10%. This is affected by many factors such as big events, 

weather changing, raise of environment awareness, appliances efficiency improvement and 

etc. Given the same generation capacity, the yearly system security indices can be a very low 

system for good years, such as the year 2000, but it can also be extremely high for adverse 

years, e.g. 2010, highly possible to be over the UK 3h LOLE Reliability Standard. Therefore, in 

this part, we aim to analyse the system adequacy for the whole 17 years, but also estimate 

the system performance in each individual year and based on the results discuss suitable 

arrangements. 

In this section, assumptions for a generic GB power system are given as: 

 Generators are standardised as 500MW unit  

 Generator availability is 85% 

 Generator MTTR as 100h 

 System target LOLE as 3 hour/year 

Yearly peak demand is no longer prescribed separately since the specific demand level for 

each hour can be obtained from NGC data. 
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The number of generators is adjusted to achieve the LOLE closest as possible to 3h for all 17 

years. With the same installed generation capacity, LOLE and other reliability performance 

indices are checked for individual annual demand profiles. 

TABLE 5-4 SYSTEM PERFORMANCE FOR THE WHOLE PERIOD FROM 1995 TO 2011: YEARLY EXPECTATION 

 LOLE 

[h/year] 

ENS 

[GWh/year] 

LOLF 

[occ/year] 

Duration 

[h/event] 

ENS 

[MWh/event] 

PNS 

[MW/event] 

17-Year 3.16 4.10 1.78 1.78 2305.6 1360.5 

 

TABLE 5-5 SYSTEM PERFORMANCE FOR THE WHOLE PERIOD FROM 1995 TO 2011: LARGE EVENTS OCCURRENCE IN 100 YEARS 

 LOLE>10

h/year 

[occurren

ce in 100 

years] 

ENS>10GWh

/year 

[occurrence 

in 100 years] 

LOLF>=2occ 

/year 

[occurrence 

in 100 

years] 

Duration>10h 

/event 

[occurrence in 

100 years] 

ENS>10GWh 

/event 

[occurrence in 

100 years] 

PNS>2GW 

/event 

[occurrence 

in 100 

years] 

17-

year 

8.8 9.4 30.1 1.4 8.9 18.0 

 

Table 5-4 shows the expectation adequacy values for the whole period from 1995 to 2011. 

The installed generation is adjusted to achieve a LOLE as 3.16h/year (add or subtract one 

generator will lead to a LOLE away from 3h) that the system is adequate according to the 

Reliability Standard. Table 5-5 provides the results for large event occurrence in 100 years for 

the 17 years’ profile.  
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TABLE 5-6 SYSTEM PERFORMANCE USING INDIVIDUAL ANNUAL LOAD PROFILES: YEARLY EXPECTATION 

Year LOLE 

[h/year] 

ENS 

[GWh/year] 

LOLF 

[occ/year] 

Duration 

[h/event] 

ENS 

[MWh/event] 

PNS 

[MW/event] 

1995 1.24 1.17 0.97 1.28 1200.1 948.2 

1996 2.94 3.06 2.22 1.32 1378.0 1077.7 

1997 3.04 3.39 2.01 1.51 1688.0 1190.2 

1998 0.61 0.57 0.51 1.19 1109.6 947.9 

1999 0.79 0.76 0.60 1.32 1271.8 970.4 

2000 0.24 0.20 0.20 1.20 998.5 902.5 

2001 1.04 1.01 0.78 1.33 1284.1 998.5 

2002 1.61 1.73 1.11 1.45 1553.8 1115.2 

2003 1.78 1.90 1.26 1.42 1513.3 1123.3 

2004 0.56 0.48 0.43 1.31 1115.2 854.1 

2005 1.12 1.04 0.83 1.35 1251.6 991.7 

2006 0.65 0.55 0.49 1.32 1123.8 865.2 

2007 1.10 1.00 0.74 1.49 1352.3 929.8 

2008 1.26 1.24 0.91 1.38 1362.4 1018.1 

2009 2.89 3.10 1.85 1.56 1681.3 1145.5 

2010 28.01 41.15 12.96 2.16 3174.7 1634.8 

2011 2.44 2.39 1.65 1.48 1448.9 1026.4 

  

With the same generation capacity, individual annual demand profile was assessed via MCS. 

From Table 5-6, most of the years in the studied period have shown that the system is 

adequate in terms of yearly LOLE. However, in 2010, the LOLE can reach as high as 28h/year, 

other indices are almost 10 times of the average. In most years, except 2010, the indices are 

all under the average performance shown in Table 5-4. 
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TABLE 5-7 SYSTEM PERFORMANCE USING INDIVIDUAL ANNUAL LOAD PROFILES: LARGE EVENT FREQUENCY 

Year LOLD>1

0h/year 

[occurre

nce in 

100 

years] 

ENS>10GW

h/year 

[occurrence 

in 100 

years] 

LOLF>=2oc

c/year 

[occurrence 

in 100 

years] 

Duration>10h

/event 

[occurrence 

in 100 years] 

ENS>10GWh

/event 

[occurrence 

in 100 years] 

PNS>2GW/

event 

[occurrenc

e in 100 

years] 

1995 1.1 2.2 25.2 0.1 0.3 2.4 

1996 5.5 7.5 52.7 0.9 2.4 10.1 

1997 5.1 9.1 51.6 1.2 3.3 12.3 

1998 0.2 0.8 12.3 0.0 0.2 1.4 

1999 0.5 1.1 14.9 0.0 0.6 2.2 

2000 0.1 0.2 3.7 0.0 0.0 0.4 

2001 0.7 1.8 19.8 0.0 0.7 2.5 

2002 2.1 4.0 29.1 0.0 1.6 5.0 

2003 2.3 4.9 33.0 0.1 1.8 7.9 

2004 0.1 0.5 10.4 0.0 0.2 0.9 

2005 1.0 1.8 21.9 0.0 0.5 2.3 

2006 0.4 0.8 11.7 0.0 0.4 0.8 

2007 1.1 2.1 18.7 0.0 1.0 2.9 

2008 1.5 2.5 23.5 0.1 1.4 3.6 

2009 6.2 8.6 45.2 0.4 4.0 10.4 

2010 90.4 91.2 100.0 20.5 109.6 209.6 

2011 4.1 6.3 40.5 0.3 1.5 6.4 

 

Similarly, with the same generation capacity as the average demand study, individual annual 

demand profile was assessed via MCS. Shown in Table 5-7, most of the years in the studied 

period have shown a very low occurrence for extreme situations. However, with the load 

profile of year 2010, serious events are almost inevitable to happen.  
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Above results show that when generation capacity is planned to be adequate for all years 

achieving 3h LOLE, the performance in individual years can vary considerably. In terms of LOLE, 

the system shows high reliability since above 50% years LOLE is lower than 2h/year. For 

achieving the target 3h/year, it may be more economical to lower the capacity of generation 

but applying emergency reserve for those adverse years. 

5.3.2.2 SYSTEM PLANNING WITH WIND  

Embedded renewable energy is growing dramatically in recent years due to the well-increased 

environment awareness and government commitment and incentives. The UK has the world’s 

largest installed capacity of offshore wind since 2008 [105]. It is essential to understand that 

how wind is to affect the UK total system reliability performance, whether it is advisable to 

build more wind, and whether the current Reliability Standard can ensure an acceptable 

security of supply for the future. 

A sharp drop of about 6 GW in ACS peak demand has been found between winter 2005/06 

and winter 2014/15 seen from NGC transmission network [100]. The reduction in demand is 

believed to be mainly from the contribution of fast growing embedded generation and rising 

demand response services in distribution networks. Since wind is playing a main role in the 

embedded capacity in the UK, in this study we use wind generation to represent the capacity 

from distribution networks. The wind capacity profile is derived from the Virtual Wind Turbine 

Model [101]. The wind capacity in the model is a mix of existing and planned turbines, onshore, 

offshore and Round 3 sites [102] [106]. The mix represents National Grid’s Gone Green 

Scenario, with 13.7 GW onshore and 12.6 GW offshore. The wind output is derived as a 

continuous hourly profile for years from 1995 to 2011, corresponding to the NGC load profile. 

The impact of wind on the whole system security of supply is then analysed. 

The analysis in this part is implemented by using the combined wind output and load profile 

and adjusting the number of generators to achieve the closest LOLE to 3h/year for the whole 

period from 1995 to 2011. In this section, we investigate generators as 500MW 100h MTTR 

and 300MW 50h MTTR, availability as 0.85 and 0.9, 3 levels of balancing service, 0GW, 1.5GW 

and 3GW, for sensitivity studies.  

A. System performance in expectation values 
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TABLE 5-8 SYSTEM RELIABILITY PERFORMANCE IN EXPECTATION VALUES 

Install

ed 

capaci

ty 

[MW] 

    LOLE 

[h/ye

ar] 

ENS 

[GWh/ye

ar] 

LOLF 

[occ/ye

ar] 

Durati

on 

[h/eve

nt] 

ENS 

[GWh/ev

ent] 

PNS 

[GW/eve

nt] 

74000 500M

W 

100h 

MTTR 

no 

wind:0G

W BS 

2.99 3.82 1.72 1.74 2.22 1.31 

  no 

wind:1.5

GW BS 

1.20 1.39 0.73 1.64 1.91 1.22 

  no 

wind:3G

W BS 

0.43 0.47 0.28 1.57 1.69 1.14 

73200 300M

W 

50h 

MTTR 

no 

wind:0G

W BS 

3.23 3.91 2.14 1.51 1.83 1.21 

 no 

wind:1.5

GW BS 

1.02 1.09 0.73 1.41 1.51 1.09 

 no 

wind:3G

W BS 

0.34 0.31 0.26 1.27 1.17 0.94 

 

Table 5-8 shows the system reliability performances in expectation values. It can be found 

that for the system with 500MW unit and 100h MTTR, the required generation capacity is 

slightly higher than that with 300MW unit and 50h MTTR. Both systems are with LOLE as 

around 3h/year, conforming to the UK Reliability Standard. It can be seen that the frequency 

of system outage is much lower as 1.72 than the 300MW system where the LOLF is 2.14 

occ/year. This is because the 300MW system has a higher number of generators so that the 

number of failures from generators can also increase. Meanwhile, the generator availabilities 

are both 85%, and the 300MW system’s MTTR is 50h, the failure rate for each generator is 

larger, accordingly. The formula for failure rate can be given as followed 
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𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜇

𝜆 + 𝜇
=

1
𝑀𝑇𝑇𝑅

𝜆 +
1

𝑀𝑇𝑇𝑅

 (5.16) 

Therefore, the values can be derived as 

𝜆𝑀𝑇𝑇𝑅=50ℎ = 30.9𝑜𝑐𝑐/𝑦𝑒𝑎𝑟 (5.17) 

𝜆𝑀𝑇𝑇𝑅=100ℎ = 15.45 𝑜𝑐𝑐 𝑦𝑒𝑎𝑟⁄ (5.18) 

With a higher average shortage frequency per year, the 300MW+50h system is reasonable to 

have longer average duration per event for the same LOLE at 3h. Since the expected ENS per 

year are almost the same for both systems, the ENS per event is therefore expected to be 

higher in the 500MW+100h system due to the lower frequency of events. However, the PNS 

per event is affected by ENS per event and duration per event which are both higher in the 

500MW+100h system, the difference of PNS per event between those two systems is 

relatively small. 

For the same amount of balancing service, it is interesting to see that, the improvement is 

more obvious with 300MW systems in all reliability indices. It may be because, in 300MW+50h 

systems, shortages are comparatively lighter in severity but more frequent to happen. Thus, 

with the same amount of balancing service, the smaller outages, though occur frequently, can 

be covered but larger outages may only be resolved when generators are repaired. 

 

 

 

 

 

 

 



CHAPTER 5 

Page 134 of 193 
 

TABLE 5-9 SYSTEM PERFORMANCE FOR THE WHOLE PERIOD FROM 1996 TO 2011: WITH WIND 

Install

ed 

capaci

ty 

[MW] 

    LOLE 

[h/ye

ar] 

ENS 

[GWh/ye

ar] 

LOLF 

[occ/ye

ar] 

Durati

on 

[h/eve

nt] 

ENS 

[GWh/ev

ent] 

PNS 

[GW/eve

nt] 

69000 500M

W 

100h 

MTTR 

wind:0G

W BS 

2.75 4.20 1.30 2.12 3.24 1.55 

  wind:1.5

GW BS 

1.15 1.66 0.58 1.98 2.85 1.45 

  wind:3G

W BS 

0.53 0.73 0.27 1.94 2.65 1.42 

68100 300M

W 

50h 

MTTR 

wind:0G

W BS 

2.94 4.52 1.53 1.92 2.96 1.49 

 wind:1.5

GW BS 

1.35 1.93 0.73 1.83 2.63 1.42 

 wind:3G

W BS 

0.57 0.74 0.33 1.72 2.24 1.32 

 

Table 5-9 is the reliability performance for the systems with wind. Thanks to the wind capacity, 

only 69000MW conventional generation is required to achieve 3h LOLE, 5000MW less than 

that of the system without wind. 

In Table 5-9, the 500MW+100h system with wind shows a lower frequency of outage 

(1.3occ/year to 1.53occ/year) and a longer duration per event (2.12h/event to 1.92h/event). 

The PNS and ENS per event are also lower in the 300MW+50h system. These results show a 

similarity as those for no wind system. 

Between the systems with and without wind, it can be seen that, with LOLE as 3h/year (some 

differences are from the discrete number of generator, the same as other results in this 

chapter), the frequency of shortages is much improved from 1.72 occ/year to 1.3 occ/year 

with wind. However, customers have to suffer a longer duration of an outage event from 

1.74h/event to 2.12h/event (comparing the 500MW+100h system data). The average results 
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also show that both ENS and PNS per event are much worse when systems are installed with 

wind. 

B. System performance in distribution functions 

The system reliability indices are expressed as the distribution functions of frequency of 

occurrence in 100 years in this section. The value for LOLD=0h/year in the curve represents 

the occurrence of LOLD=0h/year; the value for LOLD=1h/year represents 𝐿𝑂𝐿𝐷𝜖(0,1]ℎ/𝑦𝑒𝑎𝑟; 

this applies to all other distribution diagrams. In each diagram, the range of reliability 

performance for different system specifications are also evaluated and shown as colour filled 

areas (red for no wind systems, blue for with wind systems). These system specifications 

include generator unit size as 300MW and 500MW, MTTR as 50h and 100h, generator 

availability as 0.85 and 0.9 and all systems are ensured to be 3h LOLE on average. 

In addition to the distribution curves, the values of complementary cumulative frequency of 

occurrence are given for large events. 

 Reliability performance per year 

TABLE 5-10 RELIABILITY PERFORMANCE PER YEAR FOR LARGE EVENT IN NO WIND AND WITH WIND SYSTEMS (PER YEAR) 

 LOLD>10h/year 

[occurrence in 100 

years] 

ENS>10GWh/year 

[occurrence in 100 years] 

LOLF>=10occ/year 

[occurrence in 100 years] 

No wind 7.8-9.7 7.8-9.8 3.3-6.6 

With wind 7.9-8.3 8.9-10.3 0.5-1.2 

 

In Figure 17, the distributions of LOLD per year for systems with no wind and with wind are 

drawn. It can be found that a slightly higher frequency of LOLD=0occ/year is observed for the 

system with no wind. However, most areas are overlapping for both systems meaning that 

the LOLD per year performance in distribution is very close for with and without wind. In Table 

5-10, the frequency values of LOLD>10h/year for both systems are similar, though no wind 

system can have slightly more high LOLD per year.   
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FIGURE 5-17 LOLD PER YEAR FREQUENCY OF OCCURRENCE 

This also applies to ENS per year in Figure 18. No wind system has a higher ENS=0GWh/year, 

but the difference for higher ENS per year between two systems is very small. 

Opposite to LOLD, the result for ENS>10GWh/year in Table 5-10 shows that with wind system 

can be slightly riskier to have large ENS years, even though the difference is not obvious. 

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

Fr
eq

u
en

cy
 o

f 
o

cc
u

rr
en

ce
 [

o
cc

/1
0

0
-y

ea
r]

LOLD [h/year]

LOLD per year

No wind With wind



CHAPTER 5 

Page 137 of 193 
 

 

FIGURE 5-18 ENS PER YEAR FREQUENCY OF OCCURRENCE 

 

FIGURE 5-19 LOLF PER YEAR FREQUENCY OF OCCURRENCE 

In Figure 19, the frequency of occurrence for LOLF=1 and 2occ/year is slightly higher in the 

system with wind. For large LOLF in this diagram, the values are very close. However, Table 

5-10 shows that the frequency of occurrence for LOLF>10occ/year in no wind system is 3.3-
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1.2occ/100-year. It means that the system without wind can have a much higher probability 

of a high number of shortages per year, but through installing wind in distribution networks, 

the chance of very high shortage occurrence will be much reduced. 

 Reliability performance per event 

TABLE 5-11 RELIABILITY PERFORMANCE PER YEAR FOR LARGE EVENT IN NO WIND AND WITH WIND SYSTEMS (PER EVENT) 

 Duration>10h 

/event 

[occurrence in 100 years] 

ENS>10GWh 

/event 

[occurrence in 100 years] 

PNS>8GW 

/event 

[occurrence in 100 

years] 

No wind 0.2-1.3  4.8-6.1 0-0.2 

With wind 2.8-3.5 9.7-12.0 0.2-0.4 

 

 

FIGURE 5-20 DURATION PER EVENT FREQUENCY OF OCCURRENCE 

Figure 20 shows the distribution of occurrence for shortage duration per event. It can be found 

that the frequency of occurrence of short shortage events is much lower in the system with 

wind than the no wind system. But it becomes higher for duration events longer than 5h. 

Duration>10h/event for the system with wind is 2.8-3.5occ/100-year almost three times of 

that for the system without wind. This means that system with wind can be much riskier to 

experience very long outages. However, since the occurrence of duration below 5h/event is 
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much lower than that of the system with no wind, it can be seen that the system with wind 

has less frequent short duration outages. 

 

FIGURE 5-21 ENS PER EVENT FREQUENCY OF OCCURRENCE 

 

FIGURE 5-22 PNS PER EVENT FREQUENCY OF OCCURRENCE 
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In Figure 21, the frequency of occurrence for ENS<3GWh/event is found much lower for the 

system with wind. The difference is not obvious for ENS>3GWh/event. However, shown in 

Table 5-11, the ENS>10GWh events are twice frequent in the system with wind as that without 

wind. 

Similarly, the system with wind has a lower frequency of events with power shortage less than 

3GW, but more high PNS events are observed when the deficit is over 4GW. In Table 5-11, 

PNS per event larger than 8GW is much more frequent in the wind system. 

Comparing wind and no wind, it is interesting to find that, the system with wind can have 

fewer events which are small in energy and power not supplied and short in time, but could 

potentially be more likely to experience very serious events than the system without wind. 

C. Effects of balancing service for system with and without wind 

In the UK power system, balancing services can be called on to mitigate a real blackout in 

unexpected situations. System operators can use the capacity standing from voltage reduction, 

max gen service and Emergency Assistance from interconnectors to prevent customer 

disconnection. According to OFGEM yearly GB capacity assessment report, the current GB 

balancing service capacity for NGC is around 2.56GW [100]. 

The effects of balancing service are analysed in section 3.1.3 in the generic GB system. 

However, even for the same capacity, the benefits in reliability improvement may vary in the 

systems with wind and without wind. It is essential to assess that whether the existing 

balancing service capacity is sufficient in the context that embedded generation (mainly as 

wind in the UK) and demand response capacity is booming in distribution networks. 

Similarly, since balancing services are used during extreme situations, we will analyse the 

system reliability performance for very large events. 

In this section, bar charts are used for representing the range of system security performances 

above a certain level to show that occurrences of very large issues in these systems. The 

ranges of values are evaluated in generator parameter sensitivity studies on unit size (500MW 

and 300MW), MTTR (100h and 50h), availability (0.85 and 0.90). All sensitivity studies conform 

to the 3h LOLE standard by adjusting the number of generators. 

Since the results are obtained by Monte Carlo simulation, the ranges of values will contain 

simulation errors. The coefficient of variation for the simulation is 1% for LOLE, according to 

probability theory, the simulation error can be believed to be less than 2% (for 95% 
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confidence). But for other indices, the error range can be smaller or larger, though the 

difference should not be large.  

 

FIGURE 5-23 LOLE PER YEAR FREQUENCY OF OCCURRENCE WITH BALANCING SERVICE 

In figure 23, both systems perform similarly for with wind and no wind. For different levels of 

balancing service, the system with wind has a slightly higher frequency of large LOLD. 
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FIGURE 5-24 ENS PER YEAR FREQUENCY OF OCCURRENCE WITH BALANCING SERVICE 

 

FIGURE 5-25 LOLF PER YEAR FREQUENCY OF OCCURRENCE WITH BALANCING SERVICE 

Figure 24 and Figure 25 show us a similar result. It can be seen that, for yearly indices, the 
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FIGURE 5-26 DURATION PER EVENT FREQUENCY OF OCCURRENCE WITH BALANCING SERVICE 

In figure 26, the frequency of occurrence for duration per event larger than 10h is very high 

with wind. This can be seen that large events in wind system are much more frequent than 

that in no wind system. Balancing service can make a significant improvement for preventing 
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without wind is still better than that of with wind. 
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FIGURE 5-27 ENS PER EVENT FREQUENCY OF OCCURRENCE WITH BALANCING SERVICE 

 

FIGURE 5-28 PNS PER EVENT FREQUENCY OF OCCURRENCE WITH BALANCING SERVICE 

Figure 27 and Figure 28 show the frequency of serious events with very large energy and 

power curtailment. Similarly, adverse outages are much more frequent in a system with wind 

generation, even though high balancing service can make the difference much reduced. 
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It can be found that the effects of balancing service for both systems are very similar in annual 

indices. However, huge differences exist in shortage event duration, power in deficit, and 

energy curtailment. Extreme events mean that uncontrollable customer connection can be 

inevitable. The existing balancing service may be insufficient to prevent customers from more 

outages if the embedded generation capacity continues to grow. 

5.4 CONCLUSIONS 

In this chapter, the security of supply for a generic GB electricity system was assessed via 

chronological Monte Carlo simulation. The system under the 3h/year LOLE reliability standard 

was tested to evaluate its adequacy performance in an extended range of measurements, 

reflecting frequency and duration of event, magnitude of power and energy curtailment. The 

indices were represented as both expectation values and probability distribution functions.  

Under the assessment model, two case studies were conducted. In the first case study, the 

normalised IEEE-RTS demand profile was applied to analyse the system adequacy with 

different LOLE levels for checking if 3h/year is a suitable system standard. Results show that 

in all systems, regardless of the target LOLE, some risk of unserved energy will exist. This is 

due to the probability of plants being unavailable at the same time from planned and 

unplanned outages. However, unserved energy events do not necessarily lead to consumer 

disconnections. In reality, the System Operator is able to call on a number of “balancing 

services” to avoid resorting to consumer disconnections. The study results for systems with 

different levels of balancing service show that the existence of balancing services significantly 

reduces the risk of consumer disconnections. With 2GW of balancing services available, the 

probability of occurrence of extreme consumer interruptions is very low in a generic 3 hours 

LOLE system, as they could occur less than once in 226 years in all categories. Therefore, the 

analysis shows that there is a relatively low level risk of consumer interruptions given a 3 hours 

LOLE system where the SO has access to balancing services. 

In case study 2, a 17-year NGC data was used and individual year performance was evaluated 

to help recognise the variation of system behaviour in different years. The results show that 

when generation capacity is planned to be adequate for achieving 3h LOLE, the performance 

in individual years can still vary considerably. In terms of LOLE, the system shows high 

reliability since above 50% years LOLE is lower than 2h/year. For achieving the target 3h/year, 

it may be more economical to lower the installed capacity of generation but applying 

emergency reserve for those adverse years. 
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The drop of peak demand in recent years mainly from the contribution of fast growing 

embedded generation and rising demand response services in distribution networks was 

analysed by adding wind generation in the adequacy assessment. A wind profile model was 

applied for evaluating the impact of the growing wind capacity on system reliability. It was 

found that, under the same 3h LOLE standard, the system with wind could have fewer 

shortages per year on average. Light events in terms of shortage power, energy, duration are 

less frequent for that with wind. However, it was seen a larger risk to experience much more 

serious events than that of no wind. Balancing service for future GB system which could build 

more embedded wind and other types generation capacity from distribution networks may 

need more procurement for protecting customers from disconnection in more frequent 

extreme events. The 3h LOLE standard for a high wind penetration system may not be able to 

ensure an acceptable level of security of supply, especially for adverse events. The potential 

solution can be a more stringent reliability standard or increased capacity of balancing services. 
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

6.1 CONCLUSIONS 

In this thesis, the challenges of reliability assessment for distribution networks with complex 

time domain distribution network operations were identified and investigated. An efficient 

distribution network operation model was developed that allows, via Monte Carlo simulations, 

the implications of Smart Grid technologies, various customer interruption cost models and 

high impact low probability events to be analysed. The impacts of fast growing embedded 

generation in distribution networks on GB system generation adequacy were also investigated.  

The hierarchy of the proposed reliability model for distribution network is shown in Figure 6-1. 

Taken together, the research described in this thesis has produced a single distribution 

network reliability model with various options to trade accuracy and computational efficiency: 

 

FIGURE 6-1 THE HIERARCHY OF MODELS 

1) State space or time-dependent simulation:  

Simple 

Complex 

Optimal 
Network 
Switching 

Optimal Load 
Point 
Disconnection 

Time-dependent 
simulation 
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With the proposed reliability assessment model, distribution network planning and 

operation can be analysed in a snapshot model in which the sampling of system state 

is independent to time or sequence of state. This feature enables the use of state 

space Monte Carlo simulation in which system states are sampled randomly and the 

result for each state is not affected by other states. Applying delicately controlled 

distortions to system state probability distribution functions to sample “important” 

states more frequently and restore the biased value in final results – the method often 

referred to as importance sampling – significantly improved the computational 

efficiency of network simulations. The proposed method still ensured accurate 

expected results, although the probability variability of reliability indices was 

compromised (achievable if not using importance sampling but lose computational 

efficiency); chronological characteristics of network operations which are related to 

actions in history, such as the charging and discharging of storages considering state 

of charge (SOC), were analysed with the proposed assessment model using time-

sequential Monte Carlo method. With this method, the variability (probability 

distribution functions) of reliability performance indices was able to obtain with a 

better speed of result convergence than the unbiased state space Monte Carlo 

simulation, but slower than the simulation with importance sampling. 

 

2) Continuous and discrete load point disconnection:  

Discrete load point disconnection represents passive LV network switching with which 

customers are fully curtailed after the occurrence of a fault by opening the circuit 

breaker/switch at the LV distribution transformer. The continuous load point 

disconnection represents the systems with active demand response so that the load 

at LV level can be disconnected partially by the amount required for network 

balancing and the power curtailment is dynamically controlled reflecting the real time 

network information updates. These two systems can both be analysed with the 

proposed assessment model by solving the optimisation of load curtailment with the 

corresponding constraints for two disconnection schemes. 

 

3) Implicit and explicit network switching: the explicit network switching model has been 

proposed to reflect detailed switching actions in distribution network restoration 

considering network constraints and radial topology; the implicit switching model was 

created for distribution systems assuming that with future Smart Grid technologies 
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radial topology would not be necessary and optimal control over power flows in each 

section of networks can be applied automatically. The two network switching models 

enable the analysis for the different levels of future network simulation fidelity and 

computational efficiency. 

Using the proposed system model via Monte Carlo simulation, applications of risk assessment 

in power system reliability have been conducted and some results have been concluded below:  

A. Impacts of different network improvement options on distribution network reliability 

were analysed and discussed.  

Based on the proposed simulation model in Chapter 2, non-network solutions for enhancing 

distribution network reliability/capacity were analysed in Chapter 4 part 1. An operation 

model for DG and a greedy model for energy storage aiming for maximising their ability in 

improving reliability were formulated. Different network improvement options including 

automatic switching, mobile generation, energy storage and DG are assessed for their impacts 

on network reliability performances in terms of ENS, CI and CML.  

It has been found that non-network solutions can greatly contribute to distribution network 

reliability, but the impacts on network performance indices can vary significantly with 

different technologies. The following are the features of the studied solutions to network 

reliability:  

 Automatic switching can significantly reduce CI since fault clearing can be shortened 

to 2min so that the interruption before switching actions are not recorded in CI. The 

contribution is less effective for lower network redundancy since that automatic 

switching is not able to mitigate the power shortage. The contribution from automatic 

switching to reduction of ENS and CML is relatively small. 

 Energy storage units can also greatly improve network CI performance if they can 

support islanded operation (e.g. battery on the wall). Storage can be an effective 

option to lower ENS and CML, but this ability is constrained by not only the power 

rating but also the maximum energy that can be stored. 

 Mobile generators for emergency supply, which in our study is assumed to be 

available in 3 hours after an outage happens, are found effective in improving ENS 

and CML, especially for low network redundancy situations. The effect on CI from 

mobile generators is negligible. 
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 Similar to mobile generators, considerable contribution in improving ENS and CML 

can be achieved with increased network demand by integrating DGs. Different from 

mobile generators, if combined with automatic switching, DGs can potentially have a 

significant contribution to CI reduction since it does not require a long waiting time to 

supply. 

Therefore, the optimal network reinforcement for matching the future demand growth may 

be a combination of various network and non-network solutions. 

B. Investigation on the quantification of customer interruption cost (CIC) and its implications 

on distribution network planning. 

In Chapter 4 part 2, we reviewed the main methodologies for the quantification of customer 

interruption cost (CIC). To investigate the value customer might place on interruptions, 

different customer damage functions (CDF) were identified. In combination with the OFGEM 

adopted constant value of lost load (VoLL), the expected CIC were computed using the 

different CDFs within the same distribution network. It can be observed that for reduced 

network redundancy, customer interruption costs increase with all CDFs. The cost to 

residential customers is lower than that to commercial, industrial or large users. This is caused 

by that most interruptions experienced by customers in the network being studied are shorter 

than 8 hours. Interruptions longer than that may incur a higher cost per unit peak demand for 

residential customers than that for large users. The cost to commercial sectors is lower than 

that to large users for N-1 redundancy but higher for N-0 redundancy which indicates that 

commercial customers could be affected more by longer outages than larger users. Our study 

also showed that the selection of different customer damage functions can change 

fundamentally the obtained planning solution for distribution network operators. An average 

value of VoLL for quantification of customer interruption cost may therefore not lead to a truly 

optimal network planning and potentially result in extra costs to customers. 

C. Modelling of High Impact Low Probability (HILP) events and evaluation of their impacts on 

network planning. 

High impact low probability events are by definition very rare so that their impacts on network 

reliability and the cost to network operators are difficult to quantify. The third part of Chapter 

4 modelled HILP events and evaluated the reliability performance through time-sequential 

Monte Carlo simulation. Impacts of HILP events with different severity levels have been 

studied considering the contribution of an emergency generation with different supply rate 
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and preparation time as mitigation measures. The results demonstrate that severe HILP 

events can lead to a significant cost of lost load which may justify development of more 

resilient networks, e.g. transformation to underground (UG) network, supported by the 

provision of fast and high capacity emergency generation, especially during very severe events.  

 

D. Exploration of the influence of the fast growing generation capacity in distribution 

networks to the whole GB system security of supply under the current reliability standard. 

Chapter 5 evaluated the security of supply for a generic GB electricity system. From the 

analysis, it is found that there is a relatively low level risk of customer interruptions given a 3 

hours LOLE system where the System Operator has access to balancing services (currently 

around 2GW). However, the drop in peak demand in recent years mainly from the 

contribution of fast growing embedded generation and a future increase of demand response 

services in distribution networks can expose the system to fewer but more serious customer 

disconnections. The analysis shows that the 3h LOLE standard for a high wind penetration 

system may not be able to ensure an acceptable level of security of supply, especially for 

adverse events when high demand coincides with lower available generation capacity. The 

potential solution to this issue could be a more stringent reliability standard or increased 

capacity of balancing services. 

6.2 DIRECTIONS FOR FUTURE WORK 

A. Network model 

The proposed network simulation tool models distribution network restoration in two stages. 

The first stage is node status modelling (described in section 2.3.2.2 of Chapter 2) which 

identifies sections of the network that are potentially supplied and the second stage solves 

optimisation problems to compute the optimal demand curtailment. This simplification can 

bring inaccuracy if compared with real distribution networks in which upstream and 

downstream switching actions do usually not happen simultaneously. Therefore, a method 

which can model the actions of different switches separately may improve the accuracy of the 

reliability assessment. 

It is also assumed that switches including circuit breaker, sectionalizing switchgears, normally 

open points are 100% reliable. Operational failure may be modelled in future study that 

switches can potentially fail to respond. 
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B. Storage model 

The proposed “greedy” model for the storage operation aims to maximise the ability of 

storage devices to contribute to network reliability. A weighting factor has been used to 

prioritise the optimisation problems: in the condition of minimising load curtailment, 

maximise the state of charge. The choice of the value for the weighting factor can be difficult 

since the reasonable range of it varies for different systems.  

A precise solution to this issue is applying the first part of the objective function as the 

constraints of the second part, in the form of the Karush-Kuhn-Tucker (KKT) conditions.  

An example for the optimisation problem with multiple objectives and their weighting factors 

is shown as: 

min 𝑓(𝑥) + 𝑤 ∙ 𝑔(𝑥) (6.1𝑎) 

𝑠. 𝑡.         𝐴𝑥 ≤ 𝑏 (6.1𝑏) 

It can be reformulated by the introduction of the Lagrangian function or the KKT conditions to 

avoid the weighting factors as: 

min 𝑔(𝑥) (6.2𝑎) 

𝑠. 𝑡.         𝐴𝑥 ≤ 𝑏 (6.2𝑏) 

𝜕

𝜕𝑥
(𝑓(𝑥) + 𝜆 ∙ (𝐴𝑥 − 𝑏)) ≤ 0 (6.2𝑐) 

𝜕

𝜕𝜆
(𝑓(𝑥) + 𝜆 ∙ (𝐴𝑥 − 𝑏)) ≤ 0 (6.2𝑑) 

𝜆 ≥ 0 (6.2𝑒) 

𝜕2

𝜕𝜆2 (𝑓(𝑥) + 𝜆 ∙ (𝐴𝑥 − 𝑏)) > 0 (6.2𝑓) 

𝜕2

𝜕𝜆2 (𝑓(𝑥) + 𝜆 ∙ (𝐴𝑥 − 𝑏)) > 0 (6.2𝑔) 

The constraints (6.2c)-(6.2g) are the sufficient conditions for achieving the minimal value for 

f(x).  

This example demonstrates the method to prioritise multiple objectives without the use of 

weighting factors, despite some loss in computational efficiency. 



CHAPTER 6 

Page 153 of 193 
 

 

 

In the proposed greedy model for the storage operation, it is aimed to maximise the state of 

charge (SOC) when connected to the grid and discharge only if outages happen. Although this 

operation scheme is straightforward for reliability purposes, it may not be a cost-effective 

scheme since a maximum SOC does not guarantee the optimal profitability of storages. 

Arbitrage of energy may be combined within the operation optimisation so that it can also 

make a profit when the network is not in an outage.  This results in more complex time domain 

simulations, ideally using model predictive control (MPC) [107] for energy storage operation. 

C. Customer Interruption Cost 

In future distribution networks, smart metering coupled to in-home energy management 

devices could change the way customers value supply continuity through facilitating 

reliability-based consumption choices. By setting design standards that allow networks to be 

planned in accordance with the differing priorities of different categories of in-house demand, 

it may be possible to develop and operate networks at lower costs to customers. 

A possible model of this ‘smart disconnection’ is briefly described here. It is assumed that 

some fractions of the load can be interrupted at a lower cost than others, and it is allowed to 

control the disconnections so that there is an increasing cost per unit of power as 

disconnecting more load. It might also be achieved by identifying ‘cheap’ vs. ‘expensive’ 

customers, but it’s more likely that some sort of demand response mechanism is used to 

disconnect ‘easy’ loads within each household whilst keeping essential services going. 

Considering that some fractions of the load can be interrupted at a lower cost than others and 

we always disconnect the cheapest load first, it may be assumed that the cost of per unit 

power curtailment is linearly increasing with a higher percentage of demand disconnected. 

𝐶𝑜𝑠𝑡 𝑜𝑓 ∆𝑝 = £17000 ∗
𝑝

𝐷𝑒𝑚𝑎𝑛𝑑
(6.1) 

𝑝 is the curtailed power level, 𝐷𝑒𝑚𝑎𝑛𝑑 is the original load level, ∆𝑝 is the curtailed power per 

MW. That means for a load, the cost of the first 1% load curtailment is cheapest and the cost 

of per unit power curtailment reaches the costliest level when fully curtailed. 



CHAPTER 6 

Page 154 of 193 
 

The function of the cost of marginal load curtailment can be much more complex in a real 

network than the example given above. The factors affecting this function include but are not 

limited to the development of ‘smart disconnection’ technologies, the contract between 

customers and service providers and the degree of customer involvement in the network. 

D. High Impact Low Probability events 

The Part 2 of Chapter 4 proposed a novel method to analyse HILP events. It can be improved 

by investigating more detailed time-domain modelling of HILP. 

 

a. Fragility 

The fragility approach [108], which was originally invented to describe the probabilistic 

relationship between nuclear plant failure and ground acceleration in an earthquake, can be 

applied in the reliability analysis to express the probability of distribution network line section 

failure with respect to the severity of HILP events. 

 

 

FIGURE 6-2 FRAGILITY OF NETWORKS IN A HILP EVENT 

The generic shape of the fragility function is shown in Figure 6-2. The trend indicates that the 

probability of a network component failure increases as a HILP event, e.g. storm, becomes 

more profound.  

Even though HILP events are infrequent and their “weighted-average” probability is difficult 

to be calculated / estimated accurately due to the lack of data, considering the fragility of 
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networks in a HILP event, a distribution of HILP events could be assumed and used to estimate 

the failure rates for various confidence levels and enables reliability assessments. The 

expected risk for a specified confidence level could then be estimated. 

b. Preventive vs corrective  

Some case studies have been produced for assessing the impacts of HILP events with 

preventive (underground cable) and corrective (emergency generation) network reliability 

improvement measures. The fundamental idea has been introduced in section 9.4.3 of the P2 

report “Review of Distribution Network Security Standards” section submitted to OFGEM. 

There is a number of fundamental questions associated with the optimal portfolio of 

investments that may increase the network resilience against occurrence of natural hazards 

such as: 

 To what extent a portfolio of merely post-contingency mitigation actions (such as the 

deployment of mobile generation and transfer cables) would be efficient to deal with 

outages caused by natural hazard? (historically, network infrastructure has been installed 

to deal with “credible” rather than rare events) 

 Can network resilience be efficiently improved through network reinforcements rather 

than through a portfolio of post-contingency mitigation actions?  

 How the set of post-contingency measures that may include deployment of provisional 

cables from neighbouring substations can affect the design of network infrastructure? 

Overall: what is the right balance between preventive and mitigation (post-contingency) 

measures that can efficiently improve network resilience? In this thesis, we have developed a 

simulation model that could be applied to analyse different specific cases. A more 

comprehensive analysis can be undertaken but scenarios would need to be defined.  

E. Equivalent Load Carrying Capacity 

We investigated the implications of different non-network solutions for enhancing network 

reliability. The impacts of these solutions on network performance is represented by changes 

of ENS, CI and CML. However, it is still difficult to compare the capability of different 

techniques since the change of reliability indices is case specific. The methods could be 

developed further to be compatible with the concept of Equivalent Load Carrying Capacity 

(ELCC) [109], which measures the amount of additional demand by installing an alternative 

technique whilst maintaining the original reliability performance. This enables the direct 

comparison of different network improvement solutions. 
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APPENDIX A. TABLE OF KEY CDF DATA 

The Table A.1 is a copy from the literature [46], Table A.2 is summarised data of [26], [36], 

[45]–[94], [97], [110] in the format of A.1 (but excluding data already existed in A.1). 

TABLE A.1 LIST OF PUBLISHED CIC DATA [46] 

References Country Date of 

Data 

Method Key Findings 
€=Euro, C$= Canadian Dollar, $=US Dollar, £= UK Pound, NOK=Norwegian Krone 

Nooij et al 
(2006)  

Netherla
nds 

2001 EO/C Agriculture € 3.90/kWh 
Manufacturing € 1.87/kWh 
Construction € 33.05/kWh 
Transport € 12.2/kWh 
Services €7.94/kWh 
Government € 33.50/kWh 
Residential € 16.38/kWh 
Total € 8.56/kWh 

 

Leahy et al 

(2010)  

Ireland 2007 EO/C Industrial € 4/kWh 

Commercial € 14/kWh 

Residential € 24.6/kWh 

Total € 12.9/kWh 

Linares et al 
(2012)  

Spain 2008 EO/C Agriculture € 4.40/kWh  

Manufacturing € 1.38/kWh  

Construction € 33.37/kWh  

Transport € 8.53/kWh 

Services € 8.47/kWh  

Government € 6.23/kWh  

Residential € 8.11/kWh  

Total € 5.98/kWh 

Wacker et al 

(1989a)  

Canada 1980 Customer 
survey 

 1min 20min 1hour 4hours 8hours  

Larger User C$1.80/kW C$2.22/kW C$3.19/kW C$6.89/kW

 C$10.47/kW 

Small Industrial C$0.70/kW  C$2.88/kW  C$5.19/kW C$13.87/kW 

 C$27.60/kW 

Commercial C$0.28/kW C$2.05/kW  C$5.88/kW C$21.51/kW

 C$63.06/kW 

Residential - C$0.06/kW  C$0.31/kW C $3.16/kW - 

Tollefson et 
al (1994) 
 

Canada 1991 Customer 
survey 

Industrial C$ 6.5264/kW   (1 hour interruption)  

Commercial  C$ 15.0650/kW   (1 hour interruption)  

Residential C$ 0.1626 /kW   (1 hour interruption) 

Tiedemann 

(2004a, 

2004b)  

British 

Columbia

, Canada 

2000 Customer 
survey 

 20min 2hours 4hours 12hours 

 $/kWh lost  $/kWh lost  $/kWh lost  $/kWh lost  

Business 806 299 216 107 

Residential 3.23 0.54 0.44 0.18 

Kjølle et al 

(2008)  

Norway 2001- 
2002 

Customer 
survey 

Industrial NOK123/KWh  not supplied (1 hour Interruption)  

Commercial NOK201.5/KWh  not supplied (1 hour Interruption)  

Large Industry NOK 23.8/KWh  not supplied (1 hour Interruption)  

Public service NOK19.9/KWh  not supplied (1 hour Interruption)  

Agriculture NOK16.6/KWh  not supplied (1 hour Interruption)  

Residential NOK11.5/KWh  not supplied (1 hour Interruption) 

Lehtonen et 

al. (1995) 
 

Denmark 1992- 
1993 

Customer 
survey 

Industrial  $22.10/kW  (1 hour Interruption)  

Commercial  $8.50/kW  (1 hour Interruption)  

Residential  $6.60/kW  (1 hour Interruption)  

Agricultural     $66.80/kW    (1 hour Interruption) 

Lehtonen et 
al. (1995) 
 

Finland 1992- 
1993 

Customer 
survey 

Industrial  $14.50/kW  (1 hour Interruption)  

Commercial  $16.40/kW  (1 hour Interruption)  

Residential  $2.90/kW  (1 hour Interruption)  

Agricultural     $15.50/kW    (1 hour Interruption) 
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Lehtonen et 
al. (1995) 
 

Iceland 1992- 
1993 

Customer 
survey 

Industrial  $12.50/kW  (1 hour Interruption)  

Commercial  $21.00/kW  (1 hour Interruption)  

Residential  $3.20/kW  (1 hour Interruption)  

Agricultural     $5.60/kW (1 hour Interruption) 

Bliem (2008) 
 

Austria 2007 Customer 
survey 

Households € 73.5/KWh  not supplied (1 hour Interruption)  

Business € 203.93/KWh  not supplied (1 hour Interruption) 

Sullivan et al 
(2012)  

Pacific & 

Gas 

Electric, 

San 

Francisco 

USA 

2012 Customer 
survey 

Note: SMB = Small and Medium Business 

Cost per Outage Event 

Outage Residential SMB Large Business Agricultural  

Duration ($/Event) ($/Event) ($/Event) ($/Event) 

5   minutes $7.41 $379.8 $454,675 $146.1 

1   hour $11.89 $1,848.8 $449,655 $453.5 

4   hours $16.82 $4,774.3 $596,675 $1,230.7 

8   hours $22.89 $10,568.7 $617,196 $2,549.4 

24   hours $31.67 $21,339.4 $1,472,497 $5,842.4 

    Cost per Average kW 

Outage Residential SMB Large Business Agricultural  

Duration ($/kW) ($/kW) ($/kW) ($/kW) 

5 minutes $9.75 $43.3 $319.3 $18.1 

1   hour $14.86 $205.2 $327.4 $52.1 

4 hours           $21.03 $540.1 $436.9 $143.9 

8 hours            $28.61         $1,136.4 $449.7 $288.7 

24 hours        $40.09           $2,403.1 $1,047.5 $700.5 

 

Cost per Unserved kWh 

Outage    Residential SMB     Large Business  Agricultural  

Duration   ($/kWh)  ($/kWh) ($/kWh) ($/kWh)  

5 minutes  $123.50 $493.3 $3,769.8 $205.7 

1   hour $14.86 $195.6 $318.5 $50.3 

4   hours $5.08 $127.5 $107.5 $35.6 

8   hours $3.44 $138.4 $55.6 $35.9 

24 hours $1.67 $99.7 $43.7 $28.8 

Balducci et al 
(2002)  

USA 1992 and 
1996 
Canadian 

data 

MCS  20min 1hour 4hours  

Industrial $ 6.29/kW $ 13.93/kW $29.94 /kW  

Commercial $ 4.74/kW $ 12.87/kW $44.37/kW  

Residential $ 0.03/kW $ 0.15/kW $1.64/kW  

Transport $   8.91/kW $ 16.42/kW $45.95/kW  

Wt. Average $ 3.59/kW $   8.76/kW $24.90/kW 

Sullivan et al 
(2009)  

USA 1989- 
2005 

ACS Medium& Large Commercial & Industrial (Av. Consumption = 7,140,501 

kWh/year) 

 Momentary 30min 1   hour 4   hours 8 hours 

Cost  Per  Event $11,756 $15,709 $20,360 $59,188 $93,890 

Cost  Per Average kW $14.4 $19.3 $25.0 $72.6 $115.2  

Cost Per Un-served  kWh $173.1 $38.5 $25.0 $18.2 $14.4  

Cost  Per Annual kWh $1.65E-03  $2.20E-03 $2.85E-03 $8.29E-03

 $1.31E-02 

Small Commercial & Industrial (Average Consumption = 19,214kWh/year) 

 Momentary 30min 1 hour 4   hours 8 hours  

Cost Per Event $439 $610 $818 $2,696 $4,768  

Cost  Per Average kW $200.1 $278.1 $373.1 $1,229.2 $2,173.8  

Cost Per Un-served  kWh $2,401.0 $556.3 $373.1 $307.3

 $271.7  

Cost  Per Annual kWh $2.28E-02 $3.18E-02 $4.26E-02 $0.1403 $0.2482 

Residential  (Average Consumption = 13,351kWh/year) 

 Momentary 30min 1   hour 4   hours 8 hours  

Cost Per Event $2.7 $3.3 $3.9 $7.8 $10.7  

Cost Per Average kW $1.8 $2.2 $2.6 $5.1 $7.1  

Cost Per Un-served kWh $21.6 $4.4 $2.6 $1.3 $0.9  

Cost  Per Annual kWh $2.06E-04 $2.48E-04 $2.94E-04 $5.81E-04

 $8.05E-04 

Centolella et 
al (2010) 
 

USA 
MidWest 

1989- 
2002 

ACS Large Commercial & Industrial  (Consumption > 1 million kWh/year) 

Agriculture $24.83/kW (1 hour interruption) 

Mining $77.53/kW (1 hour interruption) 

Construction $24.83/kW (1 hour interruption) 

Manufacturing $42.09/kW (1 hour interruption) 

Transport/Communication/Utilities  $24.83/kW (1 hour interruption)  

Wholesale/Retail $24.83/kW (1 hour interruption) 
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Finance/Real   Estate $24.83/kW (1 hour interruption) 

Services $15.56/kW (1 hour interruption) 

Public Admin $24.83/kW (1 hour interruption)  

Small Commercial &Industrial (Consumption < 1 million kWh/year)  

Agriculture $49.51/kW (1 hour interruption) 

Mining $49.51/kW (1 hour interruption) 

Construction $40.06/kW (1 hour interruption) 

Manufacturing $35.81/kW (1 hour interruption) 

Transport/Communication/Utilities $29.30/kW (1 hour interruption)  

Wholesale/Retail $49.51/kW (1 hour interruption) 

Finance/Real   Estate $35.64/kW (1 hour interruption) 

Services $15.25/kW (1 hour interruption) 

Public   Admin $33.35/kW (1 hour interruption) 

Residential 

Willingness-to-Pay $1.60/kW(1 hour interruption ) 

System 

Control Inc. 

(1978)  

New 

York 

City 

1977 BOCS Direct  ($  million) Indirect ($ million) 

Business 34.0 160.4 

Government  (Non-public Services) - 12.5 

Consolidated   Edison 12.0 65.0 

Insurance - 33.5 

Public  Health Services - 1.5 

Other Public  Services 9.1 17.26 

Westchester   County 0.44 - 

Total 55.54 290.16 

 

TABLE A.2 LIST OF PUBLISHED CIC DATA/2, SUMMARISED FROM [26], [36], [45]–[94], [97], [110] EXCLUDING DATA EXISTED IN 

A.1 

References Country Date of 

Data 

Method Key Findings 
 

€=Euro, C$= Canadian Dollar, $=US Dollar, £= UK Pound, 

NOK=Norwegian Krone 

London 

Economics 
 

UK 2011-

2013 

Custom

er 
survey 

VOLL WTA WTP 

Domestic £6957/MWh-

£11820/MWh 

£1651/MWh-

£2766/MWh 

small and 

medium sized businesses 

(SMEs) 

£33358/MWh-

£44149/MWh 

£19271/MWh-

£27859/MWh 

Industrial and commercial £1075/MWh -£1654/MWh 
 

Kariuki and 

Allan  

UK 1992 Custom

er 
survey 

SCDFs(£/MWh) for per unit annual consumption 

Duratio

n 

Residential Commercial Industrial Large user 

Mom - 0.46 3.02 1.07 

1min - 0.48 3.13 1.07 

20min 0.06 1.64 6.32 1.09 

1h 0.21 4.91 11.94 1.36 

4h 1.44 18.13 32.59 1.52 

8h - 37.06 53.36 1.71 

24h - 47.58 67.10 2.39 

SCDFs(£/kW) for per unit peak demand 

Mom - 0.99 6.15 6.74 

1min - 1.02 6.47 6.74 

20min 0.15 3.89 14.27 6.86 

1h 0.54 10.65 25.26 7.18 

4h 3.72 39.04 72.22 8.86 

8h - 78.65 120.11 9.71 

24h - 99.98 150.38 13.35 

Carlsson and 
Martinsson  

Sweden 2004 Custom
er 

survey 

Willingness to pay 
to avoid an 

interruption: worst 

case scenario (£) 

Mean Median Max Share of 
zero WTP 

Planned 
interruption 

    

1 hour 0.59 0 46.80 0.9 

4 hours 2.66 0 93.60 0.74 

8 hours 7.90 0 187.20 0.51 
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24 hours 17.71 4.68 280.80 0.39 

Unplanned  

interruption 

    

1 hour 0.88 0 46.80 0.86 

4 hours 3.49 0 70.20 0.68 

8 hours 10.12 1.40 187.20 0.46 

24 hours 20.87 8.42 280.80 0.36 

Of uncertain 
duration: between 2 

and 6 hours 

6.44 0.00 112.32 0.59 

Carlsson and 

Martinsson  

Sweden 2007 Custom

er 
survey 

Duration and day 

of interruption 

Novem

ber — 
March 

April — October 

4 hour weekday £0.69 £1.00 

8 hours weekday £1.98 £2.47 

24 hours weekday £8.95 £7.24 

4 hours weekend £2.76 £1.88 

8 hours weekend £3.53 £3.76 

24 hours weekend £11.71 £9.85 

 

 

(Table continues) 

References Country Date 

of 

Data 

Method Key Findings 

Bertazzi et al 

 

Italy 2003 Customer 

survey 

Duration of 

interruption 

Domestic customers 

Direct 
costs(£/kW 

for 3 minute 

interruption, 
£/kWh for 

other, annual 

consumption) 

WTA(£/kW 
for 3 minute 

interruption, 

£/kWh for 
other, annual 

consumption) 

WTP(£/kW for 
3 minute 

interruption, 

£/kWh for 
other, annual 

consumption) 

3 mins 7.3 4.9 1.3 

1 hour 23.0 15.5 3.4 

2 hours 18.5 12.6 2.4 

4 hours 14.3 10.2 2.0 

8 hours 8.8 6.3 1.2 

 Business customers 

3 mins 50.1 31.0 4.5 

1 hour 107.2 72.5 9.7 

2 hours 76.1 51.9 7.0 

4 hours 61.0 44.0 6.0 

8 hours 36.3 26.3 3.6 

Accent  UK 2004-
2008 

Customer 
survey 

Domestic customer: willingness to pay and to accept for a 
change in number of annual interruptions(£ per interruption per 

year) 

 Deterioration in 
service 

Improvement in 
service 

DNOs From –£19.52 to –

£4.52 

From £4.49 to 

£15.04 

Domestic customers’ willingness to pay and to accept change in 
average duration of a power cut by a minute (£ per minute 

change) 

 Deterioration in 

service 

Improvement in 

service 

DNOs From –£0.22 to –

£0.04 

From £0.04 to 

£0.18 

Bliem (2009)  Austria 2009 Customer 

survey 
Summary of estimates on willingness to pay (% of annual 

bill) 
Attribute Households Businesses 

Duration 3 mins –1% 5% 

Duration 4h –16% –10% 

Duration 10 h –22% –20% 

Frequency –1% –6% 

Time of day (night) –1% 14% 
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Day of the week 

(Sunday) 
–7% 16% 

Notification (yes) 3% –2% 

Praktiknjo, A.J. 

et al  

Germany 2011 EO/C Estimates of costs of interruption for household customers 

Duration of interruption VOLL (£/kWh) 

1 hour 13.7 

8 hours 8.1 

Estimates of costs of interruption for business customers 

Sector VOLL (£/kWh) 

Agriculture 2.0 

Industry 2.2 

Commerce, service and 

transportation 
14.2 

Weighted average 5.3 
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APPENDIX B. EXAMPLES OF RELIABILITY 

SIMULATION MODELS AND RESULTS 

Reliability indices evaluation through sequential Monte Carlo simulation 

Sequential Monte Carlo simulation is a method in which time-dependent system operation is 

simulated by sampling stochastic sequences and durations of system states. The system states 

are sampled according to the Markov model of each system component. By randomly 

sampling durations of component states, the stochastic sequence of system states can then 

be produced. The estimate of reliability indices for chronological system operation is 

computed as below: 

�̂�(𝐻) =
1

𝑁
∑ 𝐻(𝑋𝑖)

𝑁

𝑖

 

𝐻  is the estimation function of a reliability index such as Energy Not Supplied (ENS) or 

Customer Interruptions (CI). N is the number of simulated years, and 𝑋𝑖  represents the 

chronological system state sequence and duration for year i. 

Stochastic sampling of system state for a pre-set time period (here we use a year but other 

time horizons can be used if required) is described as follows: 

The expected value and probability distribution of reliability indices can be evaluated by 

repeating the above procedure for N years. Convergence of the simulation is calculated using 

confidence intervals or coefficients of variation, which also serve as stopping criteria for the 

simulation. 

As discussed before, the reliability indices used for measuring the DNOs performance in the 

UK are ENS, CI and CML (Customer Minute Lost). Time-sequential Monte Carlo simulation 

allows for calculating the real-time information of outages at each load point. An illustrative 

example of a load point outage can be seen in Figure B-1. In this example, the sampled outage 

covers 3 system states with the critical time points at t1, t2, t3 and t4, and system unserved 

power varying in time across P1, P2 and P3. 
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FIGURE B-1 AN ILLUSTRATIVE EXAMPLE FOR LOAD POINT OUTAGE IN REAL TIME 

The ENS for this outage is: 

𝐸𝑁𝑆 = 𝑃1 ∗ (𝑡2 − 𝑡1) + 𝑃2 ∗ (𝑡3 − 𝑡2) + 𝑃3 ∗ (𝑡4 − 𝑡3) = 𝑃1 ∗ 𝑇1 + 𝑃2 ∗ 𝑇2 + 𝑃3 ∗ 𝑇3 

The CML index for this load point is calculated as follows: 

𝐶𝑀𝐿𝑖 =
𝑃1

𝐷1
∗ 𝑁 ∗ 𝑇1 +

𝑃2

𝐷2
∗ 𝑁 ∗ 𝑇2 +

𝑃3

𝐷3
∗ 𝑁 ∗ 𝑇3 

Where 𝐷𝑖 is the load point demand for the system state 𝑖 and 𝑁 is the number of customers 

at the load point. 

System CML is adjusted as follows (note the multiplication by 60 to convert hourly values of 

𝐶𝑀𝐿𝑖 to minutes): 

𝐶𝑀𝐿𝑠𝑦𝑠𝑡𝑒𝑚 =
∑ 𝐶𝑀𝐿𝑘𝑘

∑ 𝑁𝑘𝑘
∗ 60 

where 𝑘 is the index of load point. 

Finally, the CI index for the load point is found as: 

𝐶𝐼𝑖 = max (
𝑃1

𝐷1
,
𝑃2

𝐷2
,
𝑃3

𝐷3
) 

System CI is adjusted as follows (note the multiplication by 100 to convert the values per 

customer into the value per 100 customers): 

𝐶𝐼𝑠𝑦𝑠𝑡𝑒𝑚 =
∑ 𝐶𝐼𝑘𝑘

∑ 𝑁𝑘𝑘
∗ 100 

where 𝑘 is the index of load point. 
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Figure B-2 illustrate four Markov models for transformer and lines. They are used for 

representing distribution transformers, primary and bulk supply substations, and lines and 

cables. 

 

 

 

 

Distribution transformer with circuit breaker 
 

 

Transformer with maintenance 
 

 

Two parallel transformers 

 

Line with switchgear 

FIGURE B-2 ILLUSTRATION OF FOUR MARKOV MODELS FOR TRANSFORMERS AND LINES 
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FIGURE B-3 NODE MARKOV MODEL CONSIDERING TEMPORARY FAULT 

Figure B-3 provides the Markov model for network with recloser. In the case of a temporary 

fault in the network, the circuit breaker works as a recloser which trips the whole branch for 

fault clearing and attempts to close itself after the fault is healed without conducting a repair 

action or network restoration switching (with sectionalising switches and NOPs). Otherwise, 

in the case of a permanent fault, it works as presented in Chapter 2. 

Illustrative case studies 

In order to illustrate the use of analytical and numerical techniques in reliability analysis, a 

range of studies has been carried out on a typical radial HV distribution network, as shown in  

Figure B-4 shows the PDF (probability distribution function)bars and CDF (cumulative 

distribution function) curves for ENS for line failure rates of 2%, 5%, 10% and 20% per km and 

year. Depicted range of ENS values is between 0 and 10 MWh/year. 

 

FIGURE B-4 PDF AND CDF OF ENS FOR FAILURE RATE OF 2%, 5%, 10% AND 20%/KM.YEAR 

The results suggest that the probability of annual ENS being zero is up to 95% for low failure 

rates (associated with underground cables), while it is about 57% for high failure rates (more 

common for overhead lines). The PDF bars in Figure B-4 follow an exponential distribution. It 

can further be seen from the CDF chart that there is a 95% likelihood that ENS is lower than 
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0.1 MWh/year for the failure rate of 2%, 0.8 MWh/year for 5%, 1.4 MWh/year for 10% and 

2.2 MWh/year for 20% failure rate. 

Figure B-5 shows PDF bars and CDF curves for CI for network failure rates of 2%, 5%, 10% and 

20% per km and year, with CI ranging between 0 and 250 occ./100customer/year. 

 

FIGURE B-5 PDF AND CDF OF CI FOR FAILURE RATE OF 2%, 5%, 10%, 20%/KM.YEAR 

The probability of annual CI being 50 occ./100customer.year is around 5% for low failure rates, 

but is as high as 32% for high failure rates. The PDFs again suggest an exponential distribution. 

The CDF chart suggests that the probability of CI index being 50 occ./100customer.year or 

below is 99.9% for failure rate of 2%, 99.2% for 5%, 96.9% for 10% and 88.8% for 20%. 

Figure B-6 shows the PDF bars and CDF curves for the CML index, again looking at failure rates 

of 2%, 5%, 10% and 20% per km and year. 

 

FIGURE B-6 PDF OF CML FOR FAILURE RATE OF 2%, 5%, 10%, 20%/KM.YEAR 

According to the results, the probability of annual CML being at the level of 

10 min/customer.year is about 2% for low failure rates and about 16% for high failure rates. 

The CDF curves further suggest that the probability of CML being at or below 

20 occ./customer.year is 98.6% for 2% failure rate, 96.3% for 5%, 92.5% for 10% and 83.7% 

for 20%. 

Expected ENS, CI and CML 
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A set of further case studies has been carried out for different values of input parameters 

shown in Table B.1. 

TABLE B.1 CASE STUDIES PARAMETERS 

Parameter Values 

Failure rate for overhead lines (%/km.year) 5 and 20 

Failure rate for underground cables (%/km.year) 2 and 10 

Switching time (minutes) 2 (automatic) and 30 (manual) 

Restoration time (hours) 3 (mobile generation) and 24 (repair) 

Section length (km) 0.25 and 1 

Loading level N-1 and N-0 

 

Table B.2 shows the resulting expected values of ENS for different HV network reliability 

parameters, switching times and loading levels. 

TABLE B.2: EENS FOR DIFFERENT HV NETWORK RELIABILITY PARAMETERS, SWITCHING TIME AND LOADING LEVEL 

Network ENS 
(MWh/year) 

Failure Rate 
(%/km.year) 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% 0.00 0.10 0.00 0.71 0.04 0.17 0.04 0.84 

5% 0.01 0.25 0.01 1.85 0.10 0.40 0.11 1.93 

10% 0.02 0.53 0.02 3.71 0.22 0.85 0.22 4.21 

20% 0.03 0.97 0.04 7.69 0.43 1.66 0.45 8.52 

Section length 
1 km 

2% 0.01 0.40 0.01 2.87 0.17 0.68 0.17 3.24 

5% 0.03 1.07 0.04 7.51 0.46 1.68 0.45 8.22 

10% 0.07 2.03 0.11 15.16 0.90 3.35 0.88 16.86 

20% 0.15 4.03 0.31 29.97 1.74 7.29 1.95 35.84 

 

Table B.3 shows the results for the expected values of CI for different HV network reliability 

parameters, switching times and loading levels. 

TABLE B.3 ECI FOR DIFFERENT HV NETWORK RELIABILITY PARAMETERS, SWITCHING TIME AND LOADING LEVEL 

Network ECI 
(occ./100 
cust.year) 

Failure Rate 
(%/km.year) 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% 3 3 3 4 3 3 3 4 

5% 7 8 7 10 7 8 7 9 

10% 14 15 14 19 14 15 14 20 

20% 27 29 27 39 27 30 28 41 

Section length 
1 km 

2% 11 12 11 15 11 12 11 15 

5% 29 31 27 38 31 30 28 40 

10% 54 59 55 78 57 58 55 79 

20% 109 124 110 156 110 128 111 166 
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Finally, Table B.4 shows the expected values of CML for different HV network reliability 

parameters, switching times and loading levels. 

TABLE B.4 ECML FOR DIFFERENT HV NETWORK RELIABILITY PARAMETERS, SWITCHING TIME AND LOADING LEVEL 

Network ECML 
(min/customer.y

ear) 

Failure Rate 
(%/km.year) 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% 0 1 0 6 1 1 1 7 

5% 0 2 0 14 2 3 2 15 

10% 0 4 0 29 4 7 4 34 

20% 1 8 1 61 8 15 9 69 

Section length 
1 km 

2% 0 3 0 23 3 6 3 26 

5% 1 8 1 59 9 15 9 66 

10% 1 16 2 119 17 29 17 136 

20% 3 32 6 237 33 64 37 290 

 

Comparison between sequential Monte Carlo simulation and analytical method 

Differences between results obtained using sequential Monte Carlo simulation and the 

analytical method applied to the same network are presented in Table B.5. 

TABLE B.5 DIFFERENCE OF EENS OBTAINED BY MONTE CARLO SIMULATION AND BY ANALYTICAL METHOD 

Network ENS 
(MWh/year) 

Failure 
Rate 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section 
length 

0.25 km 

2% -4.1% -4.9% -2.8% -8.5% -7.2% -3.6% -0.1% -0.3% 

5% -2.8% -1.2% -0.2% -3.9% -4.1% -8.7% -0.4% -8.7% 

10% 5.3% 5.0% -10.5% -3.8% -0.1% -3.1% -0.1% -0.4% 

20% -5.9% -4.6% 2.4% -0.5% -1.5% -4.7% 2.4% 0.7% 

Section 
length 1 km 

2% 2.0% -2.1% 0.1% -6.9% -0.9% -1.9% -1.4% -4.1% 

5% 0.4% 5.3% 11.0% -2.8% 6.6% -3.9% 2.4% -2.8% 

10% 5.3% 0.3% 9.7% -2.0% 4.1% -4.1% -3.1% -0.5% 

20% 7.1% -0.7% 5.3% -3.4% 0.3% 4.3% 3.0% 5.5% 

 

The simulation stopping criteria for all case studies in the sequential Monte Carlo simulation 

was when a Coefficient of Variation (CoV) of 5% or less was achieved. According to the 

statistical theory, the simulation error greater than two standard deviations occurs with less 

than 5% probability. Thus, in this distribution network reliability study, the probability of 

simulation error greater than 10% of the actual value is about 5%. From Table B.5, there are 

2 cases (out of 64) with errors greater than 10%. This corresponds to 3% of cases being beyond 

the (-10%, +10%) interval, which is within the adopted range for CoV of 5%. 
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APPENDIX C. ILLUSTRATIONS OF 

FUNDAMENTAL DISTRIBUTION NETWORK 

RESTORATION 

Fault clearing: Fuse 

 Failure occurs in distributed line (red) would be cleared by the operation of fuses 

 Fuses perform in a similar way as circuit breaker which isolate the faulty network from 

the main 

 No switching action in this case. Load points recovered only if the faulty line is repaired. 

 

 

Fault clearing: Circuit breaker 
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 Failures occur in main lines, circuit breaker would isolate the faulty network from 

higher voltage level network immediately 

 The network would be restored when the faulty line is repaired or switching action is 

operated 

 

 

 

Fault switching: Upstream and downstream switching 

 

Upstream switching action:  

 Search for the nearest upstream switch to the failure 

 Check that closing the CB whether failures existed in potential recovered area 

 Close the main circuit breaker to resupply customers isolated from the failure 

 

 

Downstream switching action:  

 Search for the nearest downstream switch to the failure 

 Check that closing the NOP whether customers existed in potential recovered area 
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 Check that closing the NOP whether failures existed in potential recovered area 

(including the failure in other side of NOP) 

 Close the NOP to resupply customers isolated from the failure 

 

 

 

 

Fault repair and restoration 

 

 

Restoration action:  

 Check that closing the opened switches whether there exists any failure in potential 

recovered area 

 Close switches and open the NOP 
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APPENDIX D. IEEE RELIABILITY TEST 

SYSTEM PARAMETERS 

This data is available from [99] and [111] 

   

 

The IEEE Reliability Test System (IEEE-RTS) 

------------------------------------------- 

 

 I. Load data: 

 -------------- 

 

 Annual peak load: 2850 MW 

 

 Table 1: Weekly peak load in percent of annual peak 

 --------------------------------------------------- 

 

 W: Week 

 PL: Peak load in percent of annual peak 

 

  (W)  (PL)   (W)  (PL)   (W)  (PL)   (W)  (PL) 

   1   86.2   14   75.0   27   75.5   40   72.4 

   2   90.0   15   72.1   28   81.6   41   74.3 

   3   87.8   16   80.0   29   80.1   42   74.4 

   4   83.4   17   75.4   30   88.0   43   80.0 

   5   88.0   18   83.7   31   72.2   44   88.1 

   6   84.1   19   87.0   32   77.6   45   88.5 

   7   83.2   20   88.0   33   80.0   46   90.9 

   8   80.6   21   85.6   34   72.9   47   94.0 

   9   74.0   22   81.1   35   72.6   48   89.0 

  10   73.7   23   90.0   36   70.5   49   94.2 

  11   71.5   24   88.7   37   78.0   50   97.0 

  12   72.7   25   89.6   38   69.5   51  100.0 

  13   70.4   26   86.1   39   72.4   52   95.2 

 

 

 Table 2: Daily peak load in percent of weekly peak 

 -------------------------------------------------- 

 

 PL: Peak load in percent of weekly peak 

 

   (Day)     (PL) 

  Monday      93 

  Tuesday    100 

  Wednesday   98 

  Thursday    96 

  Friday      94 
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  Saturday    77 

  Sunday      75 

 

 

 Table 3: Hourly peak load in percent of daily peak 

 -------------------------------------------------- 

 

 Winter:      Winter weeks (1-8 and 44-52) 

 Summer:      Summer weeks (18-30) 

 Sprint/Fall: Spring and Fall weeks (9-17 and 31-43) 

 

 Wd: Week day load in percent of daily peak 

 We: Week end load in percent of daily peak 

 

            [Winter]       [Summer]    [Spring/Fall] 

   (Hour)  (Wd) (We)   (Wd) (We)  (Wd) (We) 

  12-1 am   67   78    64   74   63   75 

  1-2       63   72    60   70   62   73 

  2-3       60   68    58   66   60   69 

  3-4       59   66    56   65   58   66 

  4-5       59   64    56   64   59   65 

  5-6       60   65    58   62   65   65 

  6-7       74   66    64   62   72   68 

  7-8       86   70    76   66   85   74 

  8-9       95   80    87   81   95   83 

  9-10      96   88    95   86   99   89 

  10-11     96   90    99   91  100   92 

  11-Noon   95   91   100   93   99   94 

  Noon-1 pm 95   90    99   93   93   91 

  1-2       95   88   100   92   92   90 

  2-3       93   87   100   91   90   90 

  3-4       94   87    97   91   88   86 

  4-5       99   91    96   92   90   85 

  5-6      100  100    96   94   92   88 

  6-7      100   99    93   95   96   92 

  7-8       96   97    92   95   98  100 

  8-9       91   94    92  100   96   97 

  9-10      83   92    93   93   90   95 

  10-11     73   87    87   88   80   90 

  11-12     63   81    72   80   70   85 

 

 II. Generation System data: 

 --------------------------- 

 

 Type: Type of generating units 

 Cap:  Capacity of each unit (MW) 

 N:    Number of units 

 MTTF: Mean time to failure (hours) 

 MTTR: Mean time to repair (hours) 

 

 (Type)  (Cap)  (N) (MTTF) (MTTR) 

 Oil       12    5   2940    60 

 Oil       20    4    450    50 

 Hydro     50    6   1980    20 

 Coal      76    4   1960    40 

 Oil      100    3   1200    50 

 Coal     155    4    960    40 

 Oil      197    3    950    50 

 Coal     350    1   1150   100 

 Nuclear  400    2   1100   150 
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APPENDIX E. DISTRIBUTION NETWORK 

PARAMETERS 

Below is a part copy from the Appendix B of “Review of Distribution Network Security 

Standards - Extended Report”, submitted the Energy Network Association 2016, for which I 

was one of the authors. This part provides the source of the network data used in this thesis. 

 

HV network of seven DNOs have been used to estimate the typical characteristics of HV main 

and spur part of networks. Load profiles from Low Carbon London project and Elexon’s 

electricity user demand profiles have been used to establish load duration shape and typical 

load factors per voltage levels. Regulatory reporting pack and quality of supply reporting data 

are analysed. These data and in consultation with data working subgroup the range of asset 

upgrade cost, asset register quantity and statistic associated with network failures, outages 

and service restoration procedures are established. 

HV feeders are split into 4 mixes as shown in Table E.1. Mix 1 represents a system dominated 

with underground cables, e.g. urban systems. Mix 2 is a system with 75% or more 

underground cables and 25% or less overhead lines, e.g. semi-urban systems. Mix 3 and Mix 

4 are systems dominated by overhead lines. The share of overhead lines in Mix 3 is less than 

75% but greater than 50%, while in Mix 4, the share of overhead lines is greater than 75%. Mix 

3 and Mix 4 constitute semi-rural and rural systems respectively.  

 

TABLE E.1 SYSTEMS WITH DIFFERENT MIXES OF UNDERGROUND CABLES AND OVERHEAD LINES  
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The GB HV systems are grouped into the 4 network categories (mix 1 – mix 4). For each mix, 

the number of HV systems is estimated and shown as a pie chart in Figure E-1 (right). Data we 

have analysed show that the majority (67%) of HV feeders are Mix 1 type followed by Mix 3, 

Mix 4 and the last one is Mix 2 type. 

Figure E-1 (left) shows the cumulative probability of feeder’s failure rates for each of mixes. A 

majority of the feeders have relatively low failure rates (<0.1 occurrence per km per year).  

The number of networks with higher failure rates decreases, Figure E-1 (left) shows rapid 

saturation for networks with failure rates more than 0.3 occurrence per km per year. 

 

FIGURE E-1 CUMULATIVE PROBABILITY OF FEEDER’S FAILURE RATES AND DISTRIBUTION OF MIXES 

Other details that have been modelled in the studies are the number of distribution 

transformers and the average distance between distribution transformers. Figure E-2 shows 

the distribution for Mix 1 feeders. We find that the majority of Mix 1 feeders supply six 

distribution transformers with average distance of transformers between 400 and 500 m. The 

database contains significant number of a single supplied distribution transformer per feeder 

with distance to primary less than 100 m. 
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FIGURE E-2 BREAKDOWN OF MIX 1 FEEDERS PER NUMBER OF DISTRIBUTION TRANSFORMERS AND THE AVERAGE DISTANCE 

BETWEEN DISTRIBUTION TRANSFORMERS 

Figure E-3 shows the case for Mix 2 feeders. Data show that the majority of Mix 2 feeders 

supply 16-17 distribution transformers with the average distance between 500-600 m. This is 

followed by feeders connected with 8-9 distribution transformers and 12-13 with the same 

average distance. 

 

FIGURE E-3 BREAKDOWN OF MIX 2 FEEDERS PER NUMBER OF DISTRIBUTION TRANSFORMERS AND THE AVERAGE DISTANCE 

BETWEEN DISTRIBUTION TRANSFORMERS 

Figure E-4 shows the case for Mix 3 feeders. Data show that the majority of Mix 3 feeders 

supply 25 - 29 distribution transformers with the average distance of transformers between 
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500 and 600 m. This is followed by feeders connected with 15 - 19 distribution transformers 

with the same average distance. 

 

FIGURE E-4 BREAKDOWN OF MIX 3 FEEDERS PER NUMBER OF DISTRIBUTION TRANSFORMERS AND THE AVERAGE DISTANCE 

BETWEEN DISTRIBUTION TRANSFORMERS 

Figure E-5 shows the case for Mix 4 feeders. Data show that the majority of Mix 3 feeders 

supply 35 - 39 distribution transformers with the average distance of transformers between 

600 and 700 m. This is followed by feeders connected with 15 - 19 distribution transformers 

with the same average distance. 
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FIGURE E-5 BREAKDOWN OF MIX 4 FEEDERS PER NUMBER OF DISTRIBUTION TRANSFORMERS AND THE AVERAGE DISTANCE 

BETWEEN DISTRIBUTION TRANSFORMERS 

Figure E-6 to Figure E-9 show distribution of average distance between distribution 

transformers and number of distribution transformers per HV spur for Mix 1 to 4 type of 

networks, respectively. 

 

FIGURE E-6 DISTRIBUTION OF AVERAGE DISTANCE BETWEEN DISTRIBUTION TRANSFORMERS AND NUMBER OF DISTRIBUTION 

TRANSFORMERS SUPPLIED FROM HV SPUR IN MIX 1 TYPE NETWORKS 
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FIGURE E-7 DISTRIBUTION OF AVERAGE DISTANCE BETWEEN DISTRIBUTION TRANSFORMERS AND NUMBER OF DISTRIBUTION 

TRANSFORMERS SUPPLIED FROM HV SPUR IN MIX 2 TYPE NETWORKS 

 

 

FIGURE E-8 DISTRIBUTION OF AVERAGE DISTANCE BETWEEN DISTRIBUTION TRANSFORMERS AND NUMBER OF DISTRIBUTION 

TRANSFORMERS SUPPLIED FROM HV SPUR IN MIX 3 TYPE NETWORKS 
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FIGURE E-9 DISTRIBUTION OF AVERAGE DISTANCE BETWEEN DISTRIBUTION TRANSFORMERS AND NUMBER OF DISTRIBUTION 

TRANSFORMERS SUPPLIED FROM HV SPUR IN MIX 4 TYPE NETWORKS 

Figure E-10 shows the number of simultaneous faults per day for nine GB DNOs during five-

year period.  

 

 

FIGURE E-10 STATISTICS OF THE NUMBER OF SIMULTANEOUS FAULTS PER DAY FOR GB DNOS DURING FIVE YEAR PERIOD 

Table E.2 shows agreed range of failure rates, repair times, and upgrade and repair cost. 

 

 

 

0

20

40

60

80

100

120

140

N
u

m
b

e
r 

o
f 

in
ci

d
e

n
ts

14

13

12

11

10

8

6

5

4



APPENDICES 

Page 192 of 193 
 

TABLE E.2 RELIABILITY RELATED PARAMETERS 

Asset Failure rate 
(%/unit.year) 

Urgent 
repair time 

(hours) 

Average 
normal repair 
time (hours) 

Upgrade 
cost 

(£k/unit) 

Repair 
cost 
(£k) 

132 kV overhead line (km) 2-15 24 240 87 3.8 

132 kV underground cable (km) 2-8 48-120 240 1,215 50 

132kV/EHV transformer 1-10 240 720 1,100 1,000 

EHV overhead line (km) 2-15 12 120 39-46 3.8 

EHV underground cable (km) 2-8 24-72 240 290 19.5 

EHV/HV transformer 1-10 192 720 400 250 

EHV and HV busbars 0.1 24 240   

HV overhead line (km) 5-8.4-20 6 120 30 2.1 

HV underground cable (km) 2-4.8-10 6-18 120 110 8.4 

HV/LV PMT transformer 2-20 8-10 24 4.3 4 

HV/LV GMT transformer 2-20 24 48 15 7 

LV overhead line (km) 10-50 4 4 19 1.1 

LV underground cable (km) 10-50 8 8 101 3.3 

Note: average normal repair time assumes a half of regular repair time; OH line common mode failure 

rate sensitivity 0, 5% and 10% of single outage failure rate 

Table E.3 shows agreed transformer feeder maintenance parameters. 

TABLE E.3 TRANSFORMER FEEDER MAINTENANCE PARAMETERS 

Asset Typical frequency 
(%/year) 

Emergency return to 
service time (hours) 

Outage time 
(hours) 

132kV/EHV transformer 
circuit maintenance 

12.5% 12 240 

EHV/HV transformer circuit 
maintenance 

12.5% 9 120 

HV/LV GMT 10% 8 8 

Note: depending on the number of operations of OLTC maintenance might be carried out sooner 

 

Table E.4 shows agreed durations of networks reconfiguration. 

TABLE E.4 NETWORK RECONFIGURATION DURATION 

Switching Feeder resupply time 
(minutes) 

Backfeed resupply time 
(minutes) 

Protection 0 0 

Automation 3 3 

Remote control 10 10 

Manual switching 30-60 50 

Note: each additional stage of manual switching adds another 20 minutes; remote control of switchgear 

assumed as available in all primary and bulk supply substations, EHV and 132 kV networks. 

 

List of alternative supply options: 
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 Resupply with mobile generation within 3-6 hours for HV outages and on average 4.5-10 

hours for primary and bulk transformers, EHV, and 132 kV circuits with maximum of 10 

MW of units used. Renting cost of 500 kW and below unit is £500-1,750/day while of 1,000 

kW unit is £1,000-3,500/day. 

 Temporary cable laying within 36 hours at a cost of £50,000-200,000. This option is 

relevant for outage of EHV/HV and 132kV/EHV, HV transformers and 132kV underground 

cables.  

 Voltage reduction within 3 minutes and each 1% V corresponds to 1.15% MW reduction. 
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