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Abstract— Safety requirements are among the most am-
bitious challenges for autonomous guidance and control of
automobiles. A human-like understanding of the surrounding
traffic scene is a key element to fulfill these requirements,
but is a still missing capability of today’s intelligent vehicles.
Few recent proposals for driver assistance systems approach
this issue with methods from the AI research to allow for
a reasonable situation evaluation and behavior generation.
While the methods proposed in this contribution are lend from
cognition in order to mimic human capabilities, we argue that in
the long term automated cooperation among traffic participants
bears the potential to improve traffic efficiency and safety
beyond the level attainable by human drivers. Both issues are
major objectives of the Transregional Collaborative Research
Centre 28 ’Cognitive Automobiles,’ TCRC28 that is outlined in
the paper. Within this project the partners focus on systematic
and interdisciplinary research on machine cognition of mobile
systems as the basis for a scientific theory of automated machine
behavior.

I. INTRODUCTION

Among the most fascinating capabilities of intelligent

beings is the seamless perception and interaction with their

environment. Guidance and control of automobiles comprises

a comprehensive example for these capabilities. A human

driver needs to perceive and understand the automobile’s

environment. Based on the understanding of the scene he

plans, initiates, supervises, and controls suitable behavior.

Driver assistance systems aim to project those capabilities

onto artificial systems. Longitudinal control is supported

by adaptive cruise control (ACC) systems that have been

introduced in several vehicle models around the turn of the

century. While those systems originally were restricted to

comfort enhancement, i. e. to an operational speed range

of about 50 − 150 km/h with a potential acceleration

range of about −0.25− 0.1 g, operational function currently

migrates to a full speed range as well as to intervention in

safety-critical situations with extended acceleration setting

amplitudes (see e. g. [1]). Likewise, assistance systems for

lateral control have been introduced into the market that

emerge from lane departure warning functions, as e. g. in

the Mercedes Actros truck, to active heading support as,

e. g. in Honda’s HIDS-system [2]. Night vision enhancement

systems introduced in the Lincoln Navigator and Mercedes
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S-Class are examples of functions that still rest at a pure

information and warning level.

In research, ambitious additional driver assistance func-

tions have been demonstrated in experimental vehicles under

supervision and on tracks that exclude public traffic. Some

prominent examples are the autonomous ’VaMoRs-P’, ’FhG-

Codriver’ or ’Navlab’ vehicles [3], [4], [5]. Recently, the

Darpa Grand Challenge competitions in 2004 and 2005

gathered wide attention, when more than a dozen unmanned

vehicles traveled a longer distance through the Mojave

Dessert and five vehicles even accomplished the complete

course of some 150 miles [6]1.

Beyond these encouraging successes, unsupervised au-

tonomous driving in public traffic is still a far fetched vision.

One of the major limiting shortcomings of driver assistance

systems is their lack to reliably identify those situations in

that sufficient performance cannot be guaranteed. From the

point of view of models for human behavior [8] (Fig. 1),

one might find that state-of-the-art autonomous automobiles

are able to conduct skill based behavior to a large extend,

i. e. they master stabilization tasks such as distance or lane

keeping in simple situations. Even though integration of

some rule based behavior has been successful2, an exhaustive

set of rules for autonomous driving has not even yet been for-

mulated. The extension of rule based and the implementation

of knowledge based capabilities require the implementation

of cognitive capabilities to understand traffic scenes.
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Fig. 1. Model for human behavior (cf. [8])

While cognition aims to mimic human capabilities, au-

tomated cooperation among traffic participants bears the

1The team ’Dessert Buckeyes’ that gathered partners from Ohio State
University and Universität Karlsruhe became 10th of 195 participants [7].

2A well known example for rule based behavior is to neglect of closely
cutting-in vehicles with positive relative velocity in longitudinal control.
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potential to improve traffic efficiency and safety beyond

the level attainable by human drivers. Fig. 2 illustrates this

potential for a highway scenario in mixed traffic. It is worth

noting that participants benefit from cooperative perception

as well as from cooperative behavior.
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Fig. 2. Cooperation of vehicles in mixed traffic

Both procedures are major objectives of the Transregional

Collaborative Research Centre 28 ’Cognitive Automobiles,’

TCRC28 founded in January 2006. Within this project the

partners

• Universität Karlsruhe (TH),

• Fraunhofer Institut IITB Karlsruhe,

• Forschungszentrum Karlsruhe,

• Technische Universität München, and

• Universität der Bundeswehr München

focus on systematic and interdisciplinary research on ma-

chine cognition of mobile systems as the basis for a scientific

theory of automated machine behavior. The potential of

cooperative perception and behavior is examined. Analytic

research is accompanied by closed-loop simulations. Experi-

mental autonomous vehicles build an important platform for

the TCRC that allows demonstration and validation of the

theoretical findings.

The same partners also contribute to the team ’AnnieWAY’

in the Urban Challenge 2007 competition [9]. As compared

to the Grand Challenge 2005, this competition will pose

additional challenges such as compliancy with selected traf-

fic rules, passing, and merging with moving traffic [10].

The team expects that some basic principles developed in

TCRC28 may be simplified under the restricted scenarios of

the Urban Challenge to meet the real time requirements.

The remainder of this paper is organized as follows: Chap-

ter II gives a brief overview of the system architecture used

in the cognitive automobiles. Subsequently, in Chapter III,

the machine cognition principles applied to traffic scenes are

described. Chapter IV outlines the usage of this information

for a cooperation among traffic participants and finally an

outlook over the future work of the TCRC is given based on

the conclusions of this paper in Chapter V.

II. SYSTEM ARCHITECTURE

Figure 3 depicts the block diagram of a cooperative cogni-

tive automobile. It is worth noting the following two distinc-

tions as compared to most other autonomous automobiles:

First, the representation of knowledge is explicit to allow

for knowledge based behavior. This representation comprises

geometric and conceptual description of the dynamic vehicle

environment and traffic situation as well as a formulation

of fundamental goals and skills of the vehicle that lead to

the current mission plan. Second, the stand-alone models

of both perception and behavior generation are augmented

by information gathered through the cooperation with other

vehicles.

Fig. 3. Block diagram of a cooperative cognitive automobile

The functional system structure is mapped on a hardware

architecture as shown in Fig. 4: The modules corresponding

to the upper three cognitive layers are implemented on

a common-off-the-shelf AMD Opteron multiprocessor PC

system as outlined in [11]. It delivers a computing power

comparable to a small cluster, yet offers low latencies and

high bandwidth for module interprocess communication. The

unified hardware architecture ensures an active interchange

of information among participating researchers. The control

of the active vision platform is handled by an embedded

system, providing the necessary response times for an inertial

stabilization of the telephoto camera. We also dedicate a

dSpace AutoBox to drive the vehicles actuators in order to

meet our safety requirements. The chosen hardware architec-

ture is supported by a realtime-capable software architecture

as proposed in [11]: It consists of a central database (KogMo-

RTDB), giving all cognitive modules a unique view of all

knowledge available to the cooperative cognitive automobile.

An easy-to-learn programming interface allows fast develop-

ment and integration of new components.

The consortium has procured three Audi Q7 and a Volk-

swagen Passat for the project. Furthermore, a Smart roadster

and a Volkswagen Touareg are used in the project context.

All vehicles are designed to conduct full autonomous be-

havior3. Thus the consortium operates a fleet of in total six

3The authors gratefully acknowledge industrial support for these vehicles.
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Fig. 4. Overview of the hardware architecture

vehicles which allows assessment of cooperative perception

and behavior in mixed traffic as developed in the project. The

modular software and hardware architecture with specified

interfaces enables exchange and fusion of hardware and

software modules among the partners.

Due to its rich information content, particular emphasis

of the sensor system is laid on vision. Figure 5 depicts our

active camera platform that includes three cameras. The yaw

directions of the outer two cameras with wide angle lenses

are independently steerable. The cameras can be steered

to yield disjunct fields of view to monoscopically survey

a wide field. Alternatively, the cameras may be steered in

the same direction to cover some 70◦ instantaneous field of

view stereoscopically. Any mixture or any dynamic transition

between the two is possible as well. Through smooth or

saccadic panning each camera can survey an almost 180◦

field of view. A strength of the active camera system is

its capability for dynamic self-calibration [12]. This allows

for 180◦ field of view 3D stereoscopic scene perception

which, to the best knowledge of the authors, is a unique

qualification. The third camera is a telephoto camera with

steerable yaw and tilt direction that allows high resolution

tracking of distant objects.

III. COGNITION: PERCEPTION, REASONING,

AND INFERENCE

A central issue for any driver assistance function relevant

to safety is its ability to assess the perception and decision

performance under current conditions. In a typical perception

process as sketched in Fig. 6, information emerges from

the signal level (sensor raw data) over several processing

steps via a geometrical-symbolic representation of the current

traffic environment to the generation and control of suitable

behavior.

Robustness is an important factor in this process: One

successful method is to fuse data from different sensors. This

may happen on the pixel level so that combined images from

video- and IR-sensors provide information less sensitive to

illumination; the fusion may happen also on a subsymbolic or

symbolic level: Sensors that differ in nature like video, Lidar

Fig. 5. Active camera platform a) in the vehicle; b) schematic sketch [12]

and Radar may detect objects, and combining these proposals

generates more robust hypotheses [13], [14]. Tracking over

time enhances reliability of object hypotheses further, and

reduces computational effort since only regions of interest

have to be processed. Object tracking with Extended Kalman

Filters (EKF) or particle filters and model based object

detection has been reported as an important element for the

early success of approaches to autonomous driving, as e. g.

for the 4D-approach [15].

It is crucial to not only propagate knowledge through

the cognition scheme but to augment this knowledge with

confidence measures. These measures are consistently pro-

cessed at each step of the cognition chain, considering the

confidence of previous processing steps along with additional

noise introduced by sensors and the uncertainty introduced

by the individual algorithms. At the top level the procedure

quantifies the confidence of the set behavior considering the

uncertainties of all previous levels.

In reverse direction, selective enquiries are conducted

to resolve ambiguities at lower levels [16]. This scheme

exhibits interesting parallels to biological image processing

schemes, see e. g. [17]. Expectation based image processing

that focusses the processing power to appropriate regions and

features of interest not only reduces computational effort may

also resolve ambiguities and uncertainties at decision level.

As a concise example, the feature level may specifically

search for some basic features and initiate feature detection

at this level with a decreased decision threshold when a

hypothesis at the object detection layer predicts a complex

feature in a specific image region [18].

As outlined before, the partners in the TCRC28 research

group from Karlsruhe and München are cooperating. Nev-

ertheless they are also competitive in some aspects. In the

field of perception, one group elaborates stereo algorithms to

acquire depth information from motion and disparity keys,
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whereas the other group focuses on biologically inspired

principles: They use a priori knowledge about object classes

and dimensions to estimate the distance from the object

sizes in the images; the 4D-algorithm again stabilizes the

results over a short image sequence; first results being very

promising [19]. The different methods will be evaluated

through competitive benchmarks. Through joint analysis of

the performance of both groups it will be decided which

method or which diverse combination of methods will further

be pursued.
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reverse
channel
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informationobject level

feature level
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control
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Fig. 6. Propagation of uncertainty, airiness and ambiguity through the
cognition chain

Information may be purely quantitative at the lower levels

of the cognition chain. E. g. at signal level it may be

composed of a set of RGB intensities for all pixels and at

control level by the setting amplitudes. In order to generate

knowledge based behavior, however, conceptual information

is required at intermediate levels. E. g. a situation may

include assumed intentions of other traffic participants, such

as ’driver intends a lane change’. We employ a probabilistic

inference process described in the sequel [20].

Let s = (s1, s2, . . . , sm) denote a situation, i. e. the set

of all parameters that are relevant for driving. We model

a situation as a sample from a random variable S. Let

further g = (g1, g2, . . . , gn) denote the set of the available

evidence, i. e. pixel intensities, features derived thereof, rules,

or prior knowledge. As before, g is considered as a sample

of random variable G. Likewise, behavior is denoted by

b. Possible behavior is constrained by the current skills of

the autonomous system. With each behavior b applied in

situation s we imply a cost functional c(b, s) that reflects our

goals, values and quality criteria, such as e. g. some measure

for safety. For any given evidence g one can then associate

the Bayesian expected cost functional with every possible

behavior b

k(b;g) =

∫

c(b, s)p(S = s|G = g)ds

and the behavior minimizing k may be generated. Formu-

lation of the second factor in this integral is, in general,

a difficult task and dimensions m and n of the situation

and evidence may be large. In order to decompose this

a posteriori distribution, we impose a Markov model or,

more precisely, we construct a Markov random field (Markov

network). The Markov network, which can be represented

by an undirected graph, allows us to incorporate a priori

knowledge about the traffic scene in its structure. Because

only a subset of variables in a traffic situation is directly

dependent this reduces the complexity of the optimization

problem: A Markov network comprises the variables in

its neighborhood definition G = {G1, . . . ,Gm}, where Gi

denotes the set of all neighbors to i, i. e. those variables that

are conditionally dependent. Then the Markov property holds

p(Si|Sj , ∀j 6= i) = p(Si|Sj , ∀j ∈ Gi).

Due to the Hammersley-Clifford theorem, Markov random

fields may always be represented by a Gibbs distribution [21]

p(S = s) =
1

Z
exp

{

−
∑

c∈C

u(sc)

}

,

where the sum is taken over all sets of variables (cliques) c
whose any pair are neighbors, sc denotes a vector composed

of the variables in c, u denotes a clique potential, and Z
denotes a scalar partition function that normalizes the prob-

ability distribution. Since this representation decomposes the

distribution into a product whose factors are each determined

by a small set (clique) of variables only, it is used during

the probability maximization procedure. One disadvantage

of Markov random fields is that its manual design is tedious

and error prone especially for complex knowledge bases as

are required for the evaluation of traffic scenes. To overcome

this problem, a special variant of Markov networks with

only binary random variables is used. This Markov logic

network is defined as a set of pairs (F,w) where the first

component F is a formula in first-order logic involving

only variables in one clique and the second component w
is a real number. Loosely speaking F are weak rules, e. g.

’Vehicle x will most likely conduct a lane change manoeuvre

if its own lane is blocked and the adjacent lane has a

suitable gap.’, and w quantifies the belief in this rule. Hence

Markov networks allow the explicit formulation of rules and

can cope with sporadic violations of these rules without

becoming inconsistent. Inference machines that solve for

desired probabilities for a given grounding in Markov logic

networks are available (cf. [22]).

Figure 7 shows a graph illustration of a simple Markov

logic network, where the binary random variables (validity

of first order formulas) form the nodes and weighted neigh-

borhood relationships are marked as edges. Markov logic

networks are related to situation graph trees as proposed

in [23] and generalize Bayesian belief networks in some

aspects which can be considered as random fields on directed

graphs. They have successfully been applied to lane change

prediction [24]. The combination of a probabilistic reasoning

framework like Markov networks with logic expressions has

several advantages: Compared to classical logic, uncertainties
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Fig. 7. Simplified Markov network for a lane change manoeuvre

in measurements and contradictory rules can be resolved.

Compared to Markov random fields on the other hand,

the representation of rules using a logic notation makes

the system comprehensible to humans: common tools for

ontology engineering like Protégé 4 become applicable and

simplify the design and maintenance of the knowledge base.

IV. COOPERATIVE PERCEPTION AND BEHAVIOR

As the equipment rate of vehicles with capabilities for

environmental sensing increases, it becomes likely that a

vehicle within a group possesses information about the

environment that is relevant to others. Hence through ex-

change of information via car-to-car communication indi-

vidual vehicles may enhance their field of view as well

as the degree of accuracy and plausibility of the sensed

information. Furthermore, vehicles can augment their scene

perception by intentions communicated by cooperating traffic

participants. It is worth noting from Fig. 2 that cooperative

sensing does not require a 100% equipment rate, but provides

benefit even at moderate rates. Preliminary experiments with

cooperative perception between vehicles have recently been

reported [25]. An important issue in this context is the spatio-

temporal registration of data transmitted in the coordinate

system of other vehicles. Since the uncertainty of the spatio-

temporal alignment adds itself to the intrinsic uncertainty of

the sensor information, this alignment must be conducted

with high precision. It is shown that an alignment strategy

that combines the coarse localization information of a GPS

system with the sensor output of the video sensor itself yields

good results for the envisaged application.

Cooperative perception and behavior generation impose

significant requirements on communication. Due to the lack

of a fixed infrastructure, communication relations between

vehicles have to be set up ‘ad hoc’. Demands such as

high data rates, minimum delivery ratios and guaranteed

maximum delays, commonly denoted as Quality-of-Service,

have to be met. Scalability and QoS in self-organizing

networks (see [26], [27]) are current research issues that have

4http://protege.stanford.edu

not yet been generally answered. Especially in the context

of cognitive vehicles, deterministic real-time behavior that

assures observance of deadlines is an important prerequisite

to enable distributed control. Also, aging of messages due to

the ongoing perception has to be considered.

V. CONCLUSIONS AND OUTLOOK

Within the Transregional Collaborative Research Cen-

tre 28, the partners focus on systematic and interdisciplinary

research on machine cognition of mobile systems as the basis

for a scientific theory of automated machine behavior.

A software and hardware architecture that enables ex-

change of individual modules has been developed and im-

plemented with of-the-shelf components. Emphasis has been

laid upon the active camera platform that allows for 180◦

field of view 3D stereoscopic scene perception. The consor-

tium operates in total six autonomous vehicles to validate and

demonstrate cooperation perception and behavior in mixed

traffic.

For the sake of rule-based and knowledge based cognition

methods from artificial intelligence have been adopted. The

combination of a probabilistic reasoning framework with

a formal logic language enables a cognitive automobile

to handle uncertainties in measurements and contradictory

rules. Using ontological concepts for a detailed description

of traffic scenes, this complex knowledge base stays com-

prehensible and maintainable.

Once groups of traffic have reached agreement on the

perceived situation, they may negotiate to adapt their be-

havior cooperatively to the benefit of all. Emerging from

successful experiments with cooperative city cars reported in

[28], we are currently building dynamically self-organizing

cooperative groups for cooperative passing and emergency

brake manoeuvres.
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