841 research outputs found

    Query Relaxation for Entity-relationship Search

    Get PDF

    Configurable indexing and ranking for XML information retrieval

    Full text link
    Indexing and ranking are two key factors for efficient and effective XML information retrieval. Inappropriate indexing may result in false negatives and false positives, and improper ranking may lead to low precisions. In this paper, we propose a configurable XML information retrieval system, in which users can configure appropriate index types for XML tags and text contents. Based on users ’ index configurations, the system transforms XML structures into a compact tree representation, Ctree, and indexes XML text contents. To support XML ranking, we propose the concepts of “weighted term frequency ” and “inverted element frequency, ” where the weight of a term depends on its frequency and location within an XML element as well as its popularity among similar elements in an XML dataset. We evaluate the effectiveness of our system through extensive experiments on the INEX 03 dataset and 30 content and structure (CAS) topics. The experimental results reveal that our system has significantly high precision at low recall regions and achieves the highest average precision (0.3309) as compared with 38 official INEX 03 submissions using the strict evaluation metric

    Combining Flexible Queries and Knowledge Anchors to facilitate the exploration of Knowledge Graphs

    Get PDF
    Semantic web and information extraction technologies are enabling the creation of vast information and knowledge repositories, particularly in the form of knowledge graphs comprising entities and the relationships between them. Users are often unfamiliar with the complex structure and vast content of such graphs. Hence, users need to be assisted by tools that support interactive exploration and flexible querying. In this paper we draw on recent work in flexible querying for graph-structured data and identifying good anchors for knowledge graph exploration in order to demonstrate how users can be supported in incrementally querying, exploring and learning from large complex knowledge graphs. We demonstrate our techniques through a case study in the domain of lifelong learning and career guidance

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Data Mining in Personalized Web Searching Data�s

    Get PDF
    World Wide Web (WWW) is very popular and commonly used internet�s information retrieval service. Nowa-days commonly used task on internet is web search. User gets variety of related information for their queries. To provide more relevant and effective results to user, Personalization technique is used. Personalized web search refer to search information that is tailored specifically to a person�s interests by incorporating information about query provided. Two general types of approaches to personalizing search results are modifying user�s query and reranking search results. Several personalized web search techniques based on web contents, web link structure, browsing history ,user profiles and user queries. The proposed paper is to represent survey on various techniques of personalization

    Interview and Delivery: Dialogue Strategies for Conversational Recommender Systems

    Get PDF
    Proceedings of the 16th Nordic Conference of Computational Linguistics NODALIDA-2007. Editors: Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit. University of Tartu, Tartu, 2007. ISBN 978-9985-4-0513-0 (online) ISBN 978-9985-4-0514-7 (CD-ROM) pp. 199-204

    Combining flexible queries and knowledge anchors to facilitate the exploration of knowledge graphs

    Get PDF
    Semantic web and information extraction technologies are enabling the creation of vast information and knowledge repositories, particularly in the form of knowledge graphs comprising entities and the relationships between them. Users are often unfamiliar with the complex structure and vast content of such graphs. Hence, users need to be assisted by tools that support interactive exploration and flexible querying. In this paper we draw on recent work in flexible querying for graph-structured data and identifying good anchors for knowledge graph exploration in order to demonstrate how users can be supported in incrementally querying, exploring and learning from large complex knowledge graphs. We demonstrate our techniques through a case study in the domain of lifelong learning and career guidance

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Augmenting applications with hyper media, functionality and meta-information

    Get PDF
    The Dynamic Hypermedia Engine (DHE) enhances analytical applications by adding relationships, semantics and other metadata to the application\u27s output and user interface. DHE also provides additional hypermedia navigational, structural and annotation functionality. These features allow application developers and users to add guided tours, personal links and sharable annotations, among other features, into applications. DHE runs as a middleware between the application user interface and its business logic and processes, in a n-tier architecture, supporting the extra functionalities without altering the original systems by means of application wrappers. DHE automatically generates links at run-time for each of those elements having relationships and metadata. Such elements are previously identified using a Relation Navigation Analysis. DHE also constructs more sophisticated navigation techniques not often found on the Web on top of these links. The metadata, links, navigation and annotation features supplement the application\u27s primary functionality. This research identifies element types, or classes , in the application displays. A mapping rule encodes each relationship found between two elements of interest at the class level . When the user selects a particular element, DHE instantiates the commands included in the rules with the actual instance selected and sends them to the appropriate destination system, which then dynamically generates the resulting virtual (i.e. not previously stored) page. DHE executes concurrently with these applications, providing automated link generation and other hypermedia functionality. DHE uses the extensible Markup Language (XMQ -and related World Wide Web Consortium (W3C) sets of XML recommendations, like Xlink, XML Schema, and RDF -to encode the semantic information required for the operation of the extra hypermedia features, and for the transmission of messages between the engine modules and applications. DHE is the only approach we know that provides automated linking and metadata services in a generic manner, based on the application semantics, without altering the applications. DHE will also work with non-Web systems. The results of this work could also be extended to other research areas, such as link ranking and filtering, automatic link generation as the result of a search query, metadata collection and support, virtual document management, hypermedia functionality on the Web, adaptive and collaborative hypermedia, web engineering, and the semantic Web

    prototypical implementations

    Get PDF
    In this technical report, we present prototypical implementations of innovative tools and methods developed according to the working plan outlined in Technical Report TR-B-09-05 [23]. We present an ontology modularization and integration framework and the SVoNt server, the server-side end of an SVN- based versioning system for ontologies in the Corporate Ontology Engineering pillar. For the Corporate Semantic Collaboration pillar, we present the prototypical implementation of a light-weight ontology editor for non-experts and an ontology based expert finder system. For the Corporate Semantic Search pillar, we present a prototype for algorithmic extraction of relations in folksonomies, a tool for trend detection using a semantic analyzer, a tool for automatic classification of web documents using Hidden Markov models, a personalized semantic recommender for multimedia content, and a semantic search assistant developed in co-operation with the Museumsportal Berlin. The prototypes complete the next milestone on the path to an integral Cor- porate Semantic Web architecture based on the three pillars Corporate Ontol- ogy Engineering, Corporate Semantic Collaboration, and Corporate Semantic Search, as envisioned in [23]
    corecore