
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-2001

Augmenting applications with hyper media, functionality and Augmenting applications with hyper media, functionality and

meta-information meta-information

Roberto Galnares
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Galnares, Roberto, "Augmenting applications with hyper media, functionality and meta-information"
(2001). Dissertations. 469.
https://digitalcommons.njit.edu/dissertations/469

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/469?utm_source=digitalcommons.njit.edu%2Fdissertations%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AUGMENTING APPLICATIONS WITH HYPERMEDIA
FUNCTIONALITY AND META-INFORMATION

by

Roberto Galnares

The Dynamic Hypermedia Engine (DHE) enhances analytical applications by

adding relationships, semantics and other metadata to the application's output

and user interface. DHE also provides additional hypermedia navigational,

structural and annotation functionality. These features allow application

developers and users to add guided tours, personal links and sharable

annotations, among other features, into applications. DHE runs as a middleware

between the application user interface and its business logic and processes, in a

n-tier architecture, supporting the extra functionalities without altering the original

systems by means of application wrappers.

DHE automatically generates links at run-time for each of those elements

having relationships and metadata. Such elements are previously identified using

a Relation-Navigation Analysis. DHE also constructs more sophisticated

navigation techniques not often found on the Web on top of these links. The

metadata, links, navigation and annotation features supplement the application's

primary functionality.

This research identifies element types, or "classes", in the application

displays. A "mapping rule" encodes each relationship found between two

elements of interest at the "class level". When the user selects a particular

element, DHE instantiates the commands included in the rules with the actual

instance selected and sends them to the appropriate destination system, which

then dynamically generates the resulting virtual (i.e. not previously stored) page.

DHE executes concurrently with these applications, providing automated link

generation and other hypermedia functionality. DHE uses the eXtensible Markup

Language (XML) - and related World Wide Web Consortium (W3C) sets of XML

recommendations, like Xlink, XML Schema, and RDF - to encode the semantic

information required for the operation of the extra hypermedia features, and for

the transmission of messages between the engine modules and applications.

DHE is the only approach we know that provides automated linking and

metadata services in a generic manner, based on the application semantics,

without altering the applications. DHE will also work with non-Web systems.

The results of this work could also be extended to other research areas,

such as link ranking and filtering, automatic link generation as the result of a

search query, metadata collection and support, virtual document management,

hypermedia functionality on the Web, adaptive and collaborative hypermedia,

web engineering, and the semantic Web.

AUGMENTING APPLICATIONS WITH HYPERMEDIA
FUNCTIONALITY AND META-INFORMATION

by
Roberto Galnares

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer & Information Sciences

May 2001

Copyright © 2001 by Roberto Galnares

ALL RIGHTS RESERVED

APPROVAL PAGE

Augmenting Applications with Hypermedia Functionality and
Meta-Information

Roberto Galnares

Michael Bieber, Ph.D., Thesis Adviser 	 Date
Associate Professor of Information Systems, NJIT

Murray Turoff, Ph. D., Committee Member 	 Data
Chairman and Distinguished Professor of Information Systems, NJIT

Vincent Oria, Ph.D., Committee Member 	 Date
Assistant Professor of Information Systems, NJIT

Ravi Paul, Ph.D., Committee Member 	 Date
Assistant Professor of Information Systems, NJIT

Vassilka Kirova, Ph.D., Committee Member 	 Date
Software Technology Center, Bell Labs, Lucent Technologies

BIOGRAPHICAL SKETCH

Author: 	 Roberto Galnares

Degree: 	 Doctor of Philosophy in Computer and Information Science

Date: 	 May 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer and Information Science
New Jersey Institute of Technology, Newark, NJ, 2001

• Ingeniero en Cibernética y Ciencias de la Computación
Universidad la Salle, C.V. Mexico City, Mexico, 1984

Major: 	 Computer and Information Sciences

Presentations and Publications:

Anirban Bhaumik, Deepti Dixit, Roberto Galnares, Manolis Tzagarakis, Michalis
Vaitis, Michael Bieber, Vincent Oria, Qiang Lu, Firas AljaIlad and Li Zhang,

Integrating Hypermedia Functionality into Database Applications,
Developing Quality Complex Database Systems: Practices, Techniques and
Technologies, Shirley Becker (ed.), forthcoming.

Anirban Bhaumik, Deepti Dixit, Roberto Galnares, Manolis Tzagarakis, Michalis
Vaitis, Michael Bieber, Vincent Oria, Qiang Lu, Firas Aljallad and Li Zhang,

Towards Hypermedia Support for Database Systems,
Proceedings of the 34th Hawaii International Conference on System Sciences,
IEEE Press, Washington, D.C., January 2001.

Michael Bieber, Roberto Galnares and Qiang Lu,
Web Engineering and Flexible Hypermedia,
2nd Workshop on Adaptive Hypertext and Hypermedia, Hypertext '98
Conference, Pittsburgh, 1998.

Michael Bieber and Roberto Galnares,
Automated Hypermedia Support for the Virtual Documents Generated by
Analytical Applications,
Workshop on Virtual Documents, Hypertext Functionality and the Web,
WWW8 Conference, Gold Coast, Australia, 1998.

iv

To my family

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Michael Bieber , who not

only served as my research supervisor, providing valuable and countless

resources, insight, and intuition, but also constantly gave me support,

encouragement, and reassurance. Special thanks are given to Dr. Ravi Paul,

Dr. Murray Turoff, Dr. Vassilka Kirova and Dr. Vincent Oria for participating in my

committee.

I would also like to express my gratitude to the generous organizations that

provided the financial support that made this studies possible: the Department of

Computer and Information Science at the New Jersey Institute of Technology,

the U.S. Fulbright Commission, the Consejo Nacional de Ciencia y Tecnologia

(CONACYT, Mexico), as well as the professors who provided me with funding

and guidance: Dr. Michael Bieber, Dr. James Geller, Dr. Yehoshua Peri,

Dr. James McHugh, and Dr. Joseph Leung.

Many of my fellow graduate students in the Collaborative Hypermedia

Research Lab are deserving of recognition for their contributions to this work. I

also would like to thank my wife, Ana L. Escalante, for her love and support over

the years.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 OVERVIEW 	 1

1.1 	 Motivation 	 1

1.2 Proposed Solution: the Dynamic Hypermedia Engine

(DHE) 	 4

1.3 Main Contributions 	 7

1.4 Outline 	 8

1.5 Summary 	 9

2 HYPERMEDIA 	 10

2.1 Hypermedia Functionality 	 14

2.2 Hypermedia Support 	 17

2.2.1 Hypermedia Engines 	 22

2.3 Virtual Documents 	 24

2.4 Automatic Link Generation 	 26

2.5 Summary 	 31

3 METADATA 	 34

3.1 Introduction 	 35

3.2 Metadata Issues 	 36

3.2.1 Metadata Utility 	 38

3.2.2 Metadata Model 	 41

3.2.3 Metadata Standards 	 41

3.3 W3C: World Wide Web Consortium 	 44

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.3.1 W3C Metadata Activity 	 45

3.3.2 HTML: HyperText Markup Language 	 46

3.3.3 XML: eXtensible Markup Language 	 47

3.3.4 RDF: Resource Description Framework 	 52

3.3.5 XML Schema 	 56

3.3.6 Other W3C Metadata Applications 	 60

3.4 Other Organizations, Specifications, Standards and

Formats 	 65

3.4.1 Warwick Framework 	 70

3.4.2 MDC: MetaData Coalition 	 70

3.4.3 OMG: Object Management Group 	 77

3.5 Metadata Role in Indexing Services 	 79

3.6 Meta-Information 	 80

3.7 Summary 	 83

4 DYNAMIC HYPERMEDIA ENGINE OVERVIEW 	 87

4.1 Features 	 88

4.2 Architecture 	 89

4.2.1 Gateway 	 92

4.2.2 Bridge Laws Element Mapper (BLEM) 	 94

4.2.3 User Interface Wrapper 	 97

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.2.4 	 Dynamically Mapped Information System

Wrappers 	 100

4.2.5 	 Menu Manager 	 106

4.2.6 	 User Preferences 	 107

4.2.7 	 Database Schemas 	 109

4.2.8 	 Index Manager 	 113

4.3 Web Browser User Interface 	 115

4.4 Operation Overview 	 117

4.5 Summary 	 120

5 DHE 1.0 IMPLEMENTATION 	 122

5.1 Functionality 	 123

5.2 Example of Use 	 123

5.3 Review 	 130

5.4 Summary 	 131

6 DHE NEXT GENERATION (DHE NG) 	 133

6.1 DHE NG Architecture 	 136

6.1.1 	 Controller 	 138

6.1.2 	 Application Wrappers (AW) 	 153

6.1.3 	 User Interface Wrappers (UIW) 	 155

6.2 Summary 	 158

7 RESULTS AND FUTURE RESEARCH 	 160

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

7.1 Contributions 	 160

7.2 Future Research 	 162

7.2.1 Use of schemas as a source of semantic

information 	 162

7.2.2 The Semantic Web 	 164

7.3 Summary 	 169

REFERENCES 	 171

LIST OF FIGURES

Figure 	 Page

1.1 DHE as Middleware 	 5

4.1 DHE 1.0 Architecture 	 90

4.2 DHE 1.0 Web Browser User Interface 	 117

4.3 DHE Operation 	 119

5.1 DHE Login Screen 	 124

5.2 DHE Main Screen 	 125

5.3 RDBWM Query Input Screen 	 126

5.4 DHE Display of Query Results 	 127

5.5 Meta-Information for element 'Beyond HTML' 	 128

5.6 Result of Selecting the `display_getTable' Link 	 129

5.7 Result of Selecting the 'highlight_Attribute_in_ER_Schema'

Link 	 130

6.1 DHE NG Main Components 	 137

6.2 DHE-Meta-Information Scope Hierarchy 	 141

6.3 DHE-Meta-Information Mapping Rules Structure 	 144

6.4 DH E-VirtualDocument Structure 	 149

xi

CHAPTER 1

OVERVIEW

1.1 Motivation

Most information systems, including legacy systems, are designed without taking

into consideration the advantages that distributed relational environments and

hypermedia could offer to their users. This situation arises in part because,

currently, systems architects and analysts usually do not employ a hypermedia

design methodology as part of the system design process, and also because

manually incorporating hypermedia in documents and applications is an arduous,

often overlooked, task.

One helpful feature in the process of making existing or new applications

accessible through the World Wide Web (WVVW), or even during the deployment

of hypermedia enabled systems not in the web, would be the automatic

generation and inclusion of links and other metadata. This is especially important

for engineering, scientific and business applications that generate their displays

and results dynamically, instead of retrieving pre-existing documents. In those

cases links could not be added manually in time to support the user, who would

benefit if links and metadata were available at the time the screen or document is

displayed.

As more and more applications are brought onto the Web, developers are

beginning to perceive the depth of functionality that could be provided by adding

hypertext features such as non-linear structuring and linking, annotation, and

sophisticated navigation. Yet most users and developers seem unaware that

1

2

most Web environments give them only a subset of hypermedia functionality

[Bieber 97b].

Additional structuring features include semantically typed anchors, links

and nodes; attributes and keywords on these; links to and from content spans

within any medium; bi-directional links; links recursively to links and to other

hypermedia constructs; transclusions/inclusions providing access to all uses of

the same span of content; versioning of hypermedia constructs; landmarks;

automatic link propagation; trails and guided tours; and local and global

overviews. Navigation features include link traversal; visual feedback upon link

arrival; search based on the hypermedia structure (as opposed to content);

process enactment through link traversal; backtracking strategies; back-jumping;

and history mechanisms. Annotation features include comments, bookmarks and

reader-authored links with private, workgroup and public access. People should

be able to annotate any hypermedia construct, including other annotations

recursively [Vitali 00].

Several new standard Web data formats and protocols can facilitate the

implementation of many of these functionalities. Now that the basic hypermedia

building blocks exist, hypermedia and www researchers must now figure out how

to deploy them to create an infrastructure for seamlessly integrating hypermedia

techniques into the Web environment and making them pervasive in everyone's

daily Web activities [Vitali 00].

Hypermedia researchers believe strongly that readers should be able to

author at will, with the ability to add links and annotations to any document, and

3

this must take place in the browser as the user reads. Furthermore, these

browsers should support the creation of hypertext constructs such as semantic

node and link types and other attributes, trails and guided tours, etc. Also,

browsers should automatically display destination link spans, and

metainformation such as semantic types, keywords and other attributes as part of

maintaining the user's orientation.

Hypermedia features such as bi-directional linking, personalized links and

structural search rely on links as "first class objects" maintained external to

documents instead of embedded inside anchors. Ubiquitous linking from

documents not belonging to the user requires links and anchors be maintained

external to documents and only merged as the document is sent for display. This

requires external linkbases and anchor points maintained outside documents.

Unless an HTML document is dynamically generated, anyone without

write-access can neither create anchors at a link destination within that

document, nor create links leading from that document. Several interesting

hypermedia features remain impossible until we can extract link anchors from

document content, including bi-directional linking (links activated at both ends,

and thus not providing a preferred direction of navigation) and personalized links

(visible to a group of users, rather than all readers of a document).

Two issues arise when separating content and links. The first is the

problem of locators, i.e., of unequivocally identifying the exact spot in the

document at which link anchors should be attached. Of course, this is extremely

media type-dependent; methods to specify a location within ASCII documents,

4

marked-up texts or, say, bitmaps will vary considerably. The second issue is

keeping the locators correctly pointing to the right positions when either or both

linked documents are being modified asynchronously. These issues are even

more complex in the case of virtual documents that are generated dynamically.

Nowadays there is a myriad of applications which construct their displays

automatically as result of input submitted by users. Virtual documents do not exist

(in the form of a file) prior to generation, raising several potential problems

regarding their management, like how to refer to them, and how to add

hypermedia functionality to them.

1.2 Proposed Solution: the Dynamic Hypermedia Engine (DHE)

Most applications give users limited access to the relationships inherent with

these applications and to relationships external to the application [Bieber 97a]. An

application's knowledge base can be administered and organized to manage the

interrelationships between the various data objects. These relationships render

more contextual knowledge to users interacting with the application by providing

direct access to information not immediately accessible and consequently often

not fully understood.

There is a primary need for automating such functionality into applications

just so that the interrelationships within the application's knowledge are made

visible to the user. Furnishing these associations shows new ways to view the

application knowledge, navigate among items of interest, and annotate comments

and relationships. Thus, not only would the user benefit from the additional

User
Interface

Dynamic
Hypermedia

Engine
Application

5

hypermedia information but also from being able to widen his mental model of the

application domain. Because this kind of support is missing from most Web

applications and from all standard Web environments, we believe it imperative to

improve hypertext support for Web applications.

These problems are accentuated in the legacy applications [Bennett 95]

increasingly being transferred to the Web in order to gain universal access

(outside or even inside an organization) or to achieve platform independence.

These applications are being converted with the minimal amount of

reengineering, and rarely take advantage of the existence of links beyond

providing a home page, index, table of contents, next page button, etc. [Bieber

97a]. Assisting and automating Web conversion could alleviate the

aforementioned problems and actually enhance legacy applications to take

advantage of the Web's hypermedia features.

The Dynamic Hypermedia Engine (DHE) enhances analytical applications

dynamically, adding relationships, semantics and other metadata to the

application's output and user interface. The DHE hypermedia engine executes as

middleware between the target application and its user interface, providing

additional hypermedia navigational, structural and annotation functionality.

Figure 1.1 DHE as Middleware

6

`Wrappers' need to be written for each application in order to integrate them

with the engine architecture. The use of application wrappers enables DHE to

provide these extra functionalities without altering the original systems.

Applications or their wrappers then connect to DHE using messages delivered

through the network.

DHE 'intercepts' all messages passing between the application and the

user interface, and uses the mapping rules specified above to map each

appropriate element of the message to a hypermedia node or anchor. The user

interface wrapper integrates these anchors into the document being displayed

and sends it to the user's user interface. When the user selects an anchor, the

browser wrapper passes it to DHE, which returns a list of possible links (one for

each appropriate relationship as determined by the mapping rules).

If the user selects a hypermedia engine link (e.g., to add an annotation or

stage in a guided tour), DHE processes it entirely. If the user selects a

relationship with a destination in a registered application, DHE infers and

instantiates the appropriate application commands from the relationship's

mapping rules and passes them to the appropriate application for processing. If

the user selects a user-created annotation or tour, etc., DHE retrieves it. Thus

DHE automatically provides all hypermedia linking (as well as navigation) to

applications, which remain hypermedia-unaware and in fact often entirely

unchanged. DHE also constructs more sophisticated navigation techniques not

often found on the Web (e.g., guided tours, overviews, structural query) on top of

7

the dynamically generated links. The metadata, links and navigation, as well as

annotation features, supplement the application's primary functionality.

1.3 Main Contributions

The Dynamic Hypermedia Engine is a modular distributed middleware able to

enhance Information Systems with metadata, along with hypermedia structuring,

navigation and annotative functionality.

DHE is the only approach we know that provides automated linking and

metadata services in a generic manner, based on the application semantics (as

opposed to search or lexical analysis), without altering applications. It is uniquely

suited to support analytical and technical applications that generate the contents

of their displays dynamically.

The DHE prototype offers a solution to the problem of how to include

linking and metadata functionality to a virtual document. It will also become the

framework and test bed on which further research could be accomplished, like

the development of additional hypermedia functionality and the application of

empirical experiments.

The updated DHE architecture will become the new test bed for the

implementation of new hypermedia functionalities, and offers a solution for

several of the problems related with the management of dynamically generated

documents.

There are several areas in which this research could be applied and

extended, such as: link ranking and filtering, automatic link generation as the

8

result of a search query, metadata collection and support, virtual document

management, hypermedia functionality on the Web, adaptive and collaborative

hypermedia, and distributed applications architecture design.

1.4 Outline

Chapter 1, Overview, states what the problem is, describes the approach

followed to solve it, and the goals and contributions of this research.

Chapter 2, Hypermedia, reviews the hypermedia field giving special

attention to hypermedia functionality and support, as well as virtual documents

and automatic link generation.

Chapter 3, Metadata, examines the concept and applications of metadata,

and gives a general survey of the different metadata standards currently in use.

The term 'Meta-Information' is introduced.

Chapter 4, Dynamic Hypermedia Engine, presents an overview of the

Dynamic Hypermedia Engine (DHE), its main components, and the principles of

its operation.

Chapter 5, DHE 1.0, describes the initial implementation of the Dynamic

Hypermedia Engine, named DHE 1.0, it uses a detailed example to show the

added functionalities, and offers a critique of its performance and usability.

Chapter 6, DHE NG, shows the requirements and conceptual architecture

of the next version of the Dynamic Hypermedia Engine (DHE NG).

9

Chapter 7, Results and Future Research, summarizes the results

produced by this research and moves ahead to propose additional, or extended,

research topics.

Appendix A, DHE NG Data Structures, contains a formal documentation of

some of the data structures required by the Next Generation of the Dynamic

Hypermedia Engine.

1.5 Summary

Most information systems are designed without considering hypermedia. The

dynamic generation of links and metadata could be helpful in the deployment of

application on the WWW.

New standards facilitate the implementation of hypermedia functionalities.

Researchers must find out how to integrate hypermedia techniques in the Web

environment.

The Dynamic Hypermedia Engine (DHE) enhances analytical applications

dynamically. DHE executes as middleware providing additional hypermedia

functionality.

DHE's unique approach provides dynamic linking based on the application

semantics. It supports applications that generate dynamic content.

DHE also serves as test bed for further research, and could be applied

and extended in several areas.

CHAPTER 2

HYPERMEDIA

The Web owes its origins to many people, starting back in medieval times with

the development of a rich system of cross references and marginalia. The basic

document model for the Web was set: things in the page such as the text and

graphics, and cross references to other works. These early hypertext links were

able to able to target documents to a fine level thanks to conventions for

numbering lines or verses.

Vannevar Bush in the 1940's, in his article 'As we may think' [Bush 45],

describes his vision for a computer aided hypertext system he named the

'memex'. His description of browsing a Web of linked information, includes the

user's ability to easily insert new information of their own, to add to the growing

web. Dr. Bush was the Director of the US Office of Scientific Research and

Development, and coordinated war time research in the application of science to

war.

Other visionaries include Douglas Engelbart, who founded the

Augmentation Research Center at the Stanford Research Institute (SRI) in 1963

[Engelbart 63]. He is widely credited with helping to develop the computer mouse,

hypertext, groupware and many other seminal technologies. In 1968, Engelbart

introduced NLS, the oN Line System, as an experimental tool to store all

specifications, plans, designs, programs, documentation, reports, etc. Throughout

the years the system grew to over 100,000 information items. The computer

terminals were very sophisticated, including video projectors, special keyboards,

1 0

11

and mice. He now directs the Bootstrap Institute, which is dedicated to the

development of collective IQ in networked communities.

Ted Nelson has spent his life promoting a global hypertext system called

Xanadu. He coined the term hypertext [Nelson 65], and is well known for his

books: Literary Machines [Nelson 81] and Dream Machines [Nelson 74], which

describe hypermedia; including branching movies, such as the film at the

Czechoslovakian Pavilion at Expo '67.

One of the first hypertext-based systems was developed in 1967 by a team

of researchers led by Dr. Andries van Dam at Brown University. The research

was funded by IBM and the first hypertext implementation, Hypertext Editing

System, ran on an IBM/360 mainframe. IBM later sold the system to the Houston

Manned Spacecraft Center which reportedly used it for the Apollo space program

documentation. A year later, in 1968, van Dam developed FRESS, a File

Retrieval and Editing System which was an improvement of his original Hypertext

Editing System and was used commercially by Philips.

In 1972, researchers at Carnegie-Mellon University began development of

ZOG (doesn't stand for anything). ZOG was a large database designed for a

multi-user environment. The ZOG database consisted of frames which, in turn,

consisted of a title, a description, a line with standard ZOG commands, and a set

of menu items (called selections) leading to other frames. The ZOG database

was text-only and originally ran on an IBM mainframe. A PERQ workstation

implementation of ZOG was used on the nuclear-powered aircraft carrier USS

Carl Vinson. Two of the original developers of ZOG, Donald McCracken and

12

Robert Akscyn, later developed KMS, Knowledge Management System, which

was an improved version of ZOG. KMS runs on Sun and HP Apollo workstations

with much enhanced performance. Though KMS included a GUI, it still remained

a text-based system. It was intended to be a collaborative tool, in that users could

modify the contents of a frame and the changes would be immediately visible to

others through dynamically updated links. [DeBra 98]

In 1978, Andrew Lippman of MIT Architecture Machine Group, lead a team

of researchers that developed what is argued to be the first true hypermedia

system called the Aspen Movie Map. This application was a virtual ride simulation

through the city of Aspen, Colorado. Four cameras, pointing in different

directions, were mounted on a truck which was driven through the streets of

Aspen. The cameras took pictures at regular intervals, and all the pictures were

compiled onto videodisks. The images were linked in such a way that would allow

the user to start at a given point and move forward, back, left, or right. Once a

route through the city was chosen, the system could display the images in rapid

succession creating a movie-like motion. The system also included images of the

interior of several landmark Aspen buildings, so the user could take a virtual tour

of these buildings. Another interesting feature of the system was a navigation

map which was displayed in addition to the movie window. The user could jump

directly to a point on the city map instead of finding the way through the city

streets to that destination. The Aspen Movie Map was a landmark in hypermedia

development in that, through a sophisticated application, it demonstrated what

could be achieved with the technology available at the time [DeBra 98].

13

Bill Atkinson best known for MacPaint, the first bitmap painting program,

gave the world its first popular hypertext system HyperCard [HyperCard].

Released in 1987, HyperCard made it easy for anyone to create graphical

hypertext applications. It features bitmapped graphics, form fields, scripting, fast

full text search, manual linking, and backtracking. HyperCard is based on a stack

of cards metaphor with shared backgrounds. HyperCard was first used as a tool

for building hypertext systems with, instead of being considered a hypertext

system by itself [Nielsen 90]. It spawned imitators such as the Asymmetrix

Toolbook which used drawn graphics and ran on the PC. The OWL Guide was

the first professional hypertext system for large scale applications, it predates

HyperCard by one year and followed in the footsteps made by Xerox NoteCards,

a Lisp-based hypertext system, released in 1985. Jeff Conklin describes several

other early hypertext systems [Conklin 87].

The ACM SIGWEB [SIGWEB], formerly SIGLINK, has for many years

been the center for academic research into hypertext systems, sponsoring a

series of annual conferences. SIGLINK was formed in 1989 following a workshop

on hypertext, held in 1987 in Chapel Hill, North Carolina. Tim Berners-Lee and

Robert Caillau both worked at CERN, an international high energy physics

research center near Geneva. In 1989 they collaborated on ideas for a linked

information system that would be accessible across the wide range of different

computer systems in use at CERN. At that time many people were using TeX and

Postscript for their documents. A few were using SGML. Berners-Lee [

Berners-Lee 89] realized that something simpler was needed that would cope with dumb

14

terminals through high end graphical X Windows workstations. HTML was

conceived as a very simple solution, and matched with a very simple network

protocol HTTP.

CERN launched the Web in 1991 along with a mailing list called www-talk.

Other people thinking along the same lines soon joined and helped to grow the

web by setting up Web sites and implementing browsers, such as, Cello, Viola,

and MidasWWW. The break through came when the National Center for

Supercomputer Applications (NCSA) at Urbana-Champaign encouraged Marc

Andreessen and Eric Bina to develop the X Windows Mosaic browser. In order to

speed development, Mosaic dropped many of the features Tim Berners-Lee

originally envisioned and included in his first prototype, such as user editing.

Mosaic was later ported to PCs and Macs and became a run-away success story.

The Web grew exponentially, eclipsing other Internet-based information systems

such as WAIS, Hytelnet, Gopher, and UseNet.

All these systems that supplied linking, required the author to add the links

manually (with some exceptions in Electronic Commerce systems that put single-

destination links on database retrievals, and systems that generated links from

keyword searches).

2.1 Hypermedia Functionality

Until recently, few system developers actively thought about an application's

interrelationships, and whether users should access and navigate along these

relationships directly [Ashman 99]. The Hypertext Functionality (HTF) field studies

15

techniques for and the impact of supplementing everyday computer applications

with hypertext functionality. Hypertext structuring, annotation and navigational

functionality can enrich business, scientific, engineering and personal

applications, thereby making them more effective [Oinas-Kukkonen 95].

People use these applications primarily for their underlying analytical

functionality, i.e., not for their ability to produce hypertext documents or displays.

It is unlikely that users of such applications will change in favor of other

applications just because they offer hypertext. Developers therefore must find it

relatively easy to retrofit HTF to existing applications, as well as incorporate HTF

into new ones. HTF should be integrated and deployed so seamlessly that users

do not find its presence at all out-of-place [Bieber 00]. Augmenting applications

with direct access and hypertext structuring, annotation and navigation

functionality [Bieber 97a] should result in new ways to: view an application's

knowledge and processes conceptually; navigate among items of interest and

task stages; enhance an application's knowledge with comments and

relationships; and target information displays to individual users and their tasks.

Hypertext Structuring Functionality: Hypertext structuring functionality includes

local and global information overviews; alternate views and contexts;

transclusions that preserve context by "including" the original content at all

places that use it and maintaining links between all these uses; link

propagation; node, link and anchor typing; as well as keywords and other

attributes on all of these [Bieber 00].

16

Hypertext Navigation Functionality: Navigation functionality encompasses

access ranging from information retrieval to browsing. This includes

content- and structure-based query; history-based navigation and

sophisticated backtracking; bi-directional linking; dynamic and computed

linking; and process enactment or execution through link traversal [Bieber

00].

Hypertext Annotation Functionality: Annotation includes bookmarks,

landmarks, manual linking and commenting. Note that many of these

features can be shared in collaborative environments. Many also can be

personalized for different users and tasks [Bieber 00].

The Web finally provides a platform for widespread HTF support. Few

Web applications (and even fewer off the Web), currently take more than modest

advantage of hypertext [Bieber 97a], [Bieber 97b]. Thus, HTF researchers have

the opportunity to make a major impact on how applications of the future will look,

and on the level of support and quality of interaction that users will come to

expect.

Many of the ideas presented here came from shorter papers presented at

various Hypertext Functionality Workshops. Since 1994, the HTF research

community has organized many workshops [HTF 94], [HTF 96], [HTF 97], [HTF

98a], [HTF 98b], [HTF 98c] and more are scheduled. HTF research closely

parallels research in organizational hypermedia - hypertext support of the

information systems field. Since 1993 the primary forum for this research has

been the Hypermedia in Information Systems and Organizations mini-track at the

17

Hawaii International Conference on Systems Sciences [HICSS 93]. A special

journal issue also resulted from this forum [JOC 96]. In 1998 this mini-track was

expanded into the Web Information Systems mini-track [HICSS 98], recognizing

the Web as today's primary platform for hypertext development. There is also a

special issue on hypertext functionality in the Journal of Digital Information [JoDI

99].

2.2 Hypermedia Support

Hypermedia data models

Several hypermedia data models, such as the Hypertext Abstract Machine (HAM)

[Campbell 88], Dexter [Halasz 94] and the World Wide Web's HTML provide data

structures and guidelines for constructing nodes, links and anchors, and for

browsing. Builders can implement one of these instead of making up their own.

HyTime [HyTime] provides an SGML-based ISO standard model for hypermedia

documents (as well as musical documents), although its complexity has

discouraged all but a few implementations. Implementing a data model is no easy

task, but it does provide a solid starting point for a hypermedia system.

The Toolkit approach

The toolkit approach facilitates incorporating hypermedia functionality into

individual non-hypermedia applications being built from scratch. An application

builder embeds calls to the toolkit's subroutine library in the application's code.

Examples of toolkits include the Hypertext Object-oriented Toolkit [Puttress 90]

18

and the Andrew Toolkit [Sherman 90]. Anderson [Anderson 96] extended the

JAVA ATW user-interface toolkit with hypermedia-aware widgets. Garrido and

Rossi [Garrido96] extended the VisualWorks Smalltalk palette to include

hypermedia-aware widgets.

Hyperbases

Builders constructing hypermedia systems from scratch need to store and retrieve

hypermedia constructs (nodes, links and anchors), which persist between user

sessions. Hyperbase storage engines such as HB3 [Leggett 94] provide a data

store and management routines for hypermedia constructs akin to database

management systems. System builders can integrate hyperbases into their

systems, as many link services and open hypermedia systems do.

Link Services

Several research efforts have succeeded in creating links among primarily non-

hypermedia information systems and in facilitating their traversal. Microcosm

[Davis 94], Multicard [Rizk 92], and Chimera [Anderson 97] each has a

hypermedia link service that executes concurrently with external systems and

provides linking support. The Distributed Link Service consisted of an unenclosed

environment providing a navigational overlay to Web pages based on within-node

text analysis to identify implicit link opportunities such as key phrases, personal

names and bibliographic citations [Carr 98].

19

Each of those hypermedia systems expects client information systems to support

anchor creation and selection by embedding hypermedia calls and handling

minimal hypermedia functionality in a manner similar to the toolkit approach. They

also provide multiple levels of hypermedia navigation and annotation support,

based on the degree of hypermedia compliance the client non-hypermedia

information system provides, as well as a limited set of support for client systems

that are not hypermedia compatible at all. All systems, however, concentrate

primarily on supporting manual linking within display-oriented systems.

Generating hypermedia applications from a hypermedia design

methodology

Hypermedia design methods present one of the most important developments in

the hypermedia field [Yoo 00], [Bieber 95a]. This involves more than applying

well-understood system analysis and design or software engineering techniques

to hypermedia. Hypermedia functionality requires new kinds of relationship

management and navigation support. Hypermedia design methods provide a

systematic approach to relationship management and navigation support, which

in turn, should enable consistent, large-scale, robust hypermedia

implementations. Most of the design methods available produce new hypermedia

applications, complete with their own interface. Our approach differs in that it

supports new or existing applications, without requiring hypermedia-oriented

relationships or features to be embedded in the application code.

20

Hypermedia application software

For standalone applications, many commercial and research hypermedia

application environments exist. Here are just a few. The MacWeb design

environment produces a hypermedia application for knowledge-based systems

[Nanard 95]. VIKI enables users to build spatial hypermedia applications in which

all links are implicit through the user's spatial location of nodes [Marshall 94].

These often support only manual hypermedia linking, though some may be

extended through a scripting language.

Open Hypermedia Systems

Open hypermedia research addresses the issues of integrating hypermedia

functionality into existing applications in the computing environment. An open

hypermedia system (OHS) is typically a middleware component in the computing

environment offering hypermedia functionality to applications orthogonal to their

storage and display functionality. Using the services of an OHS, existing

applications in the computing environment can become "hypermedia enabled",

thus supporting linking to and from information managed by the application

without altering the information itself. To become "hypermedia enabled",

applications must be extended to make the hypermedia functionality available in

the user interface and must be able to communicate hypermedia requests to the

OHS. The term open hypermedia environment is used to cover both the OHS and

the set of hypermedia enabled applications. An open hypermedia environment is

21

a subset of the overall computing environment in terms of applications, programs

and services.

Open Hypermedia Systems are currently being deployed in various application

domains, including digital libraries, computing support for large engineering

enterprises, software development and education. Yet, open hypermedia

developers have until recently lacked consensus, common guidelines and

standards for interoperation between OHSs and applications that request

hypermedia services [Nurnberg 98]. Without such guidelines and standards, each

open hypermedia system uses different approaches and techniques that inhibit

interoperability. The immediate results of this are:

• Lack of presentation interoperability: applications enabled for one particular

OHS cannot be used with other OHSs. Thus, currently, each application has

to be enabled separately for each OHS instead of just once for all OHSs.

• Lack of storage interoperability hypermedia structures built using one

particular open hypermedia environment cannot be accessed and used by

other open hypermedia environments. Thus, currently, each open

hypermedia environment is an "island" instead of a part of a larger, unified

hypermedia environment.

• Lack of system interoperability: hypermedia structures cannot be built across

different open hypermedia environments. It is, for instance, not possible to

create a link with one end in one particular open hypermedia environment

and another end in another open hypermedia environment. This adds to the

22

problem of open hypermedia environments being "islands" as mentioned

above.

The open hypermedia community is currently addressing interoperability

issues by defining a set of guidelines and standards for interoperation. A working

group [OHSWG] has been formed, and a number of meetings have been held in

this ongoing standardization effort.

2.2.1 Hypermedia Engines

Hypermedia engines execute independently of an application with minimal

modifications to it, and provide the application's users with hypermedia support.

Few approaches provide transparent hypermedia integration as DHE does.

Notable projects include Microcosm's Universal Viewer [Davis 94], Freckles

[Kacmar 95], the 00-Navigator [Garrido 96], and NBCi's QuickLink [QuickLink].

The Universal Viewer gives users access to a minimal level of Microcosm's

hypermedia functionality through the PC Windows operating system. It places

selectable buttons in the title bar of the application's windows. Users can select

text in these unaware applications and select a Microcosm button to check for

"generic" or "keyword" links originating from any portion of the text selected. Links

to these applications will launch the application under the Universal Viewer and

open the destination document within it.

Kacmar's [Kacmar 93] work focuses on hypermedia-aware interfaces. His

engine works together with the interface to determine how to display objects. The

hypermedia engine handles linking and traversal. The interface allows users to

23

select anchors and display the results of traversals. The underlying back-end

application must be implemented so that it returns an object's contents when

requested. Kacmar's work differs from DHE, in part, through its philosophy. His

work aims at generating hypermedia-aware interfaces, where our work eventually

should lead to hypermedia-unaware interfaces as well as hypermedia-unaware

applications.

Kacmar's second project [Kacmar 95] developed another version of his

architecture which operates entirely independently of the interface system. It uses

the underlying UNIX X Windows system to overlay all hypermedia controls

(nodes, anchors, menus, etc.). As with the Universal Viewer, it remains unaware

of the application's data model and object identifiers. It uses the window title, as a

structured object descriptor, to associate an identifier with the window's contents.

Window contents are maintained by the underlying application.

All three approaches seamlessly support an application's other

functionality but provide only manual linking - in the Universal Viewer's case on

an object's display value; in Kacmar's first system on the object identity; and in

Kacmar's second system, on the object's fixed location within a recognized

window. DHE, in contrast, contributes by providing seamless, automated

supplemental navigation and interrelationship access to dynamically-mapped

information systems.

The 00-Navigator comes the closest to our approach, providing a

seamless hypermedia support for computational systems that execute within a

single Smalltalk environment. They provide a hypermedia layer above the

24

applications which maps application classes to node classes, and relationships

among classes to link classes. From these mappings the 00-Navigator

automatically generates nodes and links. As mentioned earlier, the 00-Navigator

uses Smalltalk's interface modified with hypermedia-aware widgets [Garrido 96].

This approach meets DHE's goal of supplementing Smalltalk applications with

hypermedia support without altering them. DHE's approach applies to both

object-oriented and non object-oriented applications.

QuickClick [QuickClick] is a recent application that allows users to access

pop-up lists of links related to a particular word. When the user activates

QuickClick, either by clicking a yellow underline or alt-clicking any word, a window

pops up containing the list of links with additional information about that word.

QuickClick allow users to define their own links through BoosterPacks.

BoosterPacks are collections of keywords and destinations that are created by

users. QuickClick offers some of the functionality DHE provides, but it does so

based on lexical values (i.e. words). DHE works mainly on semantic types.

2.3 Virtual Documents

A virtual document is a document for which no persistent state exists and for

which some or all of each instance is generated at run time [Watters, 1999]. The

paradigm of the Web has shifted the expectations for access to information.

Previously, information was accessed by the retrieval of electronic copies of

documents from a large repository of relatively static information. Now information

is accessed through the manipulation of a large collection of information

25

resources. Some of these resources are documents and some of these resources

are processes that create documents.

A number of interesting research issues must be resolved surrounding

these virtual documents on the Web:

• Generation - At what point in time is a virtual document defined? A virtual

document can be defined by an author through the use of templates and

links or it can be defined as the result of a search or application. Guided

tours can be generated dynamically, based on an information need as

defined by a user profile and/or an explicitly stated query.

• Search - How do you search for virtual documents? What is the domain in

which to perform the search? Will the document exist by the time the user

requests it?

• Revisiting - Users have an expectation that documents found once will be

available on a subsequent search. The notion of bookmark does not apply

to virtual documents in its normal, simplistic way. Bookmarks need enough

information to recreate the document as it was.

• Versioning - Version control has long been a concern of Information

Retrieval research and is now a central issue for management of virtual

documents. Users need to be able to return to a bookmarked version of a

virtual document and to go forward and backward in time through changes

to that virtual document.

26

• Authentication - Who is responsible for the quality of the contents of a

virtual document where components may come from a variety of sources

and /or processes?

• Reference - How do authors cite virtual documents or versions of virtual

documents?

• Annotation - The roles of user of information and supplier of information

are merging. Readers expect to be able to add data, such as, comments,

annotations, paths, and links, as well as content, while they are reading.

• Hypertext Functionality - How to provide hypertext functionality to virtual

documents?

2.4 Automatic Link Generation

Traditional approaches to hypertext assumed that authors created well-defined

(pre-defined) paths or trails in hypertext. When the reader approached the

hypertext, the trail was already available. In this approach, inter-node links

changed only when an author either updated or deleted them. The role of the

author was to create the hypertext and the role of the user/reader was to browse

through it. Thus, the reader was faced with the task of understanding the author's

mental model of the hypertext documents in order to navigate the collection of

linked nodes (hyperbase) effectively. There was no opportunity for readers to

personalize the hypertext according to their interests, or for the types of links that

were available to be adapted to the particular situation or task.

27

In some hypertext design models [Garzotto 1991] links do not necessarily

exist explicitly and are implicit in the structure. In some cases they may be

dynamically created by a process which defines how elements of the hypertext

structure are related when the process is invoked [Nurnberg 97], [Marshall 97],

[Wiil 99], [Shipman 99]. In open hypermedia systems [Davis 98] links may be

manually or system created, are typically stored in a database independently of

the documents, and can be static or dynamic.

One approach to dynamism in hypertext focuses on computing links based

on relationships or similarities between texts or passages of text. In this

approach, the link is not defined as a pointer from one hypertext node to another,

but rather as a query that leads to a different node. Different forms of link types

can then be envisioned based on how and when a query is constructed. Pre-

computed links can be constructed at any time, whereas dynamic links are

computed at the moment they are required [Ashman 97]. An example of a

precomputed link would be a link from an employee's name occurring anywhere

in a hyperbase to the biographical details for that person contained in the

organization files. The advantage of such a precomputed link is that it could

regulate all such instances of employee's names, and it could be updated

automatically as the composition of the company changed. In contrast, a dynamic

query (computed at run-time) can take into account the specifics of the current

user interaction. The query might be based on a combination of the browsing

history, user profile, content of the current document, etc. In this approach,

28

dynamic hypertext represents an intermediate point on a continuum between

querying and browsing [Waterworth 91].

In one form of query-based dynamic linking, queries are marked up directly

on texts while they are being read [Golovchinsky 93]. For instance, clicking on the

word "hypertext" and then dragging with the mouse button down to the word

"search" (at which the point the mouse button is raised), would form the query

"hypertext AND search". This form of query markup has been shown to yield

reasonable results in large-scale text retrieval tasks [Charoenkitkarn 95]. The

querying interface can be further modified so that users simply click on previously

marked up text or phrases (e.g., marked up in blue with underlines, to imply the

presence of a hypertext link). The text markup is created based on terms that

have been previously selected, content-bearing words related to those terms, and

possibly automated indexing techniques, including phrase identification methods.

The sentence that the link (i.e., the marked up text that was clicked on) occurs in

is sent to a search engine as a query. It is assumed that the user selects a

particular link due to an interest in the content surrounding the link. The most

relevant node to the query becomes the endpoint for the selected link. This

creates a hypertext "point and click" interface to an underlying search

functionality.

Query-based dynamic hypertext can look and feel like a static hypertext

system. Interaction consists of clicking on marked up words or phrases in the

text, which are then treated as if they were links. In experimental testing of this

type of system [Tam 1997], users perceived the system to be a human-authored

29

static hypertext, in spite of the fact that it was actually working as a search

system with a highly simplified user interface. [Bodner 97] further describes this

query-based model of dynamic hypertext.

Arguments in favor of query-based dynamic hypertext include: a simplified

interface to search functionality, reduced authoring effort, and greater opportunity

for customization based on the current user's interaction history or specific task

context. An additional benefit is decreased cost of maintenance, since dynamic

links do not get broken, and new material is automatically available for dynamic

linking (i.e., automated updating of the implied hypertext structure is a side effect

of dynamic linking). However, disadvantages include computation of each link at

run-time (instead of using stored, precomputed links), which can be expensive in

a large system with many users [Ashman 1997]; and over-completeness, which

occurs when the reader is presented with more links then he/she can

comprehend.

A combination between retrieval and navigation methodologies can result

in the dynamic provision of links created on the fly using 'theming' technology

based on statistical and linguistic techniques to provide links derived from the

current document context. This technology has been successfully employed

commercially [Multicosm] as an evolution of a dynamic link service [Carr 1999].

Content-based navigation (CBN) is embodied in the concept of the generic link

[Hall 96]. The source anchors for such links are specified in terms of source

content rather than source location. The storage of source content as part of the

link structure was facilitated by the adoption of external link databases. Once

30

authored from some source selection, a generic link may be followed from any

matching instance of the source content: hence content-based navigation. The

use of CBN gives substantial savings in authoring and link maintenance effort

[Lewis 99]. One of the problems with using content, whether it is for retrieval or

for navigation, is that it is not in the content that we are really interested. Words

and pictures, videos and speech are representations of objects, ideas and

concepts in the real world. This means dealing with the difference between the

signifier (media representations) and the signified (real objects, concepts, ideas).

It is the signified in which we are really interested [Smoliar 1996].

Humans can make the link from signifier to signified almost automatically,

typically drawing on a huge body of prior knowledge. But in software systems the

link (or its absence) is at the root of many of the problems with content-based

retrieval and navigation [Grønbæk 96], [Davis 1999]. The same concept can have

many different text representations even in the same language (synonyms).

Furthermore, the same concept (e.g., car brand) can have many different

instances (e.g., Mercedes-Benz, Ferrari, Porshe, etc.).

In an attempt to overcome some of the problems with text, the use of

digital thesaurus tools or facilities for statistically based associations have been

incorporated into information retrieval systems. More recently researchers have

attempted to introduce layers of associations, above the media based links, which

try to capture semantic associations relevant to an application and provide

navigation and retrieval based on concepts in addition to content [Tudhope 99],

[Cunliffe 97], [Beynon-Davies 94], [Bullock 98], [Nanard 91]. The MAVIS-2 project

31

[Dobie 99] and the COIR project [Hirata 96] both attempt to associate media

based representations directly with a semantic layer in an attempt to provide

integrated approaches to content and concept based retrieval and navigation.

Building semantic layers and associating media content with the concepts

they represent is currently a labor intensive task. One of the challenges now is to

build systems which extract or learn the semantics from the knowledge implicit in

the media and make the associations between the media representations and the

semantics without a heavy manual input [Lewis 99].

Today, almost every institution has its home Web site, with links

connecting internal pages together. With huge amounts of information to be

displayed and maintained, manually authoring and maintaining institution Web

sites is almost infeasible. The Web pages of many of large sites are generated by

programs, and database systems are used as backend data providers. A second

generation of Web query languages and systems, defined by Florescu et al.

[Florescu 98], extends the first generation by providing data organization, link

generation, and document/structure authoring capabilities. Representative

systems include Strudel [Fernandez 98] and WebOQL [Arocena 98].

2.5 Summary

Hypermedia and the Web owe their origins to many people: Vannevar Bush,

Douglas Engelbart, and Ted Nelson conceived complex systems in which the

information is inter-related and linked.

32

Tim Berners-Lee realized that something simpler was needed. HTML was

conceived as a very simple solution, and was matched with a very simple network

protocol HTTP. The NCSA encouraged the development of the Mosaic browser.

In order to speed development, Mosaic dropped many of the features Berners-

Lee originally envisioned and included in his first prototype. Web applications

currently take limitted advantage of hypertext.

Hypertext Functionality provides techniques for supplementing everyday

computer applications with hypertext. Hypertext structuring, annotation and

navigational functionality can enhance applications.

Several hypermedia data models, such as the Hypertext Abstract Machine,

Dexter, and HTML provide data structures and guidelines for constructing nodes,

links, anchors, and for browsing.

Most systems that allow linking, require the author to add the links

manually. There exist several approaches to facilitate incorporating hypermedia

functionality into individual non-hypermedia applications, such as: toolkit,

hyperbases, and Link Services.

Hypermedia design methods are one of the most important developments

in the hypermedia field. They provide a systematic approach to relationship

management and navigation support.

Open hypermedia research addresses the issues of integrating

hypermedia functionality into existing applications. The open hypermedia

community is currently addressing interoperability issues by defining a set of

guidelines and standards for interoperation.

33

Hypermedia engines execute independently of an application with minimal

modifications to it, and provide the application's users with hypermedia support.

A virtual document is a document for which no persistent state exists and

for which some or all of each instance is generated at run time. A number of

interesting research issues include: generation, search, revisiting, versioning,

authentication, reference, annotation, and hypertext functionality

Traditional approaches to hypertext assumed that authors created well-

defined (pre-defined) paths or trails in hypertext. The role of the author was to

create the hypertext and the role of the user/reader was to browse through it. In

some hypertext design models links do not necessarily exist explicitly and are

implicit in the structure. in some cases they may be dynamically created by a

process which defines how elements of the hypertext structure are related when

the process is invoked.

Arguments in favor of dynamic hypertext include: a simplified interface,

reduced authoring effort, greater opportunity for customization, and decreased

cost of maintenance. Disadvantages include computation of each link, and over-

completeness.

Building semantic layers and associating media content with the concepts

they represent is currently a labor intensive task.

DHE contributes by providing seamless, automated supplemental

navigation and interrelationship access to dynamically-mapped information

systems.

CHAPTER 3

METADATA

Metadata is structured data that describes data. Increasingly large amounts of

scientific and technical data are being created and saved in digital data storage

systems. There is a need to expedite the access and use of this data. A variety of

different data and formats need to be addressed, such as: images, video, audio,

tables, arrays, graphics, algorithms and procedures, and documents. The term is

frequently being employed to refer to any data used to aid the identification,

description and location of networked electronic resources.

Metadata is not a concept exclusive to computer scientists but one that is

used in other fields as well. Currently, computer science lacks a standard

metadata framework broad enough to describe any kind of resource. The W3C

metadata initiative [W3C Meta] is a movement to design comprehensive and

collaborative systems for describing data.

DHE makes extensive use of metadata. The automatic link generation

aspect of the DHE relies on the inclusion of semantic metadata for each pre-

defined element present in a virtual document. Furthermore, DHE not only adds

links to the displayed documents, it incorporates as much information about such

elements as possible. In fact, DHE looks at links as just a particular kind of

metadata, one that defines relationships between elements, objects and

components. The term MetaInformation is used in this research to make clear

when the metadata includes relationships.

34

35

This section explores some of the metadata proposals and

recommendations that would be part of the process of designing a standard

metadata framework. Such a framework will provide a standard way of describing

resources and their relationships.

Resources are required to evolve the Web from their current state to one

where they are organized, catalogued and effectively searchable; becoming what

Tim Berners-Lee calls the 'Semantic Web' [Berners-Lee 99]. The proposals

employ the extensible markup language for their syntax and model. XML, being

extensible, allows the proposals to be extensible, making for complex and

effective description. Metadata applications can be customized to user needs,

without losing interoperability with other applications, allowing for accurate

representations of resource relationships.

The Semantic Web Activity [W3C SW] has been recently established to

lead both the design of enabling specifications and the open, collaborative

development of technologies that support the automation, integration and reuse

of data across various applications. The Semantic Web Activity builds upon the

existing foundation work accomplished by the W3C Metadata Activity.

3.1 Introduction

Documents used to have only one tier of data; they were whole, internally

formatted with typesetting codes and unstructured. Many data formats were

incompatible and only read by their authoring applications. Shifts in system,

36

platform and application technology could render vast document warehouses into

legacy data.

The document paradigm changed with the introduction of SGML [SGML

86]. This change established a second tier of data: data describing data or

metadata. The document was logically torn apart, separating content (data),

structure (metadata) and formatting (metadata). This separation of document

components allowed for focused document creation, as content could be created,

parallel to, rather than with metadata.

There is now a wealth of information on every subject available on the Net.

The possible uses of the Web seem endless, but there the technology is missing

a crucial piece. Missing is a part of the Web which contains information about

information - labeling, cataloging, relational and descriptive information structured

in such a way that allows Web pages to be properly searched and processed in

particular by computer. In other words, what is now very much needed on the

Web is metadata.

This section investigates the need for data description, meta or otherwise.

It explores several metadata proposals as a means of showing the impact the

application of metadata has made.

3.2 Metadata Issues

The information now available on the Internet on a particular topic varies greatly

in both quantity and quality. The World Wide Web has enabled users to

electronically publish information accessible to millions of people relatively easily,

37

but the ability of those people to find relevant material has decreased dramatically

as the quantity of information on the Internet grows.

One emerging trend is to enable the users to describe their own material

with metadata. Metadata can be used to describe an Internet resource: what it is,

what it is about, where it is, how is related to what, and so on.

There are three major aspects for the deployment of metadata [lanella 97}:

• description of resources

• production of the metadata

• use of the metadata

The first aspect addresses what set of information is to be captured by the

metadata. This will depend on the type of the resource and on the purpose of the

metadata. A metadata scheme must be sufficiently flexible to capture useful

information about a wide variety of resources for a range of purposes.

Ideally, a single metadata scheme should be used as this minimizes the

cost of using metadata. Unfortunately, it is unlikely that there will ever be

agreement on a single metadata scheme and so a major aspect of metadata

research is the relationship between different metadata schemes and the trade-

off between the size and utility of the metadata element set.

The second aspect is the production of metadata. Metadata is essentially a

summary of the data produced by various levels of "intelligence". Using humans

to generate these summaries is expensive and metadata systems attempt to

reduce this cost by making humans more productive by automating as much of

the process as possible. The use of tools that could automatically provide this

38

information, like DHE, would greatly advance the materialization of a metadata

infrastructure.

The final aspect of metadata concerns how the metadata is accessed and

used. It must be retrieved in a form that can be processed with its semantics

preserved. An important use of metadata is as a mechanism for resource location

in distributed networks like the Internet. Metadata can provide information for the

user to identify which resources they might be interested in, with the help of

relationships. Once a resource has been identified, metadata provides the

information to allow the resource to be accessed.

Metadata is not new. Librarians have been cataloging books and journals

for hundreds of years. The library catalogue is, in effect, metadata that is used to

find books and journals about a particular subject and to retrieve them from the

library shelves. Although effective, library cataloging faces a scalability problem in

producing the metadata. With so many dynamic documents being published on

the Web, it is not cost effective (or really possible) for librarians to professionally

catalog each Web document.

3.2.1 Metadata Utility

Metadata has many uses in assisting the use of electronic and non-electronic

resources on the Internet. These include:

• summarize the meaning of the data (i.e., what is the data about).

• allow users to search for the data.

• allow users to determine if the data is what they want.

39

• prevent some users (e.g., children) from accessing data.

• retrieve and use a copy of the data (i.e., where do I go to get the data).

• instruct how to interpret the data (e.g., format, encoding, encryption).

• help decide which instance of the data should be retrieved (if multiple

formats are provided).

• give information that affects the use of data such as legal conditions on

use, its size, or age).

• give the history of data such as the original source of the data and any

subsequent transformations.

• give contact information about the data such as the owner.

• indicate relationships with other resources (e.g., linkages to previous and

subsequent versions, derived datasets, other datasets in a sequence, and

other data or programs which should be used with the data).

• control the management of the data (e.g., archival requirements, and

destruction authority).

Metadata has an important role for supporting the use of electronic

resources and services. However, many issues for effective support and

deployment of metadata systems still need to be addressed.

Below is an example library catalogue record showing metadata about a

book. It uses a structure for the elements taken from the NJIT Library Catalogue:

40

Material: 	 Book

Call Number: 	 QA76.76.H94 M3883 1998

Author: 	 McGrath, Sean.

Title: 	 XML by example : building E-commerce applications / Sean

McGrath.

Publication: 	 Upper Saddle River, NJ : Prentice Hall PTR, c1998.

Description: 	 xlviii, 470 p. : ill. ; 24 cm. + 1 computer laser optical disc (4 3/4

in.)

Series: 	 The Charles F. Goldfarb series on open information

management

Notes: 	 MP19990226

Notes: 	 System requirements for accompanying computer disc:

Windows 95/NT; HTML 3.2 compatible Web browser; Java

based tools will require a Java Virtual Machine.

Notes: 	 Includes index.

Notes: 	 RACQ19990203 CS

Subject: 	 XML (Document markup language)

Subject: 	 Electronic commerce.

Metadata is not limited to describing documents. Any resource (e.g., video,

image, audio, etc) can be described with an appropriate metadata element set.

41

3.2.2 Metadata Model

The basic model used for metadata is known as "attribute type and value" model.

Metadata is represented as a set of facts about the resource (e.g., "title",

"author"). Each fact is represented as an attribute (also known as an element). An

attribute contains a type (which identifies what information the attribute contains)

and one or more values (the metadata itself).

For example, the attribute "<Title> XML by example : building E-commerce

applications / Sean McGrath." has the attribute type "title" (indicating that this is a

title) and the value "XML by example : building E-commerce applications / Sean

McGrath.".

3.2.3 Metadata Standards

Metadata standards define sets of attributes that can be used to describe

resources. These standards define:

• what information can be contained in the description (i.e., the set of

attributes)

• which attributes are mandatory and which are optional

• what, precisely, each attribute means

• the syntax of the attribute value (i.e., rules for the format and construction

of values). This might include sets of permitted values (i.e., a taxonomy).

However, there are a number of issues with the standards, not all of them

are resolved. These include:

42

• Accessibility of standards. Documenting attribute sets and building the

information from the standards into systems so that the computer can

assist the user in constructing and using metadata.

• Relationships between different metadata standards. There are already

many metadata standards and more will undoubtedly be created, which will

lead to the situation where a resource will be described by two (or more)

sets of metadata attributes. What happens if the two sets have

contradictory information? Can metadata be transformed from one set to

the other?

• Extensibility of metadata standards. It is often necessary to extend

attributes sets to represent local information (e.g., linkages to existing

systems). In addition, as new types of resources are defined, or new

applications developed, it will become necessary to extend the metadata

standards. How are these extensions published and incorporated into

metadata applications?

• Internationalization. The range of issues involved in extending metadata

from the current English model extend from presenting values so that the

preferred language is presented first, to the use of attributes which have

no meaning in a particular culture.

• The linkage of data and metadata. Metadata needs to be tightly bound to

the resource it describes. The metadata must be generated at the same

time (or very soon after) the resource, modified when the resource

changes or is deleted.

43

• Metadata is data (at another level of abstraction). There are all the

problems of storing it somewhere, finding it again, and understanding what

the contents mean.

The Meta Data Coalition [MDC] and the Object Management Group [OMG]

announced on April 1999 their first cooperative effort to develop metadata

standards. In establishing a formal technical liaison, the MDC is now a Platform

Member of the OMG, and the OMG is a member of the MDC.

The objective of this cross-membership is to provide a way for the two

groups to work together on common standards, based on the belief that

standards reduce confusion in the marketplace and increase efficiency for IT

organizations. The first working session between the MDC and the OMG took

place during the recent OMG Technical Meeting held at the end of March 1999 in

Philadelphia, Pennsylvania.

Large companies currently must implement their own interfaces between

software products if they want to employ a "best of breed" configuration. With the

emergence of Internet-related technologies and the rapid integration of enterprise

software forced by business pressures and internationalization, the cost of

building and maintaining such interfaces across releases is becoming prohibitive.

The definition and support of a standard for metadata exchange will go a long

way in allowing companies to build business intelligence solutions and to track

their metadata assets cost-effectively.

44

3.3 W3C: World Wide Web Consortium

The World Wide Web Consortium [W3C] was founded in October 1994 to

improve the World Wide Web to its full potential by developing common protocols

that promote its evolution and ensure its interoperability. It is an international

industry consortium, jointly hosted by the Massachusetts Institute of Technology

Laboratory for Computer Science in the United States; the Institut National de

Recherche en Informatique et en Automatique in Europe; and the Keio University

Shonan Fujisawa Campus in Japan. Services provided by the Consortium

include: a repository of information about the World Wide Web for developers

and users; reference code implementations to embody and promote standards;

and various prototype and sample applications to demonstrate use of new

technology.

The W3C's Technology & Society Domain Group's focus is, broadly, on

establishing trust in the new medium of the Web. This is a difficult problem,

involving both social and technical issues. Trust is established through a complex

and ill-understood social mechanism including relationships, social norms, laws,

regulations, traditions, and track records. The Technology & Society Domain

Group activities are chosen to focus on specific areas that are both important and

tractable. There is a core of technical issues that are required in any system that

is to be trusted:

❑ The ability to make statements that have agreed upon meanings. The W3C

Metadata Activity provides a means to create machine-readable statements.

45

❑ The ability to know who made the statement and to be assured that the

statement is really theirs. The W3C Digital Signature Initiative provides a

mechanism for signing metadata in order to establish who is making the

machine-readable statement.

Li The ability to establish rules that permit actions to be taken, based on the

statements and a relationship to those who made the statements. The PICS

Rules specification allows rules to be written down so they can be understood

by machines and exchanged by users.

The ability to negotiate binding terms and conditions. The now-completed

JEPI project created the Protocol Extension Protocol (PEP) to provide for

negotiation on the Web. Negotiation is also at the core of the Platform for

Privacy Preferences Project (P3P).

3.3.1 W3C Metadata Activity

Metadata means "data about data" or "information about information" but

probably more importantly now it should be taken to mean machine

understandable information, about distributed networked information. The

Metadata activity [W3C Meta] was formed in 1997 from the recognition within the

Consortium of a common subtask to existing activities such as PIGS and DSig at

W3C, HTTP and WebDAV at the IETF, the Dublin Core and many other projects.

The Metadata activity is the architectural underpinning of many of the

Technology and Society activities. W3C's work on Digital Signatures, Privacy

Protection, and Intellectual Property Rights Management are all based on the

46

Resource Description Framework [RDF 99] work that is at the heart of the

Metadata Activity. In addition, W3C is transitioning from its current metadata

technology (PIGS) to RDF.

3.3.2 HTML: HyperText Markup Language

The Web has evolved at a frantic rate, employing an increasing array of data

formats and applications. They all require description, to ensure browser

recognition. HTML [HTML 98], the fixed Web page markup language, has been

unable to match the Web's growth and has proven inadequate as proprietary

renderings of it have diverged. Central to this problem is the fixed and simple

system of HTML data description. HTML metadata, an agent of data-description,

is a crude yet functional scheme, based on the <META> element.

The lack of a standard metadata scheme has cost Web applications their

intuition. Search engines often have to rely on the title of documents, stored in the

<TITLE> element, for indexing Web pages, making them unable to provide

extensive metadata to users, or perform accurate searches. Poor Web

application functionality, caused by HTML inadequacies, has cost the Web

credibility and usability. Many search engines, and other Web applications, look

for recognizable metadata, in HTML Web pages, encoded in the <META>

scheme. Unfortunately, search engines are more likely to find metadata referring

to proprietary document generators, than to the nature of the document.

HTML metadata, which resides within the <HEAD> element, is a simple

construct, relying on the NAME and CONTENT attributes of the <META>

47

element. Although this implementation offers some flexibility, being far from a

standard scheme, its ability to describe complex document relationships is poor.

The <META> scheme cannot describe complex relationships or use reuse

objects and properties. .

The HTML system of metadata is weak and only useful for describing high-

level document properties. The current HTML metadata scheme will be

abandoned in favor of a stronger, more functional scheme. A number of schemes

have already been proposed, some of which have explicitly included HTML

implementations

HTML Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">

<HTML>
<H EAD profil e="http://www. acme. com/profiles/core ">

<TITLE>How to complete Memorandum cover sheets</TITLE>
<META name="author" content="John Doe">
<META name="copyright" content="© 1997 Acme Corp.">
<META name="keywords" content="corporate, guidelines, cataloging">
<META name="date" content="1994-11-06T08:49: 37+00: 00">

</HEAD>
<BODY>

<P>Hello world!
</BODY>

</HTML>

3.3.3 XML: eXtensible Markup Language

The eXtensible Markup Language [XML 98] is a format designed to bring

structured information to the Web, it is, in effect, a Web based language for

electronic data Interchange. XML stands between HTML, designed to expressed

48

presentation rather than semantic information, and SGML, a sophisticated tag

language which separates view from content and data from metadata. XML is a

subset of SGML that maintains the important architectural aspects of contextual

separation while removing nonessential features.

XML is a product and catalyst of the changing document paradigm.

Although a metadata scheme is out of the scope of the XML specification, the

lack of one is surprising, given the XML mandate to be lean SGML for the Web.

Fortunately, since XML is extensible, it allows for compliant frameworks. Many

metadata initiatives have been proposed, offering XML a comprehensive

metadata standard. Although they are all concerned with the same underlying

constructs and problems, the depth and grasp of each proposal differs, illustrating

an evolution in the conception of metadata.

Armed with a strong and standard metadata framework, XML will be a

lean, yet effective, comprehensive and common document format. XML-compliant

document readers need only read metadata statements to understood

documents. This change may lead to users opting to set their browsers to

producing summaries of document nature, choosing whether to read further,

rather than the being forced to download entire documents.

Without a strong and standard metadata framework, many proprietary

frameworks would be built around XML. A large percentage of those frameworks

would be incompatible, making software difficult to write. This incompatibility

would violate the goals of XML itself. Given the problems surrounding the

metadata initiative, a standard scheme must be wrought.

49

XML is sometimes regarded as "semantic markup" and it is often praised

for its ability to express semantic clarity through markup. What gives rise to this

sentiment is a work environment within which proprietary, procedural, and implicit

markup has been the norm. Someone who uses a text editor to examine an XML

document - comparing it to an HTML file, to a comma-delimited text file, to

Postscript, or to any document using a procedural or presentational markup

language - will readily judge the XML document more meaningful with respect to

the information objects represented by text. The markup itself is a form of

metadata, explaining what the constituent elements are (by name), and how

these information objects are structured into larger coherent units

Although there are sound technical reasons for using XML, it is clear that

much of the motivation for using XML comes from the current and expected

structure of the business environment related to XML. The justification for using

XML contains the following technical and business factors:

• XML is already an open, platform independent, and vendor independent

standard

• XML supports international character sets

• XML can represent models compliant with OMG's Meta Object Facility

(MOF) framework

• XML is not linked to any one programming language or programming

interface. (A range of XML application program ingterfaces (APIs) are

available.)

50

• The cost of entry for XML information providers is low. XML documents

can be created and edited by hand in a text editor. XML structure and

syntax make it easy for humans to read.

• The cost of entry for automatic XML document producers and consumers

is low. A growing set of tools is available for XML development, including

free, commercially unrestricted high-quality tools.

• The XML approach to structured data interchange has been validated

through the wide experience with XML itself and with other members of the

XML family: SGML, used in high end document processing, and HTML, the

predominant language of the web.

• XML is widely believed to be the next step in the evolution of the web; its

uptake will enhance the ability of documents based on XML to the

integrated into the information Web of the Internet

• XML is still young, but there are many well documented applications of

XML, in domains such as: web commerce, publishing, repositories,

modeling, databases and data warehouses, services, financial, health

care, semiconductors, inventory access, and more.

• Widespread public interest in XML, leading to a substantial number of

books and articles being published.

51

XML Example

<?xml version="1.0" encoding="UTF-8"?>
<nitf>
<head>
<title>Snow, Freezing Rain Batter U.S. Northeast</title>
</head>
<body>
<body. head>
<hedline>
<hl1>Snow, Freezing Rain Batter <location><country>U.S.</country>
<region>Northeast</region></location></hl1>
</hedline>
<byline>
<bytag>By Matthew Lewis</bytag>
</byline>
<dateline>
<location><city>HARTFORD</city>, <state>Conn.</state></location>
<story.date>Friday. 	 January 15 12:27 PM ET</story.date>
</dateline>
</body.head>
<body.content>

<p>Snow and freezing rain punished the <location>northeastern<country>United
States</country></location> for a second straight day on <chron
norm="19990115">Friday</chron>, causing at least five weather-related deaths,
closing airports and spreading misery from <location><city>Washington</city>,
<state>D.C.</state></location>, to
<location><country>Canada</country></location>. </p>

<p>Below a snow line that bisected
<location><state>Maryland</state></location>,
<location><state>Pennsylvania</state></location> and <location><state>New
Jersey</state></location>, a <chron norm="19990115">predawn</chron>
downpour turned road surfaces to ice. The icy buildup also brought down power
lines, leaving hundreds of thousands of people without electricity.</p>

<p><q>This is one of the most severe storms we've seen in a long time,</q> said
a <function>spokeswoman</function> for <org>Baltimore Gas and
Electric</org>. <q>We're not making any promises about when all the power will
be restored because we're still trying to find all the damage. </q></p>

<p>Some 126,000 people were left without power in
<location><state>Pennsylvania</state></location>, <location>southern
<state>New Jersey</state></location> and <location>northern
<state>Maryland</state></location>, officials said.</p>

52

<p><function>Detroit Mayor</function><person>
<name.given>Dennis</name.given><name.family>Archer</name.family></perso
n> and his staff planned to shovel snow from the porches and sidewalks of
elderly citizens on <chron norm="19990115">Friday</chron>.</p>
</body.content>
</body>
</nitf>

3.3.4 RDF: Resource Description Framework

The Resource Description Framework [RDF 99] provides a more general

treatment of metadata. RDF is a declarative language and provides a standard

way for using XML to represent metadata in the form of properties and

relationships of items on the Web. Such items, known as resources, can be

almost anything, provided it has a Web address. This means that users can

associate metadata with a Web page, a graphic, an audio file, a movie clip, and

so on.

RDF provides a framework in which independent communities can develop

vocabularies that suit their specific needs and share vocabularies with other

communities. In order to share vocabularies, the meaning of the terms must be

spelled out in detail. The descriptions of these vocabulary sets are called RDF

Schemas. A schema defines the meaning, characteristics, and relationships of a

set of properties, and this may include constraints on potential values and the

inheritance of properties from other schemas.

The RDF language allows each document containing metadata to clarify

which vocabulary is being used by assigning each vocabulary a Web address.

53

The schema specification language is a declarative representation language

influenced by ideas from knowledge representation (e.g., semantic nets, frames,

predicate logic) as well as database schema specification languages and graph

data models. One of the best-known schemas is the Dublin Core invented by the

library community (their first meeting was in Dublin, Ohio, USA).

RDF uses the idea of the XML Namespaces to effectively allow RDF

statements to reference a particular RDF vocabulary or "schema". Two

applications might adopt the same headings and categories when it comes to

organizing material. Perhaps the property address is used to mean a company

location in one application, and a company's Web address in another. Potential

conflicts are resolved because, through various programming mechanisms, a tag

for a property name can use a short code which signals to which RDF application

that tag "belongs." The XML Namespaces specification describes such

mechanisms in detail and is useful not only in the context of RDF but for many

other XML applications also.

There are many practical uses of RDF, for example:

• Thesauri and library classification schemes. These are well known

examples of hierarchical systems for representing subject taxonomies in

terms of the relationships between named concepts. The RDF Schema

specification has exactly the features for creating RDF models that

represent the logical structure of thesauri and other library classification

systems.

54

• Web sitemaps. A sitemap can be seen "internally" as a description of a

Web site. The RDF Schema specification provides a mechanism for

defining the vocabulary needed for this kind of application. With RDF is

possible to describe how one item is related to another, how one page is

"a descendant" of another, and so on.

• Description of the contents of Web pages. This is one of the basic

functions of the Dublin Core initiative. The Dublin Core is a set of 15

properties associated with bibliographic information. These can be used to

describe items on the Web sufficiently well that search engines and other

software can work much more efficiently. The Dublin Core Workshop

series has been a major influence on the development of RDF.

• Describing the formal structure of privacy practice descriptions. How does

a site manage personal information? Will it disclose any of this information

to others? What will the user get in return? W3C's Platform for Privacy

Preferences Project is working on a platform that allows users to be

informed of a site's practices. Users, or software operating on their behalf,

can then negotiate for a different privacy policy and come to an agreement

with the site which will be the basis for any subsequent release of

information. RDF may be used to describe the formal structure of privacy

practice descriptions.

• Rating systems. These offer a way of labeling resources so that people (or

computers) can filter information. RDF enables programmers to devise

rating systems for any number of domains.

55

• Expressing metadata about metadata. RDF can be used to describe

metadata about a given element - the date it was generated, by which

organization, and so on.

• Digital Signatures. As the Web matures and more everyday tasks are

performed online, so digital signatures will become increasingly important.

RDF may be used to express information concerning what you are signing,

what the significance of the signature is, the dates that the signature is

valid, and so on.

RDF Example

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02122-rdf-syntax-nsr
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schemar/ >

<rdfs:Class rdf:ID="WebResourceMap">
<rdfs:comment>Class for representing one or more web resources. A

WebResourceMap can contain several starting web documents and their linked
child web documents.</rdfs:comment>

<rdfs:subClassOf resource="http://www.w3.org/TR/WD-rdfschema#Resourcel>

</rdfs: Class>
<rdfs: Class rdf:ID="WebDocumenr>

<rdfs:comment>Class for representing a web document. Primary for HTML,
XML pages, but can also describe other file formats.</rdfs:comment>

<rdfs:subClassOf resource="http://www.w3.org/TRNVD-rdf-
schema#Resource"/>

</rdfs:Class>
<rdf: Property ID="consistOr>

<rdfs:comment>A WebResourceMap consists of 1 to n web
documents. </rdfs:comment>

<rdfs:domain rdf: resource="#WebResourceMap"/>
<rdfs: range rdf: resource="#WebDocument"/>

</rdf: Property>
<rdf:Property I D="linksTo">

<rdfs:comment>A web document can link to 1 to n child web
documents.</rdfs:comment>

<rdfs:domain rdf: resource="#WebDocument"/>
<rdfs: range rdf:resource="#WebDocument"/>

</rdf: Property>

56

<rdf: Property I D="type">
<rdfs:comment>Type of the WebResourceMap.</rdfs:comment>
<rdfs:domain rdtresource="#WebResourceMap"/>
<rdfs: range rdf: resource="#Type"/>

</rdf: Property>
<!-- Possible type instances of a WebResourceMap -->
<rdfs:Class rdf:lD="Type"/>
<Type rdf:ID="full"/>
<Type rdf:ID="update"/>
<rdf: Property ID="state">

<rdfs:comment>State of the web document.</rdfs:comment>
<rdfs:domain rdtresource="#WebDocument"/>
<rdfs: range rdf: resource="#State"/>

</rdf: Property>
<!-- Possible state intances of a WebDocument -->
<rdfs:Class rdf; ID="State"/>
<State rdf:ID="unchanged"/>
<State rdf:ID="new"/>
<State rdflDemodified"/>
<State rdf:ID="deleted"/>

</rdf: RDF>

3.3.5 XML Schema

While XML 1.0 supplies a mechanism, the Document Type Definition

(DTD) for declaring constraints on the use of markup, automated processing of

XML documents requires more rigorous and comprehensive facilities in this area.

Requirements are for constraints on how the component parts of an application fit

together, the document structure, attributes, data-typing, and so on. The XML

Schema [XSchema 01] is addressing means for defining the structure, content

and semantics of XML documents.

The purpose of a schema is to define and describe a class of XML

documents by using these constructs to constrain and document the meaning,

usage and relationships of their constituent parts: datatypes, elements and their

content, attributes and their values, entities and their contents and notations.

57

Schema constructs may also provide for the specification of implicit information

such as default values. Schemas document their own meaning, usage, and

function.

Any application of XML can use the Schema formalism to express

syntactic, structural and value constraints applicable to its document instances.

The Schema formalism allows a useful level of constraint checking to be

described and validated for a wide spectrum of XML applications. For applications

which require other, arbitrary or complicated constraints, the application must

perform its own additional validations.

The following usage scenarios describe XML applications that should

benefit from XML schemas. They represent a wide range of activities and needs

that are representative of the problem space to be addressed. They are intended

to be used during the development of XML schemas as design cases that should

be reviewed when critical decisions are made.

• Publishing and syndication. Distribution of information through publishing and

syndication services. Involves collections of XML documents with complex

relations among them. Structural schemas describe the properties of

headlines, news stories, thumbnail images, cross-references, etc. Document

views under control of different versions of a schema.

• Electronic commerce transaction processing. Libraries of schemas define

business transactions within markets and between parties. A schema-aware

processor is used to validate a business document, and to provide access to

its information set.

58

• Supervisory control and data acquisition. The management and use of

network devices involves the exchange of data and control messages.

Schemas can be used by a server to ensure outgoing message validity, or by

the client to allow it to determine what part of a message it understands.

• Traditional document authoring/editing governed by schema constraints. One

important class of application uses a schema definition to guide an author in

the development of documents. A simple example might be a memo, whereas

a more sophisticated example is the technical service manuals for a wide-

body intercontinental aircraft. The application can ensure that the author

always knows whether to enter a date or a part-number, and might even

ensure that the data entered is valid.

• Use schema to help query formulation and optimization. A query interface

inspect XML schemas to guide a user in the formulation of queries. Any given

database can emit a schema of itself to inform other systems what counts as

legitimate and useful queries.

• Open and uniform transfer of data between applications, including databases.

XML has become a widely used format for encoding data (including metadata

and control data) for exchange between loosely coupled applications. When

the exchange data model is represented by the more expressive XML

Schema definitions, the task of mapping the exchange data model to and from

application internal data models will be simplified.

• Metadata Interchange. There is growing interest in the interchange of

metadata (especially for databases) and in the use of metadata registries to

59

facilitate interoperability of database design, DBMS, query, user interface,

data warehousing, and report generation tools.

Example

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema" targetnamespace =
"http://www.example.com/baz.xsd " xmlns = "http://www.example.com/baz.xsd ">

<xs:element name="a" type="t"/>
<xs:simpleType name="b"/>
<xs:list base="xs:integer"/>

</xs:simpleType>
<xs:complexType name="t">

<xs:attribute name="b" type="xs:string"/>
<xs:attribute name="c" type="b" use="optional"/>

</xs:complexType>
<xs:complexType name="u">

<xs:complexContent>
<xs:extension base="t">

<xs:choice>
<xs:element name="d">

<xs:complexType>
<xs:sequence>

<xs:element name="a" type="xs:string" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="e" type="xs:string"/>

</xs:choice>
</extension>

</complexContent>
</xs:complexType>

</xs:schema>

XML document which matches the above schema

<baz:a xmlns:baz="http://www.example.com/baz.xsd" xs:type="baz:u" b="zero" c="1 2">
<d>

<a>three
<a>four

</d>
</baz:a>

60

3.3.6 Other W3C Metadata Applications

PICS: Platform for Internet Content Selection

The Platform for Internet Content Selection EPICS] consists of a suite of

specifications that enable people to distribute metadata about the content of

digital material in the form of "labels". These contain information about the

content in simple, computer-readable form. Information can be given a label,

which computers can then process in the background, filtering out undesirable

material or directing users to sites that may be of special interest to them. While

PIGS has general applicability to labeling pages for a variety of metadata

purposes, the PICS specification was originally designed to allow parents and

teachers to screen out materials unsuitable for children using the Internet. Rather

than simply censoring the information itself, as various legislative bodies have

suggested, PICS gives responsibility to users to control personally, or to delegate

control of, what they receive on their browsers

PICS Example

<HEAD>
<META http-equiv="PICS-Label" content='
(PICS-1.1 "http://www.gcf.org/v2.5 "

labels on "1994. 11.05T08: 15-0500"
until "1995. 12. 31T23: 59-0000"
for "http://w3.org/PICS/Overview.html "

ratings (suds 0.5 density 0 color/hue 1)).'>
<TITLE>... document title ...</TITLE>

</HEAD>

Dsig: Digital Signature Initiative

One element of trust is the ability to reliably associate a statement with the

person or organization who made it. While the underlying cryptographic

61

technology to accomplish this is available and widely known, it has not yet been

applied to a general-purpose system for creating machine readable statements.

The Digital Signature Initiative [Dsig} fills this important role by specifying how to

sign statements expressed as metadata (PICS or RDF). DSig provides a plug-

and-play mechanism for specifying the algorithms and data formats used for the

encryption, digesting, and certificates used in the signature.

XML digital signatures are represented by the Signature element which

has the following structure:

<Signature>
(Signedlnfo)
(SignatureValue)
(Keylnfo)?
(Object)*

</Signature>

Dsig Example

<Signature xmlns="http://www.w3.org/1999/11/xmldsig-core ">
<SignedInfo I D="5">

<CanonicalizationMethod
Algorith m="http://www.w3. org/1999/07/WD-xml-cl 4n-19990729"/>
<SignatureMethod Algorithm="&dsig;/dsa"/>
<ObjectReference URI="http://www.mypage.com ">

<Transforms>
<Transform Algorithm="&dsig;/null">
<Encoding Algorithm="&dsig;/base64"/>

</Transforms>
<DigestMethod Algorithm="&dsig;/shal"/>
<DigestValue>a23bcd43</DigestValue>

</ObjectReference>
<ObjectReference IDREF="timestamp"

Type="&dsig;/signatureattributes">
<Transforms>

<CanonicalizationMethod name="http://..."1>
</Transforms>
<DigestMethod Algorithm="&dsig;/shal"/>
<DigestValue>a53uud43</DigestValue>

62

</ObjectReference>
</SignedInfo>
<SignatureValue>dd2323dd</SignatureValue>
<Object ID="timestamp"
type="&dsig;/SignatureAttributes" >
<timestamp a bout="5"
xmIns="http://www.iettorg/rfcXXXX.txt ">
<date> 19990908</date>
<time>14:34:34:34</time>

</timestamp>
</Object>
<Keylnfo>

<keyname>Solo</keyname>
</Keylnfo>

</Signature>

P3P: Platform for Privacy Preferences

This area involves the constant struggle between the need for Web content

providers to gain information about their readership and the need for these

individuals to control the release of this information to others. The recently

initiated [P3P] Project will address the twin goals of meeting the data privacy

expectations of consumers on the Web while assuring that the medium remains

available and productive for electronic commerce. Following the principle of

providing consumers notice of site privacy polices, and allowing users to express

and act upon their privacy preferences in a flexible manner, one goal enhances

the success of the other.

P3P Example

<POLICY xmlns="http://www.w3.org/2000/P3Pv1 "
entity="CoolCatalog, Inc.">

<ASSURANCE-GROUP>
<ASSURANCE org="http://www.PrivacySeal.org "
description="PrivacySeal, a third-party seal provider"
image="http://www.PrivacySeal.org/Logo.gif'/>

</ASSURANCE-GROUP>
<DISCLOSURE discuri="http://www.CoolCatalog.com/PrivacyPractice.html "

63

access="none" retention="yes" change_agreement="yes"/>
<STATEMENT>

<I DENTI FIABLE><no/></l DENTI FIABLE>
<CONSEQUENCE-GROUP>

<CONSEQUENCE>a site with clothes you would
appreciate</CONSEQUENCE>

<RECIPIENT><ours/>/RECIPIENT>
<PURPOSE><custom/><develop/></PURPOSE>
<DATA-GROUP>

<DATA name="dynamic.cookies" category="state"/>
<DATA name="dynamic.miscdata" category="pref'/>
<DATA name="usergenderl>
<DATA name="user. home." optional="yes"/>

</DATA-GROUP>
</STATEMENT>
<STATEMENT>

<IDENTIFIABLE><no/></IDENTIFIABLE>
<RECIPIENT><ours/></RECIPIENT>
<PURPOSE><admin/><develop/></PURPOSE>
<DATA-GROUP>

<DATA name="dynamic.clickstream.server"/>
<DATA name="dynamic.http.useragent"/>

</DATA-GROUP>
</STATEMENT>

</POLICY>

Electronic Commerce

An important factor in the growth of the Web is electronic commerce [W3C EC]:

the ability to buy, sell, and advertise goods and services to customers and

consumers. The Web is a new communications medium and, like all new media,

requires us to rethink the existing solutions to age-old problems.

The main barrier to electronic commerce lies in the need for applications to

meaningfully share information, not in the reliability or security of the Internet.

This is due to the variety of enterprise and e-commerce systems deployed by

businesses and the way these systems are variously configured and used. The

64

problem is particularly acute when a large number of trading partners attempt to

agree and define the standards for interoperation.

In order to enable consistent behaviors amongst the participants in a

virtual enterprise and to allow complex interactions such as negotiation and

mediation, greater levels of semantic content need to be made explicit and

represented. The need for greater explicit content is exacerbated by the shift

towards web automation.

Current generation web sites have been designed and developed for

interaction with human users. The growth in business-to-business solutions and

the integration of web sites into the mainstream IT infrastructures of business will

drive the development of web sites developed specifically for interaction with

other systems. Under these circumstances there will be little or no human

intervention.

Whereas humans can (usually) distinguish between different

interpretations of either the information content or transaction intent, these

systems will only be able to operate meaningfully if the content exchanged

between them, and the services they provide, carry sufficient explicit information.

XML/EDI Example

<!DOCTYPE Book-Order SYSTEM "edi-lite.dtd">
<Book-Order Supplier="4012345000951" Send-to="mailto:orders@sgml.u-
net.com">

<Title>EDItEUR Lite-EDI Book Ordering</Title>
<Order-No>967634</Order-No>
<Message-Date>19990308</Message-Date>
<Buyer-EAN>5412345000176</Buyer-EAN>
<Order-Line Reference-No="0528835">

<ISBN>0201403943</ISBN>
<Author-Title>Bryan, Martin/SGML and HTML Explained</Author-Title>

65

<Quantity>1</Quantity>
</Order-Line>
<Order-Line Reference-No="0528836">

<ISBN>0856674427</ISBN>
<Author-Title>Light, Richard/Presenting XML</Author-Title>
<Quantity>1</Quantity>

</Order-Line>
</Book-Order>

Security

An important factor in the growth of the Web is the trust that can be placed in the

quality, provenance, reliability, and privacy of information available from or

transferred over the Web. The Web, while relying on the underlying security

offered by the Internet, has trust and security problems related to the needs of

applications, and these cannot be supplied strictly at the network level [W3C

Sec].

3.4 Other Organizations, Specifications, Standards and Formats

There are a number of organizations providing emerging metadata specifications

and deployment infrastructures that are gaining momentum on the Internet. This

section summarizes some of these metadata specifications that have a high www

deployment. There are numerous other metadata sets available (e.g., IAFA

Templates, GILS, etc) and deployment infrastructures (such as X.500 Directory

Services). The challenge is to bring together the communities and agree to

deploy flexible metadata infrastructures to support multiple (and extensible)

metadata standards.

66

Dublin Core: Metadata for Electronic Resources

An OCLC/NCSA Metadata Workshop held in March 1995 in Dublin, Ohio [Weibel

95] identified two types of resource descriptions for networked electronic

documents: automatically generated indexes used by locator services such as

Lycos and WebCrawler; and cataloguing records, such as MARC, created by

professional information providers. Automatically generated records often contain

too little information to be useful, while manually generated records are too costly

to create and maintain for the large number of electronic documents currently

available on the Internet. The workshop proposed a core set of identifier elements

(the Dublin Metadata Core Element Set or " Dublin Core") for "document-like

objects" (DLOs), intended to mediate these extremes. "The goal of the workshop

was to define a set of data elements simple enough for authors and publishers to

use in describing their own documents as they put them on the Net, but useful

enough to facilitate discovery and retrieval of these documents by others" [Weibel

95])

The workshop did not rigorously define what a DLO was; however "the

intellectual content of a DLO is primarily text, and....the metadata required for

describing DLOs will bear a strong resemblance to the metadata that describes

traditional printed text" [Weibel 95]. It is clear that e.g., an electronic text, map, or

image could be a DLO. The core data element set did not have to handle every

type of resource that could theoretically be available on or through the network, it

had only to handle document-like objects. The core element set itself is still a

moving target.

67

The Dublin Core [DC] is a metadata element set intended to facilitate

discovery of electronic resources. Originally conceived for author-generated

description of Web resources, it has attracted the attention of formal resource

description communities such as museums, libraries, government agencies, and

commercial organizations.

The Dublin Core Workshop Series has gathered experts from the library

world, the networking and digital library research communities, and a variety of

content specialties in a series of invitational workshops. The building of an

interdisciplinary, international consensus around a core element set is the central

feature of the Dublin Core. The progress represents the emergent wisdom and

collective experience of many stakeholders in the resource description arena. An

open mailing list supports ongoing work.

The characteristics of the Dublin Core that distinguish it as a prominent

candidate for description of electronic resources fall into several categories:

• Simplicity. The Dublin Core is intended to be usable by non-catalogers as

well as resource description specialists. Most of the elements have a

commonly understood semantics of roughly the complexity of a library

catalog card.

• Semantic lnteroperability. In the Internet, disparate description models

interfere with the ability to search across discipline boundaries. Promoting

a commonly understood set of descriptors that helps to unify other data

content standards increases the possibility of semantic interoperability

across disciplines.

68

• International Consensus. Recognition of the international scope of

resource discovery on the Web is critical to the development of effective

discovery infrastructure. The Dublin Core benefits from active participation

and promotion in some 20 countries in North America, Europe, Australia,

and Asia.

• Extensibility. The Dublin Core provides an economical alternative to more

elaborate description models such as the full MARC cataloging of the

library world. Additionally, it includes sufficient flexibility and extensibility to

encode the structure and more elaborate semantics inherent in richer

description standards.

• Metadata Modularity on the Web. The diversity of metadata needs on the

Web requires an infrastructure that supports the coexistence of

complementary, independently maintained metadata packages. The World

Wide Web Consortium has implemented an architecture for metadata for

the Web. The Resource Description Framework, or RDF, is designed to

support the many different metadata needs of vendors and information

providers.

The current metadata set, which was finalized in September 1998,

consists of 15 elements:

• Title
• Author or Creator
• Subject and Keywords
• Description
• Publisher
• Other Contributors
• Date
• Resource Type

69

• Format
• Resource Identifier
• Source
• Language
• Relation
• Coverage
• Rights Management

Each element is repeatable and optional, and the entire set has been

defined as extensible. Each Dublin Core metadata element can also have a sub-

type and sub-scheme information. This provides additional semantics to the

values of the metadata.

Dublin Core Example

Element Content Scheme
DC.Title Building Web Applications with UML
DC.Creator.CorporateName Jim Conallen
DC.Creator.Jurisdiction United States BEP App.

4.1
DC.Subject.Industry ALL BEP App.

4.2
DC.Subject.Topic Web site development BEP App.

4 .3
DC.Description Guide to building robust, scalable, and

feature-rich web applications using
proven object-oriented techniques

DC.Publisher Addison-Wesley
DC.Date 01-DEC-1999 BEP App.

4.5
DC.Type Didactic BEP App.

4.6
DC.Format text BEP App.

4.7
DC.ldentifier http://www. awl. com/cseng/ BEP App.

4.8
DC.Language en RFC1766
DC.Coverage.PlaceName.
Operation

United States BEP App.
4.1

DC.Rights.Text © Addison Wesley Longman, Inc.

70

3.4.1. Warwick Framework

The Dublin Core working group also recognized that no single set of elements will

satisfy all metadata requirements on the Internet. An infrastructure was needed to

support any metadata element set. This infrastructure is called the Warwick

Framework and is a container architecture for aggregating logically, and perhaps

physically, distinct packages of metadata [Lagoze 96]. The architecture allows

separate administration and access to metadata packages and proposes

implementations of the Framework in HTML, MIME, SGML, and distributed

objects.

Warwick Framework Example

<!DOCTYPE container system "warwick.dtd">
<container name="example">

<indirect uri="http://foo. bar. com/huh ">
<package name="admin">

<metadata Name="date-created">12/31/95</metadata>
<metadata Name="last-revised">4/5/96</metadata>

</package>
<DublinCore>

For this example, just some text. A DTD for the Dublin
core is being developed, and the content here should conform
to it in real use.

</DublinCore>
<package name="misc" notation="RFC-822">

From: daniel@acl.anl.gov (Ron Daniel)
Subject: Metadata tagging schemes

</package>
</container>

3.4.2. MDC: MetaData Coalition

The MetaData Coalition [MDC] was founded in 1995 to develop and provide

standardized metadata exchange; the coalition introduced the MetaData

Interchange Specification [MDIS 97] in 1996. Recently the MDC completed the

71

technical review of the MDC-OIM [0lM 98], a technology-independent and

vendor-neutral information model describing the structure and semantics of

metadata.

3.4.2.1. MDIS: MetaData Interchange Specification. The heart of the MetaData

Interchange Specification is the core set of components that represents the

minimum common denominator of metadata elements and the minimum points of

integration that must be incorporated into tool products for compliance [MDIS 97].

Compliance with the MDIS requires support for all relevant core set components

and integration points in accordance with the approved specifications.

The MDIS also provides for an approved set of optional/extension

components that are relevant only to a particular type or class of tool or a specific

application or architecture. Because these are used by more than one tool or

application, they can and should conform to the specification definition and set of

access parameters, but because they are not generic across all tools,

architectures, or applications they would not be eligible for the core set, nor

required for compliance.

The members of the MDC agreed upon initial MDIS goals, including:

• Creating a vendor-independent, industry-defined and -maintained standard

access mechanism and standard application programming interface (API)

for metadata;

• Enabling users to control and manage the access and manipulation of

metadata in their unique environments through the use of interchange

specification-compliant tools;

72

• Allowing users to build tool configurations that meet their needs and to

incrementally adjust those configurations as necessary to add or subtract

tools without impact on the interchange specification environment;

• Enabling individual tools to satisfy their specific metadata access

requirements freely and easily within the context of an interchange model;

• Defining a clean, simple interchange implementation infrastructure that will

facilitate compliance and speed adoption by minimizing the amount of

modification required to existing tools to achieve and maintain MDIS

compliance; and

• Creating a process and procedure not only for establishing and

maintaining the MDIS but for extending and updating it over time as

required by evolving industry and user needs.

MDIS Example

BEGIN HEADER
CharacterSet "FRENCH"
ExportingTool "IEF Composer"
ToolVersion "3.1"
ToollnstancelD "5"
MDISVersion "1.1"
Date "1996-03-15"
Time "14.32.18"

END HEADER
BEGIN ApplicationData

Tool "tool 1"
BEGIN ToolAppData

up to each tool
END ToolAppData
Tool "tool 2"
BEGIN ToolAppData

kw val
kw val

END ToolAppData
END ApplicationData

73

BEGIN DATABASE
Identifier "001"
ServerName "NEWTON"
DatabaseExtendedType "AIX1.0"
OwnerName "HRADMIN"
DatabaseName "PAYROLL"
DateCreated "1992-12-02"
TimeCreated "23.12.15"
DateUpdated "1996-03-10"
TimeUpdated "08.00.00"
BriefDescription "DB2/MVS payroll database at Newton site"
BEGIN ApplicationData

Tool "DXT"
BEGIN ToolAppData

CREATE DXT FILENAME=PAYROLL, DESC="DB2/MVS payroll
database at Newton site"ACCESS =GDI,GDIEXIT=GDIDB2S,

GDIXTYPE=SELECT
END ToolAppData

END ApplicationData
DatabaseStatus "PRODUCTION"
DatabaseType "RELATIONAL"
BEGIN RECORD. . . .

END DATABASE

3.4.2.2. 01M: Open Information Model. The Open Information Model [OIM 98]

is a set of metadata specifications to facilitate sharing and reuse in the application

development and data warehousing domains. OIM 1.0 consists of over 200 types

and 100 relationships, described in UML (Unified Modeling Language) and

organized in easy-to-use and easy-to-extend subject areas. The metadata model

developed by over 20 industry-leading companies, is based on industry standards

such as XML, SQL, COM, Java, and UML, and has been reviewed by over 300

companies.

The overall purpose of the Open Information Model is to support tool

interoperability via a shared information model, across technologies and across

companies. The OIM is designed to encompass all phases of a project's

74

development life cycle, from analysis through deployment. Computing

technologies as diverse as CASE, component, application, intranet, database,

and data warehousing will be supported.

The Open Information Model is grouped into subject areas addressing

domains of varying complexity and generality. For example, the subject areas

range from the database model, which describes database schemas in general,

to the SQL Server and Oracle subject areas, which describe the unique features

of those individual implementations. OIM 1.0 targets three main areas:

• Object-oriented Analysis and Design

• Component Description and Specification

• Database Schema and Data Warehousing

OIM Example

<?xml versio ="1.0" ?>
<oim:Transfer xmlns:oim= "http://www.mdcinfo.com/oim/oim.dtd "

xmlns:dbm= "http://www.mdcinfo.com/oim/dbm.dtd " >
<dbm:Catalog id= "_1" name= "sales" comments= "Sample catalog" >

<dbm:CatalogSchemas>
<dbm:Schema id= "_2" name= "dbo" >
<dbm:SchemaTables>

<dbm:Table id= "_3" name= "Customer" >
<dbm:Column SetColumns>
<dbm:Column id= "_6" name= "CustomeriD" IsNullable= "0" 1>
<dbm:Column id= "_7" name= "Nname" IsNullable= "0" />
<dbm:Column id= "_8" name= "Address" IsNullable= "1" />
<dbm:Column id= "_9 " name= "Phone" IsNullable= "1" />

</dbm:Column SetColumn s>
</dbm:Table>
<dbm:Table id= "_4" name= "Order" stimatedRows= "10000" >

<dbm:Column SetColumns>
<dbm:Column id= "_10" name= "CustomerlD" IsNullable= "0" />
<dbm:Column id= "_11" name= "OrderlD" IsNullable= "0" />
<dbm:Column id= "_12" name= "Date" IsNullable= "1" />

</dbm:Column SetColumns>
</dbm: Table>

75

<dbm:Table id= "5" name= "Orderltem" stimatedRows= "100000" >
<dbm:Column SetColumns>

<dbm:Column id= "_13" name= "CustomerlD" IsNullable= "0" />
<dbm:Column id= "_14" name= "OrderlD" IsNullable= "0" />
<dbm:Column id= " 15" name= "LineNo" IsNullable= "0" />
<dbm:Column id= "__ 16" name= "Description" IsNullable= "1" />
<dbm:Column id= "_17" name= "Quantity" IsNullable= "0" I>
<dbm:Column id= "_18" name= "UnitPrice" IsNullable= "0" />

</dbm:Column SetColumns>
<dbm:TableU iqueKeys>

<dbm:U iqueKey id= "_19" name= "PK_Orderltem" IsPrimary= "1" >
<dbm: KeyColumns>

<dbm:Column href= "#_14" />
<dbm:Column href= "#_15" I>

</dbm: KeyColumns>
</dbm: UniqueKey>

</dbm:TableUniqueKeys>
</dbm:Table>

</dbm: SchemaTables>
</dbm: Schema>
</dbm: CatalogSchemas>

</dbm:Catalog>
</oim:Transfer>

3.4.2.3. XIF: XML interchange Format. The Metadata Coalition, in cooperation

with the leading independent repository vendors, recently announced the

availability of XML as interchange format for metadata described by the Open

Information Model [OIM 98].

XML is the native interchange format for metadata described by the 01M.

OIM is a set of metadata specifications to facilitate sharing and reuse in the

application development and data warehousing domains. OIM 1.0 consists of

over 200 types organized in easy-to-use and easy-to-extend subject areas.

The representation of OIM instances based on XML provides a powerful

and easy-to-implement mechanism to exchange metadata between multiple

heterogeneous repositories offered by different vendors. This is the first time that

76

enterprise customers are able to interchange and integrate application

development and data warehousing metadata using a standard encoding format

and a broadly accepted industry standard information model.

The XML Interchange Format [XIF 99] for OIM enables the exchange of

metadata between heterogeneous repositories and tool stores. As an open,

industry-standard model accommodating metadata of software development and

data warehousing tools, the Open Information Model provides a content-rich, yet

vendor-neutral specification of metadata. Vendors supporting XIF will be able to

import and export metadata, such as analysis and design models, component

descriptions, and data warehousing transformations.

Besides supporting the interchange of metadata across multiple repository

tools, XIF provides third-party vendors with an easy way to populate repository

databases with data. For example, a third-party tool can insert 01M-compliant

instances into Microsoft Repository by creating an XML file, then using the

Microsoft XIF Import/Export Utility.

XIF Example

<dbm: Table xitid="_1">
<xif: name>Addresses</xit name>
<uml: members xif:size="2">

<dbm: Column xif: id="_2" ordinal="1">
<xif: name>Zip Code</xif: name>
<dbm:type>Numeric</dbm:type>

</dbm: Column>
<dbm:Column xithref="#_3" xif:ordinal="2">
</dbm: Column>

</uml: members>
</dbm: Table>

77

3.4.3. OMG: Object Management Group

The Object Management Group [OMG] has provided leadership in metadata

management starting with issuance of the Repository RFI in 1995, which led to

the OMG distributed repository architecture definition in 1996. The Meta Object

Facility [MOF 97] was adopted by the OMG in 1995 and has been refined through

the OMG's open, vendor-neutral standards process. The Unified Modeling

Language [UML 97] was adopted in 1997. More recently, the OMG embraced

W3C XML with the adoption of the XML Metadata Interchange [XMI 98]. These

three standards, UML, MOF and XMI, form the foundation of the OMG's modeling

and metadata management architecture. This architecture is designed to be

technology- and middleware-neutral to foster rapid consensus in the industry in

metadata standardization.

3.4.3.1. XMI: XML Metadata Interchange. XMI (XML Metadata Interchange)

[XMI 98] has been created within the technology development process of the

Object Management Group, with the aim of allowing developers of distributed

systems to share object models and other structured data, created using OMG

technology, over the Internet.

The main purpose of XMI is to support the exchange of metadata between

modeling tools based on the OMG UML (an object based modeling language),

and repositories based on the OMG MOF (a standard for describing metadata

structures, such as data describing UML models, and repository interfaces). XMI

78

is an integral part of the OMG architecture, which is aimed at supporting

interoperation of information systems within diverse and distributed installations.

XMI uses XML so that XMI data exchanges can take advantage of the

extensive technology development surrounding XML and the Web, rather than

creating an alternative competing standard for structured data exchange.

XMI is made up of:

• Rules for generating XML Document Type Definitions (DTDs) from MOF

based metamodels (these metamodels are descriptions of classes of

metadata; these classes of metadata may include the specifications of the

metamodels themselves, to as many levels as required)

• Rules for generating XML Documents from MOF based metadata, and

MOF based metadata from XML Documents

• Design guidelines for XMI-related DTDs and XML data

• Actual DTDs supporting UML and MOF

XMI is likely to be useful where there is additional information (for example,

constraints on data values, or constraints on data structure) which is beyond the

expressive capability of XML, and which is essential for a full exchange of

meaningful information. XMI was designed to be used for exchanging information

not only between repositories driven by OMG specifications. XMI supports the

exchange of any kind of structured data that can be described using MOF.

So what is the added benefit of XMI over plain XML? - XML itself provides

for structured data, and syntactic specifications of the structure of that data; XMI

79

provides a mechanism for encoding many levels of information modeling into the

single syntactic interchange structure of XML.

The core of XM1 is a pair of parallel mappings: between MOF metamodels

(model descriptions) and XML DTDs; and between MOF metadata (model

instances) and XML documents. Any repository or tool that can encode and

decode XMI streams can exchange structured information with other repositories

or tools with XMI capability.

XMI Example

<Model xmi.id="i00000001">
<name>model 1 </name>
<ownedElement>

<Class xmi. id="i00000002">
<name>classl </name>

<feature>
<Attribute xmi. id="i00000003">

<name>attributel </name>
<type><integer/></type>

</Attribute>
</feature>

</Class>
</ownedElement>

</Model>

3.5. Metadata Role in Indexing Services

One of the major reasons for moving towards author-described resources with

metadata is to try and provide more effective indexing services for the public.

Current Web indexing services will attempt to summarize a document by

analyzing the HTML code and producing a summary. This does not always

produced effective results, and coupled with the enormous mass of Web

documents, the end result usually ends up disappointing the information seeker.

80

Some of the current Web indexing services (in particular, AltaVista and

Infoseek) are now currently supporting a limited metadata set (two elements;

Description and Keywords). When these services index a www site, it will look for

these META tags, and index the document based on the author-supplied list of

Keywords (it will still try to index the rest of the document, but the keyword list

takes precedence). The Description field is used in the display of the returned

result-set.

When metadata becomes more common (either embedded in documents,

such as the META tag in HTML files, or from a separate metadata repository) and

indexing services start to concentrate on indexing this information, we should see

a marked increase in the effectiveness of information retrieval. The author-

generated metadata (or even semi-automated) will add a higher level of quality.

3.6 Meta-Information

The ability of the Internet and the World Wide Web protocols to integrate

services from different organizations is transforming business practice more

rapidly than ever before. Many businesses have recognized that connectivity to

the Internet, and effective exploitation of available Internet services and data, has

become a major factor in their overall competitiveness. Relationships with

suppliers, partners, and customers will soon be mediated almost exclusively

using Internet technology, and integration is becoming deeper, broader and more

seamless than was ever deemed possible.

81

Over the next few years, the role of the IT/IS department within many

businesses will change out of all recognition. The feasibility to deliver a greater

diversity of networked services over public networks is creating the opportunities

for new models of how information systems are conceived, implemented and

sourced. The time is fast approaching when it will be possible to create, upon

demand, the necessary information infrastructure to support complex virtual

enterprises, and to dismantle these when they are no longer needed.

Already there is evidence of the emergence of a new kind of Internet

commerce providers, able to source IT/IS services to others, over the Internet.

Hot technology start-ups are examining online delivery models of various types

and are looking to offer a wide range of digital online services to businesses

hungry to reduce overheads and gain competitive advantage. Adoption of such

services will depend upon stability in service offerings and meaningful commercial

arrangements under which services will be offered. If this can be achieved,

expect many businesses to concentrate upon their core competence and procure

IT/IS services as required via the net, integrating them into their wholly owned

infrastructures. Business will integrate 3rd party services with their owned

infrastructure to an extent commensurate with the degree to which these new

services become, or are perceived to be, business critical.

Forward thinking organizations are beginning to organize, standardize and

stabilize offered services in order to create and maintain sustainable computer-

mediated relationships with e-business partners. Part of the current excitement

surrounding metadata expressed with XML is that the SGML, EDI and Internet

82

communities expect it to be able to bring a sense of order to electronic trading

relationships. After all, in many cases, today's best practice in electronic

commerce is little more than the integration of legacy system functionality into the

Web architecture. XML (metadata) is changing the landscape forever and giving

the digital entrepreneurs a myriad of new ways to carve a niche for themselves in

the online landscape.

Once the potential for site to site interactions takes hold, combined with a

rich set of brokering, mediation, negotiation, co-ordination and notification

services, the complexity of the digital space will multiply exponentially. Process

and information modeling technologies will become an essential part of the toolkit

for enterprises wishing to take up a role in the medium. XML will be both a

solution and purveyor of additional complexity, helping the development and

implementation of the Semantic Web.

[Gronbwk 00] introduces an approach to utilize open hypermedia

structures such as links, annotations, collections and guided tours as metadata

for Web resources. The paper introduces an XML based data format, called

Open Hypermedia Interchange Format - OHIF, for such hypermedia structures.

OHIF resembles XLink with respect to its representation of out-of-line links, but it

goes beyond XLink with a more rich set of structuring mechanisms, including e.g.,

composites. Moreover OHIF includes an addressing mechanisms (LocSpecs) that

goes beyond XPointer and URL in its ability to locate non-XML data segments. By

means of the Webvise system, OHIF structures can be authored, imposed on

Web pages, and finally linked on the Web as any ordinary Web resource.

83

Following a link to an OHIF file automatically invokes a Webvise download of the

metadata structures and the annotated Web content will be displayed in the

browser. Moreover, the Webvise system provides support for users to create,

manipulate, and share the OHIF structures together with custom made web

pages and MS Office 2000 documents on WebDAV servers. These Webvise

facilities goes beyond ealier open hypermedia systems in that it now allows fully

distributed open hypermedia linking between Web pages and WebDAV aware

desktop applications. [Grønbæk 00] describes the OHIF format and demonstrates

how the Webvise system handles OHIF. Finally, it argues for better support for

handling user controlled metadata, e.g., support for linking in non-XML data,

integration of external linking in the Web infrastructure, and collaboration support

for external structures and metadata.

3.7 Summary

Metadata is data that describes data. There is a need to expedite the access and

use of this data. Currently, computer science lacks a standard metadata

framework, broad enough to describe any kind of resource.

Resources are required to evolve the Web from their current state to one

where they are organized, catalogued and effectively searchable. The Semantic

Web Activity has been recently established to lead both the design of enabling

specifications and the open, collaborative development of technologies that

support the automation, integration and reuse of data across various applications.

84

The document paradigm changed with the introduction of. This change

established a second tier of data: data describing data or metadata. The

document was logically torn apart, separating content (data), structure (metadata)

and formatting (metadata).

There are three major aspects for the deployment of metadata: description of

resources, production, and use.

Ideally, a single metadata scheme should be used as this minimizes the

cost of using metadata. Unfortunately, it is unlikely that there will ever be

agreement on a single metadata scheme.

Using humans to generate summaries is expensive, and metadata

systems attempt to reduce this cost by making humans more productive by

automating as much of the process as possible. The use of tools that could

automatically provide this information, like DHE, would greatly advance the

materialization of a metadata infrastructure.

Metadata has many uses in assisting the use of electronic and non-

electronic resources on the Internet. These include: summarizations, search,

filtering, retrieval, interpretation, versioning, history, contact, control, and

relationships.

The basic model used for metadata is known as "attribute type and value"

model. Metadata standards define sets of attributes that can be used to describe

resources.

For the W3C Metadata Activity, metadata should be taken to mean

machine understandable information, about distributed networked information.

85

The Metadata activity is the architectural underpinning of many of the W3C's

activities

XML is a format designed to bring structured information to the Web.

XML-compliant document readers need only read to metadata statements to

understand documents. XML is regarded as "semantic markup.

RDF provides a more general treatment of metadata. RDF is a declarative

language and provides a standard way for using XML to represent metadata in

the form of properties and relationships of items on the Web.

The XML Schema addresses means for defining the structure, content and

semantics of XML documents. The purpose of a schema is to define and describe

a class of XML documents by using constructs to constrain and document the

meaning, usage and relationships of their constituent parts.

The main barrier to electronic commerce lies in the need for applications to

meaningfully share information. In order to enable consistent behaviors amongst

the participants in a virtual enterprise and to allow complex interactions such as

negotiation and mediation, greater levels of semantic content need to be made

explicit and represented. The need for greater explicit content is exacerbated by

the shift towards web automation.

There are a number of organizations providing emerging metadata

specifications, such as: Dublin Core, Warwick Framework, MetaData Coalition,

MetaData Interchange Specification, Open Information Model, and XML

Interchange Format.

86

UML, MOF and XMI, form the foundation, of the Object Management Group

's modeling and metadata management architecture. This architecture is

designed to be technology- and middleware-neutral to foster rapid consensus in

the industry in metadata standardization.

The ability to find relevant material has decreased dramatically as the

quantity of information on the Internet grows. One of the major reasons for

moving towards author-described resources with metadata is to try and provide

more effective indexing services for the public.

When metadata becomes more common, and indexing services start to

concentrate on indexing this information, there will be a marked increase in the

effectiveness of information retrieval

DHE makes extensive use of metadata. The automatic link generation

aspect of the DHE relies on the inclusion of semantic metadata for each pre-

defined element present in a virtual document. The term Meta-Information is used

in this research to make clear when the metadata includes relationships.

CHAPTER 4

DYNAMIC HYPERMEDIA ENGINE OVERVIEW

DHE automatically generates links at run-time for each of those elements with

relationships and metadata. Such elements need to be previously identified using

a methodology like the Relation-Navigation Analysis (RNA) [Yoo 00]. DHE also

constructs more sophisticated navigation techniques not often found on the Web

(e.g., guided tours, overviews, structural query) on top of these links. The

metadata, links and navigation, as well as annotation features, supplement the

application's primary functionality.

The Dynamic Hypermedia Engine (DHE) Project aims to develop a

hypermedia engine, which runs in parallel with other applications and dynamically

gives those applications hypermedia functionality. Dynamically means that there

is a run-time mapping of the application information and relationships to hypertext

objects, within both the system and external to it. An important feature to remark

is that this mapping keeps changes to the application itself to a minimum. The

mapping is performed with the help of logical rules called Bridge Laws.

Many applications being brought to the Web have a well-defined

architecture [Bieber 95b]. A primary portion includes a computational section and

a secondary portion includes the wrapper section that grabs the output of the

computational part and formats it into HTML thus allowing it to be displayed on

the browser, which is the final interface to the application. Based on this

architecture, DHE intercepts the communication between the application's

computational section and its interface section, automatically detecting the

87

88

location of interrelationships in messages and documents based on the

knowledge of the application's internal structure. Bridge Laws provide the

mapping between the structural relationships of the application and the hypertext

features. Therefore, not only does every anchor essentially lead to a set of all

relationships inside the application, but also leads to any user-specified

annotation and any other relationships external to the application.

This research builds on prior success. Dr. Michael Bieber's team have

incorporated hypertext functionality using Bridge Laws to a model management

analysis tool called TEFA as proof-of-concept prototype [Bieber 97c]. However,

this uses a standalone, non Web-based hypermedia system on the PC called

Microcosm [Davis 92] as its basic platform. It is possible can extend Microcosm

by adding new modules (called "filters") to the existing module base. That

prototype implemented the computational hypertext engine as a set of filters for

TEFA written in Prolog and C.

4.1 Features

One of DHE's main objectives is to provide a testing environment for hypermedia

functionalities. This environment should have the following features:

• Provide a [Web] interface

• Automated metainformation and hypermedia functionality

• Support for Virtual Documents

• Mapping rules to represent an application internal structure

• Modular architecture

89

• Wrappers to integrate possibly distributed applications with minimal changes

• XML as basic format for coding metalnformation

4.2 Architecture

DHE's goal is to provide full hypermedia functionality to computational

applications or Dynamically-Mapped Information Systems' (DMIS) with minimal or

no changes to them. DHE will serve any DMIS and user interface (UI) that has

implemented an appropriate wrapper. To integrate a new DMIS or UI, it is

necessary to develop a wrapper and a knowledge base (i.e., identify elements,

bridge laws, metadata, etc.) for it. Thus, to provide a DMIS application with

hypermedia support, the developer only has to declare the contents of its DMIS

wrapper and knowledge base. This may prove straightforward or complex. But in

any case it only must be done one time to apply to any DMIS instance

[Whitehead 97].

To fully support the broad range of information systems found in

organizations, the hypermedia engine must support multiple applications and

users. Some researchers envision that hypermedia could even integrate

independent applications for interrelated tasks and processes.

The DHE 1.0 architecture consist of several well-defined and separate

processes, each possibly running on a different platform:

90

Figure 4.1 DHE 1.0 Architecture

• User Interface (UI), which usually runs on the user's computer (web

browser).

• User Interface Wrapper (UIW), serves three important functions: First, it

translates the displayable portion of the internal messages, from the DHE's

standard format to a format the UI can process, and vice versa. Second, it

handles the communication between the UIW and the UI. Third, it

implements any functionality the Engine requires on the UI, which the UI

cannot provide itself.

• Gateway (GW), enables the communication between the Engine modules

and works as the router for all the DHE internal messages. All Engine

91

messages pass through the GW, which then redirects them to the

appropriate module.

• Traversal Path Manager (TPM), stores the path each message has to

follow. Every time a message reachs the Gateway, the TPM

determines its next destination.

• Log Manager (LM), keeps a log of all messages being transmitted

inside of the engine.

• Bridge-Law Element Mapper (BLEM), maps the application data and

relationships to hypertext objects at run-time. BLEM maps the element

instances in the virtual document to the global element types (classes),

and finds the links for them. Once the links are produced they are sent

through to the user interface wrapper.

o Link Bridge Laws - These are used to identify links. A Link Bridge

Law maps the element instances present in the DMIS output to the

global DMIS elements stored in BLEM and produces the links for

them. Once the links are produced they are sent to the user through

to the User Interface Wrapper.

• Dynamically Mapped Information System Wrapper (DMISW), as the UIW,

it manages the communication between the DMISW and the application

system, translates the user requests from the DHE internal format to the

application API, receives the output from the DMIS and converts it to the

Engine format. The DMISW also identifies and marks the elements within

the DMIS output to which hypermedia components are mapped.

92

• Dynamically Mapped Information System (DMIS), an application system

that dynamically generates the data requested by the user.

4.2.1 Gateway

The main objective of Gateway module of DHE is to enable and manage

communication interfaces between different engine modules. This module is

basically responsible for passing engine messages reliably and efficiently to the

destination modules. The Gateway module will receive a message, determine

where it needs to route it next, and log the message into a database.

Functionality Overview

• Allow different engine modules to register.

• Keep a registry of active modules.

• Receive messages from different engine modules.

• Send messages to other modules.

• Send and receive messages simultaneously.

• Look into Gateway data base: Traversal Path Manager (TPM) table and find

the next destination module.

• Provide an abstract mechanism to other engine modules for the creation

modification, access and manipulation of messages.

• Provide management and debugging interface. This interface should

perform: display all currently active modules and trace the processing of a

message inside the Gateway.

93

• Log every message between two modules into a database passing through

the Gateway.

• Create User Interfaces to maintain Traversal Path Manger Table (TPM) and

log database.

• Constraints

4.2.1.1 Traversal Path Manager (TPM). The current DHE architecture needs to

support asynchronous communication between the modules, a mechanism that

the Gateway uses to determine if the message must go to other intermediate

points before the message's final destination. The Traversal Path Manager's

parameters are defined in a database that informs the Gateway which module is

the next recipient of the message. The individual DHE module needs to be

concerned with the message's final destination only, and not with the intermediate

points. The TPM includes a user interface program to maintain its tables. It also

contains an utility class used by Gateway to query the TPM table to determine the

next destination module.

The XML message passed between modules will always contain the

following elements: Origin, Current, Destination, UserlD, Key and MsgBody. For

example,

<MsgType>Display Contents</MsgType>
<Origin>DMIS</Origin>
<Current>BLEM</Current>
<Destination>UIW</Destination>
<UserlD>1234567890</Userl D>
<Key>testing1234567890</Key>
<Msg Body> </Msg Body>

94

The elements Origin, Current and Destination will have a DHE module id

as value. The Gateway module will decide what is the next destination of the

message based on the value of the Origin, Current, Destination, and MsgType

fields.

4.2.1.2 Log Manager (LM). All DHE modules communicate with each other via

the Gateway. A module sends a document to the Gateway, and the Gateway

usesing the Traversal Path Manager to send the message to the next module.

This module allows the Gateway to log the message into a database table. The

Gateway uses the Log Manager facility to log the message as soon as it receives

it. Once it determines the message's next destination, it updates the database

table with the corresponding module id. The LM also includes a user interface to

query and view the messages logged by the Gateway.

4.2.1.3 Engine Message. This class acts as a facilitator to the DHE project and

it's modules by providing a mechanism to build XML messages. XML messages

are built using the Document Object Model [W3C DOM] level 1. The Engine

Message class provides methods to build, parse and debug XML tree-based

documents, thus individual modules do not need to deal with implementation

details of DOM. The Engine Message class is independent of Gateway; it

provides a mechanism to extract XML document from an Engine Message, by

which all modules communicate.

4.2.2 Bridge Laws Element Mapper (BLEM)

There are three kinds of basic hypertext objects in DHE: nodes, links and

anchors. Nodes are elements of interest. They include elements inside DMISW

95

and documents passed. Links represent relationships among two or more nodes.

Thus nodes are the endpoints of links.

In the Hypermedia Engine context, a 'document' is the dynamically

generated output of an Engine Module or DMIS that should be displayed by a

User Interface. The kind of elements that can be considered as 'objects' or

element of interest in a document are: a character or set of adjacent characters, a

word or set of adjacent words, a phrase or set of adjacent phrases, a paragraph

or set of adjacent paragraphs, a table, a figure, an image, etc., as well as any

adjacent combination of these, including the document as a whole.

It is possible to have links or comments associated with a node. Nodes

have meta-information available about them that the UIW displays in the meta-

information frame. Any object inside the system could be treated as a node; in

other words any object can be an "element of interest" at one point. This means

that any object can have meta-information displayed about it. Any object can

have a link to it. So DHE needs to display lists of links and meta-information

about objects or elements of interest in the browser frames. When the user asks

for any more information about element, BLEM provides the list of links and meta-

information available in BLEM.

Links in the BLEM are defined in terms or 'Bridge Laws' [Bieber 92]. A

bridge law "bridges" two different domains, i.e.,; it takes an object and maps it

from one domain to another. In the engine project, one domain is the DMIS's

environment and the other is the hypertext environment. Link bridge laws map

between relationships and hypertext links. Each link bridge law represents one

96

relationship for one DMIS element. Therefore, BLEM generates a hypertext

anchor for each element that has a relationship available, and a hypertext link for

each of these relationships.

Bridge laws also provide a mechanism for modules to add a command to

the list of links. When the user selects an anchor and requests a list of links,

bridge laws could also declare commands to appear in that list of links.

Functionality Overview

• Receive an XML message from another Module, through the Gateway.

• Using the method(s) developed with the Gateway module to receive

messages.

• Extract the content of an XML message

• Use the methods developed with the Gateway module to read the

content of message to parse it for message processing.

• The content could be an HTML/Text document, menu, list of links, frame

command, etc.

• The content might include 'marked' element.

• There may be Meta-information for each 'marked' element and for the

content as a whole.

• The message should contain Request(s)/Action(s) to be executed by the

BLEM.

• Search for meta-information for a particular element instance and/or

element type.

97

• Search for Bridge Laws for a particular element instance and/or element

type.

• Mark the elements for which there are associated Bridge Laws.

• Include the meta-information found for each element in the message.

• Return a list of links for a particular element and/or element type.

• Send an XML message

• The message must travel through the Gateway to its final destination.

• Using the method(s) provided by the Gateway module to send

messages.

• The Traversal Path Manager in the Gateway should indicate if the

message must go to other intermediate points before the final

destination.

• Provide an Interactive User Interface. This interface should perform the

following tasks:

• Display information of currently stored Bridge Laws.

• Display information of currently stored Meta-information.

• Manually Add/Update/Delete Bridge Laws to the database.

• Manually Add/Update/Delete Metadata to the Database.

4.2.3 User Interface Wrapper

The User Interface Wrapper (UIW) is one of the core components of the

Hypermedia Engine. Its main function is to enable the communication between

the user interface and the DHE. The UIW is responsible for handling and

98

processing requests from different users, and sending them to the proper

modules for processing and retrieving information. In this particular instance of

UIW, the user interface is defined as a web browser and the output format as

HTML. All the information currently sent to the browser is coded in HTML format.

HTML was selected to make DHE accessible from any web browser, since it is

the web standard more closely followed by the browsers development companies.

On the other hand, all communications among DHE modules are coded using the

eXtensible Markup Language (XML). The UIW marks the documents embedded

inside the XML messages using browser understandable HTML. It also does the

reverse, by transforming HTTP requests into XML messages after a user clicks

on a hyperlink or a form submission button on the user interface.

The UIW was implemented using Java Servlets. In general, servlets are

modules that extend request/response-oriented servers, such as Java-enabled

web servers. Servlets can be used to send and receive Hypertext Transfer

Protocol (HTTP) requests and responses. Servlets, furthermore, can handle

multiple users simultaneously and efficiently with the ability to keep track of each

user's session. All these benefits were needed in order for the UIW to perform its

tasks.

In Sun's own description for servlets, servlets are to servers what applets

are to browsers. Unlike applets, however, servlets have no graphical user

interface.

The UIW could have also been implemented using other technologies, like

the Common Gateway Interface (CGI), but servlets are much more efficient than

99

CGI. Servlets are an effective replacement for CGI scripts. They provide a way to

generate dynamic documents that is both easier to write and faster to run.

Servlets also address the problem of doing server-side programming with

platform-specific APIs: they are developed with the Java Servlet API, a standard

Java extension. Furthermore, CGI generates a new process for each request and

puts lots of overhead and processing load on servers. On the other hand,

servlets are thread based and does not generate any extra overhead and puts

less workload on servers.

Functionality Overview

This section describes the overall functionality of the User Interface Wrapper:

• Receive Information from the User Interface (Web Browser): The UIW is

responsible of receiving the information entered by the users. 	 This

information would be submitted in the form of an HTTP request. The UIW

servlet receives the information coming from a user interface and decodes it.

• Create an XML Message: The information received from the UI is embedded

in a XML message, which is consequently sent out to the corresponding

application or DHE module for processing. Necessary information, such as

Request ID, destination module ID, Message Type, etc., should be included

as part of the header of the XML message.

• Send an XML Message: After an XML message is generated, the UIW has

to send the message to the proper application or engine module. The

messages are sent using the methods provided by the Message Manager.

100

The Traversal Path Manager inside the Message Manager routs the

messages to their destinations.

• Receive an XML Message from the Engine: After sending a message, a

thread will be waiting for a response from the application or module. This

UIW will receive the XML messages from DHE using the method provided by

the Message Manager.

• Extract Content of an XML Message: The UIW extracts the information to be

displayed from the output XML messages. This messages include the

output document, a list of elements-of-interest, meta-data, etc.

• Format the Document to be Displayed in the User Interface: The output

document should be formatted to comply with the requirements of the user

interface. Furthermore, the UIW also needs to take account of the additional

features provided by DHE: frames, anchors, metadata, etc.

• Send the Document to the User Interface: This UIW is responsible of

sending the output document for display in the user interface. This

document should be in browser understandable format for the browser to be

able to render it.

4.2.4 Dynamically Mapped Information System Wrappers

Dynamically Mapped Information System Wrappers (DMISW) must handle the

communication between the application and the Hypertext Engine. Either the

DMIS or the DMIS wrapper must provide the following support to integrate with

the DHE. This list closely resembles compliance sets identified by OHS

researchers [Davis 94].

101

• Communicate with the DMIS: The DHE must intercept the communications

between the DMIS and its user interface. DMIS messages are routed

through the DMIS wrapper to the DHE. The engine then can map

hypermedia link anchors to it. The more loosely coupled (the more

independent the computational and interface portions) and modular an

information system is, the simpler the hypermedia integration will be. This

also includes the processing of the messages coming from the UI to comply

with the DMIS' API.

• Message markup: The DHE must identify DMIS objects in messages in order

to determine whether to map hypermedia anchors to each. Currently the

DHE relies on the DMISW to identify and mark up each DMIS element in

some way, so the DHE knows where it lies in the message and what kind of

object it is. This limitation could be alleviated for object-oriented DMISs if the

DHE can query the DMIS objects embedded in messages. Otherwise the

DHE would have to rely on some kind of sophisticated content analysis. An

advanced DMISW could employ, for example, sophisticated lexical analysis

techniques to infer undeclared semantics. The DMIS also could provide

some content analysis routines for interpreting its messages.

• Unique IDs: Because the DHE maps contingent annotations and other links

to DMIS element identifiers, the DMIS needs unique identifiers on each

object the DHE could turn into a link anchor. This includes DMIS documents.

In the current implementation the identifiers are coded as Uniform Resource

Identifiers (URI).

102

• Application developers must supply bridge laws: The person who knows the

DMIS best, the system designer who builds or maintains it, should provide its

bridge laws. The information system builder must be both willing to and

capable of developing a set of bridge laws that accurately captures the

structure of his system. The DMIS must have a robust, inferable structure in

order for the builder to capture it in bridge laws. Once in place, the bridge

laws should map a hypermedia network to any of the system's application

document instances, worksheets, program, etc. (Instance builders and users

need have no knowledge of bridge laws. To them, hypermedia functionality

occurs automatically).

• Generalized Bridge Laws: Each application developer must provide his own

set of bridge laws. Nevertheless, it is possible to collect bridge law libraries

that would map classes of information systems. This generalized or

'standard' bridge law sets could handle the models, attributes, data and

operations found, e.g., in relational database applications, spreadsheet

packages, or rule-based expert system shells. The builder of, say, a new

database application would only have to match the elements in his system to

those in the standard database set. The standard set would provide most of

the bridge laws for his system. This would reduce the builder's effort both in

determining which kinds of bridge laws would represent his system

adequately and in developing these laws.

• Other hypertext functionality: Even if a DMIS has no bridge laws and passes

messages without objects, the hypermedia engine still will provide other

103

standard hypermedia functionality (user annotation, backtracking, etc.) In

this case the user will not be able to access DMIS items or operations in a

hypermedia fashion through the DHE.

4.2.4.1 Relational Database Wrapper. The Relational Database Wrapper

Module (RDWM) is an example of a particular DMIS wrapper. It acts as the

"wrapper" around a Relational Database Management System (RDBMS). This

enables the DHE to provide hypermedia support to it. The RDWM receives

requests from other modules via the Gateway for data and/or meta-data from the

RDBMS. The RDWM translates these requests into ANSI-92 SQL, which is the

native messaging format for the RDBMS. Depending on the nature of the request,

it then executes a SQL command, translates the result into a Gateway message,

and asks the Gateway to route it to its final destination (the source of the original

request). The RDWM works for all 'instances' of the DMIS, that is any relational

database stored in it.

Functionality Overview

• Register itself with the Gateway.

• Receive requests (in the form of an XML message) from other

Modules/Engine Components via the Gateway.

• Extract SQL Command from the request.

• Execute SQL Command.

• Decide which metadata to retrieve.

• Retrieve required metadata from the RDBMS.

• Retrieve RDBMS instance information.

104

• Mark elements with Bridge Laws and/or metadata.

• Create User Interface (UI) to display results.

• Return Response (formatted as an XML message).

• Create UI to interact with the RDBMS.

4.2.4.2 Spreadsheet Wrapper. The DHE Project currently provides different

applications the ability to dynamically generate links on a user interface system.

One of the DMIS within the current environment is the spreadsheet application.

This module is a wrapper for this kind of DMIS, making it the Spreadsheet

Wrapper Module (SSWM).

The spreadsheet Wrapper is designed so that users working with any

spreadsheet can get automated linking and hypertext navigation features. The

users are also shown the underlying spreadsheet model.

The SSWM builds three documents: the spreadsheet itself in HTML form,

the spreadsheet model or schema, and the assumption values. The model

describes the underlying schema for a cell of type formula. It is obtained by an

external system, which outputs the schema of a spreadsheet when a spreadsheet

is given as input. The assumption values in the spreadsheet are basically all the

constants in the spreadsheet.

One of the objectives of this module is to enable the user to perceive the

underlying logical schema of a spreadsheet without any user input. This will

create a better understanding of the interactions between various elements of a

spreadsheet. The elements in this case could be cells belonging to different

tables in different sheets within a single workbook file. The user only needs to

105

execute a macro on top of his/her workbook to obtain the description of different

elements within a workbook. A text file containing the schema for each sheet is

created within the same directory in which the application resides. A standard

naming convention has been used to enable the user identify the different

schema files generated for his / her workbook.

Functionality Overview

In brief, the SSWM provides automated linking and hypertext navigational

features to the spreadsheet and makes the underlying model of the spreadsheet

explicit to the user.

The various functions of the wrapper are:

• Register with Gateway.

• Send and receive messages.

• Display the necessary form in the UI for the user to enter the Spreadsheet

name.

• Show Spreadsheet: Building document to display the Spreadsheet, its

schema and the assumption values of the spreadsheet in individual frames

in the browser using the UIW.

• Identify Elements: Identify all possible elements of the spreadsheet and

assign element Ids to them.

• Generating Metadata: For each identified element of the document, relevant

metadata should be generated and passed back to BLEM for it to add

relevant links. The SSWM should send this Metadata only on demand.

106

• Provide Bridge Laws: Provide Bridge laws to BLEM for this module to

generate links.

• To execute the spreadsheet and any SSWM commands underlying the links.

4.2.5 Menu Manager

The main objective of the Menu Manager module is to provide menu information

of the application dynamically to the UIW module. UIW divides the HTML page

into four frames viz., Main, Menu, Meta and Link (See Figure 4.2). The Menu

frame is used to display menu items related to the underlying applications. This

information is obtained by querying the Menu Manager.

Menu manager keeps all application's complete menu information in a

database. The menu manager can update this database whenever it receives

new menu information from the application wrappers.

Functionality Overview

• Register with Gateway.

• Accept messages from application Wrappers and extract menu Information

from request/message.

• Add or update menu manager's database depending on message.

• Receive request from BLEM via Gateway.

• Retrieve necessary information from the database .

• Create DisplayDoc message or update DisplayDoc message send by

application wrapper and send it to gateway.

• Identify different element types for this module and provide Bridge laws to

BLEM for them to generate links.

107

4.2.6 User Preferences

The basic role of this module is to interact with other modules in the system in

order to gather from the users, maintain, and provide any user preferences that

any of the modules may use. Those preferences may concern what is being sent

to the user interface wrapper module, how certain modules should proceed in

executing their tasks, and many others. The number and kind of user preferences

any of the modules may desire to have is not known in advance; thus, user

preferences have to be maintained dynamically based on what requests or

notifications arrive at the UPM. The interaction between UPM and the rest of the

modules is done with internal messages.

The User Preferences Module manages information about users and user

preferences. The UPM provides user management procedures like user log in

and log off, and changing the user's own password. In addition, the UPM

maintains information on specific user classes within user groups in the system.

User classes dictate privileges and preferences that are associated with a

particular user. Users who belong to the class of administrators are given

additional functionality. Administrators can add new users and remove current

users from the system.

In terms of user preference management, UPM receives new preferences

from other modules and stores them in its database. At any time, a module can

request to retrieve a value of a user preference, have its values changed, or have

it removed. Preference values are to be changed mainly by the users. Users

make changes to their preferences through HTML forms. Again, administrators

108

have additional functionality in this case. They can set preference values for any

user in the system. They can also adjust default values for a given user class or

set preference values for all current users of a chosen user class.

Functionality Overview

The User Preferences Module, as the name implies, manages user preferences.

Specific user preferences are defined by modules in the engine, and are

submitted to UPM for maintenance. Preferences can be used to describe user

settings for various objects. The UPM itself is not concerned with the meaning of

each of the preferences. It provides mechanism for storing, retrieving and

changing their values for each of the users either by a module of the system or by

a user

UPM is allowed to interact with UIW and any other module.

Communication with modules and components of the engine is done through

XML messages. Large part of communication is done with UIW because of many

operations provided by UPM which are done by users. UPM generates and sends

HTML forms where users enter information or make their choices. The forms

include forms for log in, UPM menu, changing password, adding new users and

removing users, forms for selecting modules and users to set preferences, and

forms with preference values.

User preferences can be used in the engine for many tasks. They can be

used to define many user settings. For instance, users can choose how they want

certain information displayed, what kind of information they want to see, in what

way a module should process information for them, etc. They can be also

109

combined with bridge laws to provide specific conditions for generation of links

which can be adjusted by users. In that sense, they directly relate to the goal of

the and hypermedia engine project and are a useful tool in structuring the

information.

As mentioned earlier, meaning and purpose of the preferences is not a

concern of the UPM. Therefore, there is no restriction on what the preferences

could be and what they refer to as long as they are defined in the proper format.

4.2.7 Database Schemas

The purpose of this module is to provide schematic information for database

queries. This enables DHE to provide domain-specific link in a generic way for

any database. There are many instances where the user views the end result of a

query which are tuples generated by the query without having any understanding

of the underlying schema of the database from which the query results were

retrieved. Many applications run database queries without giving the user any

direct access to schematic information. The DB Schema module provides the

ability to show to the user or other interested parties the schematic information of

a database from which the query was retrieved. The user has the ability for find

where each value shown in a query result resides in the Entity Relationship

schema of the database as well as the Physical Schema of the database. The

user then has the ability to find the values in other tables and entities which are

related to that particular value.

The database schema module runs in conjunction with the RDBWM

module to provide a hypermedia wrapper around Relational Database

110

Management System. The function of the RDBWM module is to show metadata

for values retrieved from the database. Most of the meta-data provided by the

RDBWM module can be obtained through the ODBC or JDBC interface APIs for

the particular RDMS. This type of metadata may include the name of the table

from which a certain value was retrieved, if the value is a primary or foreign key,

the data type of the value and so forth.

The DB Schema module adds to the metadata already provided by the

RDBWM module by providing the ability to show schematic information for the

values retrieved from a database query. The schematic information about a

particular database has to be entered through a user interface by a system

developer or administrator. When a query is issued by a user or application, the

DB Schema module checks its internal database to find if the schematic

information is stored for the database for which the query is issued. If schematic

is stored for the query then it adds links to query result so that the user has the

ability to view the underlying E-R schema as well as the physical schema of the

database from which the query result was retrieved.

The DB Schema module creates three frames for the user when the query

is issued. One frame shows the entity relationship schema of the database from

which the query was issued. The second frame shows the Physical Schema of

the database and the third shows the query result or the values retrieved for a

particular database query.

111

Functionality Overview

The database schema module enables hypermedia functionality to dynamically

generated documents retrieved from relational database management systems. It

adds hypermedia links to elements embedded within results obtained from

database queries allowing users to gain a better understanding of the internal

structure of the data from which displayed information was generated.

The database schema module stores the schema information about a

database entered by a system developer or administrator in its own internal

database. When a database query is issued within the hypermedia engine

structure, the module creates two additional frames in the browser where the

query results are displayed. One frame displays the entity relationship diagram

and the other physical or relational schema of the queried database in addition to

frame displaying the query result. Each element, like the column names and the

values in this context, displayed in the query result frame is turned into an anchor

with several links. These links show to the user the structure of the database

from which the query result was obtained by highlighting elements within the

entity relationship schema frame or the physical schema frame. The elements

within the entity relationship frame are entity, attribute and relationship. The

elements within the physical schema frame are table, column and constraint.

The database schema module works along with the database RDBWM

module to provide a complete set of hypermedia functionality to relational

database management system. The RDBWM module creates its own set of links

to elements received from database query. These links expose information

112

available to the programmer but not usually displayed to the user about the

database such as Number of Tables, Database Host Name, Database URL,

Column Name, Number of Columns In This Result, Precision and so forth. The

database schema module adds additional element types to the types generated

by the RDBWM module to provide schematic information about the database

from which the query results are obtained.

The requirements the DHE project includes the development of a second

DMISW for a Relational Database Management System that automatically

generates links for a RDMS based on database's schemata. The user should be

able to select an anchor representing a database object such as value, tuple

name, field name or table name and the module should then figure out all

possible links based on the database's two schemata: the original E-R diagram

(or a schema close to it), and the 3rd normalized form. If the user follows on of

these links, the database will display the related database object at the other end

which could be related value, tuple, field or table.

This module is a second DMISW for a RDMS and can have its own set of

functionality including a DMIS that displays the two schemata and any other

function that a DMIS rather than the DMISW should do.

The schema module specify a set of generic schema bridge laws (mapping

rules) that the bridge laws module (BLEM) uses to determine the list of links.

These bridge laws take the object selected by the user as input, and return the

list of possible database link endpoints.

113

For the implementation of the bridge laws, a representation of each

schema (the E-R schema and the relational or physical schema) is stored in a

database. The bridge laws actually contain an SQL query (or a set of SQL

queries) that acts over the schema representation. The hypermedia engine will

know what kind of database object the user selected. The engine's bridge law

module would then use the object type to figure out which bridge laws apply for

that type of database object. Each bridge law represents one possible schema

relationship for its kind of database object. Each bridge law contains an SQL

query, and instantiates that SQL query with the object ID of the object the user

selects. If selected, the result of the SQL query will be to display the related

database object at the other end as mentioned above.

Part of the requirements were to develop a representation of both kinds of

schemata. For now it will be assumed that a system developer will have to enter

the schema information by hand for both kinds of schemata. The bridge laws for

this module will rely on the schema being entered in this format, i.e., the SQL

queries embedded in the bridge law be structured based on this representation.

Each schema will have to be displayed as an HTML document, which will

be text based for now. Eventually a graphical representation based on this text

document will be developed.

4.2.8 Index Manager

The hypermedia field has a rich feature set including guided tours, recommended

paths, annotation, information overviews, sophisticated backtracking, and so on.

114

The purpose of the Index Manager Modules is to assist the hypermedia engine to

implement hypermedia functionalities like guided tours and indexes.

The hypermedia engine can create guided tours by adding an ordered list

of documents or objects to the guided tour. This could be done while visiting such

documents or objects, by adding such documents or objects at once typing their

locations (url, directory, etc) in the guided tours, or by adding them from history

list! bookmarks.

Functionality Overview

The Index Manager provides the functionality of managing and storing the

indexes for the guided tours and other modules who wants to create index of

hypermedia for the future reference. The Index Manager resides with the

hypermedia engine and will closely be associated with the guided tour module.

The Index Manager module have the functionality of maintain the persistence of

the index or the path of the tour and will be able to manipulate the tour from user

inputs. The module will provide such functions as creating index, loading index,

adding node to an index, deleting node from an index, get specific information

about a node in an index and etc. The Index Manager module will include the two

parts: First, The Index Manager Storage which is implemented with RDBM to

ensure the reliability, scalability, and safety. It provides storage of all of the tours

information and allow the access through the Index Manager Module. Second,

The Index Manager Module implemented with Java to make it potable,

maintainable, and reusable. The Index Manager Module communicates with other

modules like Guided Tour through the Gateway of Hypermedia Engine based on

115

an client-server architecture to provide efficient service. The Index Manager

Module accesses the Index Manager Storage through the JDBC to increase the

transparency of the program.

4.3 Web Browser User Interface

The user interface system and/or the user interface wrapper must provide the

following support to integrate with the DHE.

• Provide hypermedia prompts: The interface must distinguish hypermedia

anchors in some way from other window content. The interface must

distinguish anchor selection from other user actions, thus providing a

mechanism to invoke link traversal. If users can edit the hypermedia

anchors, then the system must distinguish selection for editing from selection

for traversal.

• Menus: The interface must display DHE and DMIS menus in some fashion,

though this could be in some crude manner such as making each menu a

hypermedia anchor, which would be placed in all documents.

• Identifying objects in Ul workspaces: If users may edit UI documents, then

the interface must track hypermedia anchors when their positions shift, so

that users still can select and traverse them. Some research has been done

to provide ways to find anchors once text has shifted. [Kacmar 93] notes the

need for coupling a call to windowing systems with a call to an underlying

interface component to obtain the object identifier.

116

• Passing information to the DHE: When the user selects a menu or selects an

anchor for traversal, the interface must inform the DHE.

• User dialogs: The user interface must support some kind of forms or dialog

box to collect user input. Applications sometimes require users to input

parameter values, such as the value of a parameter, over which to execute a

command.

• Accept displays from the DHE: In most information systems users create

documents manually. With a hypermedia engine, the UI must accept the

externally-generated documents with embedded information that the DHE

passes. Ideally the UI will handle dynamic changes as well. The engine may

add additional objects to open documents (e.g., when users create their own

annotations on the front-end workspace). Dynamic updating may change the

display value of anchors, such as displaying the current price of a stock. This

requires the UI to accept external interrupts so it can accept information not

caused by (or anticipated in response to) a user interface event.

117

Figure 4.2 DHE 1.0 Web Browser User Interface

4.4 Operation Overview

Hypermedia functionality and interrelationship access supplement the

application's normal operations. In terms of information representations, DHE

need to model hypermedia data structures, hypermedia navigation structures,

and if not otherwise available, application metainformation and the application

internal structure (i.e., its design or schema). All are critical for automated

dynamic mapping.

In keeping with the goal of altering applications as little as possible, DHE

do not alter the application's existing data or access structures, but it must be

able to interact with them. The mapping, in turn, is critical for retrieving

information, i.e., user access. DHE builds hypermedia functionality on top of the

hypermedia data structures using this mapping. The richer the data

118

representation, the more detailed the mapping. This, in turn, affects both the

types of navigation available and the types of interrelationships that can be

inferred automatically.

The engine uses a relatively simple hypermedia data model consisting of

nodes, links and link markers-buttons or anchors. Each carries a rich and flexible

set of attributes for capturing the semantic and behavioral aspects of the

application elements it represents. Bridge laws specify the actual mapping

between each type of application element and its equivalent hypermedia

construct. Bridge laws are logical rules for mapping two independent

representational domains [Kimbrough 77], [Bieber 92], [Bieber 94], case model

management and hypermedia in this case.

Mapping and retrieval occur as follows (See Figure 4.3). DHE intercepts all

messages passing from the computational portion of an application to the

interface, and uses bridge laws to map each appropriate element of the message

to a hypermedia node, link or anchor. Users interact with these hypermedia

representations on the screen. When the user selects a normal application

command the hypermedia engine passes the command on to the application for

processing. When the user selects a hypermedia engine command (such as a

menu command to create an annotation), the hypermedia engine processes it

entirely. When the user selects a supplemental schema, process, operation,

structural, descriptive, information or occurrence relationship, the engine infers

the appropriate application commands, meta-application operations (e.g., at the

operating systems level or schema level) or hypermedia engine operations that

119

will produce the desired information. When the user selects a contingent (ad hoc)

relationship, the hypermedia engine retrieves the annotation. The interface also

handles all other interaction with the DMIS application, such as form-filling and

directly manipulating of DMIS objects. Thus users access the entire functionality

of the DMIS as well as the supplemental hypermedia features through the

independent front-end interface system.

Figure 4.3 DHE Operation

DHE is capable of working with applications that can use an independent front-

end interface system, such as those which provide an application programming

interface (API). Since DHE needs to use a front-end that can display selectable

hypermedia link markers, World Wide Web browsers qualify, and the current

120

implementation of DHE includes the capability of interacting with user interfaces

on the Web.

4.5 Summary

DHE automatically generates links at run-time. DHE also constructs more

sophisticated navigation techniques on top of these links. The metadata, links

and navigation, as well as annotation features, supplement the application's

primary functionality.

DHE runs in parallel with other applications and dynamically provides

hypermedia functionality. There is a run-time mapping of the application

information and relationships to hypertext objects

DHE intercepts the communication between the application's

computational section and its interface section, automatically detecting the

location of interrelationships in messages and documents based on the

knowledge of the application's internal structure. Bridge Laws provide the

mapping between the structural relationships of the application and the hypertext

features.

To provide a DMIS application with hypermedia support the developer has

to declare the contents of its DMIS wrapper and knowledge base.

The DHE 1.0 architecture consist of several modules:

• User Interfaces.

• User Interface Wrappers.

• Gateway.

121

• Traversal Path Manager.

• Log Manager.

• Bridge-Law Element Mapper.

• Link Bridge Laws.

• Dynamically Mapped Information System Wrappers.

• Dynamically Mapped Information Systems.

The user interface system and/or the user interface wrapper must provide

the following support to integrate with the DHE: hypermedia prompts, menus,

identify objects, pass information to the DHE, user dialogs, and accept displays

from the DHE.

DHE intercepts all messages passing from the computational portion of an

application to the interface, and uses bridge laws to map each appropriate

element of the message to a hypermedia node, link or anchor.

When the user selects a normal application command the hypermedia

engine passes the command on to the application for processing. When the user

selects a hypermedia engine command, the hypermedia engine processes it

entirely.

CHAPTER 5

DHE 1.0 IMPLEMENTATION

The DHE version 1.0 consists of several well-defined and separate processes,

each possibly running on a different platform:

• User Interface: which usually runs on the user's computer. A web browser

was selected as user interface for this prototype.

• User Interface Wrapper: A user interface wrapper has been provided to

handle the communication between DHE and the user interface.

• Gateway: This module enables the communication between the Engine

modules and works as the router for all the DHE internal messages. All

Engine messages pass through the GW, which then redirects them to the

appropriate module.

• Bridge-Law Element Mapper: stores and retrieves the bridge laws required

to automatically generate links.

• Relational Database Wrapper: A wrapper for a relational database system.

• Dynamically Mapped Information System: The DMIS in this implementation

is the Oracle Database Management System.

• User Preferences: Allow the specification of preferences based on group,

group inheritances, or individual users. Any other module can store and

manage their preferences.

122

123

5.1 Functionality

The DHE 1.0 provides the following functionality:

• Store element classes and mapping rules.

• Store users, user groups, and modules preferences.

• Accept input from the User Interface. In version 1.0 a User Interface

Wrapper for Web Browsers has been implemented.

• Process requests and return the results to the User Interface.

• Identify the elements with relationships that appear in the results.

• Display the output along with the added meta-information: anchors, links,

metadata, menus, etc.

5.2 Example of Use

To use the applications currently supported by the Dynamic Hypermedia Engine

1.0 it is necessary to visit the URL

http://space. njit.edu:8080/dhe

with a Web browser. This page will display the login screen. Users can enter their

Username/Password combinations to start using DHE. Visitors can use the

'guest' Username (password 'guest') to access the Engine.

124

Login to the Dynamic Hypermedia Engine

Username: II
Pa~ord:1 ---------

Figure 5.1 DHE Login Screen

After Login DHE displays it Main screen with information about the project

and showing the default layout described in section 4.3 . Figure 5.2 shows two

applications available: The Relational Database Wrapper Module, and the

Spreadsheet Wrapper Module.

125

11 DHf - Guest User Iguest:guest) - Microsoft Internet fllpJOJer provided by MS~.. n~ EJ

It '~/IJIK;

NEW JERSEY CENTER FOR MULTIMEDIA RESEAR(
&

II _ ,<U'\."', V'ni>r r.";l .\- COMPUTER AND INFORMATION SCIENCE DEPT. ::
HYPERMEDIA INFORMATION SYSTEMS RESEARCH LAB i'

Ii ':

afthe World \/Vide Web's success derives from the power of linking, providing access to information and its re lationships. By giving :::
ability to access information laterally rather than linearly, the Web opens up new avenues for providing associations between info '

lices .

applications give users access neither to the relationships inherent with these applications nor to relationship external to the appli .
ication's knowledge base can be administered and ~rganized to manage :he inter;elationships between the ~arious data object

Metadata List of Links

Figure 5.2 DHE Main Screen

:w
i,·'

Users can select the desired application by clicking on its name in the

screen. Selecting the 'Relational Database Wrapper Module' will invoke the

application and it will send its initial screen to be displayed in the user interface.

Relational Database Wrapper Module

UI to enter a query.

Query: Iselect title from booksl

Type of Query: (0 Select ('" Insert ('" Update r Delete r: DOL

Menus

C;:"~l !. :!!!.!.[i.,:j.:,,!. I .. :;~ .;;I::;:J: .. ~i.'fi.s:,, .\i'"J:r,,;':l;.~J';:.I !'~J.g. ::~.I~L\:.

;i!'.LI:::jiL!.:~ .til~; . I~.2Jj{i:;' :;I!.i! ': i.: . .JJ:1Q::!1,::.1:;

Metadata

Figure 5.3 RDBWM Query Input Screen

List of Links

126

In the Relational Database Wrapper application users can type SOL

commands to be executed by a Database Management System, (Oracle in this

case). The query in this example requests all the titles present in the table named

'books'.

Entity Relationship Schema Relational Schema

Entities with Attributes Tables with Columns

Menus

Figure 5.4 DHE Display of Query Results

. f.~ J~,!iD l.:fJ<[l·(i~"

1 0 Minute Guide to HTML

Advanced HT/vlL & CGI Writer's
Companion

Creating Cool Web Pages with HTIv1L

Creating Web Pages for Dummies

How to Use HTML 3

HTML 3 How-To

HTML 3 Interactive Course

127

HTML 3.0 Manual of Style C2nd Ed,)

HTML by Example

HTML CD- An Internet Publishing
Toolkit - Windows Version

HTML for Dummies 2'nd Edition

HTML For Dummies Quick Reference

HTML For Fun and Profit: Gold
Signature Edition

HTML for the World Wide Web Visual

List of Links

The result of the query is enhanced by the DHE. Instead of displaying a

simple text-based table the Engine performs the following transformations:

1. Translates the output of the DBMS to XML (RDBWM)

2. Identifies which elements present in the output have meta-Information (BLEM)

3. Includes the frames with the Entity-Relationship and Relational Schemas (DB

Schema)

4. Assembles all the pieces of meta-Information and converts them to HTML

(UIW)

128

The elements with meta-Information (i.e. links and/or metadata) are shown

as anchors (underlined).

Entity Relationship Schema

- <rdf:RDF >:mlns:rdf=''http://www.w3.org/1999/02/22-rdf­
svntax-ns#">

- <rdf:Description
about="dhvme: rdwm: value:jdbc: oracle:thin; @Io~ic.njit.edu: 1521:
HTML">
<COLUMN_SIZE> 60</COLUMN_SIZE>
<NULLABLE> 1 </NULLABLE>
<DATA_TYPE> 1 </DATA_TYPE >
<CHAR_OCTET_LENGTH> 60</CHAR_OCTET_LENGTH>
<NUM_PREC_RADIX> 10</NUM_PREC_RADIX>
<TABLE_NAME> BOOKS</TABLE_NAME>
<TYPE_NAME>CH AR< /TYPE_NAME>
<COLUMN_NAME>TITLE</COLUMN_NAME>
<DECIMAL_DIGITS />
< SQL_DATETIME_SUB>O</SQL_DATETIIIIIE_SUB>
<COLUMN_DEF I>
<BUFFER_LENGTH> O</BUFFER_LEI\JGTH>
< IS_NULLABLE> VES</IS_NULLABLE>
<TABLE_SCHEM> MOHAN</TABLE_SCHEM>
<S QL_DATA_TYPE> O</SQL_DATA_TYPE>
<ORD! NAL_P OSITION> 1 <lORD INAL_POS ITI ON>

List of Links.

i highlight Attribute In ER Schema

i highlight Column in Rei Schema

i highlight Table in Rei Schema

i highlight Entity in ER Schema

i display getPrimaryKeys

i dis/?Iay getTu/?le

Figure 5.5 Meta-Information for element 'Beyond HTML'

The user can then proceed to select any of the elements-made-anchors to

retrieve additional information about them. When the user clicks on an anchor

DHE searches its tables to find relationships and metadata, and displays them in

the appropriate frames on the user interface.

It is even possible to obtain meta-Information about the meta-Information

being displayed. To get meta-Information about links in the list-of-links the user

can select the icon 1[.

129

The links represent instructions for different DHE modules, or other

applications, to produce or retrieve related information.

The result of selecting the 'display_getTable' link is shown in Figure 5.6 .

DHE send the instruction to the corresponding module, RDBWM in this case, and

the DHE cycle is repeated once again.

Entity Relationship Schema Relational Schema

Entities with Attributes Tables with Columns 10 Minute
Guide to
HTML

ISBN PUBLISHER ID

0-07-
882198-3 00788

Q:
78970541-07897
~

Advanced 0-
HTIv1L &. CGI 12623540- 01262
Writer's !2

1-56-
884454-9 15688

L
56884645- 15688

l=.
56276390- 15627
J

Figure 5.6 Result of Selecting the 'display_getTable' Link

Figure 5.7 shows the result of selecting the 'highlight_Attribute_ln_ER_Schema'

link. The list of links can contain links offered by different modules and/or

130

applications. In each of this last two actions the request is handled by a different

module, RDBWM in the first case, and DB Schema in the second.

'~DIIE - Guest Usel Iguest.guestl - t,hcroson Intemet lliplolel provided by MSN J!!lI~D

Relational Schema

Tables with Columns

I~
Menus Metadata

0-07-
882198-3 00788

Q:
Guidera 78970541-07897
HTML ~

Advanced 0-
HTML &. CGI 12623540- 01262
Writer's
Companion Q.

Creating
Cool Web 1-56-
Pages with 884454-9 15688
HTML

Creating l:
Web Pages 56884645- 15688
for Dummies 2.

List of Links

Figure 5.7 Result of Selecting the 'highlight_Attribute_in_ER_Schema' Link

5.3 Review

The current prototype is operational. After working with DHE for some time some

drawbacks have been detected:

• The main problem identified during the operation of DHE 1.0 is related to the

efficiency of the system more than to the effectiveness.

• Since DHE has to perform several operations, access several tables stored

in a remote database, and transmit and receive multiple messages through

131

the network, in addition to return the results to the user interface, the

response time is higher than what would take a 'regular' application to fulfill

the same request.

• Even though DHE's modules use JDBC (Java's ODBC implementation) to

interact with the Database Management System (Oracle in this prototype),

the implementation requires such DBMS to be present to be able to run,

which limits the portability.

• The implementation of DHE 1.0 is somewhat biased towards the use of a

Web browser as the user interface.

• The current DHE user interface is rudimentary and does not give a full

sense of what it is possible to do.

• There is not an appropriate mechanism to handle error conditions during the

processing of a request by DHE.

• A mechanism to monitor the execution and facilitate the debugging of the

DHE, particularly during the integration of new modules and/or features.

5.4 Summary

The DHE version 1.0 consists of the following modules: User Interface,

User Interface Wrapper, Gateway, Bridge-Law Element Mapper, Relational

Database Wrapper, Dynamically Mapped Information System (Oracle Database

Management System), User Preferences, and Database Schemas.

The DHE 1.0 provides the following functionality: store element classes

and mapping rules; store users, user groups, and modules preferences; accept

132

input from the User Interface; process requests and return the results to the User

Interface; identify the elements with relationships that appear in the results;

display the output along with the added meta-information.

A full example of DHE's operation shows the different output screens

generated during the execution of the relational database system, The figures

display the four frames defined by DHE, and the meta-information displayed in

each one of them based on the user's input.

The prototype is operational, but some problems have been detected:

performance (i.e. response time), dependency on database, implementation

biased towards a Web Browser, rudimentary user interface, lack of error recovery

and debug.

CHAPTER 6

DHE NEXT GENERATION (DHE NG)

After the completion of version 1.0 of the DHE, an updated DHE architecture is

proposed. This enhanced architecture aims to correct some of the

aforementioned problems as well as include the infrastructure required to

implement new features. The main goals of the new design are:

• Improve performance: This is the main problem to solve since the response

time of applications going through DHE is too high. There are several

approaches that can be taken to offer a better response:

■ Make DHE's core modules more tightly coupled. Currently all DHE

modules are distributed, each could be running in a different system as

long as they have an Internet connection. This distributed model

causes extremely communications overhead within the Engine since all

message interchange between modules involves serializing objects,

transmission over the network, and re-parsing. After working with the

prototype it became evident that makes more sense to perform most of

the core tasks 'locally'.

■ Store information locally. Another source of delay is due to the fact that

all DHE modules store and retrieve information from a remote RDBMS,

Oracle in this case. This of course has a significant time cost, among

other logistical problems, and it also limits the potential portability of the

Engine since it cannot run unless there is a RDBMS available. The

133

134

proposed solution uses XML files, instead of database tables, to store

the information modules need.

■ Maximize the metainformation added per request. DHE 1.0 waits for

the user to click on an anchor to submit a search for the list of links

corresponding to that element type. This implies the need to send more

messages and access more database tables (as mentioned in the

previous points). The solution proposes to gather as much information

as possible while returning the original user request.

• Include additional Hypermedia functionalities: This design should provide a

solid conceptual architecture that would allow the inclusion of additional

hypermedia functionalities:

■ Guided Tours. Guided tours provide the users the option to create or

follow a path of documents or objects. The Guided Tour module should

be able to maintain the persistence of nodes on the path of the tour and

should be able to manipulate the tour from user inputs. When

executing an index or Guided tours, the index module should receive

the UI requests, not the applications. The IGT module will redirect the

request to the appropriated module.

■ Manual Linking. This functionality enables the users to manually create

new links between objects. These links should be stored in the Engine

and be displayed when the document is revisited or regenerated. The

new links should also be made available to other users or groups of

135

users. Users can opt to make a link bi-directional and must provide

semantic types for each link and direction.

■ Annotations. Offers the opportunity to manually create or retrieve

annotations and link them to objects. The annotations have to be

stored in the Engine and be displayed when the document is revisited

or regenerated. The annotation may also be made available to other

users or groups of users.

• Support Features: To be able to implement the hypermedia functionalities

listed above, it is necessary to incorporate the following support features:

■ Regeneration and Saving. Some hypermedia features (like Guided

Tours) require the ability to store, regenerate, and retrieve documents.

Regeneration implies that the document to be displayed should be re-

created from its original source. Saving means that a 'static' copy of the

document is to be stored and, subsequently, retrieved without having to

ask an application to reproduce it.

■ Object Types and Identifiers. Several objects, like applications,

documents, and elements, need to be typed and uniquely identified to

enable advanced hypermedia functionalities, like those that were

mentioned above. DHE should define a strategy for the generation of

identifiers. (Using XPath - XPointer)

■ Target Areas. DHE needs to allow users to define 'target areas' that

will serve as points of origin or destinations for links, annotations, or

136

other kind of operations. These target areas could overlap with each

other without loss of functionality. (Using XPath - XPointer)

■ Conditions. There exist some structures inside DHE, like bridge laws,

for example, which could be activated or not, depending on the current

context. DHE should provide a mechanism to declare and evaluate

such conditions.

■ Error recovery and debugging: DHE requires the implementation of an

error handling policy, as well as features that would facilitate the

debugging and monitoring of the Engine processes.

■ DHE Administrative Applications. It is possible to regard DHE as a

whole like an application and create a interface which could allow

access to the information stored in DHE's files for the system

administrator or developers.

6.1 DHE NG Architecture

The basic DHE NG architecture remains very similar to DHE 1.0 at the System

Level, with the Engine as middleware between the applications and the user

interface. The idea of using 'wrappers' to habilitate the interaction with

applications and user interfaces is maintained.

137

Figure 6.1 DHE NG Main Components

• User Interface (UI), it can be any kind of device that would allow the user

to interact with the application.

• User Interface Wrapper (UIW), enables the communication between the

Controller and the user interface. The UIW is responsible of handling

several important functions: receives the users inputs (from the UI),

creates the corresponding message objects for processing by DHE and

delivers them to the Controller, manages user sessions, transforms the

applications output to the appropriate format the UI recognizes, caches the

metainformation returned by DHE, and serves the metainformation to the

UI whenever it is possible.

138

• Controller (CTR), manages the processing of the message objects by

invoking the appropriate modules.

• Application Wrapper (AW), identifies and marks the elements within the

application's output for which relationships and/or metadata exist,

manages the communication between the DHE and the application

system, translates the user requests from the message objects to the

application API, receives the output from the application and includes it in

a message object.

• Application (AP), an application system that dynamically generates virtual

documents from users requests.

6.1.1 Controller

The Controller (CTR), manages the execution of all the core components of the

engine. As opposed to DHE 1.0, the Controller is not merely a message passing

system. In DHE NG the Controller will instantiate and invoke several sub-systems

that will provide the required functionality without having to transmit messages

over the network. The Controller will utilize the following sub-modules:

Process Manager (PM)

The Process Manager stores the name and the order of the components that

need to participate in the processing a message object.

• All DHE-VirtualDocuments go from the Source to the Processor and Back to

the Source.

139

• All requests must produce and answer.

• Processors (i.e. modules) should update the Path before returning the VD.

Meta-Information Module (MIM)

The Meta-Information Module stores the mapping rules and adds the list of links

to the message objects.

Meta-Information Scope Hierarchy (MISH)

The DHE's MISH is formed from the decomposition of the applications into

addressable components at different levels. Within DHE, it is possible to define

relationships as belonging to a particular level in the hierarchy and, by

inheritance, to all levels below. The MISH consists of the following typical levels:

1. Engine Level. All output from DHE (from any application) will include

relationships and metadata defined at this level. This includes the extra

functionality provided by DHE to every application (like the creation of

annotations and manual links, for example).

2. Application Level. All output coming from this particular application will

include relationships and metadata defined at this level. This level could be

used to define static application menus which are always present in any

sub-part of the application.

3. Sub-Modules/Sections Level(s). Applications can be further decomposed

in as many levels and sections as being convenient, defining relationships

and metadata appropriate for each one of them.

140

4. Document Level. This level will allow applications to define meta-

Information for all documents of a certain class.

5. Element Level. This is the original level used for elements in DHE 1.0 .

6. Lexical Level. It should be possible to store meta-Information for pre-

determined lexical values. The lexical value may be, or not, an instance of

an element.

7. Instance Level. This specifies meta-Information for particular occurrences

of documents or types. It is necessary to store all the information required

to uniquely identify the object.

Meta-Information Scope Hierarchy Rules and Constraints

o The Engine Level is the root of the hierarchy. The `DHE' type is, currently,

the only value defined for this level.

o All types in the hierarchy must have at least one parent. Types could have

more than one parent. The Engine Level type, DHE', is the root of the

hierarchy and is the only type allowed in the hierarchy without a parent.

o Levels and types can only have parents which are in the same or higher

scope levels. Circular hierarchies should be detected and prevented.

o If an application is divided further in sections, the sections sub-hierarchy

must have the application level type as root.

o The Application Hierarchy implies inheritance from the higher levels to the

lowest. This means that children will have all the meta-Information of their

ancestors. The list of relationships of an instance, for example, will also

141

include the relationships of its type, its document, its section(s), its

application, and the DHE.

o Element, and lexical types can have parents at any other level

The MISH builds a graph that can be traversed using the W3C XPath

specification. This becomes the basis for types identifiers:

DHE[[::APPLICATION:application[::SECTION:section]*][::DOCUMENT:documentType

[:instancea:ELEMENT:elementType[instance][::LEXICALlexical]]]

The DHE-MISH is formed with the main components shown in Figure 6.2:

Figure 6.2 DHE-Meta-Information Scope Hierarchy

142

The XML Schema language if used to define the DHE-MISH :

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://dhe.njitedu/Meta-InformationScopeHierarchy"
xmlns:xsd="http://www.w3.org12000/10/XMLSchema"
xmlns:dhe="http://dhe.njit.edu/Meta-InformationScopeHierarchy">

<xsd:element name="MISH">
<xsd:annotation>

<xsd:documentation>Meta-Information Scope Hierarchy</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Engine" type="xsd:string">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="dhe:Application" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Element" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element ref="dhe:Lexical" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="fixed"

value="DHE"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="Application">
<xsd:cornplexType>

<xsd:sequence>
<xsd:element ref="dhe:Section" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Document" minOccurs="0"
rnaxOccurs="unbounded"/>
<xsd:element ref="dhe:Element" minOccurs="0" I
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Lexical" minOccurs="0"
rnaxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:cornplexType>
</xsd:element>

<xsd:element name="Section">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="dhe:Section" minOccurs="0"
maxOccu rs="unbounded"/>
<xsd:element ref="dhe:Document" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Element" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Lexical" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="Document">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="dhe:Element" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Lexical" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Documentlnstance" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="Documentlnstance">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="dhe:Element" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Lexical" minOccurs="0"
maxOccu rs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="instance" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="Element">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="dhe:Element" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="dhe:Lexical" minOccurs="0"
maxOccurs="unbounded"/>

143

144

<xsd:element ref="dhe:ElementInstance" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="ElementInstance">
<xsd:complexType>

<xsd:sequence/>
<xsd:attribute name="value" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="Lexical" type="xsd:string"/>

</xsd:schema>

Mapping Rules

Mapping Rules for which their only ancestor is DHE are considered 'global' and

should be included for any occurrences in any application.

Mapping rules should be semantically typed.

Figure 6.3 shows the structure of the Meta-Information Mapping Rules.

Figure 6.3 DHE-Meta-Information Mapping Rules Structure

145

XML Schema used to define the DHE-Meta-lnformation Mapping Rules:

<?xml version="1.0" encoding="UTF -8"?>
<xsd:schema xmlns:dhe="http://dhe.njit.edu/Meta-InformationMappingRules "
targetNamespace="http://dhe.njitedu/Meta-InformationMappingRules "
xmins:xsd="http://www.w3.org/2000/1 0/XMLSchema">

<xsd:element name="MIMR">
<xsd:annotation>

<xsd:documentation>Meta-Information Mapping Rules</xsd:documentation>
</xsd:annotation>
<xsd:cornplexType>

<xsd:sequence>
<xsd:element name="MappingRule" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Source" minOccurs="1" maxOccurs="1">

<xsd:cornplexType>
<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:element name="Arc" type="dhe:ArcType"/>
<xsd:element name="EndPoint" type="dhe:LocatorType"
minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="Condition" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Parameters"

type="dhe:ParameterGroup" minOccurs="0"
maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="location"

type="dhe:LocatorType" use="required"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="type" type="dhe:LocatorType"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="MRid" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="ArcType">
<xsd:sequence>

146

<xsd:element name="SemanticType" type="xsd:string" minOccurs="1"
maxOccurs="unbounded"/>

<xsd:choice>
<xsd:element name="CommandSet" minOccurs="1" maxOccurs="1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Command" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="Parameters" type="dhe:ParameterGroup"

minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="URI" type="xsd:uriReference"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="LocatorType">
<xsd:restriction base="xsd:string">

<xsd:annotation>
<xsd:documentation>

This string should comply with the XPath and XPointer syntax as
defined in their specifications
</xsd:documentation>

</xsd:annotation>
</xsd:restriction>

</xsd.simpleType>

<xsd:complexType name="ParameterGroup">
<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:element name="ParamName" type="xsd:string"/>
<xsd:element name="ParamValue" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:cornplexType>

</xsd:schema>

Log Module (LM)

The Log Module handles the logging of the activity of the Engine. LM will provide

every module with the possibility of logging their inputs and/or outputs, based on

the values of preferences.

147

Preferences Module (PM)

The Preferences Module enables users and modules to store and retrieve

preferences that can influence the execution and display of results.

There are some preferences that all DHE modules should implement, and

there should be a DHE level preference to turn on/off this preferences for every

module:

• Debug Preference, modules should check the value of the debug preference

when executing, and output debug info when it is turn on. When Debug is

`on', Log Input and Log Output should behave as 'on' too.

• Log Input, if this preference is set to 'on', the corresponding module's log

object should record all inputs.

• Log Output, if this preference is set to 'on', the corresponding module's log

object should record all outputs.

Exception Handler (EH)

The Exception Handler will provide a common framework for handling and

reporting problems during the running of the Engine.

Virtual Documents Module (VDM)

The Virtual Documents Module provides the methods required for the creation,

use and storage of virtual documents. The VDM in built on top of the W3C's

Document Object Model [DOM 00].

148

The VDM is an application programming interface (API) for DHE-

VirtualDocuments. It defines the logical structure of documents and the way a

document is accessed and manipulated. The term "document" is used in the

broad sense - increasingly, XML is being used as a way of representing many

different kinds of information that may be stored in diverse systems, and much of

this would traditionally be seen as data rather than as documents. Nevertheless,

XML presents this data as documents, and the DOM may be used to manage this

data.

With the VDM, programmers can build DHE-VirtualDocuments, navigate

their structure, and add, modify, or delete elements and content. Anything found

in a DHE-VirtualDocument can be accessed, changed, deleted, or added using

the VDM (with a few exceptions).

One important objective for the Virtual Document Module is to provide a

standard programming interface that can be used in a wide variety of

environments and applications.

DHE-VirtualDocument

DHE model of execution uses a DHE-VirtualDocument object to store the

information required for, and generated by, the processing of a user request.

The DHE-VirtualDocument is made up by the following components shown

in Figure 6.4:

Figure 6.4 DH E-VirtualDocument Structure

The XML Schema language if used to define the DHE-VirtualDocument

<?xml version="1 ()" encoding="UTF-8"?›
<xsd:schema targetNamespace="http://dhe.njitedu/VirtualDocument"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema "
xmlns:dhe="http://dhe.njit.eduNirtualDocument ">

<xsd:element name="DHE-VirtualDocumenr>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="VirtualDocumentID" type="xsd:string"/>
<xsd:element name="UserName" type="xsd:string"/>
<xsd:element name="Source" type="xsd:string"/>
<xsd:element name="Processor" type="xsd:string"/>
<xsd:element ref="dhe:Path"/>
<xsd:element name="Request" type="dhe:MappingRule"/>

149

<xsd:element ref="dhe:Result"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="Path">
<xsd:cornplexType>

<xsd:sequence>
<xsd:element name="P•rocessed" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:cornplexType>

</xsd:element>

<xsd:complexType name="ParameterGroup">
<xsd:sequence>

<xsd:element name="ParamName" type="xsd:string"/>
<xsd:element name="ParamValue" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="Resur>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="dhe:FrameGroup"/>
<xsd:element name="Metalnfo">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="DHEMI" type="dhe:MIType"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="ApplicationMI" type="dhe:MIType"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="SectionMl" type="dhe:MIType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="FrameGroup">
<xsd:complexType>

<xsd:choice>
<xsd:element ref="dhe:FrameGroup" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="Frame" type="dhe:FrameType" minOccurs="0"
maxOccurs="unbounded"/>

150

</xsd:choice>
<xsd:attribute name="Name" type="xsd:string" use="required"/>

</xsd:cornplexType> •
</xsd:element>

<xsd:complexType name="FrameType">
<xsd:sequence>

<xsd:element name="Document">
<xsd:complexType>

<xsd:sequence>
<xsd:any namespace="http://www.w3.org/1999/xhtml

http://dhe.njit.edur processContents="skip"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Metalnfo">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="DocumentMl" type="dhe:MIType"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="DocumentInstanceMl" type="dhe:MIType"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="ElementMl" type="dhe:MIType"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="ElementInstanceMl" type="dhe:MIType"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="LexicalMI" type="dhe:MIType"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="Name" type="xsd:string" use="required"/>

</xsd:cornplexType>

<xsd:complexType name="MIType">
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="Locator type="dhelocatorType"/>
<xsd:element name="Relationships" type="dhe:MappingRule"
minOccurs="0"/>

</xsd:sequence>
</xsd:cornplexType>

<xsd:complexType name="MappingRule">
<xsd:sequence>

<xsd:element name="Source">
<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

151

152

<xsd:element name="Arc" type="dhe:ArcType"/>
<xsd:element name="EndPoint" type="dhe:LocatorType"
maxOccurs="unbounded"/>
<xsd:element name="Condition" minOccurs="0"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Parameters"
type="dhe:ParameterGroup" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="location" type="dhe:LocatorType"

use="required"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="type" type="dhe:LocatorType"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="MRid" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="ArcType">
<xsd:sequence>

<xsd:element name="SemanticType" type="xsd:string"
maxOccurs="unbounded"/>

<xsd:choice>
<xsd:element name="CommandSet">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Command" type="xsd:string"/>
<xsd:element name="Parameters" type="dhe:ParameterGroup"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="URI" type="xsd:uriReference"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="LocatorType">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:schema>

153

6.1.2 Application Wrappers (AW)

To integrate an Application with DHE is necessary first to perform a thorough

analysis of the structure, inputs, outputs, and relationships inside of it. A

methodology like the Relation-Navigation Analysis [Yoo 001 can provide valuable

direction for this task.

After the application analysis is completed, the Application Meta-Info

Hierarchy (see Meta-Information Module description in 6.1.1 for details) is stored

with their corresponding mapping rules and metadata.

The functionality of the AWs has been further decomposed (as from DHE

1.0) to allow a higher degree of standardization. The goal being to make the

development of new AWs more straightforward and to foment the re-use of

components between them.

A generic DHE NG AW should implement the following functions:

• Application Communications. This module handles the transmission and

reception of data between the application and the AW. Application

Communications needs to perform two main functions:

• AWtoApplication. Enable the AW to send a request to the corresponding

Application. This module will communicate with the Application through

its API.

• ApplicationtoAW. Should be able to receive the result of a request from

the Application and make the data available to the AW Manager.

154

• DHE Communications. This module should handle the transmission and

reception of data between the DHE and the AW. The implementation

should allow multiple threads of execution to be run in parallel, each one

processing a different DHE-VirtualDoc. DHE Communications needs to

perform two main functions:

• AWtoDHE. Return the DHE-VirtualDoc, with the result of the request, to

the DHE Controller.

• DHEtoAW. Receive the DHE-VirtualDoc with the request from the DHE

Controller module and to make it available to other AW processes.

• AW Manager. The main function of the AW Manager is to identify the type of

output generated by the Application (i.e. document type), detect the objects

and/or elements it has previously identified as having meta-Information, and

update the DHE-VD with the results (see description of the DHE-VD in the

Virtual Document Section). The AW needs to perform several important

tasks:

• API Transformation. Will take the request embedded in the DHE-VD and

translate into the Applications' API. The instruction will be then send to

the Application by the AWtoApplication method.

• Application Document Processing. The processing of the outcome from

the Application is a complex task involving:

o Receive the result (using ApplicationtoAW) and match it with the

DHE-VD that contains the request. AWs should be able to handle

multiple concurrent user requests. The AW Manager must ensure

155

that the result of a request made by any particular user session is

returned back to the appropriate DHE-VirtualDoc.

o Identify the type of the Application output Document and insert it in

the corresponding DHE-VD element.

o Parse the A-Doc to detect the elements of interest and mark them.

The proposed method to implement this task uses the W3C's XML

Schema specification [XSchema 01] to code the different document

types that form the applications outcome set.

o Transform the A-Doc to the DHE Output Document Format [XHTML

00], if necessary, and include it in the DHE-VD. One important

difference between the AWs in DHE NG and DMISWs in DHE 1.0

is that AWs should encode the result produced by the application

using XML tags. DHE 1.0 uses HTML inside an XML framework. as

well as to keep the original, unmodified, output.

o Create and attach the list of element types found in the A-Doc to the

DHE-VD.

o Make the DHE-VD with the result available to the DHE Controller.

6.1.3 User Interface Wrappers (UIW)

The UIW constructs the DHE-VirtualDoc without having to go back to MIM. The

employment of User Interface Wrappers enables DHE to work with applications in

several diverse platforms without having to modify the applications themselves.

156

Only sub-modules of the generic UIW need to be updated to conform with the

particular User Interface.

The functionality of the UIWs has been further decomposed (as from DHE

1.0) to allow a higher degree of standardization. The goal being to make the

development of new UIWs more straightforward and to foment the re-use of

components between them.

A generic DHE UIW should implement the following functions:

User Interface Communications. This sub-module handles the transmission and

reception of data between the UI and the UIW. UI Communications needs to

perform two main functions:

UItoUIW. Should be able to receive a request from the User Interface and

make the data available to the Session Manager.

UIWtoUl. Will enable the UIW to send the result of a request to the

corresponding UI.

DHE-Virtual Document Instantiation. Will create a DHE-VirtualDocument,

(using the Virtual Documents Module), and enter the information from the request

into it. See the definition of the DHE-VD in the Virtual Document Module section.

DHE Communications. This module should handle the transmission and

reception of data between the DHE and the UIW. The implementation should

allow multiple threads of execution to be run in parallel, each one processing a

different DHE-VirtualDoc. DHE Communications needs to perform two main

functions:

157

UIWtoDHE. Invoke the DHE Controller, and to make the DHE-VirtualDoc

(created by UItoUIW) available to it.

DHEtoUIW. Receive the DHE-VirtualDoc back from the Controller module

and to make it available to other UIW processes.

UIW Manager. UIWs should be able to handle multiple concurrent user

sessions. A single user may have more than one parallel sessions at any point.

There may be several users working at the same time too. The UIW Manager

must ensure that the result of a request made by any particular user session is

returned back to the appropriate Ul instance.

The UIW Manager should keep the DHE-VD in store until there is another

request from that particular session (or until the session is terminated). When a

new request arrives, the UIW Manager must determine if the operation requested

can be fulfilled using the meta-Information included in the current DHE-VD for that

session

UI-Document Formatter. The Formatter's task is to create the output UI

document based on the contents of the DHE-VD. The Formatter will make sure

that the UI-Document is coded in the appropriate format for the UI. The UI-

Document Formatter also needs to make available DHE's additional functionally

for user's utilization. It is DHE's responsibility to include all the information

necessary to perform the extra functions in the DHE-VC.

Security. The UIW must implement a login procedure to prevent

unauthorized access to DHE.

158

6.2 Summary

DHE NG's architecture aims to correct some of the problems found in the first

version of DHE as well as include the infrastructure required to implement new

features.

The main goals of the new design are:

• Improve performance: making DHE more tightly coupled, storing

information locally, maximizing the metainformation included in the

results.

• Additional Hypermedia functionalities: guided tours, manual linking,

annotations.

• Support Features: regeneration and saving, object types and

identifiers, target areas, conditions, error recovery and debugging,

administrative tools.

The DHE NG architecture is similar to DHE 1.0, with the Engine as

middleware between the applications and the user interface. Wrappers habilitate

the interaction with applications and user interfaces.

The main components of DHE NG are: user interfaces, user interfaces

wrappers, controller, applications wrappers, and applications. The Controller

includes a process manager and a meta-information module.

The Meta-Information Scope Hierarchy allows users to define relationships

between elements at several different levels: engine, application, section(s),

document, element, lexical, and instance. The Meta-Information Scope Hierarchy

has a set of rules and constraints that should be enforced.

159

The Virtual Documents Module provides the methods required for the

creation, use and storage of virtual documents. It defines the logical structure of

documents and the way a document is accessed and manipulated. One important

objective for the Virtual Document Module is to provide a standard programming

interface that can be used in a wide variety of environments and applications.

CHAPTER 7

RESULTS AND FUTURE RESEARCH

7.1 Contributions

The Dynamic Hypermedia Engine is a modular distributed middleware able to

enhance Information Systems with metadata, along with hypermedia structuring,

navigation and annotative functionality.

DHE is the only approach we know that provides automated linking and

metadata services in a generic manner, based on the application semantics (as

opposed to search or lexical analysis), without altering applications. it is uniquely

suited to support analytical and technical applications that generate the contents

of their displays dynamically.

The DHE prototype offers a solution to the problem of how to include

linking and metadata functionality to a virtual document. The updated DHE

architecture will become the new test bed for the implementation of new

hypermedia functionalities, and offers a solution for several of the problems

related with the management of dynamically generated documents.

The contributions are listed as follows:

• Conceptual Framework. The conceptual framework states the problem

and the proposed solution. In particular it defines the central idea of this

research:

■ The automatic creation of links and metadata services can be

done in a generic way, based on the application semantics and

structure.

160

161

• DHE 1.0. DHE 1.0 is a 'proof-of-concept' prototype that shows the

possible benefits of several hypermedia functionalities. DHE also serves

as a test bed for additional hypermedia research. Such research might

include empirical experiments and field studies.

• DHE NG: The next generation of the Dynamic Hypermedia Engine

extends the DHE 1.0 architecture to be able to support non-standard

hypermedia functionalities and regeneration.

The DHE 1.0 Implementation has the following features:

• Provides a [Web] interface

• Automated meta-Information and hypermedia functionality

• Support for Virtual Documents

• Mapping rules represent an application internal structure

• Distributed modular architecture

• Wrappers to integrate applications with minimal changes

• XML, RDF, XLink, HTML

• Java 1.2, RMI, Servlets

The DHE NG extends DHE 1.0 with the following new features:

• Hypermedia and Virtual Documents

• Meta-Information Scope Hierarchy

• Document and Element Identifiers

• Regeneration

• Locators

• Bi-directional Linking

162

• Saving

• Additional Hypermedia Functionality

• Guided Tours

• Annotations

• Manual Linking

7.2 Future Research

This research touches many diverse areas and can, thus, be extended in several

different directions:

• Use of Schemas as a source of semantic information

• Filtering and ranking of Meta-Information

• User Interface and User Processes within DHE

• Virtual Documents Management

• DHE as an Application Development Environment

• Finding relationships dynamically through data mining

• Integrating different applications

• Qualitative and Quantitative Experiments

• Semantic Web

7.2.1 Use of schemas as a source of semantic information.

XML has provided the Web with a powerful data format to express

complex data structures. However, most existing documents are not in XML

format. To be able to create semantic applications (See the Semantic Web

section later in this Chapter) it's necessary to add semantic information to those

163

documents that currently do not have it, including those which are dynamically

generated.

Conversion between non-XML file data and XML can be done via generic

conversion tools or custom scripts. Generic conversion tools are schema-driven.

Such conversion tool uses the schema of the file format in order to parse the file

and convert it to an XML document.

Currently, the definition of a schema for non-XML files requires a lot of

manual work: analysis of the file structure, analysis of the data type and element

attributes of data in the file, and a mapping of that structure into semantically

meaningful markup.

The scale of an up-conversion project could be very large and requires a

lot of difficult manual conversion efforts, because many documents do not have

hierarchical structure. Finding and adding semantic information automatically to

documents or files is very difficult and has not been satisfactorily addressed

before.

One of the most fundamental features of the DHE project is its ability to

add semantic information to dynamically generated, 'virtual', documents. DHE

needs to parse and identify the various element with meta-information which are

present in a particular instance of a document.

To be able to add semantic information to virtual documents, it is

necessary to analyze their structures. The result of such analysis would be a set

of 'document types' as well as a document schema for each one of those

different types. The document schema could be expressed by an XML language

164

like XML Schema. The schema should contain enough information to enable an

application wrapper to parse the different documents and generate the semantic

markup. In such case, most of the meta-information could be specified at the

schema level.

7.2.2 The Semantic Web

"The World Wide Web is a universal information space. As a medium for human
exchange, it is becoming mature, but we are just beginning to build a space
where automated agents can contribute just beginning to build the Semantic
Web."

Tim Berners-Lee, W3C Director [Berner-Lee 99]

The architecture of the World Wide Web provides users with a simple hypertext

interface to a variety of remote resources, from static documents purely for

human consumption to interactive data services. Now that the Web has reached

critical mass as a medium for human communication, the next phase is to build

the "Semantic Web". The Semantic Web is a Web that includes documents, or

portions of documents, describing explicit relationships between things and

containing semantic information intended for automated processing by our

machines.

The concept of machine-understandable documents does not imply some

kind of magical artificial intelligence system that will allow machines to

comprehend human language. It only indicates a machine's ability to solve a well-

defined problem by performing well-defined operations on existing well-defined

data. Instead of asking machines to understand people's language, it involves

asking people to make the extra effort.

165

PIGS was designed as a first step toward generalized labels that would

allow any party in the Web to make claims about the qualities of resources:

endorsements, terms and conditions for use, and so on. The W3C Metadata

Activity addresses the necessary work to complete the picture: structured labels,

rules, integration with digital signatures. The PICS label design was generalized

to a model of information as directed labeled graphs (DLGs). This was known as

the RDF model, and a serialization was defined in XML syntax.

Traditionally, both documents and databases have been strongly typed;

that is, the producer and consumer have prior agreement on the structure of the

information units. But this by itself is not sufficient for the developing of the

Semantic Web. The Semantic Web must permit distributed communities to work

independently to increase the Web of understanding, adding new information

without insisting that the old be modified. This approach allows the communities

to resolve ambiguities and clarify inconsistencies over time while taking maximum

advantage of the wealth of backgrounds and abilities reachable through the Web.

Therefore the Semantic Web must be based on a facility that can expand as

human understanding expands. This facility must be able to capture information

that links independent representations of overlapping areas of knowledge.

Incremental decentralized development of Semantic Web applications

requires documents to be able to contain an ad hoc mixture of features from

multiple application domains. The combinatory issues make it impractical to

predefine document types that encompass all the possible vocabulary sets. The

XML Namespace facility will allow this vocabulary mix-in.

166

In the same way that HTML and XML Linking allow authors to lead readers

from any place in the Web to any other place in the Web, data in the Semantic

Web must be able to relate anything to anything.

To encompass the universe of network-accessible information [Berner-Lee

92], the Semantic Web must provide a way of exposing information from different

systems. These systems may use a variety of internal data models so this implies

a requirement for some generic concept of data at a low level that is in common

between each system.

Another challenge of the Semantic Web, then, is to support the mapping of

the existing and future systems onto the Web, preserving the universality of the

Web and also the properties of the local systems. Optimizations - such as being

able to enumerate and index all objects of a given type - that are important to the

local operation of a system do not scale to the Web.

The mechanism adopted in RDF to manage the expression of constraints

is to make all objects, all relationships, all types, and even all assertions be "first

class objects" on the Web. That is; they have their own URIs and are not

constrained in the fundamental level to be combined in any particular way. Giving

first class identifiers to types, relationships, and assertions will allow the Semantic

Web to make assertions about itself.

All statements found on the Web occur in some context. Trustworthiness

is evaluated by, and in the context of, each application that processes the

information found on the Web.

167

Just as the design of the Web sacrificed link integrity for scalability, the "all

knowledge about my thing is contained here" notion cannot hold when databases

and objects are exported to the Web. A great benefit to relaxing this assumption

will be that, just as hypertext links connect different information systems, the

Semantic Web will connect data from vastly different systems, allowing complex

and far-reaching processing of a wide store of available data.

Other concerns at this point are raised about the relationship to knowledge

representation systems that have already tried some of these concepts before,

with projects such as [KIF] and cyc [Lenat 95]. They should feed the semantic

Web with design experience and the Semantic Web may provide a source of data

for reasoning engines developed in similar projects.

Many knowledge representation systems had a problem merging or

interrelating two separate knowledge bases, as the model was that any concept

had one and only one place in a tree of knowledge. They therefore did not scale,

or pass the test of independent invention. The RDF world, by contrast is designed

for this in mind, and the retrospective documentation of relationships between

originally independent concepts.

Knowledge representation is a field which currently seems to have the

reputation of being initially interesting, but which did not seem to shake the world

to the extent that some of its proponents hoped. It made sense but was of limited

use on a small scale, but never made it to the large scale. That is exactly the

state the hypertext field was in before the Web. Each field had made certain

centralist assumptions -- if not in the philosophy, then in the implementations,

168

which prevented them from spreading globally. But each field was based on

fundamentally sound ideas about the representation of knowledge. The Semantic

Web is what the Web will become if the same globalization process that the Web

initially did to Hypertext is performed to Knowledge Representation.

The W3C's Semantic Web Activity [W3C SW] has been recently

established to serve a leadership role, in both the design of enabling

specifications and the open, collaborative development of technologies that

support the automation, integration and reuse of data across various applications.

To facilitate this goal, the Semantic Web Activity builds upon the existing

foundation work accomplished by the W3C Metadata Activity.

The Semantic Web Activity connects with and augments other W3C work

efforts. In particular, the Semantic Web work will inform and support further work

on:

• harvesting semantic relationships in RDF form from documents using XLink

hyperlinking,

• describing the signer's intent when using XML Signatures,

• semantics associated with data usage practices and policies in P3P, and

profiles in CC/PP,

• annotation to improve the accessibility of Web pages to persons with

disabilities in WAI,

• investigations into the use of the XML DOM for non-tree-structured data,

• document structure transformations with XSLT,

169

• integrating other generic data models and type hierarchies with XML

schema,

• incorporating RDF semantics in an XML schema,

• articulation of characteristics of resources that support the identified

resources as defined by the URI Activity.

7.3 Summary

The Dynamic Hypermedia Engine is able to enhance Information Systems with

metadata, and hypermedia structuring, navigation and annotative functionality.

DHE provides automated linking and metadata services in a generic

manner, based on the application semantics, without altering applications.

The DHE prototype gives a solution to the problem of how to include

linking and metadata functionality to a virtual document. The updated DHE

architecture will become the new test bed for the implementation of new

hypermedia functionalities, and offers a solution for several of the problems

related with the management of dynamically generated documents.

The main contributions are: a conceptual framework, DHE 1.0 design and

implementation, and the DHE NG architecture.

The DHE 1.0 Implementation has the following features: provides a [Web]

interface, automated meta-Information and hypermedia functionality, support for

virtual documents, mapping rules representing an application internal structure,

distributed modular architecture, wrappers to integrate applications with minimal

changes, use of Java and XML standards.

170

The DHE NG extends DHE 1.0 with the following new features: new

hypermedia functionality and virtual documents, the Meta-Information Scope

Hierarchy, document and element Identifiers, regeneration, locators, bi-directional

linking. The new hypermedia functionalities include: guided tours, annotations,

and manual linking.

The possible topics for future research are: use of schemas as a source of

semantic information, filtering and ranking of Meta-Information, user Interface and

user processes within DHE, virtual document management, DHE as development

environment, relationships mining, integration of new applications, qualitative and

quantitative experiments, and the semantic Web.

REFERENCES

[Anderson 96]

[Anderson 97]

[Arocena 98]

[Ashman 97]

[Ashman 99]

Anderson, K.; Providing automatic support for extra-
application functionality, Proceedings of the Second
International Workshop on Incorporating Hypertext
Functionality Into Software Systems (HTF II), March 1996.

Anderson, K. Integrating Open Hypermedia Systems with
the World Wide Web. Hypertext'97 Proceedings, ACM
Press, New York, NY, April 1997, 157-166.

Arocena, G.; Mendelzon, A.; WebOQL: Restructuring
Documents, Databases, and Webs Proceedings of the 14th
International Conference on Data Engineering, Orlando,
Florida, 24-33, February 1998.

Ashman, H.; Garrido, A.; Oinas-Kukkonen, H.; Hand-made
and Computed Links, Precomputed and Dynamic Links in
Proceedings of Multimedia '97 (HIM '97), Germany, 191-
208, 1997.

Ashman, H.; Oinas-Kukkonen, H.; Bieber, M.; Hypertext
Functionality: introduction to the special issue, Journal of
Digital Information, Special issue guest editorial, Volume 1
issue 4, February 1999.
http://jodi.ecs.soton.ac.uk/Articles/v01/iO4/editorial/

[Bennett 95] 	 Bennett, K.; Legacy systems: coping with success, IEEE
Software, January 1995, 19-23.

[Berners-Lee 89]

[Berners-Lee 92]

[Berners-Lee 99]

Berners-Lee, T.; Information Management: A Proposal,
CERN March 1989, May 1990.
http://www.w3.org/History/1989/proposal . html

Berners-Lee, T., et al.; World-Wide Web: The Information
Universe Electronic Networking: Research, Applications and
Policy, Meckler, Vol 1 No 2, Spring 1992.

Berners-Lee, Tim; Connolly, Dan; Swick, Ralph R.; Web
Architecture: Describing and Exchanging Data, W3C Note,
7 June 1999.
http://www.w3.org/1999/04/WebData

171

172

[Beynon-Davies 	 Beynon-Davies, P.; Tudhope, D.; Taylor, C.; Jones, J.; A
94] 	 Semantic Database approach to Knowledge-Based

Hypermedia Systems in Information and Software
Technology 36, 6, 323-329, 1994.

[Bieber 92]

[Bieber 94]

[Bieber 95a]

[Bieber 95b]

[Bieber 97a]

[Bieber 97b]

Bieber, M.; And Kimbrough, S.; On generalizing the concept
of hypertext, Management Information Systems Quarterly
16(1), 1992, 77-93.

Bieber, M. And Kimbrough, S.; On the logic of generalized
hypertext, Decision Support Systems 11, 1994, 241-257.

Bieber, M.; Isakowitz, T. (eds.); Designing Hypermedia
Applications, Special issue of the Communications of the
ACM 38(8), 1995.

Bieber, M.; Kacmar, C.; Designing hypertext support for
computational applications, Communications of the ACM
38(8), 1995, 99-107.

Bieber, M.; Vitali, F.; Toward Support for Hypermedia on the
World Wide Web, IEEE Computer, 30(1), 1997, 62-70.

Bieber, M.; Vitali, F.; Ashman, H.; Balasubramanian, V.;
Oinas-Kukkonen, H.; Fourth Generation Hypermedia: Some
Missing Links for the World Wide Web. International Journal
of Human Computer Studies, Vol. 47, 31-65.

[Bieber 97c] 	 Bieber, M.; Supplementing Applications with Hypermedia,
Technical Report, Version 1.4 - 8/12/97.
http://www.cis.njit.edu/-bieber/pub/supp/supp.html

[Bieber 00] 	 Bieber, M.; Oinas-Kukkonen, H.; Balasubramanian, V.;
Hypertext Functionality, ACM Computing Surveys
.(forthcoming)

[Bodner 97] 	 Bodner, R.; Chignell, M.; Tam, J.; Website authoring using
dynamic hypertext, Proceedings of Webnet'97, Toronto:
Association for the Advancement of Computing in
Education, (1997), 59-64, 1997.

[Bullock 98] 	 Bullock, J.; Goble, C.; TourisT: The Application of a
Description Logic based Semantic Hypermedia System for
Tourism Proceedings of ACM Hypertext '98, Pittsburgh PA,
132-141, June 1998.

173

[Bush 45]

[Campbell 88]

[Carr 98]

[Carr 99]

Bush, Vannevar; As we may think, The Atlantic Monthly,
July 1945.
http://wwwisg.sfu.ca/~duchier/misc/vbush/vbush.shtml

Campbell, B.; Goodman, J.; HAM: a general purpose
hypertext abstract machine, Communications of the ACM
31(7), 1988, 856-861.

Carr, L. A.; Hall, W.; Hitchcock, S.; Link Services or Link
Agents?, Proceedings of ACM Hypertext '98, Pittsburgh PA,
113-122.
http://acm.org/pubs/citations/proceedings/hypertext/276627/
p113-carr/

Carr, L.; Hall, W.; DeRoure, D.; The Evolution of
Hypermedia Link Services, ACM Computing Surveys,
Symposium on Hypertext and Hypermedia, 1999.

[Charoenkitkarn 	 Charoenkitkarn, N.; Chignell, M.; Golovchinsky, G.;
95] 	 Interactive Exploration as a Formal Text Retrieval Method:

How Well can Interactivity Compensate for Unsophisticated
Retrieval Algorithms? Proceedings of the Third Text
Retrieval Conference (TREC-3), Gaithersburg, Maryland,
179-199, 1995.

[Conklin 87]

[Cunliffe 97]

[Davenport 94]

[Davis 92]

[Davis 94]

Conklin, J.; Hypertext: An Introduction and Survey, IEEE
Computer, 20(9), 17-41, 1987.

Cunliffe, D; Taylor, C; Tudhope, D.; Query-based
Navigation in Semantically Indexed Hypermedia,
Proceedings of ACM Hypertext 97, Southampton, UK, 87-
95, April 1997.

Davenport, Tom; Saving IT's Soul: Human-Centered
Information Management, Harvard Business Review,
March/April 1994, pp. 119 -131.

Davis, H.; Hall, W.; Heath, I.; Hill, G.; Wilkins, R.; Towards
an integrated information environment with open
hypermedia systems, Proceedings of the ACM Conference
on Hypertext (Milan, Nov. 1992) 181-190.

Davis, H.; Knight, S.; Hall, W.; Light hypermedia link
services: a study of third party application integration,
Proceedings of the Fifth ACM Conference on Hypermedia
Technologies, Edinburgh, Scotland, 1994, 158-166.

174

[Davis 98]

[Davis 99]

[DC]

[De Bra 98]

[Dobie 99]

[DOM 00]

[DSig]

[Engelbart 63]

[Fernandez 98]

[Finkelstein 99]

Davis, H.; Referential Integrity of Links in Open Hypermedia
Systems, Proceedings of ACM Hypertext '98 , Pittsburgh,
PA, 207-216, June 1998.

Davis, H.; Hypertext Link Integrity, ACM Computing
Surveys, Symposium on Hypertext and Hypermedia, 1999.

Dublin Core Metadata Element Set Home Page.
http://purl.oclc.org/dc/

De Bra, P. History of hypertext and hypermedia, in
Hypermedia Structures and Systems course at the
Eindhoven University of Technology 1998.
<http://wwwis.win.tue.nl:8001/2L690/cgi/get/a1/history.html >

Dobie, M; Tansley, R.; Joyce, D.; Weal, M.; Lewis, P.; Hall,
W.; A Flexible Architecture for Content and Concept-based
Multimedia Information Exploration, Proceedings of the
Second UK Conference on Image Retrieval, BCS Electronic
Workshops in Computing, 1999.

W3C Document Object Model (DOM) Level 2 Core
Recommendation.
http://www.w3.org/TR/DOM-Level-2-Core/

Digital Signature Initiative.
http://www.w3.org/DSig/

Engelbart, Douglas C.; A Conceptual Framework for the
Augmentation of Man's Intellect, Vistas in Information
Handling, Howerton and Weeks [Editors], Spartan Books,
Washington, D. C., 1963, pp. 1-29.

Fernandez, M.; Florescu, D.; Kang, J.; Levy, A.; Suciu, D.;
Catching the Boat with Strudel: Experiences with a Web-
Site Management System Proceedings of ACM SIGMOD
'98, Seattle, WA, 414-425, June 1998.

Finkelstein, C.; Aiken, P.; Building Corporate Portals with
XML, McGraw-Hill, 1999.

[Florescu 98] 	 Florescu, D.; Levy, A.; Mendelzon, A.; Database techniques
for the world-wide web: A survey in SIGMOD Record 27, 3,
59-74, 1998.

175

[Garrido 96] Garrido, A.; Rossi, G.; A framework for extending object-
oriented applications with hypermedia functionality, The
New Review of Hypermedia and Multimedia 2, 1996, 25-41ftp://www-

lifia.info.unlp.edu.ar/pub/papers/garrido/hypermed.ps.gz

[Garzotto 91] 	 Garzotto, F.; Paolini, P.; HDM - a Model for the Design of
Hypertext Applications, Proceedings of the Third ACM
Conference on Hypertext, 1991, pp. 313-328.

[Garzotto 95] 	 Garzotto, F.; Mainetti, L.; Paolini, P.; Hypertext Design,
Analysis, and Evaluation Issues, Communications of the
ACM, Aug. 1995, pp. 74-86.

[Golovchinsky 93] 	 Golovchinsky, G.; Chignell, M.; Queries-r-links: Graphical
Markup for Text Navigation, Proceedings of INTERCHI 193,
Amsterdam: The Netherlands, 454-460, 1993.

[Grønbæk 96] 	 Grønbæk, K; Trigg, R.; Toward a Dexter-Based Model for
Open Hypermedia: Unifying Embedded References and
Link Objects, Proceedings of ACM Hypertext 96,
Washington DC, 149-160.

[Grønbæk 00] 	 Grønbæk, K.; Sloth, L.; Bouvin, N.; Open Hypermedia as
User Controlled Meta Data for the Web, Proceedings of the
Ninth International World Wide Web Conference,
Amsterdam 2000.

[Halasz 94] 	 Halasz, F.; Schwartz, M.; The Dexter hypertext reference
model, Communications of the ACM 37(2), 1994, 30-39.

[Hall 96] 	 Hall, W.; Davis, H.; Hutchings, G.; Rethinking Hypermedia,
The Microcosm Approach, Kluwer Academic, Dordrecht,
The Netherlands, 1996.

[HICSS 93] 	 Bieber, M.; Isakowitz, T. (eds); Hypermedia in Information
Systems and Organizations, Proceedings of the 26th Hawaii
International Conference on System Sciences, volume 3
(IEEE Press: Washington, D.C.) 1993.

[HICSS 98] 	 Isakowitz, T.; Bieber, M. (eds); Web Information Systems,
Proceedings of the 31st Hawaii International Conference on
System Sciences, volume 4 (IEEE Press: Washington,
D.C.) 1998.

176

[Hirata 96]

[HTF 94]

[HTF 96]

[HTF 97]

[HTF 98a]

[HTF 98b]

[HTF 98c]

Hirata, K.; Hara, Y.; Takano, H.; Kawasaki, S.; Content-
Oriented Integration in Hypermedia Systems, Proceedings
of ACM Hypertext '96, Washington, DC, 11-21, March 1996.

Bieber, M.; Oinas-Kukkonen, H. (eds); Proceedings of the
First International Workshop on Incorporating Hypertext
Functionality Into Software Systems (HTF I), at the
European Conference on Hypermedia Technologies
(ECI-1T94), Edinburgh, September 1994.

Ashman, H.; Balasubramanian, V.; Bieber, M.; Oinas-
Kukkonen, H. (eds); Proceedings of the Second
International Workshop on Incorporating Hypertext
Functionality Into Software Systems (HTF II), at the
Hypertext96 Conference, Bethesda, March 1996.

Ashman, H.; Balasubramanian, V.; Bieber, M.; Oinas-
Kukkonen, H. (eds); Proceedings of the Third International
Workshop on Incorporating Hypertext Functionality Into
Software Systems (HTF III), at the Hypertext97 Conference,
Southampton, UK, April 1997.

Watters, C.; Vitali, F. (eds); Proceedings of the Fourth
International Workshop on Incorporating Hypertext
Functionality Into Software Systems (HTF IV), at the 7th
International World Wide Web Conference, Brisbane, April
1998.

Rossi, G; Ziv, H. (eds); Proceedings of the Fifth
International Workshop on Incorporating Hypertext
Functionality Into Software Systems (HTF V), at the
International Conference on Software Engineering, Kyoto,
April 1998.

Kuutti, K; Oinas-Kukkonen H. (eds); Proceedings of the
Seventh International Workshop on Hypertext Functionality:
Organizational Memory Systems and HTF (HTF VII), at the
International Conference on Information Systems (ICIS '98),
Helsinki, December 1998.

[HTML 98] 	 Hypertext Markup Language 4.0 Specification.
http://www.w3.org/TR/REC-html40/

[HyperCard] 	 HyperCard
http://www. apple.com/hypercard/

177

[HyTime] 	 Hypermedia/Time-based Structuring Language (HyTime).
http://www.ornl.gov/sg ml/wg8/docs/n1920/html/n 1920. html

[lanella 97] 	 lannella, R.; Waugh, - A.; Metadata: Enabling the Internet,
CAUSE97 Conference, Melbourne, Australia, 13-16 April
1997.

[Isakowitz 95] 	 Isakowitz, T.; Schocken, S.; Lucas, Jr, HC.; Toward a
logical / Physical theory of Spreadsheet Modeling, ACM
Transactions on Information Systems, Journal. Vol. 13, No.
1, January 1995 pp 1-37.

[JOC 96]

[JoDI 99]

Bieber, M.; Isakowitz, T. (eds); Hypermedia in Information
Systems and Organizations. Journal of Organizational
Computing and Electronic Commerce, Vol. 6, No. 3, 1996.

Ashman, H.; Oinas-Kukkonen, H.; Bieber, M. (eds.); Special
issue on Hypertext functionality, Journal of Digital
Information, Volume 1, Issue 4, February 1999.
http://jodi.ecs.soton.ac.uk/View/Index/v01/i04/

[Kacmar 93] 	 Kacmar, C.; Supporting hypermedia services in the user
interface, Hypermedia 5(2), 1993, 85-101.

[Kacmar 95] 	 Kacmar, C.; A process approach for providing hypermedia
services to existing, non-hypermedia applications,
Electronic Publishing: Organization, Dissemination, and
Distribution 8(1), March 1995, 31-48.

[KIF] 	 Knowledge Interchange Format
http://www.csee.umbc.edu/kse/kif/

[Kimbrough 79] 	 Kimbrough, S.; On the reduction of genetics to molecular
biology, Philosophy of Science 46(3), 1979, 389-406.

[Lagose 96] 	 Lagoze, Carl; Lynch, Clifford; Daniel, Ron, Jr.; The Warwick
Framework: A Container Architecture for Aggregating Sets
of Metadata, Cornell Computer Science Technical Report
TR96-1593. June, 1996.

http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR96-
1593

[Legget 94] 	 Leggett, J.; Schnase, J.; Viewing Dexter with open eyes,
Communications of the ACM 37(2), 1994, 77-86.

178

[Lenat 95]

[Lewis 99]

[Marshall 94]

[Marshall 97]

[MDC]

[MDIS 97]

[MOF 97]

[Multicosm]

[Nanard 91]

[Nanard 95]

[Nelson 65]

Lenat, D. B.; Cyc: A Large-Scale Investment in Knowledge
Infrastructure, Communications of the ACM 38, no. 11,
November 1995.
See also: http://www.cyc.com/

Lewis, P.; Hall, W.; Carr, L.; DeRoure, D.; The Significance
of Linking, ACM Computing Surveys, Symposium on
Hypertext and Hypermedia, 1999.

Marshall, C.; Shipman, F.; Coombs, J.; VIKI: spatial
hypertext supporting emergent structure, European
Conference on Hypermedia Technologies'94 Proceedings
(Edinburgh, Scotland; September 1994), ACM Press, 13-23.

Marshall, C.; Shipman, F.; Spatial Hypertext and the
Practice of Triage Proceedings of ACM Hypertext '97,
Southampton, UK, 124-133, April 1997.

MetaData Coalition.
http://www.mdcinfo.com/

Meta Data Interchange Specification.
http://www.mdcinfo.com/MDIS/MDIS11.html

Meta Object Facility Specification.
http://www.omg.org/cgi-bin/doc?ad/97-08-14.pdf

Dynamic Link Service (DLS) Technology
Multicosm Ltd. In Chilworth Science Park, Southampton,
1999.
http://www.multicosm.com/Technology/TechDynLink.htm

Nanard, J.; Nanard, M.; Using structured types to
incorporate knowledge in hypertext, Proceedings of ACM
Hypertext '91, San Antonio, TX, 329-344, December 1991.

Nanard, J.; Nanard, M. Hypertext design environments and
the hypertext design process, Communications of the ACM
38(8), 1995, 49-56.

Nelson, Theodore H.; A File Structure for the Complex, the
Changing and the Indeterminate, proceedings of the ACM
20th national conference 1965.

179

[Nelson 74] 	 Nelson, Theodore H.; Computer Lib/Dream Machines,
Mindful Press 1974.

[Nelson 81] 	 Nelson, Theodore H.; Literary Machines, self-published
1981.

[Newell 73] 	 Newell, A.; Simon, H. A.; Human Problem Solving,
Englewood
Cliffs, NJ: Prentice-Hall, 1973.

[Nielsen 90]

[Nurnberg 98]

[Nurnberg 97]

Nielsen, J.; The Art of Navigating through Hypertext,
Communications of the ACM, 33(3), 287-310, 1990.

Nurnberg, P.; Leggett, J.; A Vision for Open Hypermedia
Systems, Journal of Digital Information, Volume 1, issue 2,
January 1998 .
http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Numberg/

Nurnberg, P.; Leggett, J.; Schneider, E.; As We Should
Have Thought Proceedings of ACM Hypertext '97,
Southampton, UK, 96-101, April 1997.

[OHSWG] 	 Open Hypermedia Systems Working Group.
http://www.ohswg.org/

[OIM 98] 	 Open Information Model.
http://www.mdcinfo.com/OIM/index.html

[Oinas-Kukkonen 	 Oinas-Kukkonen, H.; Developing Hypermedia Systems - the
95] 	 Functionality Approach, Proceedings of the Second Basque

International Workshop on Information Technology (BIWIT
195), keynote address, IEEE Computer Society Press, 2-8.

[OMG] 	 Object Management Group.
http://www.omg.org

EPICS] 	 Platform for Internet Content Selection.
http://www.w3.org/PICS/

[Puttress 90] 	 Puttress, J.; Guimaraes, N.; The toolkit approach to
hypermedia. Hypertext: Concepts, Systems and
Applications, Proceedings of ECHT'90, Versailles,
November 1990, Cambridge University Press, 25-37.

[P3P] 	 Platform for Privacy Preferences P3P Project.
http://www.w3.org/P3P/

180

[QuickClick] 	 QuickClick.
http://www.quickclick.com/

[RDF 99] 	 Resource Description Framework Specification.
http://www.w3.org/TR/PR-rdf-schema/

[Rivlin 94] 	 Rivlin, E.; Botafogo, R.; Shneiderman, B.; Navigating in
Hyperspace: Designing a Structure-Based Toolbox,
Communications of the ACM, Feb. 1994, pp. 87-108.

[Rizk 92]

[Sherman 90]

Rizk, A. And Sauter, L.; Multicard: an open hypermedia
system, Proceedings of the ACM Conference on Hypertext
(Milan, Nov. 1992) 4-10.

Sherman, M.; Hansen, W.; Mcinerny, M.; And Neuendorfer,
T.; Building hypertext on a multimedia toolkit: an overview of
the Andrew toolkit hypermedia facilities, Proceedings of
European Conference on Hypertext (ECHT) '90 (Cambridge
University Press, Versailles, Nov. 1990) 13-24.

[Shipman 99] 	 Shipman, F.; Marshall, C; Spatial Hypertext: An Alternative
to Navigational and Semantic Links, ACM Computing
Surveys, Symposium on Hypertext and Hypermedia, 1999.

[SIGWEB] 	 ACM Special Interest Group on Hypertext, Hypermedia and
the Web.
http://www.acm.org/sigweb/

[SGML 86] 	 ISO 8879. Information Processing -- Text and Office
Systems - Standard Generalized Markup Language
(SGML), 1986.
http://www.iso.ch/cate/d16387.html

[Tam 97]

[Tudhope 99]

[UML 97]

Tam, J.; Bodner, R.; Chignell, M.; Dynamic hypertext
benefits novices in question answering, Proceedings of the
Human Factors and Ergonomics Society 41 st Annual
Meeting, (1997), 350-354, 1997.

Tudhope, D.; Cunliffe, D.; Semantically-Indexed
Hypermedia: Linking Information Disciplines ACM
Computing Surveys, Symposium on Hypertext and
Hypermedia, 1999.

UML Specification.
http://www.omg.org/cgi-bin/doc?ad/97-08-03.pdf

181

[Vitali 00]

[Wafters 99]

Vitali, F.; Bieber, M.; Hypermedia on the Web: What Will It
Take?, ACM Computing Surveys (forthcoming).
http://www.cis.njit.edu/~bieber/pub/acmcs/cs-vb.html

Wafters, C.; Shepherd, M.; Research Issues for Virtual
Documents, Workshop on Virtual Documents, Hypertext
Functionality and the Web at the Eighth International World
Wide Web Conference, May 1999 - Toronto, Canada.
http://www.cs.unibo.it/~fabioND99/shepherd/shepherd.html

[Waterworth 91] 	 Waterworth, J.; Chignell, M.; A model of information
exploration in Hypermedia 3(1), (1991), 35-58, 1991.

[Weibel 95] 	 Weible, S.; Godby, J.; Miller, E.; Daniel, R.; OCLC/NCSA
Metadata Workshop Report,
http://www.oclc.org:5046/oclc/research/conferences/metada
ta/dublin_core_report.html

[Whitehead 97] 	 Whitehead, E. J.; An architectural model for application
integration in open hypermedia environments, Hypertext 97
Proceedings, ACM Press, New York, 1997, 1-12.

[Wiil 99] 	 Wiil, U.; Nurnberg, P.; Leggett, J.; Hypermedia Research
Directions: An Infrastructure Perspective, ACM Computing
Surveys, Symposium on Hypertext and Hypermedia, 1999.

[W3C] 	 World Wide Web Consortium.
http://www.w3.org/

[W3C EC] 	 W3C Electronic Commerce Interest Group.
http://www.w3.org/ECommerce/

[W3C Meta] 	 W3C Metadata Activity.
http://www.w3.org/Metadata/

[W3C Sec] 	 W3C Security Initiatives.
http://www.w3.org/Security/

[W3C SW] 	 W3C Semantic Web Activity.
http://www.w3.org/2001/sw/

[XBase 00] 	 XML Base (XBase).
http://www.w3.org/TR/xmlbase

[XHTML 00] 	 XHTML 1.0: The Extensible HyperText Markup Language.
http://www.w3.org/TR/xhtml1/

182

[XIF 99] 	 XML Interchange Format.
http://msdn.microsoft.com/repository/technical/xif.asp

[Xlnclude 00] 	 XML Inclusions (Xlnclude).
http://www.w3.org/TR/xinclude

[XLink 00] 	 XML Linking Language (XLink).
http://www.w3.org/TR/xlink/

[XMI 98] 	 XML Metadata Interchange (XMI).
http://www.omg.org/pub/docs/ad/98-10-05.pdf

[XML 98] 	 eXtensible Markup Language Specification.
http://www.w3.org/TR/1998/REC-xml-19980210

[XPath 99] 	 XML Path Language (XPath).
http://www.w3.org/TR/xpath

[XPointer 99] 	 XML Pointer Language (XPointer).
http://www.w3.org/TR/xptr

[XSchema 01] 	 XML Schema Part 1: Structures.
http://www.w3.org/TR/xmlschema-1/
XML Schema Part 2: Datatypes.
http://www.w3.org/TR/xmlschema-2/

[XSL 00]

[XSLT 99]

[Yoo 00]

eXtensible Stylesheet Language (XSL).
http://www.w3.org/TR/xsl/

XSL Transformations (XSLT).
http://www.w3.org/TR/xsIt

Yoo, J.; Bieber, M.; A Relationship-based Analysis,
Hypertext 2000 Proceedings, San Antonio, ACM Press,
June 2000.
http://www. cis. njit.edu/~bieber/pub/ht00-yoo-bieber. pdf

	Augmenting applications with hyper media, functionality and meta-information
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Overview
	Chapter 2: Hypermedia
	Chapter 3: Metadata
	Chapter 4: Dynamic Hypermedia Engine Overview
	Chapter 5: DHE 1.0 Implementation
	Chapter 6: DHE Next Generation (DHE NG)
	Chapter 7: Results and Future Research
	References

	List of Figures

