256 research outputs found

    Soil Moisture Workshop

    Get PDF
    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report

    Spatial and temporal variability of soil temperature, moisture and surface soil properties

    Get PDF
    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations

    Sensitivity Analysis on Mapping EvapoTranspiration at High Resolution Using Internal Calibration (METRIC)

    Get PDF
    Mapping EvapoTranspiration at high Resolution using Internal Calibration (METRIC) is most widely used to quantify evapotranspiration (ET) spatially and temporally. It is essential to inspect the model’s response to errors in various parameters used in the model. Landsat 5 images from May 30 2009, July 1 2009 and a Landsat 7 image from September 27 2009 are used in this study. Fourteen different fields composed of Corn, Soybeans, Alfalfa are randomly chosen for each crop type. Two kinds of errors are addressed in this study. One, with the errors that are transferred and potentially compensated by calibration (Global error) and the other is the error that is not passed into the calibration (Local error). For global error, Reflectance at the satellite (ρ), transmissivity (τ), surface temperature (Ts), wind speed (u), Reference Evapotranspiration (ETr) are chosen. In addition, the sensitivity towards selection of hot and cold pixels is also investigated. For local errors, albedo (α), surface temperature (Ts), momentum roughness length (Zom), soil heat flux (G), difference between air and surface temperature (dT) are considered. In this study, we have found that METRIC is able to compensate most of the global errors passed through the calibration to give consistent results, when the variables considered above has changed to their extremes. ETr should be estimated at a good degree of accuracy to maintain the METRIC’s results to be realistic. Also, selection of hot and cold pixels is the most crucial and sensitive process in METRIC. In case of local errors: Zom is relatively insensitive to the model. dT is found to be the most sensitive variable for bare soils. However, the other parameters are linearly proportional to their errors. Adviser: Ayse Irma

    Modelling Net Primary Productivity and Above-Ground Biomass for Mapping of Spatial Biomass Distribution in Kazakhstan

    Get PDF
    Biomass is an important ecological variable for understanding the responses of vegetation to the currently observed global change. The impact of changes in vegetation biomass on the global ecosystem is also of high relevance. The vegetation in the arid and semi-arid environments of Kazakhstan is expected to be affected particularly strongly by future climate change. Therefore, it is of great interest to observe large-scale vegetation dynamics and biomass distribution in Kazakhstan. At the beginning of this dissertation, previous research activities and remote-sensing-based methods for biomass estimation in semi-arid regions have been comprehensively reviewed for the first time. The review revealed that the biggest challenge is the transferability of methods in time and space. Empirical approaches, which are predominantly applied, proved to be hardly transferable. Remote-sensing-based Net Primary Productivity (NPP) models, on the other hand, allow for regional to continental modelling of NPP time-series and are potentially transferable to new regions. This thesis thus deals with modelling and analysis of NPP time-series for Kazakhstan and presents a methodological concept for derivation of above-ground biomass estimates based on NPP data. For validation of the results, biomass field data were collected in three study areas in Kazakhstan. For the selection of an appropriate model, two remote-sensing-based NPP models were applied to a study area in Central Kazakhstan. The first is the Regional Biomass Model (RBM). The second is the Biosphere Energy Transfer Hydrology Model (BETHY/DLR). Both models were applied to Kazakhstan for the first time in this dissertation. Differences in the modelling approaches, intermediate products, and calculated NPP, as well as their temporal characteristics were analysed and discussed. The model BETHY/DLR was then used to calculate NPP for Kazakhstan for 2003–2011. The results were analysed regarding spatial, intra-annual, and inter-annual variations. In addition, the correlation between NPP and meteorological parameters was analysed. In the last part of this dissertation, a methodological concept for derivation of above-ground biomass estimates of natural vegetation from NPP time-series has been developed. The concept is based on the NPP time-series, information about fractional cover of herbaceous and woody vegetation, and plants’ relative growth rates (RGRs). It has been the first time that these parameters are combined for biomass estimation in semi-arid regions. The developed approach was finally applied to estimate biomass for the three study areas in Kazakhstan and validated with field data. The results of this dissertation provide information about the vegetation dynamics in Kazakhstan for 2003–2011. This is valuable information for a sustainable land management and the identification of regions that are potentially affected by a changing climate. Furthermore, a methodological concept for the estimation of biomass based on NPP time-series is presented. The developed method is potentially transferable. Providing that the required information regarding vegetation distribution and fractional cover is available, the method will allow for repeated and large-area biomass estimation for natural vegetation in Kazakhstan and other semi-arid environments

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    Using middle-infrared reflectance for burned area detection

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011A strategy is presented that allows deriving a new index for burned area discrimination over the Amazon and Cerrado regions of Brazil. The index is based on information from the near-infrared (NIR) and middle-infrared (MIR) channels of the Moderate Resolution Imaging Spectroradiometer (MODIS). A thorough review is undertaken of existing methods for retrieving MIR reflectance and an assessment is performed, using simulated and real data, about the added value obtained when using the radiative transfer equation (RTE) instead of the simplified algorithm (KR94) developed by Kaufman and Remer (1994), the most used in the context of burned area studies. It is shown that use of KR94 in tropical environments to retrieve vegetation reflectance may lead to errors that are at least of the same order of magnitude of the reflectance to be retrieved and considerably higher for large values of land surface temperature (LST) and solar zenith angle (SZA). Use of the RTE approach leads to better estimates in virtually all cases, with the exception of high values of LST and SZA, where results from KR94 are also not usable. A transformation is finally defined on the MIR/NIR reflectance space aiming to enhance the spectral information such that vegetated and burned surfaces may be effectively discriminated. The transformation is based on the difference between MIR and NIR in conjunction with the distance from a convergence point in the MIR/NIR space, representative of a totally burnt surface. The transformation allows defining a system of coordinates, one coordinate having a small scatter for pixels associated to vegetation, burned surfaces and soils containing organic matter and the other coordinate covering a wide range of values, from green and dry/stressed vegetation to burned surfaces. The new set of coordinates opens interesting perspectives to applications like drought monitoring and burned area discrimination using remote-sensed information.O coberto vegetal da superfície da Terra tem vindo a sofrer mudanças, por vezes drásticas, que conduzem a alterações tanto na rugosidade da superfície terrestre como no seu albedo, afectando directamente as trocas de calor sensível e latente e de dióxido de carbono entre a superfície terrestre e a atmosfera (Sellers et al., 1996). Neste contexto, as queimadas assumem um papel de extremo relevo (Nobre et al., 1991; O’Brien, 1996; Xue, 1996) na medida em que constituem uma das mais importantes fontes de alteração do coberto vegetal, resultando na destruição de florestas e de recursos naturais, libertando carbono da superfície continental para a atmosfera (Sellers et al., 1995) e perturbando as interacções biosfera-atmosfera (Levine et al., 1995; Scholes, 1995) através de mudanças na rugosidade do solo, na área foliar e noutros parâmetros biofísicos associados ao coberto vegetal. Ora, neste particular, a Amazónia Brasileira constitui um exemplo notável de mudanças no uso da terra e do coberto vegetal nas últimas décadas, como resultado da desflorestação induzida pelo homem bem como por causas naturais (Gedney e Valdes, 2000; Houghton, 2000; Houghton et al., 2000; Lucas et al., 2000), estimando-se que as regiões tropicais sejam responsáveis por cerca de 32% da emissão global de carbono para a atmosfera (Andreae, 1991). Neste contexto, a disponibilidade de informações pormenorizadas e actualizadas sobre as distribuições espacial e temporal de queimadas e de áreas ardidas em regiões tropicais afigura-se crucial, não só para uma melhor gestão dos recursos naturais, mas também para estudos da química da atmosfera e de mudanças climáticas (Zhan et al., 2002). A detecção remota constitui, neste âmbito, uma ferramenta indispensável na medida em que permite uma monitorização em tempo quase real, a qual se revela especialmente útil em áreas extensas e/ou de difícil acesso afectadas pelo fogo (Pereira et al., 1997). Diversos instrumentos, tais como o Land Remote Sensing Satellite/Thematic Mapper (LANDSAT/TM) e o National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) têm vindo a ser extensivamente utilizados na gestão dos fogos florestais, em particular aos níveis da detecção de focos de incêndio e da monitorização de áreas queimadas. Mais recentemente, o instrumento VEGETATION a bordo do Satellite Pour l'Observation de la Terre (SPOT) tem vindo a ser utilizado com sucesso na monitorização de fogos. Finalmente, são de referir os sensores da série Along Track Scanning Radiometer (ATSR) para os quais têm vindo a ser desenvolvidos algoritmos de identificação de focos de incêndio, e ainda o sensor Moderate Resolution Imaging Spectroradiometer (MODIS) que tem vindo a demonstrar capacidades óptimas no que respeita à observação global de fogos, plumas e áreas queimadas. Neste contexto, os métodos actuais de detecção de áreas ardidas através da detecção remota têm vindo a dar prioridade à utilização das regiões do vermelho (0.64 μm) e infravermelho-próximo (0.84 μm) do espectro eletromagnético. No entanto, tanto a região do vermelho quanto a do infravermelho-próximo apresentam a desvantagem de serem sensíveis à presença de aerossóis na atmosfera (Fraser e Kaufman, 1985; Holben et. al., 1986). Desta forma, em regiões tropicais como a Amazónia, onde existem grandes camadas de fumo devido à queima de biomassa, a utlização destas duas regiões do espectro eletromagnético torna-se insatisfatória para a detecção de áreas ardidas. Por outro lado, a região do infravermelho médio (3.7 – 3.9 μm) tem a vantagem de não ser sensível à presença da maior parte dos aerossóis, exceptuando a poeira (Kaufman e Remer, 1994) mostrando-se, ao mesmo tempo, sensível a mudanças na vegetação devido à absorção de água líquida. Com efeito, estudos acerca dos efeitos do vapor de água na atenuação do espectro eletromagnético demonstraram que a região do infravermelho médio é uma das únicas regiões com relativamente pouca atenuação (Kerber e Schut, 1986). Acresce que a região do infravermelho médio apresenta uma baixa variação da irradiância solar (Lean, 1991), tendo-se ainda que a influência das incertezas da emissividade na estimativa da temperatura da superfície é pequena quando comparada com outras regiões térmicas tais como as de 10.5 e 11.5 μm (Salysbury e D’Aria, 1994). A utilização da radiância medida através de satélites na região do infravermelho médio é, no entanto, dificultada pelo facto de esta ser afectada tanto pelo fluxo térmico quanto pelo fluxo solar, contendo, desta forma, duas componentes, uma emitida e outra reflectida, tendo-se que a componente reflectiva contém os fluxos térmico e solar reflectidos pela atmosfera e pela superfície enquanto que as emissões térmicas são oriundas da atmosfera e da superfície. Ora, a componente solar reflectida é de especial interesse para a detecção de áreas ardidas pelo que se torna necessário isolá-la do sinal total medido pelo sensor. Devido à ambiguidade deste sinal, a distinção dos efeitos da reflectância e da temperatura torna-se uma tarefa muito complexa, verificando-se que os métodos em que se não assume nenhuma simplificação, levando-se, portanto, em consideração todos os constituintes do sinal do infravermelho médio se tornam complexos e difíceis de serem aplicados na prática, na medida em que requerem dados auxiliares (e.g. perfis atmosféricos) e ferramentas computacionais (e.g. modelos de tranferência radiativa). Kaufman e Remer (1994) desenvolveram um método simples para estimar a reflectância do infravermelho médio o qual assenta em diversas hipóteses simplificadoras. Apesar do objectivo primário que levou ao desenvolvimento do método ser a identificação de áreas cobertas por vegetação densa e escura em regiões temperadas, este método tem sido lagarmente utilizado nos estudos acerca da discriminação de áreas queimadas, algumas das vezes em regiões tropicais (Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). Na literatura não existe, no entanto, nenhum estudo acerca da exactidão e precisão deste método quando aplicado com o objectivo de detectar áreas ardidas, em especial em regiões tropicais. Neste sentido, no presente trabalho procedeu-se a um estudo de viabilidade do método proposto por Kaufman e Remer (1994) em simultâneo com a análise da equação de tranferência radiativa na região do infravermelho médio, tendo sido realizados testes de sensibilidade dos algoritmos em relação aos erros nos perfis atmosféricos, ruído do sensor e erros nas estimativas da temperatura da superfície. Para tal recorreu-se ao modelo de transferência radiativa Moderate Spectral Resolution Atmospheric Transmittance and Radiance Code (MODTRAN), dando-se especial atenção ao caso do sensor MODIS. Os resultados demonstraram que a utilização do método proposto por Kaufman e Remer (1994) em regiões tropicais para a estimativa da reflectância no infravermelho médio, leva a erros que são pelo menos da mesma ordem de magnitude do parâmetro estimado e, em alguns casos, muito maior, quando ocorre a combinação de altas temperaturas da superfície terrestre com baixos ângulos zenitais solares. A utilização da equação de transferência radiativa mostrouse uma boa alternativa, desde que estejam disponíveis dados acerca da temperatura da superfíce terrestre assim como dos perfis atmosféricos. Entretanto, nas regiões onde ocorrem altos valores de temperatura da superfície terrestre e baixos ângulos zenitais solares, quaisquer dos dois métodos se mostra pouco utilizável, já que nesta região a estimativa da reflectância constitui um problema mal-posto. Em paralelo, utilizaram-se informações sobre aerossóis de queimada para efectuar simulações do MODTRAN que permitiram avaliar a reposta do canal do infravermelho-médio à este tipo de perturbação do sinal, muito comum na Amazónia Brasileira. A fim de tornar o estudo o mais realístico possível, procedeu-se à coleta de material resultante de queimadas na região Amazónica, mais especificamente em Alta Floresta, Mato Grosso, Brasil. Estes resultado foram então integrados nos estudos em questão, possibilitando a caracterização espectral das áreas ardidas. Com base nos resultados obtido definiu-se uma tranformação no espaço do infravermelho próximo e médio com o objetivo de maximizar a informação espectral de forma a que as superfícies vegetadas pudessem ser efectivamente discriminadas e as áreas ardidas identificadas. A tranformação baseia-se na diferença entre a reflectância nos infravermelhos próximo e médio, em conjunto com a distância a um ponto de convergência no espaço espectral dos infravermelhos próximo e médio, ponto esse representativo de uma área completamente ardida. A tranformação permitiu a definição de um novo sistema de coordenadas, o qual provou ser bastante útil no que diz respeito á identificação de áreas ardidas. Este novo espaço de coordenadas constitui uma inovação na área dos estudos de queimadas, já que permite ao mesmo tempo definir dois tipos de índices, o primeiro dos quais identifica superfícies que contém ou não biomassa e o segundo identifica, de entre as superfícies que contêm biomassa, a quantidade de água presente, podendo variar de vegetação verde (abundância de água) até áreas ardidas (ausência de água). Além de distiguir áreas ardidas, os índices desenvolvidos podem ainda ser aplicados em outros casos como, por exemplo, estudos de estresse hídrico e secas.DSA/INPE; Portuguese Foundation of Science and Technology (Fundação para a Ciência e Tecnologia / FCT)(SFRH/BD/21650/2005

    Land Surface Temperature (LST) estimated from Landsat images: applications in burnt areas and tree-grass woodlands (dehesas)

    Get PDF
    A lo largo de los últimos 40 años, las diferentes misiones del proyecto Landsat han proporcionado una gran cantidad de información espectral sobre la superficie terrestre. Las imágenes obtenidas por estos satélites se caracterizan por una resolución espacial de tipo medio, bandas espectrales situadas en diferentes regiones del espectro electromagnético (ópticas y térmicas) y una amplia cobertura terrestre. Si bien las bandas del óptico han sido utilizadas con éxito en numerosas aplicaciones, el uso del térmico ha sido mucho más limitado, a pesar de la gran importancia que representa el parámetro de la temperatura de superficie para numerosas aplicaciones ambientales, especialmente para aquellas relacionadas con la modelización de los flujos de energía en el sistema suelo-vegetación-atmósfera y con el cambio global. En este contexto, el objetivo principal de la presente investigación es explorar el potencial de la temperatura de superficie terrestre (siglas en inglés - LST), derivada de imágenes Landsat, en el estudio de ecosistemas heterogéneos, concretamente (i) áreas afectadas por los incendios forestales y (ii) ecosistemas de dehesa,formaciones constituidas por los árboles dispersos y pastizal/cultivos. En primer lugar, en el marco del proyecto BIOSPEC “Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of Global Change” (http://www.lineas.cchs.csic.es/biospec) se comparan las diferentes metodologías disponibles para la estimación de la LST a partir de la banda térmica de Landsat. Los mejores resultados, en condiciones atmosféricas caracterizadas por niveles medios de contenido de vapor, se obtuvieron usando el método mono-banda (en inglés - SingleChannel) (Jiménez-Muñoz et al., 2009), con un error de estimación <1º K. En el siguiente paso de la investigación la información sobre la distribución de LST derivada del sensor Thematic Mapper se utilizó en el análisis de la severidad del fuego en una zona forestal de Las Hurdes(Extremadura, España), y en el estudio de los efectos ocasionados por los diferentes tratamientos post-incendio en una zona quemada, esta vez localizada en los Montes de Zuera (Zaragoza, España). En relación con la severidad del fuego analizada en diferentes fechas post-incendio, se han detectado diferencias estadísticamente significativas entre los valores de LST correspondientes a las categorías de severidad establecidas a partir del índice espectral ΔNBR (Key y Benson, 2006).Los niveles de LST más elevados se observaron en las zonas donde la severidad del fuego fue mayor, debido a la menor emisividad de los productos de combustión y los cambios en el balance de energía relacionados con la ausencia de vegetación. En cuanto a las consecuencias de los tratamientos de madera quemada en la regeneración vegetal, se han observado diferencias estadísticamente significativas entre las áreas intervenidas y no intervenidas. En este sentido, en las áreas no intervenidas se registraron valores de LST ~1 K más bajos y niveles de recubrimiento vegetal ~10% más altos que en las intervenidas. En otro ámbito de aplicación, los datos de LST obtenidos mediante imágenes de Landsat-5 TM (período 2009-2011), se utilizaron en el análisis de los patrones espacio-temporales de la LST y su relación con el grado de ocupación de la fracción arbórea en ecosistemas de dehesa. Se ha detectado una relación negativa entre la LST y la cobertura arbórea, con diferencias a nivel estacional debido al dinamismo del ciclo fenológico del pastizal

    Multispectral Resource Sampler: Proof of concept. Literature survey of bidirectional reflectance

    Get PDF
    A bibliography compiled in order to give a comprehensive review of previous work in scene bidirectional reflectance, particularly those studies relevant to the Multispectral Resource Sampler (MRS) is presented. The bibliography contains 124 abstracts. In addition a synthesis of the literature results is given along with background information concerning MRS

    Estimation of Evapotranspiration Using Advanced Very Idgh Resolution Radiometer (Avhrr) Data

    Get PDF
    Biosystems Engineerin
    corecore