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ABSTRACT 

Multiscale Imaging of Evapotranspiration 

Daniel Sousa 

Evapotranspiration (ET; evaporation + transpiration) is central to a wide range of 

biological, chemical, and physical processes in the Earth system. Accurate remote sensing of ET 

is challenging due to the interrelated and generally scale dependent nature of the physical factors 

which contribute to the process. The evaporation of water from porous media like sands and soils 

is an important subset of the complete ET problem. Chapter 1 presents a laboratory investigation 

into this question, examining the effects of grain size and composition on the evolution of drying 

sands. The effects of composition are found to be 2-5x greater than the effects of grain size, 

indicating that differences in heating caused by differences in reflectance may dominate 

hydrologic differences caused by grain size variation. In order to relate the results of Chapter 1 to 

the satellite image archive, however, the question of information loss between hyperspectral 

(measurements at 100s of wavelength intervals) laboratory measurements and multispectral (≤ 

12 wavelength intervals) satellite images must be addressed. Chapter 2 focuses on this question 

as applied to substrate materials such as sediment, soil, rock, and non-photosynthetic vegetation. 

The results indicate that the continuum that is resolved by multispectral sensors is sufficient to 

resolve the gradient between sand-rich and clay-rich soils, and that this gradient is also a 

dominant feature in hyperspectral mixing spaces where the actual absorptions can be resolved. 

Multispectral measurements can be converted to biogeophysically relevant quantities using 

spectral mixture analysis (SMA). However, retrospective multitemporal analysis first requires 

cross-sensor calibration of the mixture model. Chapter 3 presents this calibration, allowing 

multispectral image data to be used interchangeably throughout the Landsat 4-8 archive. In 



   

addition, a theoretical explanation is advanced for the observed superior scaling properties of 

SMA-derived fraction images over spectral indices. The physical quantities estimated by the 

spectral mixture model are then compared to simultaneously imaged surface temperature, as well 

as to the derived parameters of ET Fraction and Moisture Availability. SMA-derived vegetation 

abundance is found to produce substantially more informative ET maps, and SMA-derived 

substrate fraction is found to yield a surprisingly strong linear relationship with surface 

temperature. These results provide context for agricultural applications. Chapter 5 investigates 

the question of mapping and monitoring rice agricultural using optical and thermal satellite 

image time series. Thermal image time series are found to produce more accurate maps of rice 

presence/absence, but optical image time series are found to produce more accurate maps of rice 

crop timing. Chapter 6 takes a more global approach, investigating the spatial structure of 

agricultural networks for a diverse set of landscapes. Surprisingly consistent scaling relations are 

found. These relations are assessed in the context of a network-based approach to land cover 

analysis, with potential implications for the scale dependence of ET estimates. In sum, this thesis 

present a novel approach to improving ET estimation based on a synthesis of complementary 

laboratory measurements, satellite image analysis, and field observations. Alone, each of these 

independent sources of information provides novel insights. Viewed together, these insights form 

the basis of a more accurate and complete geophysical understanding of the ET phenomenon. 
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Introduction 

Earth’s lithosphere, atmosphere, and biosphere are unified by the movement of water. 

Evapotranspiration (ET; the sum of evaporation and transpiration) is a central mechanism in this 

exchange, and accordingly plays a major role in Earth’s surface energy balance. However, 

despite the pivotal role that ET plays in the Earth system, a number of outstanding questions 

remain in our fundamental physical understanding of the process. For instance, a recent review 

found that over 50 models currently exist to compute ET, and model choice can impact ET 

estimates by over 25% (Fisher et al., 2011). Uncertainty in ET estimation propagates into to 

Earth system models and has direct implications for our ability to monitor and predict changes to 

fundamental processes such as the speed and amplitude of the water cycle, the location and 

movement of biomes, and the partitioning of the global surface energy balance. This uncertainty 

is, at least in part, a result of insufficient observations to resolve ambiguities in the assumptions 

underlying each model.  

One critical component of these models is the evaporation of water from soil, sediment, 

and rock substrates. Despite the importance of experimental constraints to an understanding of 

the underlying mechanisms, surprisingly few laboratory investigations exist documenting the 

evaporation of water from porous media. Those experiments that do exist focus on measurements 

of either the optical (Lobell and Asner, 2002; Small et al., 2009; Tian and Philpot, 2015a; Zhang 

and Voss, 2006) or thermal (Smits et al., 2012, 2011, 2010) evolution alone, without explicit 

consideration for the potential complementary information that could be provided by the other 

data stream. This knowledge gap is particularly remarkable given that the remote sensing of ET 

generally relies on coincident measurements of both reflectance and surface temperature. 
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Chapter 1 of this thesis presents the results of a suite of laboratory experiments designed 

to provide constraints on one component of ET models. These experiments observe the 

simultaneous optical and thermal evolution of drying sands of varying composition and grain 

size. While all the sands are observed to undergo the same stages during the drying process, 

important differences in the timing, rate of change, and amplitude of change observed in each 

stage are also observed. The relationship between the differences in drying trajectories and the 

variations in grain size and composition is explored. In addition to being of interest on its own, 

the content of this chapter provides important physical and conceptual framework underlying the 

chapters which follow. 

While laboratory measurements are critical to understanding the underlying physics, the 

ultimate objective for many ET studies is landscape-scale mapping and monitoring. Satellite 

imagery can be useful for landscape-scale ET studies because it provides low cost, rigorously 

calibrated, quantitative time series measurements nearly simultaneously over broad (>100 km) 

spatial extents. However, the decades-long multispectral Landsat archive is collected at 

broadband (>100 nm) spectral intervals. In order to understand how the hyperspectral (3-12 nm 

resolution) laboratory measurements of Chapter 1 can be expected to relate to multispectral 

satellite imagery, the question of hyperspectral-to-multispectral information loss – or 

preservation – must be considered. 

Chapter 2 investigates this question. Hyperspectral images collected by the AVIRIS 

sensor are compared to same-day multispectral images collected by Landsat. These images were 

selected on the basis of maximum diversity of substrate materials such as sediment, soil, rock, 

and non-photosynthetic vegetation. The results indicate that the spectral continuum measured by 

Landsat is sufficient to resolve the gradient between sand-rich and clay-rich soils. This gradient 
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is also found to be a dominant feature in hyperspectral mixing spaces where the actual 

absorptions can be resolved. This is encouraging news for the potential application of laboratory 

results such as those of Chapter 1 to landscape-scale soil mapping and ET monitoring. 

In order to relate laboratory measurements to landscape-scale processes, the issue of scale 

must also be considered. One reason that estimates of ET are so variable is that the physical 

quantities on which they rely (e.g. temperature, humidity deficit, wind speed, stomatal 

conductance) operate at different spatial scales. As a result, surface energy balance equations 

generally scale nonlinearly in heterogenous areas (Brunsell and Gillies, 2003a). The effects of 

this nonlinear scaling are so pernicious that subgrid variation of latent heat exchange has been 

shown to produce bias errors in surface-vegetation-atmosphere-transfer (SVAT) models often 

exceeding 100%, and sometimes up to 300% (Baldocchi et al., 2005). 

Maps of ET are generally derived from a combination of data from satellite imagery and 

ground based weather stations. Spatially explicit SVAT models which leverage spatial and/or 

temporal differences in the thermal radiance field are inverted to estimate thermal inertia and 

evapotranspirative cooling. Because of the nonlinearity in the surface energy balance equations, 

the spatial structure of ET maps obtained in this way are scale-dependent and can vary widely 

between sensors. This has been the subject of a considerable body of recent work (e.g.  (Brunsell 

and Anderson, 2011; Ershadi et al., 2013; McCabe and Wood, 2006; Sharma et al., 2016)). 

The vast majority of ET models rely, at least in part, on spectral vegetation indices as 

inputs to provide critical constraints on land surface properties such as vegetation abundance and 

leaf area index. Vegetation indices generally have nonlinear scaling properties (Christopher 

Small, 2001; Small and Milesi, 2013; Sousa and Small, 2017a). This nonlinearity is particularly 

severe for the most commonly used index, the Normalized Difference Vegetation Index (NDVI; 
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(Rouse et al., 1974)). Nonlinear scaling in such a critical input parameter can have obvious 

implications for ET estimation.  

Spectral mixture analysis (SMA; (Adams et al., 1986; Gillespie et al., 1990; Smith et al., 

1985)) is a simple, physically based approach to the estimation of areal abundance of spectrally 

distinct Earth materials from satellite imagery. For the purposes of mapping the areal abundance 

of subpixel vegetation, SMA has been shown to have strongly linear scaling properties 

(Christopher Small, 2001; Small and Milesi, 2013). Independent field validations using 

traditional estimation methods have shown the accuracy of SMA to be superior to spectral 

indices when estimating the amount and density of vegetation, particularly in cases of sparse, 

open canopy vegetation cover (Elmore et al., 2000; Smith et al., 1990). The linear scaling that 

SMA provides clearly has the potential to yield obvious benefits for understanding a scale-

dependent process like ET. 

A globally standardized approach to SMA was developed by (Small, 2004) for the 

Landsat 7 ETM+ sensor. However, Landsat 8, launched in 2013, carries a substantially 

redesigned imaging sensor. Because of differences in spectral bandpass between the two sensors, 

cross-calibration is required in order to allow the globally standardized model to operate on data 

from the two sensors interchangeably. Fortunately, an underflight of the two satellites was 

performed soon after the launch of Landsat 8, enabling this cross-calibration using image pairs 

collected < 2 min apart. Chapter 3 presents this cross-calibration, as well as a theoretical 

explanation for the superior scaling properties of SMA fraction estimates versus spectral indices. 

The result is a standardized approach which permits effectively interchangeable treatment of data 

throughout the Landsat 4-8 archive. 
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At landscape scales, the tradeoff between vegetation abundance and surface temperature 

has long been recognized to result in a generally triangular distribution on scatterplots of 

simultaneously imaged land surface temperature versus vegetation abundance (J. C. Price, 1990). 

This has led to a popular approach to ET estimation deemed the Triangle method (Carlson et al., 

1994). However, Triangle Method-based studies to date have based their vegetation abundance 

estimates on spectral indices. The improvement to Triangle Method-based ET estimation 

obtained by estimating vegetation abundance using SMA instead of spectral indices is examined 

in Chapter 4. In addition, the Substrate and Dark EM fraction maps are examined in the context 

of surface temperature. The relationships between all three EMs and the derived parameters of 

ET Fraction and Moisture Availability are also are examined in detail, using an agriculturally 

diverse region of substantial economic and environmental interest in the Sacramento Valley of 

California. 

Chapter 5 focuses on leveraging optical and thermal satellite image time series to 

improve the mapping and monitoring of rice agriculture in this same geographic region. 

However, instead of using multitemporal optical and thermal image data as inputs to a 

landscape-scale ET model, time series of each parameter are considered separately. Optical 

image time series are shown to provide superior ability to estimate differences in crop 

phenology, but thermal image time series are shown to be capable of more accurately 

distinguishing rice from non-rice crops. Taken together, the results of Chapters 4 and 5 have 

clear implications for the application of geophysical methods to problems with clear human 

relevance. 

Finally, Chapter 6 also focuses on agricultural applications, but from a more global 

perspective. The scaling properties of agricultural landscapes are investigated. The land surface 
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of the Earth can be considered a mosaic of competing spatial networks of land cover types 

(Small and Sousa, 2015). Agriculture is one of the most spatially pervasive and economically 

important of these land cover types. A diverse global sample of agriculturally intensive 

landscapes is examined and surprisingly similar scaling properties are observed. These properties 

are found to be similar to those of global agricultural maps, as well as estimates of forest cover 

and human settlements. This unity in scaling properties and connectivity structure across land 

cover types is suggestive of a single, general mechanism for the nucleation, growth, and 

connection of bounded spatial networks (Small and Sousa, 2015). If this relationship also holds 

for variables such as ET fraction and surface moisture availability, these scaling properties could 

provide useful new constraints for improved ET estimation. 
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1. Effects of Grain Size and Composition on the Thermal and 

Optical Evolution of Evaporating Porous Media 

Abstract 

Evaporation from porous substrates (e.g. sediments and soils) is a critical component of 

global energy and water budgets. Sediments and soils generally change both optically and 

thermally throughout the drying process. However, the mechanisms by which the physical 

properties of a porous medium influence the timing and amplitude of these changes remain 

poorly understood. This is partially due to the large number of potentially relevant, interrelated 

parameters which are generally needed to characterize porous media. Sieved sands offer a natural 

basis for experimental investigation because they do not possess several of the most challenging 

of these parameters (e.g. wide range of grain sizes, clay-sized particles, organic matter). While 

experiments have been previously conducted using either optical or thermal measurements alone, 

to my knowledge no study has yet been published documenting the joint optical and thermal 

evolution of drying sieved sand samples. The results of previous optical laboratory experiments 

have variously suggested linear, exponential, or multiphase progressions of brightness with 

moisture content. Previous thermal experiments suggest more complex evolutions with 

dependence on boundary conditions. This chapter uses a set of laboratory experiments to 

document the simultaneous optical and thermal evolution of naturally occurring sand samples. 

The three sands used in this chapter vary widely in composition. The sands are sieved to grain 

sizes corresponding to fine, medium, and coarse sand grades. Differences among compositions 

and grain sizes are documented in order to address questions of within- vs between-sample 

variability, relative effect of grain size vs composition on drying trajectory, and impact of both 

grain size and composition on timing of transitions in the drying process. The results indicate 

that the effects of composition are 2-5x greater than the effects of grain size for both optical and 
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thermal measurements throughout the drying process. This suggests that differences in heating 

caused by differences in reflectance may dominate hydrologic differences caused by grain size 

variation, at least for sands in the 125-1000 m range. A set of hypotheses is developed 

addressing the potential to leverage differences in optical and thermal skin depths to infer the 

slope of the vertical moisture gradient at a particular stage in the drying process. If these 

hypotheses are validated by future experimental studies, a new method of characterizing near-

surface hydrological properties of porous media using only remotely sensed measurements could 

be developed. 

Introduction 

The optical and thermal properties of porous media like sediments and soils change when 

wetted. In the optical domain, the addition of water generally results in darkening. In the thermal 

domain, a complex interaction takes place involving flow of both sensible (temperature) and 

latent (evaporation) heat. Optical and thermal processes are interrelated through the physical 

properties of the medium. Two of the most widely variable and geophysically relevant properties 

of sediments and soils are mineralogic composition and grain size. Both mineralogy and grain 

size influence albedo (optical), which influences heating (thermal) by determining the fraction of 

incident radiation that is absorbed by the material. Despite fundamental importance to a complete 

understanding of the evaporation process, the relative contributions of the physical properties of 

porous media to the timing, range, and rate of change of their optical and thermal drying 

trajectories remain poorly understood.  

Evaporation from the land surface is often considered in the context of surface energy 

balance. This approach relies on the principle of conservation of energy: energy reaching the 

Earth surface (i.e. solar radiation + atmospheric emission) must balance the sum of energy 
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partitioned into outgoing radiation (reflection and emission) and both sensible (temperature 

increase) and latent (evaporation) heating. While conceptually simple, this approach can be 

difficult to implement in the case of porous media because of the coupling between terms. 

Material properties impacting radiative and sensible heat flow such as the albedo, surface 

temperature, emissivity, and conductance all change with surface moisture content, which in turn 

changes with latent heat flow. Optical changes in material properties of wetted porous media are 

largely due to the moisture darkening phenomenon, which has been recognized in the 

geophysical literature since at least 1925 (Ångström, 1925), subject to considerable theoretical 

and experimental investigation ever since (e.g. (Bablet et al., 2018; Lekner and Dorf, 1988; 

Philpot, 2010; Sadeghi et al., 2017; Tian and Philpot, 2015a; Twomey et al., 1986; Zhang and 

Voss, 2006)). Previous studies have found results suggesting both linear (Idso et al., 1975) and 

exponential (Lobell and Asner, 2002) reflectance variations in soils, as well as multiphase 

transitions in sands (Small et al., 2009). Thermal changes have also been the subject of 

considerable study (e.g. (Smits et al., 2013, 2012, 2011, 2010; Vanderborght et al., 2017)). 

Despite the importance of experimental constraints to an understanding of the underlying 

mechanisms, surprisingly few laboratory investigations exist documenting the evaporation of 

water from porous media. Those experiments that do exist focus on measurements of either the 

optical (Lobell and Asner, 2002; Small et al., 2009; Tian and Philpot, 2015a; Zhang and Voss, 

2006) or thermal (Smits et al., 2012, 2011, 2010) evolution alone, without explicit consideration 

for the potential complementary information that could be provided by the other data stream. To 

my knowledge, no investigation has yet been published which uses simultaneous optical and 

thermal time series measurements to constrain how fundamental physical properties of porous 

media can impact the evaporation process. 
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This chapter presents a set of experiments designed to address this knowledge gap by 

characterizing the impact of two fundamental geophysical properties – grain size and 

mineralogic composition – on the optical and thermal evolution of drying sands. Three natural 

samples spanning a wide range of provenance and transport history were partitioned into grain 

size fractions corresponding to fine, medium, and coarse sand. These samples were then wetted 

and subsequently allowed to dry while observed under laboratory conditions. Simultaneous time 

series measurements of reflectance, surface temperature, and mass were recorded. These data 

were then used to address the following set of questions: 

• How much variability exists in the drying process among compositions and grain sizes, 

how does the magnitude of this variability compare to variability caused by fluctuations 

in ambient air temperature and relative humidity, and how does this variability compare 

between optical and thermal measurement domains? 

• Do variations in grain size and mineralogy have impacts of comparable amplitude on the 

evolution of temperature and reflectance? If not, which physical parameter has a greater 

effect, and by how much?  

• To what extent do grain size and mineralogy systematically impact timing and amplitude 

of specific optical and thermal transitions in the drying process? 

The observations made in this chapter, while limited in scope, provide microscale 

geophysical context for the evaporation component of the surface energy balance, and for the 

landscape-scale optical and thermal analyses in the chapters to follow. 

Materials & Methods 

Laboratory Apparatus 

Geophysical measurements of the drying progression were simultaneously obtained by 

the following instruments arranged in the laboratory setup illustrated by Figure 1. Illumination 

was provided by an Ushio Halogen 30V 200 W bulb, run at a constant 20 V using a BK 

Precision 9131B Triple Output Programmable DC power supply. The bulb was mounted in a 
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Lowell Pro lamp at a distance of 85 cm, directed at the target from an elevation angle of 45º. 

Spectral reflectance measurements were obtained over the full visible through shortwave infrared 

(350-2500 nm) spectrum using an ASD FieldSpec Pro JR spectroradiometer mounted with an 8º 

foreoptic. The instrument is comprised of three separate spectrometers: one 512 channel silicon 

photodiode array providing Full Width Half Maximum (FWHM) spectral resolution of 3 nm 

across the visible through near infrared (VNIR, 350 to 1050 nm) spectral range, and two indium 

gallium arsenide (InGaAs) detectors providing FWHM spectral resolution of 10 to 12 nm across 

the shortwave infrared (SWIR, 700 to 2500 nm) spectral range. After collection, spectra were 

oversampled to 1 nm wavelength intervals throughout the entire 350-2500 nm spectral range. 

Reflectance measurements were recorded at the sampling rate of 1 / min or faster for every 

experiment conducted. Each recorded spectrum represents the average of 10 individual scan 

spectra collected over the interval of 1 sec. Calibration against a Spectralon® white standard was 

performed at the beginning and end of each experiment and used to estimate the drift of the 

spectrometer over the 4-5 hour duration of each experiment. Drift at a given wavelength was 

observed to be on the order of +/- 0.005 reflectance units for SWIR wavelengths and +/- 0.02 for 

VNIR wavelengths. Drift was observed to be greatest towards the ends of the wavelength ranges 

of each of the 3 spectrometers, and least towards the center. Spectra were subsequently corrected 

for drift by subtraction, assuming linearity with respect to time. 

Thermal measurements were made using a Heitronics CT09.K6 8-14 m pyrometer and a 

FLIR A35 f=9 mm thermal camera with SC kit (60 Hz). The pyrometer was factory calibrated to 

have measurement error of +/- 1 ºC + 0.6% of the difference between the target and sensor head 

temperature. The thermal camera was factory calibrated to have measurement error of +/- 5 ºC or 

5% of the target temperature. The pyrometer, thermal camera, and spectrometer foreoptic were 
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all mounted at a distance of approximately 17.5 cm from the sample. Tests of the collocation of 

the pyrometer and spectrometer fields of view (FOVs) were conducted using high intensity 

localized thermal and visible sources. The FOVs of both instruments were determined to be 

centered within 1 cm of each other. The total widths of the spectrometer and pyrometer FOVs 

were approximately 2.5 cm and 0.7 cm, respectively.  

Measurements of mass were made using a Scientech Zeta Z500 mass balance and 

recorded at 1 sec intervals. While the data were output by the instrument to 0.001 g precision, 

drift was observed over the course of the experiments on the order of 0.005 g. Drift in the mass 

balance measurements was estimated by differencing the initial and final masses. Mass balance 

measurements were corrected for drift by subtraction, assuming linearity with respect to time. 

Ambient temperature and relative humidity (RH) were measured at the beginning and end 

of each experiment using an Ambient Weather WS-3000-X3 Thermo-Hygrometer Wireless 

Monitor. Macro photos of drying stages were obtained using a Lumix GX85 4/3 camera with 

an Olympus M Zuiko ED 60mm f/2.8 macro lens. 
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Figure 1. Laboratory setup. Each sample was centered on the mass balance and illuminated by 

the halogen lamp at 45 degree elevation angle. The spectrometer foreoptic, pyrometer, and 

thermal camera were all focused on the center of the sample. The spectrometer was nadir-

looking and the pyrometer was oriented near-nadir (approx. 10 degrees) in the principal plane. 

The camera was positioned obliquely outside the principal plane. 

Sands 

The 3 sands used for this analysis are described below. Each sand was sieved into the 

following size fractions: < 63 m (silt & clay), 63-125 m (very fine sand), 125-250 m (fine 
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sand), 250-500 m (medium sand), 500-1000 m (coarse sand), and > 1000 m (very coarse 

sand). Because of the grain size distributions of the samples, the analysis focuses on 125-250 

m, 250-500 m, and 500-1000 m size fractions. Micrographs, grain size distributions, and 

reflectance spectra of each sample are shown in Figure 2. 

The Cam Ranh (CR) sand was obtained from a coastal dune deposit in southeast 

Vietnam. The CR sample is dominated by semi-rounded to rounded milky quartz, with trace 

metallic oxides, pyroxene, calcite, zircon, and plant debris. CR is the brightest of the three sands 

(dry albedo () = 0.65). Micrographs of the sample demonstrate minimal mineralogic variability 

among size fractions. Grains appear generally homogenous in color. The rounding of the grains 

is consistent with distance from provenance and moderately high energy depositional 

environment. Sufficient material existed in the CR sample to obtain 25 g samples for each of the 

125-250 m, 250-500 m and 500-1000 m size fractions. Micrograph histograms indicate only 

minor variability in grayscale brightness among grain sizes for the CR sands, consistent with the 

nearly monomineralic nature of the sample.  

The Cape Cod (CC) sand was obtained from the Provincetown Dunes in Cape Cod 

National Seashore. The CC sample is primarily composed of rounded quartz, with rare feldspar 

are trace rounded lithics, glauconite, hornblende, and detrital carbonate. CC grains are more 

variable in color than CR grains, resulting in a lower overall sample albedo ( = 0.54). The grain 

size distribution of the CC sand is skewed toward coarser size fractions, consistent with dunes 

deposited in a subaqueous environment and subsequently subject to aeolian erosion. The 

dominance of rounded grains is in accord with the long sediment age and transport distance of 

the CC sand. Given the grain size distribution, 25 g samples were only able to be obtained of the 

250-500 m and 500-1000 m size fractions. Micrograph histograms reveal the 500-1000 m 
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sample to be shifted toward darker grains relative to the 250-2500 m sample, suggesting 

nonnegligible covariability of mineralogy with grain size.  

The Brahmaputra (BR) sand was obtained from a transient sediment deposit (char) in the 

floodplain of the Brahmaputra River in Bangladesh. The char was deposited underwater during 

monsoonal high water and subsequently exposed to the air as water levels fell in the dry season. 

The BR sample is characterized by abundant angular quartz grains, with a trace amount of lithic 

grains, micas, and a wide range of heavy minerals. The relative abundance and diversity of heavy 

minerals results in its darker appearance and low overall albedo ( = 0.38). The grain size 

distribution for the BR sample is skewed toward finer size fractions, reflecting its position in a 

relatively low energy depositional microenvironment within the char. The angularity of the BR 

grains is consistent with proximity to sediment source. 25 g samples of the BR sand were 

obtainable for the 125-250 m and 250-500 m size fractions. Micrograph histograms reveal the 

250-500 m sample to be shifter toward brighter grains than the 125-250 m sample, again 

suggesting nonnegligible covariability of mineralogy with grain size. 
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Figure 2. Micrographs. The Cam Ranh, Cape Cod, and Brahmaputra sands were sieved into fine 

sand (125 – 250 mm), medium sand (250 – 500 mm), and coarse sand (500 – 1000 mm) size 
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fractions. Micrographs of each size fraction were acquired at 1x and 4x magnification using 

Leica MS5 stereomicroscope. Histograms of the micrographs are shown to the right. 

Representative dry and wet sample reflectance spectra are shown in black. Reflectance spectra of 

intermediate stages of drying are shown in gray at 15 minute intervals. Sufficient material was 

present for the Cam Ranh sand to partition 25 g samples of each of the three size grades, but 

only two size grades were available for each of the other two sands. 

Laboratory procedure 

For each experiment, the 25 g sample was measured into a glass petri dish 60 mm in 

diameter. A white reference measurement was taken, and the petri dish containing the sample 

was placed into position on the mass balance within the fields of view of the spectrometer and 

pyrometer. The sample was placed on a dark background to minimize the effects of stray light. 

The dry sample was left in position for at least 30 minutes prior to the beginning of the 

experiment in order to 1) provide baseline measurements of mass and reflectance, and 2) 

standardize the thermal state of the sample prior to the addition of water, minimizing the effect 

of fluctuations in ambient conditions of the climate-controlled building in which the experiments 

took place.  

A reservoir of Milli-Q purified water was maintained in the lab at ambient temperature. 

After the initial heating, water was drawn from this reservoir and added to the samples using a 

micropipette. 8 mL of water was sufficient to saturate the CR and CC samples, but 10 mL were 

required for the BR samples due to their lower density. Both the air temperature and RH of the 

room were observed to vary substantially during the experiments. The lowest ambient 

temperature recorded was 23.1 ºC and the highest was 31.7 ºC, with a maximum temperature 

fluctuation of 3.9 ºC and minimum fluctuation of 0.4 ºC within a single experiment. The lowest 
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ambient RH recorded was 4% and the highest was 28%, with a maximum RH fluctuation of 9% 

and minimum fluctuation of < 1% within a single experiment. Each experiment was conducted in 

triplicate to provide an estimate of the effect of these (and other) sources of variability in the 

ambient environment. 

Evaporation was then allowed to proceed until complete. The beginning and end of the 

time period reported in subsequent figures as “experiment duration” were determined using the 

time water was added and the time mass loss dropped below the measurement error of the mass 

balance, respectively. The sample was left in place for at least 30 minutes of additional heating 

after mass loss had ceased in order to allow the sample to more closely approach thermal 

equilibrium and to provide post-experiment observations of reflectance and mass for the linear 

drift corrections.  

Caveat – packing 

Differences in packing among samples were unavoidable. Micrographs of both sieved 

and unsieved samples (Figure 2) demonstrate that significant differences in angularity and pore 

structure are to be expected among the samples. The most prominent evidence of significant 

variations in packing is that an additional 2 mL of water were necessary to saturate the BR 

sample than the CR and CC samples. This is consistent with the hypothesis that the more angular 

material (BR) packs less closely, has greater volume of pore spaces, thus requires more water to 

saturate than the more rounded materials.  

The potential for improvement in consistency by mechanically enhanced settling was 

investigated by vibration of the 500-1000 m CC samples at 38 Hz for 60 seconds both before 

and after the addition of water. The results of this experiment were inconclusive and vibration 
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was not applied to the remainder of the samples. Observations of the vibrated samples are plotted 

in gray on the figures that follow.  

Observations 

Definition of Extinction and Skin Depths 

Before the general features of the drying progression are examined, it is important to 

consider the portion of the sample observed by each sensor. The mass balance measurements are 

integrated throughout the volume of the sample. The optical and thermal measurements are not. 

The fraction of the sample to which these sensors are sensitive is determined by the depth to 

which light penetrates into the medium. This depth, referred to as the extinction depth, is 

wavelength- and material-dependent and can be expected to vary with physical properties such 

as packing structure, transmittance, and emissivity. The spectrometer and pyrometer are sensitive 

to the optical and thermal skin depths, respectively. For a given wavelength, the skin depth is 

generally shallower than the extinction depth because two-way paths must be considered. The 

extinction and skin depths can be considered to form surface layers which will be referred to for 

the remainder of this chapter as the extinction layer and skin layer, respectively. 

In soils, the optical skin layer has long been recognized as having a thickness of < 20 mm 

(Idso et al., 1975). It is likely that the thickness of the optical skin layer for these sediment 

samples may reach or exceed this 20 mm threshold given the 1 mm (1000 m) size of the largest 

grains, the transmissivity of the grains, and the amount of pore space visible in the micrographs 

from Figure 2. Because of the relatively small samples being used in this experiment, verification 

that the samples are optically thick (at least to two-way transits) is important before the 

observations can be interpreted. 



 20 

  

Optical thickness of all the samples measured in this experiment was tested by measuring 

spectra of each dry sample on both dark (reflectance < 0.06 for all wavelengths in the 350-2500 

range) and bright (Spectralon® white standard) backgrounds. The backgrounds were measured 

to be within +/- 1 mm in height to ensure consistent illumination. The difference between spectra 

collected on bright and dark backgrounds was computed for each wavelength. The median 

difference was found to be 0.5% or less for each sample, on the order of measurement error of 

the spectral measurements. For 3 of the 8 samples the median difference was positive (sample on 

dark background brighter than sample on light background). These observations support the 

notion that the 350 – 2500 nm skin depth for all the samples measured in this chapter is less than 

the thickness of the samples. The thermal skin layer can be expected to be substantially thinner 

than the optical skin layer given the strong thermal absorptivity of water and most sediments. 

Generalized drying progression 

Figure 3 demonstrates the generalized progression of the drying experiments using an 

individual run of the CC 250-500 m sample (A), along with representative reflectance spectra 

for each stage of the drying process (B) and a cartoon highlighting salient features of the physical 

state of the sample at each stage in the drying process (C). The experiment begins as the sample 

is heated before water is added (t < 0 hr). The state of the sample at this initial stage closely 

resembles the state of the sample at the termination of the experiment (t > 3.7 hr). The surface 

temperature of the sample is near maximum (≈ 67 ºC), the mass of the sample is minimum (+ 0 g 

relative to dry), and the 1440 nm reflectance is near maximum (0.56). 
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Figure 3. A. Example time series of coincident mass, surface temperature, and reflectance 

measurements. Hourly mass loss rate is computed continuously and plotted in gray. B. 
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Reflectance spectra measured at each stage. C. Cartoon illustrating the physical progression of 

the sample associated with the phases identified in A. The sample begins dry, hot, and bright. 

When water is added, the sample gains mass, cools, and darkens. The first stage is reached when 

sufficient water exists to form a free surface above the sand sample. This then transitions to a 

second stage as water evaporates from the matrix of pore spaces. Optical and thermal surface 

properties return to the dry state as the optical and thermal skin layers dry. 

The addition of room temperature water at t = 0 results in abrupt changes to the state of 

the sample. The mass increases by 8 g (or 10 g, in the case of the BR samples) to its maximum 

value, then begins to immediately monotonically decrease as evaporation progresses. The 

reflectance drops to its minimum value (< 0.1), then begins to immediately monotonically 

increase as water absorption diminishes with evaporation. The surface temperature drops to its 

minimum (< 40 ºC), then rapidly increases to an initial steady state temperature of ≈ 45 ºC. The 

state reached immediately after the addition of water is referred to as free surface evaporation 

because standing water is present above the top layer of sand grains. This stage generally persists 

for ≈ 1/4 of the duration of the experiment, but significant differences exist between sediment 

samples. 

Free surface evaporation terminates when the water level drops sufficiently to approach 

the surface of the sand. Once this occurs, the source of evaporating water evolves from a 

reservoir above the sand grains towards the matrix of interstitial spaces among the sand grains. 

For the remainder of the chapter, this new stage will be referred to as Matrix Evaporation, and 

the transition into it will be referred to as Transition 1 (T1). The surface temperature during 

matrix evaporation reaches a gradually cooling plateau which is ≈ 3 to 5 ºC cooler than during 

the free surface evaporation stage, reaching a minimum at the end of the matrix evaporation 
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stage. Reflectance increases rapidly by ≈ 1/3 of its range during T1, then monotonically increases 

at an increasing rate throughout matrix evaporation. Mass loss continues monotonically 

throughout both the T1 and matrix evaporation stages. 

The rate of matrix evaporation drops precipitously when water availability becomes 

limited. Near this time, 1) the surface temperature rapidly increases because the grains in the 

thermal skin layer change from being dominated by latent heat flow (evaporation) to sensible 

heat flow (temperature change), and 2) reflectance increases rapidly as the liquid water 

absorption ceases on the dry grains. Both surface temperature and reflectance approach the dry 

states that were observed before the water was added. The transition from matrix evaporation to 

the final dry state will be referred to as Transition 2 (T2) for the remainder of this chapter. 

The features listed above are common to all of the drying experiments. These common 

features provide context with which the effects of sample-to-sample variations in grain size and 

composition can be interpreted. Systematic effects of grain size and composition on the timing 

and amplitude of the transitions discussed above, as well as the overall range of values and rates 

of change, will be examined in detail in the following subsections – after a brief caveat. 

Justification for using 1440 nm reflectance 

While the optical and thermal properties of porous media are each of sufficient 

complexity to warrant their own detailed analyses, this chapter is designed to examine their joint 

evolution in the context of evaporation. In order to focus the analysis on the most salient 

features, the thermal properties of the sample are reduced to the single variable of surface 

temperature. In the same way, the principal relevant information present in the 350-2500 nm 



 24 

  

reflectance continuum will be extracted using the reflectance at a single wavelength – 1440 nm. 

This wavelength was chosen on the basis of the absorption spectrum of liquid water.  

Liquid water is well known to have strong infrared absorption features at 970, 1160, 

1440, and 1930 nm wavelengths. The depth of these absorptions increases with wavelength, so 

that the 1930 nm absorption is the most intense and the 970 nm absorption is the least intense 

(Kou et al., 1993). Wet sediments have been observed to monotonically increase in brightness as 

evaporation proceeds, with the rate of brightening systematically varying with wavelength in 

accord with the absorption spectrum of liquid water (Tian and Philpot, 2015b). The 1930 nm 

absorption feature was not chosen because it is so deep as to result in the complete absorption of 

all detectable light in the initial stages of the experiment. For the purposes of this experiment, 

1440 nm thus has the greatest dynamic range of the infrared water absorption features measured 

by the spectrometer. 

Reflectance and Surface Temperature Time Series 

Figure 4 shows the evolution of 1440 nm reflectance versus time for each experiment.  

  

Figure 5 shows the same reflectance measurements plotted against fractional mass loss 

(Fm).  

Figure 6 and Figure 7 show complementary time series of surface temperature versus 

time and Fm, respectively. The duration of each experiment from the addition of water to the 

cease of mass loss is labeled on Figures 4 and 6. During two of the experiments (CR 250-500 m 

#2 and CC 250-500 m #3), the spectrometer experienced a read/write error. As a result, time 
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series of surface temperature and mass are available for all runs but time series of reflectance 

were not collected for these two runs.  

 

 

Figure 4. 1440 nm reflectance versus time. Run duration is based on termination of mass loss 

(not shown). The experimental runs are segregated by grain size and material composition. 

Substantial intra-sample variability is observed for each sample, largely due to fluctuations in 

ambient environmental conditions. The normalization by fractional mass ( 
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Figure 5) reduces this variability considerably. 

 

  

Figure 5. 1440 nm reflectance versus fractional mass loss. Same as  

Figure 4, but with the time axis replaced by fractional mass loss. This has the effect of (partially) 

collapsing variations in evaporation rate due to changes in ambient environmental conditions. 

The cause of remaining intra-sample variability is considered to be variations in packing 

configuration, mineralogical distribution within the skin layer, and/or measurement error. 
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Figure 6. Surface temperature versus time. Same as Figure 4, but showing surface temperature 

instead of reflectance. More pronounced intra-sample variability is observed for surface 

temperature than for reflectance. 
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Figure 7. Surface temperature versus fractional mass loss. Same as Figure 5, but showing 

surface temperature instead of reflectance. Again, the fractional mass normalization accounts for 

some of the variability between runs, but substantial differences remain. Temperature variations 

between runs of the same sample are likely due to variations in ambient relative humidity 

resulting in higher or lower steady state evaporation temperatures. Despite the intra-sample 

variability, consistent differences between samples are still observed. 
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Figure 8. Material comparison for each grain size. Clear differences emerge among the drying 

trajectories of the three materials in terms of both reflectance and surface temperature. CR is 

consistently brightest and coolest, and BR is consistently darkest and hottest. CC is intermediate, 

with a more delayed onset of T1. The onset of T2 as measured by surface temperature is earliest 

for BR, latest for CR, and intermediate for CC. The termination of T2 as measured by reflectance 

is also earliest for BR, latest for CR, and intermediate for CC. 



 30 

  

 

Figure 9. Grain size comparison for each material. The differences among grain sizes for each 

material are more subtle than the material-to-material differences, but still evident. Finer 

grained samples are consistently brighter than coarser grained samples. Finer grained samples 

have earlier T2 onset and earlier T2 termination than coarser grained samples. Deviations from 

this relationship exist but are minor. 
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The common features shown in Figure 3 are present in each time series. Substantial intra-sample 

variability is observed when plotted against time. The portion of the variability present in the 

time domain that collapses in the Fm domain is interpreted to be a function of differences in 

ambient atmospheric conditions and not relevant to the material properties of interest to this 

study. The residual intra-sample differences in reflectance and surface temperature versus Fm for 

each sample give interpreted to give an indication of both natural variability in packing and 

measurement error. Differences between materials and between grain sizes clearly exceed 

within-sample variability, and provide the sought-after information about the relevance of grain 

size and composition to the drying process. In order to more clearly identify these differences, 

the medians of each triplicate (or duplicate) set of samples are grouped by grain size (Figure 8) 

and by material (Figure 9). On these figures, experiment duration has been converted to an 

average mass loss rate (median +/- MAD) to account for the greater amount of water added to 

the BR samples than the CC or CR samples. 

Reflectance differences between materials at constant grain size are evident in Figure 8. 

Albedo differences are clearly manifest in the overall amplitude of the reflectance trajectories. 

The BR samples (black) are characterized by roughly half the reflectance of the CR samples 

(red) for all but the earliest experimental stages. The CC sample has intermediate reflectance for 

most experimental stages. Differences in timing of the experimental progression are also clearly 

present. For instance, T1 is earliest and most abrupt in CR, latest and most gradual in CC, and 

intermediate in BR. On the other hand, the opposite trend is observed for T2.  

Surface temperature differences are also evident among materials. These differences are 

particularly pronounced during T2. As expected, the low albedo BR samples are hottest, the high 

albedo CR samples are coolest, and the intermediate CC samples plot in between. Interestingly, a 
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consistent difference is also evident in the onset of T2 heating in terms of Fm. This difference is 

consistent across grain sizes. 

Reflectance differences between grain sizes are also present (Figure 9). As expected, 

finer grained samples are generally brighter than coarser grained samples for each material 

throughout the drying progression. Two exceptions are visible. One is the BR samples at the 

early stage of the experiment. This may be explained due to differences in packing between the 

samples resulting in less pore space in the finer grained sample, causing a greater fraction of the 

water added to pool above the sand and extend the duration of the free surface evaporation stage. 

The second exception is the dry reflectance of the CC samples. This may be explained by 

differences among the grain size distributions of the minerals comprising the sample. This 

interpretation is supported by the differences in micrograph histograms between the 250-500 m 

and 500-1000 m grain size fractions of the CC sample. 

Finally, surface temperature differences between grain sizes are also present, although 

much less pronounced than the differences between materials. The initiation of T2 is observed to 

occur at a slightly earlier Fm stage for finer grained materials than coarser grained materials. 

Interpretation of the potential causes and implications of the differences highlighted above will 

be discussed below. 

Interpretation 

Overview of the salient features of the drying trajectories 

The broad consistency observed in the time series of mass loss, reflectance, and surface 

temperature is suggestive of potential generality in the stages introduced in Figure 3, at least for 

similarly conducted drying experiments of sieved sediment samples in the 125-1000 m range of 
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grain sizes. However, the purpose of this study is to investigate the sensitivity of the drying 

process to differences in matrix properties. The fundamental questions central to this study can 

be addressed by an examination of the systematic covariability among samples between matrix 

properties and specific features of the drying trajectories.  

At least three prominent features emerge from the trajectories of both reflectance and 

surface temperature: Transition 1 (T1), the Matrix Evaporation stage, and Transition 2 (T2). T1 

is characterized by the cooling of the sample from the initial surface temperature maximum that 

occurs during free surface evaporation, along with a concomitant abrupt increase in 1440 nm 

reflectance. The Matrix Evaporation stage is characterized by gradual but consistent decrease in 

surface temperature and increase in 1440 nm reflectance. T2 is characterized by the heating of 

the sample from the surface temperature minimum that occurs at the end of the Matrix 

Evaporation stage, along with a second abrupt increase in 1440 nm reflectance. The timing, 

amplitude, and slopes of these three features covary in consistent ways from sample to sample, 

and may provide useful information about the fundamental questions under consideration. 

Transition 1  

One clear difference that emerges among samples of varying composition is the 

abruptness of the onset and termination of T1. For both the CR and BR samples, the increase in 

1440 nm reflectance gives abrupt and unambiguous signals bounding T1. The same is not true 

for the CC sample, which is characterized by a gradual onset and even more gradual termination. 

Grain size variation is observed to result in a more modest, but still consistent effect. Finer 

grained samples of a given material have visibly steeper and higher amplitude T1 reflectance 

increases, and less prominently but consistently steeper and more abrupt surface temperature 

decreases. This is consistent for all three materials. 
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Matrix Evaporation 

The slope of both reflectance and surface temperature during the Matrix Evaporation 

stage vary considerably among samples of variable composition. Again, the BR sample forms 

one endmember, with minimal slope in both the reflectance and surface temperature trajectories. 

The CR sample forms the other endmember in terms of reflectance, increasing by more than 0.1, 

but the CC sample forms the other endmember in terms of surface temperature, dropping by 

more than 6 ºC over this period. The duration of the Matrix Evaporation stage is controlled by 

the timing and slope of T1 and T2. Again, consistent but more modest impacts of grain size on 

this stage are also observed. Coarser grained materials have consistently steeper reflectance 

increases than finer grained materials. In contrast, no reliable grain size effect can be discerned 

from the surface temperature measurements during the Matrix Evaporation stage. 

Transition 2 

Surface temperature and reflectance measurements of the timing and onset of T2 show 

consistent relationships for a given sample, and these parameters are also observed to covary 

consistently among samples. Compositionally, the BR samples form one endmember, heating 

earliest (Fm ≈ 0.85) and also reaching terminal 1440 nm reflectance earliest (Fm ≈ 0.9). The CR 

samples form another endmember, heating latest (Fm ≈ 0.95) and also reaching terminal 

reflectance latest, near complete mass loss (Fm ≈ 1.0). The CC samples are intermediate, heating 

at Fm ≈ 0.9 and reaching a plateau near Fm ≈ 0.95 for the finer grained samples, but not 

terminating until complete mass loss for the coarser grained samples. Again, grain size-based 

variations are observed to be more subtle but persistent. Finer grained materials are observed to 

heat earlier and reach dry 1440 nm reflectance earlier than coarser grained materials of the same 

composition. 
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Discussion 

The observations and interpretation described above can be used to address the 

fundamental questions raised in the Introduction. Each of these questions is considered in turn.  

A. How much variability exists in the drying process among sands and grain sizes, how does 

the magnitude of this variability compare to variability caused by fluctuations in ambient 

air temperature and relative humidity, and how does this variability compare between 

optical and thermal measurement domains? 

One parameter relevant to this question is overall experiment duration. For the CR 

samples, the range in experiment duration among runs of the same grain size never exceeded 0.2 

hr. In contrast, the difference between median duration of the 125-250 m and 500-1000 m 

samples was 0.4 hr, and even the difference between 125-250 and 250-500 m was 0.25 hr. For 

the CC and BR samples, however, within-sample variability was higher (0.2-0.5 hr in all cases), 

and the effect of grain size variability was lower (0.05 hr for CC and 0.2 hr for BR). Comparing 

across samples requires the use of mass loss rates. For the 125-250 m samples, the BR sample 

clearly lost mass at a higher rate than the CR sample, as expected given the lower albedo. For the 

other grain sizes, the results are inconclusive, with within-sample variability meeting or 

exceeding between-sample variability in every case. In many (but not all) cases, intra-sample 

differences in experiment durations and mass loss rates are consistent with differences in 

ambient T and RH. As noted above, experiment duration and overall mass loss rate are the least 

consistent of the measurements made because of their sensitivity to ambient environmental 

conditions.  

Observations of the salient features of the reflectance and surface temperature curves 

offer a stark contrast to the overall experiment duration and average mass loss rate. Material-

specific variability clearly exceeds intra-sample variability in every parameter measured: the 
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timing, amplitude, and slope of T1; the slope of the Matrix Evaporation stage; and the timing, 

amplitude and slope of T2. This is true for both optical and thermal measurements.  

This result can be illustrated by examining pairs of samples. Optically, one metric to use 

is the increase in reflectance associated with T1. Among materials, this parameter can exceed 4x 

the intra-sample variability. Among grain sizes, it can exceed 2x intra-sample variability.1 

Thermally, one metric to use is the Fm associated with T2 onset. While the surface temperature 

measurements do show more intra-sample variability than the optical measurements, variations 

associated with material and grain size generally exceed even this uncertainty, sometimes by as 

much as 5x.2  

B. Do variations in grain size and mineralogy have impacts of comparable amplitude on the 

evolution of temperature and reflectance? If not, which physical parameter has a greater 

effect, and by how much? 

The effect of composition is consistently observed to be greater than the effect of grain 

size. The relative magnitude of compositional effects and grain size effects is observed to be 2x-

5x, depending on the parameter. Similar relative amplitudes of composition versus grain size are 

observed in a wide range of optical and thermal parameters. Optically, this signal is present in 

the amplitude of T1 brightening3, the overall reflectance increase during the matrix evaporation 

                                                 

1 See (CR vs BR 125-250 m) and (CR 125-250 vs 500-1000 m).  Intra-sample range in amplitude of the 

T1 reflectance increases: < 0.05 in every case. Difference between materials: 0.2 (CR vs BR 125-250 m). Difference 

between grain sizes: 0.1 (CR 125-250 vs 500-1000 m) 

2 See (CR vs BR 125-250 m). Intra-sample ranges in Fm associated with T2 onset: 0.02 (CR) and 0.05 (BR). 

Difference between materials: 0.1 

3 2x material effect vs 0.2x grain size effect. Material effect: 0.3 vs 0.15 for CR vs BR 125-250. Grain size 

effect: 0.3 vs 0.25 for CR 125-250 vs 500-1000 m 
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stage4, and the Fm at which terminal reflectance is reached5. Thermally, the signal is observed in 

the amplitude of cooling during the Matrix Evaporation stage6 and the Fm at which T2 heating 

begins7.  

This result suggests that the overall effect of systematic differences in packing, 

arrangement of pores, or other physical structure that occur as a result of grain size variations in 

the 125-1000 m range on the hydrologic properties of the medium has substantially lower 

amplitude than the overall effect of changes in reflectance due to mineralogical composition. The 

closest samples in albedo (CC and CR) consistently showed greater difference than the furthest 

samples in grain size (125-250 vs 500-1000 m). However, fine grained materials such as silts 

and clays are well known to have much longer, more complex drying trajectories. While it seems 

reasonable to expect the results found in this study to extend to coarser grain size fractions (e.g. 

very coarse sand; 1000-2000 m), the same is not true of finer grain sizes. Ultimately, this begs 

questions such as: What is the functional form of the relationship tying grain size to drying 

trajectory? What is the lower limit on grain size before changes in the physical structure of the 

medium cause effects of comparable intensity to those caused by changes in albedo? And how 

does this limit compare to the capillary length of water? 

                                                 

4 3x material effect vs 0.5x grain size effect. Material effect: 0.03 vs 0.1 for BR vs CR 125-250. Grain size 

effect: 0.1 vs 0.15 for CR 125-250 vs 500-100 m 

5 9% material effect vs 2% grain size effect. Material effect: 0.9 vs 0.98 for BR vs CR 125-250. Grain size 

effect: 0.98 vs 1.0 for CR 125-250 vs 500-1000 m 

6 Material effect 5x grain size effect. Material effect: 2 vs 7 ºC for BR vs CC 250-500 m. Grain size effect: 

2 vs 3 ºC for CR 125-250 vs 500-1000 m. 

7 Material effect 5x grain size effect. Material effect: 0.85 vs 0.95 for BR vs CR 125-250 m. Grain size 

effect: 0.97 vs 0.99 for CR 125-250 vs 500-1000 m.  
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C. To what extent do grain size and mineralogy systematically the impact timing and 

amplitude of specific optical and thermal transitions in the drying process? 

This question can be addressed by the relative timing of the T1 and T2 features. Fm is 

used instead of absolute time (hours) because it is more useful for a physical understanding of 

the system and is less sensitive to environmental parameters. For the 250-500 m grain size, the 

time between the termination of T1 and the onset of T2 is observed to vary between materials by 

approximately 0.15 Fm. This time varies for the BR 125-250 and 250-500 m samples 

approximately 0.03 Fm. The timing of T2 is perhaps the most diagnostic of the features, with 

large variations on the order of 0.15 Fm in both the onset of heating and the reaching of dry 1440 

nm reflectance due to composition. These differences covaried with albedo, with the darkest 

sample characterized by the earliest T2, and the brightest sample characterized by the latest T2. 

Possible physical processes – Albedo, composition, and grain size 

In the idealized case, every sample would have constant energy input for the duration of 

the experiment. In reality, energy input varies with time due to fluctuations in the emission of the 

bulb, ambient environmental conditions, and other uncontrollable factors. In this analysis, these 

are considered to be higher order factors considered to contribute to experimental uncertainty 

and intra-sample variability. Regardless of these complexities, the vast majority of energy 

reaching the sample comes in the form of radiation from the halogen bulb. Some fraction of this 

incident radiation is absorbed by the sample, and some is reflected. The reflectance spectrum of 

the sample determines the fraction of shortwave incident energy that is absorbed at each 

wavelength. The matrix materials used in these experiments vary in reflectance by approximately 

a factor of 2 (Figure 2) due to differences in mineralogic composition. Differences in the fraction 

of incident longwave radiation absorbed (absorptivity) between samples are expected to be minor 

for all but the latest stages of the experiment because of the presence of water. Therefore, all else 



 39 

  

equal, lower albedo samples can thus be expected to absorb a greater fraction of incident energy, 

heat to higher temperatures, and evaporate water more rapidly, than higher albedo samples. This 

simple physical mechanism is sufficient to explain the observed relationship between albedo and 

overall temperature. 

Additionally, for grain sizes much greater than the wavelength of light, finer grained 

materials are expected to demonstrate brighter volume scattering than coarser grained materials 

when single-scattering albedo is derived from first principles (if all else is equal) (Hapke, 2012). 

This explanation is sufficient to explain the observation that finer size fractions of a given 

material are generally more reflective than coarser size fractions throughout the course of the 

experiments. Two primary exceptions are present in the data. One exception is due to the T1 

brightening of the 250-500 m BR sample occurring earlier (i.e. at lower fractional mass loss) 

than the T1 brightening of the 125-250 m BR sample. While the coarser of the two samples is 

temporarily brighter than the finer, it reaches a darker steady state for the remainder of the 

experiment and so does not violate the physical explanation. The other exception is the 500-1000 

m CC sample reaching a greater final brightness than the 250-500 m CC sample. The 

observations that that 1) this occurs in the dry sample, 2) the difference between the fine and 

coarse samples varies throughout the experiment, and 3) the difference has a small amplitude 

relative to the other grain size and compositional differences suggests that this may be due to 

minor compositional heterogeneity between the two size fractions of the same material, 

especially given that small absorptive impurities can produce outsize effects of aggregate 

reflectance (Hapke, 2012). This highlights the reality that grain size and composition are unlikely 

to vary independently in many real-world geophysical systems, adding further emphasis to the 



 40 

  

outsized impact of composition relative to grain size on the drying process as observed by these 

sensors.  

Possible physical processes – Surface roughness 

Considerable variation is observed among samples in the shape of T1. One potential 

explanation for this observed variability can be phrased as a hypothesis: 1) Irregularities in the 

sample surface prolong T1 by broadening the effective vertical thickness of the surface layer of 

grains. If Hypothesis 1 were true, a hypothetical, perfectly flat sediment surface would be 

expected to have a maximally sharp T1 and a highly irregular sediment surface would be 

expected to have a maximally gradual, ambiguous T1. Hypothesis 1 is consistent with the 

observation that the vibrated 500-1000 m CC samples have a (slightly) less ambiguous T1 than 

the unvibrated 500-1000 m CC samples. To test Hypothesis 1, the spatial arrangement of grains 

within the skin layer could be systematically varied at the beginning of the experiment. 

Possible physical processes – Skin layer thickness 

Reflectance and surface temperature are derived from measurements of the amount of 

optical and thermal radiance upwelling from the sample, respectively. For this reason, both are 

indicators of physical conditions in the optical and thermal skin layers (and not the full sample 

volume), as described above. In contrast to reflectance and surface temperature, however, the 

mass balance measures a property of the entire volume of the sample. Material-specific 

relationships between mass and surface temperature or reflectance may thus provide potentially 

useful information about geophysical sediment properties such as depth of penetration of light 

and permeability of water through the optical and thermal skin layers. 
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The observation that the 1440 nm reflectance stops changing before mass loss is 

complete suggests that the optical skin layer observed by the spectrometer does not encompass 

the full volume of the sample. This inference is consistent with the observed lack of difference in 

reflectance between samples placed on dark versus bright backgrounds. If true, this suggests a 

second hypothesis: 2) The sands are able to support a vertical moisture gradient sufficiently 

steep to allow for the drying of the optical skin layer before the deepest water evaporates. The 

thickness of the optical skin layer could be tested by differencing reflectance spectra of samples 

with systematically varying thickness lying above reflective and absorptive backgrounds. The 

vertical gradient could be tested using small sensors able to measure a moisture profile on the 

scale of the sample. 

Hypothesis 2 is consistent with the observed variations in T2 with grain size. Finer 

grained samples consistently reach their maximum 1440 nm reflectance at lower fractional mass 

loss than coarser grained samples. In the context of Hypothesis 2, this suggests two further 

hypotheses: 3) the optical skin layer is thinner for the finer grained samples than the coarser 

grained samples, and 4) differences in pore size distribution result in vertical differences in 

water distribution with grain size as a result of capillarity effects. If hypothesis 3) were true, this 

would suggest that coarser grained sands would be sensitive to deeper moisture than finer 

grained sands because their lower density of scattering interfaces would allow deeper penetration 

of light into the medium. If hypothesis 4) were true, this would suggest that water (relatively) 

deep in the sediment column would be held longer in finer grained materials than coarser grained 

materials. The same variable thickness experiments and small sensors described above could test 

hypotheses 3 and 4, respectively.  
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Hypotheses 2, 3 and 4 all suggest that the Fm of T2 termination could be a particularly 

informative parameter. Hypothesis 2 predicts that this parameter would vary with 2 properties of 

the sample: thickness of the optical skin layer and slope of the vertical moisture gradient. If true, 

these hypotheses suggest the following inference: If the skin depth were determined using the 

method described above, then the slope of the moisture gradient would be the only remaining 

parameter. Once characterized for a wide range of natural samples, this could provide a 

potentially valuable constraint on hydrologic parameters of the medium such as vertical 

hydraulic conductivity and capillary strength – using only remotely sensed observations. 

In addition, the surface temperature increase associated with T2 termination suggests a 

final hypothesis: 5) T2 termination represents the drying of the thermal skin layer. The time lag 

between the temperature and reflectance increases of T2 might then be leveraged to give an 

indication of the difference in optical and thermal skin depths. In combination with the approach 

outlined above, exploration of this hypothesis may also be an additional avenue for future work. 

Once the optical skin depth was determined by the sequential thickness experiments described 

above, the thermal skin depth could be constrained using the time lag between optical and 

thermal. This set of observations could potentially be used to answer a host of questions with 

potentially significant implications for landscape-scale surface energy balance of such as: Does 

shallow subsurface water contribute more to the skin temperature and reflectance of coarser 

sands than finer sands? Can the degree of covariability between SWIR and thermal observations 

be used to infer physical properties of sediments and soils from satellite images of drying 

landscapes acquired days apart? Under what range of conditions can dry optical spectra be 

used to predict hot (dry) surface temperatures? This third question has particularly significant 
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implications for the combined use of optical + thermal satellite observations (e.g. Landsat) with 

data from optical-only sensors (e.g. Sentinel-2) 

Contribution to the existing body of knowledge 

The monotonic progression in reflectance observed in this experiment is generally 

consistent with the findings of previous optical laboratory drying experiments. The progression 

of reflectance spectra observed in this work bears obvious similarity to the previous experimental 

results of drying sands found by (Small et al., 2009; Tian and Philpot, 2015c; Zhang and Voss, 

2006). The primary way that the experiments presented here extend previous work in the optical 

domain is by the addition of coincident measurements of surface temperature. The surface 

temperature informs the reflectance measurements by providing contextual information about 

skin layer thickness and energy balance.  

Much of the previous work in the thermal domain has focused on variations in thermal 

conductivity (Smits et al., 2013, 2010) and fluid flow through the porous medium involving long 

(>1 m) columns (Smits et al., 2012, 2011, 2010). The experiments presented here cannot 

approach the level of laboratory control and complexity achieved in this robust body of work, 

and cannot address the factors of heat flow and vertical temperature profile through the sample. 

However, detailed borehole measurements are also unavailable for the vast majority of 

spaceborne, airborne, and field-based remote sensing applications. The radiometric measurement 

of surface temperature is much more common. Laboratory focus on this measurement has the 

potential to leverage the coincident, spatially explicit measurements of surface temperature and 

reflectance which are available globally for over 35 years.  
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Conclusions 

This chapter presents the results of laboratory experiments documenting the simultaneous 

optical and thermal evolution of drying porous media. Sands with three distinct compositions 

were sieved into fine, medium, and coarse sand size grades; saturated; and allowed to dry under 

strong illumination comparable to solar intensity. The drying process was monitored with time 

series measurements of mass, reflectance, and surface temperature. Ambient environmental 

conditions were also monitored, and each sample was observed in triplicate in order to quantify 

intra-sample variability for each variable. More variability was present in surface temperature 

than reflectance, but systematic variations were observed among compositions and grain sizes 

that exceeded the intra-sample variability for both measurements. Two clear transitions were 

identified in the drying process, for which differences in the associated reflectance increase, 

timing, and temperature change were identified as consistent properties of specific grain size-

composition pairs. Composition was consistently found to produce greater variability than grain 

size by a factor of 2-5x, suggesting that, for the drying of sands, differences in heating caused by 

differences in reflectance may dominate hydrologic differences caused by grain size variation, at 

least in the 125-1000 m range. Hypotheses, along with possible means of testing, were 

developed regarding the potential connection between these transitions and the arrangement of 

grains within the optical skin layer (roughness), as well as the relative thickness of the optical 

and thermal skin layers. If supported, these hypotheses could potentially lead to the development 

of a novel metric to remotely estimate a physically meaningful property of drying porous media. 

The experimental results presented in this chapter are directly relevant to geophysical 

applications requiring spaceborne optical and thermal image data, and thus to the thesis chapters 

which follow.  
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2. Multisensor Analysis of Spectral Dimensionality and Soil 

Diversity in the Great Central Valley of California 

Abstract 

Planned hyperspectral satellite missions and the decreased revisit time of multispectral 

imaging offer the potential for data fusion to leverage both the spectral resolution of 

hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral 

imagery can also be used to better understand fundamental properties of multispectral data. In 

this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of 

California to address the following questions: (1) How much of the spectral dimensionality of 

hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure 

of the multispectral feature space also present in the low order dimensions of the hyperspectral 

feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate 

endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find 

nearly identical partitions of variance, low-order feature space topologies, and EM spectra for 

hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also 

very similar to those from previous global multispectral analyses, implying that the fundamental 

structure of the global feature space is present in our relatively small spatial subset of California. 

Finally, we find that the multispectral dataset well represents the substrate EM variability present 

in the study area – despite its inability to resolve narrow band absorptions. We observe a 

tentative but consistent physical relationship between the gradation of substrate reflectance in the 

feature space and the gradation of sand versus clay content in the soil classification system. 
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Introduction 

The availability of hyperspectral data for scientific purposes is rapidly increasing. The 

recent opening of the AVIRIS (Green et al., 1998) and HICO (Lucke et al., 2011) data archives 

offers scientists a wealth of high quality observations. Planned satellite missions such as HyspIRI 

(Lee et al., 2015), EnMAP (Stuffler et al., 2007), and HYPXIM (Michel et al., 2011) promise to 

offer even greater spatial and temporal coverage of narrowband imaging observations in the 

coming years. 

These newly available and planned hyperspectral datasets complement the existing 

wealth of public multispectral satellite observations. The Landsat archive offers over 35 years of 

rigorously intercalibrated multispectral data (Wulder et al., 2016). The recent and planned 

launches of the Sentinel satellite constellation promise to add considerably to this collection 

(Drusch et al., 2012), substantially decreasing the revisit time between subsequent multispectral 

observations (Li et al., 2017). 

The future availability of systematic global archives of both hyperspectral and short 

revisit time multispectral observations is expected to offer significant potential for studies that 

leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of 

multispectral sensors. A growing number of data fusion techniques attempt to explicitly merge 

hyperspectral and multispectral data (e.g., (Wei et al., 2015; Zhou et al., 2017)). More generally, 

hyperspectral imagery can be used to better understand fundamental properties of multispectral 

data. Regardless of the specific application, any combined use of hyperspectral and multispectral 

data will benefit from a better understanding of a fundamental question: How much of the 

spectral dimensionality of hyperspectral data is captured in multispectral data? 
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As first recognized by the pioneering work of (Kauth and Thomas, 1976), multispectral 

observations generally form a three-dimensional pyramidal feature space. Subsequent global 

analyses of Landsat (Small, 2004; Small and Milesi, 2013; Sousa and Small, 2017a) confirm this 

finding on spatially extensive, spectrally diverse sets of data and show that these spaces 

generally contain >97% of their variance in the first three dimensions. Consistent global 

endmembers (EMs) can be identified from the apexes of the space representing soil and rock 

substrates, photosynthetic vegetation, and dark targets such as shadow and water. However, most 

analyses are regional and sample only a small fraction of the diversity of land covers present on 

the surface of the Earth. Another fundamental question is thus: Is the characteristic pyramidal 

structure of the multispectral feature space also present in the low order dimensions of the 

hyperspectral feature space at comparable spatial scales? 

Finally, the majority of the EM variability observed in global multispectral analyses is in 

the substrate EM (Crist and Cicone, 1984; Kauth and Thomas, 1976; Small, 2004). This is due to 

the wide range of soil and rock compositions that cover the land surface of the earth. It is likely 

that the global availability of hyperspectral imagery will add additional constraints to the 

properties of multispectral substrate EMs. A third fundamental question is thus: How much of 

the variability in Substrate EMs present in hyperspectral data is captured by multispectral 

sensors? 

In this analysis, we use coincident AVIRIS and Landsat 8 acquisitions to address these 

three fundamental questions. We find the nearly identical partition of variance, low order feature 

space topology, and EM spectra for the hyperspectral and multispectral cases. The resulting 

feature spaces and EMs are also very similar to those found in previous global multispectral 

analyses, implying that the relatively simple pyramidal structure of the broadband feature space 
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also represents the low order dimensions of the hyperspectral feature space. Finally, we find that 

the multispectral dataset well represents the basic structure of the plane of substrates found in the 

hyperspectral data, despite the fact that AVIRIS resolves a wide range of absorptions 

indistinguishable to Landsat OLI. Our results also suggest a novel, potentially useful method for 

mapping sand versus clay soil composition–from both hyperspectral and multispectral 

observations–on the basis of the location of soil EMs on the plane of substrates. 

Background 

We provide a background for each of the three central questions of the paper in order: 

Measuring Spectral Variability 

A reflectance spectrum is a characteristic of a material. Reflectance is the continuous, 

wavelength dependent function which describes the fraction of incident light which is reflected 

in a given direction. One profitable way of conceptualizing a Visible to Shortwave Infrared 

(VSWIR) reflectance spectrum is as a composite of two signals: the continuum and the 

absorptions (Gillespie et al., 1990). Hyperspectral imagers generally oversample the reflectance 

spectrum, allowing for the analysis of both continuum and absorptions. Broadband instruments 

undersample the spectrum unevenly, often blurring together the continuum with the absorptions. 

One way of quantifying the variability of reflectance (or radiance) vector sets is through 

their covariance matrix. For an image with n spectral bands, the spatial variance and covariance 

of each pair of bands forms an n square positive semi-definite matrix with n eigenvectors, 

representing uncorrelated modes of spectral variability, and n eigenvalues, representing the 

fraction of total variance described by each eigenvector and its corresponding spatial Principal 

Component, or PC. 
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Because of spatial and spectral redundancy in large numbers of reflectance 

measurements, the actual dimensionality of the spectral feature space may be less than the 

number of spectral dimensions provided by the sensor. The uncorrelated modes of spectral 

variability given by the eigenstructure of the covariance matrix generally contribute unequally to 

the total variance of the data. As a result, the most important modes (i.e. those contributing the 

most variance) can be used to represent the underlying structure of the spectral feature space. 

This provides an optimal representation of the diversity and interrelationships (e.g. mixing) of 

the most disparate spectral patterns in the data. In this context, spectral dimensionality refers to 

the distinction between the most informative dimensions, describing the physically meaningful 

structure of the spectral feature space, and the remaining dimensions that describe stochastic 

variance like sensor noise, atmospheric effects (or correction artifacts), and natural spectral 

variability with a less straightforward physical meaning than that represented by the lower 

dimensions. 

This technique has been used to estimate the information content of hyperspectral 

imagery (Asner et al., 2012; Boardman and Green, 2000; Price, 1975; Thompson et al., 2017), as 

well as to describe the information loss when reflectance spectra are undersampled by 

multispectral imagers (Price, 1997, 1994). Eigenvalues have also been used to directly quantify 

the dimensionality of multispectral data without reference to hyperspectral imagery (Crist and 

Cicone, 1984). Finally, the approach has also been used in the spatiotemporal analysis of image 

time series (Piwowar et al., 1998; Small, 2012; Townshend et al., 1985). 

The key assumption behind the use of this approach to estimate data dimensionality is 

that variance directly corresponds to information. As noted by (Boardman and Green, 2000), this 

is a key limitation for its use with hyperspectral data because the location and depth of specific 
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absorptions provide substantial information in a small amount of overall variance. Despite this 

limitation, we use this method in our analysis because it is a reliable, well-understood tool with 

both precedent and broad applicability. The purpose of this work is to present a comparative 

analysis of the characteristics of coincident hyperspectral and multispectral observations of a 

wide range of diverse land covers. 

Spectral Variability and the Spatial Dimension 

Image dimensionality is an attempt to measure the spectral diversity captured by a 

dataset. However, the spectral diversity of the Earth surface is spatially heterogeneous. The local 

variations that can exist in Earth surface reflectance, as well as the dimensionality of a large, 

diverse set of hyperspectral data, are well illustrated by the recent study of (Thompson et al., 

2017). 

One might expect imagery with a higher spatial resolution to resolve more spectral 

diversity because of fewer mixed pixels. While this is generally true, the increase in spectral 

diversity (and dimensionality) with spatial resolution depends on the characteristic spatial scale 

of the reflectance of the landscape relative to the resolution of the sensor. This dependence of 

dimensionality on spatial resolution and SNR has long been recognized (Green and Boardman, 

2000; Price, 1997; C. Small, 2001; Woodcock and Strahler, 1987). While it is not the focus of 

this study, it is noteworthy that the AVIRIS data we use have roughly half the Full Width at Half 

Maximum (and thus four times the spatial resolution) of the Landsat data. 

All else equal, more spatially extensive image domains might also be expected to include 

a wider range of reflectance spectra and so have higher dimensionality -- up to a point. As with 

spatial resolution, the dependence of spectral diversity on domain size depends on the 
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characteristic spatial scale of the landscape reflectance. However, if the spectral diversity within 

an area approaches the global spectral diversity of the Earth, imaging a larger area should not 

add additional dimensionality. 

The total area of land surface required to approach the level of global spectral diversity is 

clearly location dependent. However, the relationship between spatial resolution, extent of spatial 

domain, and the characteristic spatial scale of Earth’s spectral diversity is important because it 

determines which combination of extent and resolution may provide the most informative 

depiction of the spectral feature space as imaged by the sensor. This is important because the 

spectral feature space provides a physically-based depiction of the properties of a landscape that 

a given sensor is able to distinguish. 

Part of the answer to this question lies in the overall global spectral diversity of the Earth. 

Previous work has attempted to address this. A global analysis of total Earth radiance as 

measured by the hyperspectral Scanning Imaging Absorption Spectrometer for Atmospheric 

Cartography (SCIAMACHY) was conducted by (Roberts et al., 2011), finding 99.5% of variance 

explained in six dimensions. However, the spatial resolution of ~30 km attenuates much of the 

spectral variability of interest by spectral mixing. Due to the current absence of systematic global 

hyperspectral imagery of the land surface, no analog exists to these studies. The largest area 

study of Earth surface hyperspectral imagery to date was performed by (Thompson et al., 2017). 

This study used 15 m resolution AVIRIS imagery of a wide range of land cover types in 

California and estimated the overall spectral dimensionality at 50 dimensions. The broadband 

spectral dimensionality of a wide range of environments has been characterized for six-band 

multispectral Landsat imagery (Small, 2004; Small and Milesi, 2013). Because Landsat resolves 

only the spectral continuum, it can represent 99% of its spectral variability in only three 
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dimensions. The structural similarities of the low order feature spaces in Boardman and Green’s 

2000 analysis of 510 AVIRIS scenes and Small’s 2004 analysis of 100,000,000 Landsat spectra 

suggest that multispectral and hyperspectral feature spaces may share a common structure, 

despite the vastly greater information content of hyperspectral data. The analysis of 2.5 × 109 

AVIRIS spectra by Thompson et al. suggests that the spectral diversity observable within 

California can represent all of the canonical land cover types included in the global MODIS land 

cover classification. In the present study, we use near coincident acquisitions of AVIRIS and 

Landsat 8 OLI to compare the spectral feature spaces and EMs in a pedologically diverse range 

of environments in the Great Central Valley of California. 

Spectral Variability of the Plane of Substrates 

Linear mixture models (Adams et al., 1986; Gillespie et al., 1990; Smith et al., 1985) are 

a common way to represent multispectral and hyperspectral data as linear combinations of 

spectral EMs. The three most common endmembers used for these models are soil and rock 

substrates, green vegetation, and dark or unilluminated materials (e.g., (Roberts et al., 1993)). 

Non-photosynthetic vegetation is also commonly added as a fourth EM. 

Of these EMs, the majority of the multispectral variability on a global scale is observed in 

the substrate (Crist and Cicone, 1984; Small, 2004). This is due to the wide range of physical, 

chemical, biological, and textural properties present in soil, sediment, and rock. Reflectance 

spectroscopy of substrates is complex. Substrate reflectance spectra can vary in at least three 

ways: in continuum shape, in broad absorptions (e.g., Fe), and in narrow absorptions (e.g., some 

clays). Broadband imagery can only be expected to capture the coarsest of these features. For a 

comprehensive treatment of soil reflectance (a complex subset of the plane of substrates), see the 
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seminal work of (Baumgardner et al., 1986), more recent analyses by (Palacios-Orueta and 

Ustin, 1998, 1996), and reviews by (Ben-Dor et al., 2009; Wulf et al., 2014). 

Early work on the hyperspectral dimensionality of the plane of substrates focused on full 

range Visible to SWIR (VSWIR) laboratory spectra (J. Price, 1990) and Visible to NIR (VNIR) 

field spectra  of soils. Further laboratory VNIR characterization of a wide range of soils was 

performed by (Brown et al., 2006), although the dimensionality of the dataset was not discussed. 

The question of how the full diversity of hyperspectral VSWIR substrates (including soil, rock, 

and sediment) are represented in the spectral feature space, as well as how the signal is degraded 

when undersampled by a multispectral imager, remains open. The present study addresses this 

question by directly comparing substrate spectra from simultaneously acquired VSWIR 

hyperspectral and multispectral data, as well as by presenting a parallel analysis of 161 soil and 

rock laboratory spectra. 

Portions of these three questions have been investigated previously. The questions of data 

dimensionality and generality of the feature space have been addressed independently for 

hyperspectral and multispectral datasets, but not simultaneously for both. Variability of the plane 

of substrates has been studied by the analysis of libraries of laboratory and field spectra. 

However, to our knowledge, none of these three questions have been addressed using 

simultaneous, independently imaged multispectral and hyperspectral observations over large 

areas of a spectrally diverse landscape.  

Materials and Methods 

Figure 10 shows the study area for this analysis in northern and central California, USA. 

This region was chosen because of the confluence of data availability from the recently opened 
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AVIRIS hyperspectral image archive (https://aviris.jpl.nasa.gov/alt_locator/) and high-quality 

soil maps maintained by the UC Davis California Soil Resource Lab 

(https://casoilresource.lawr.ucdavis.edu/). The study area spans an unusually wide range of soil 

orders, textures, and chemical properties. A diversity of soil provenances is also present as a 

result of the geologic diversity of the region. Six of the nine soil orders in California are sampled 

in this study. 

  

Figure 10. Northern California AVIRIS flight lines used in this analysis. Five lines were selected 

from the AVIRIS classic data archive on the basis of pedologic and agricultural diversity. 

Landsat 8 acquisitions were collected on the same day as each of the five flight lines. Simplified 

maps showing soil orders (right), as well as lithologic provenance (inset, upper right), and 

cation exchange capacity (inset, lower left) illustrates the complexity of soil properties in the 

study area. Six of the nine soil orders are represented in these flight lines. Soil maps from the UC 
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Davis California Soil Resource Lab (https://casoilresource.lawr.ucdavis.edu/). Map data © 2017 

Google INEGI 

Five AVIRIS flight lines were selected for use in this analysis on the basis of pedologic 

and spectral diversity (Figure 11). Critically, all five flight lines were acquired on the same day 

as coincident Landsat 8 acquisitions, allowing for a direct comparison of the effect of spectral 

resolution on dimensionality, as well as the opportunity for a direct comparison of AVIRIS and 

Landsat standard surface reflectance products. A diversity of agricultural and natural vegetation, 

settlements, bare soils, and water is present in the dataset. Some geological diversity is present in 

crystalline basement and sedimentary rock outcrops within the Sierra and Coast Range flight 

lines. Wetlands are present in the San Francisco Bay-Delta, as well as the San Joaquin River 

National Wildlife Refuge. 

All AVIRIS images were downloaded as Level 2 Atmospherically Corrected Reflectance 

from the AVIRIS Data Portal at https://aviris.jpl.nasa.gov/alt_locator. Coincident Landsat 8 

LaSRC modeled surface reflectance products were downloaded from the USGS at 

https://earthexplorer.usgs.gov. 
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Figure 11. False color composite images of the five AVIRIS flight lines used in this study. A wide 

range of agriculture in the Great Central Valley of California is sampled in both summer and 

fall. Bare rock substrates are present in the Sierra and Coast Ranges. Non-photosynthetic 

vegetation (NPV) is present in both agricultural and natural land cover regimes. Cloud 

contamination near the ends of the Delta, Davis, and Coast Ranges lines was excluded from the 

remainder of the analysis. Wetlands are sampled in the Delta line and the San Joaquin line. 

Spectrally complex salt ponds are present in the South Bay portion of the Davis line. Sun glint is 

present in some water bodies. 

Figure 12 shows a comparison of sensor resolutions for Landsat 8 OLI and AVIRIS, as 

well as the older Landsat 7 ETM+ and newer Sentinel 2 MSI sensors. The AVIRIS sensor 

images the Earth in 224 channels over the full VSWIR 365 to 2500 nm spectral range at a 10 nm 

spectral resolution. In comparison, multispectral sensors such as Landsat and Sentinel 2 collect a 

much smaller number of spectral bands with much wider bandpasses. As of the date of 

publication of (Green et al., 1998), the signal-to-noise ratio (SNR) of AVIRIS was approximately 
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1000 for the VNIR, 700 for SWIR1, and 250 for SWIR2. In contrast, the Landsat 8 OLI SNR 

ranges between 201 and 367 for the bands used in this study (Morfitt et al., 2015). AVIRIS 

oversamples most features in the reflectance spectrum and is therefore also able to resolve 

physical parameters about spectral slope and narrow band absorptions which are averaged 

together by OLI. 

 

  

Figure 12. Spectral band comparison for Landsat 7/8, Sentinel 2, and AVIRIS. The AVIRIS 

hyperspectral sensor has 224 bands with 10 nm FWHM in the 365 to 2500 nm range. Spatial 

resolution of the AVIRIS IFOV depends on flight altitude. Modified from 

https://landsat.gsfc.nasa.gov.  

The five AVIRIS flight lines were subdivided into seven spatial subsets of 5000 × 700 

pixels each. Coincident multispectral Landsat images were coregistered to match the 

hyperspectral subsets using nearest neighbor spectral resampling. All individual AVIRIS pixels 

were preserved without pixel averaging or interpolation. Because the spatial resolution of the 
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AVIRIS data used in this study is somewhat higher (15 m to 17 m) than the 30 m resolution of 

Landsat 8, no direct pixel-to-pixel comparisons are attempted. Fortunately, the spatial scale of 

the land cover features of interest is generally coarse enough to allow a comparison of multipixel 

means of homogenous targets. The total areal coverage of the seven spatial subsets is 

approximately 9800 km2. 

Bad and no data pixels present in either dataset were flagged and removed from the 

analysis. AVIRIS channels 108–133 (1363 to 1423 nm), 154–167 (1827 to 1927 nm), and 223–

224 (2480 to 2500 nm) were excluded from subsequent analysis because of a large number of 

pixels with nonphysical reflectance values (i.e., high amplitude positive and negative spikes). 

Landsat 8 OLI coastal aerosol and cirrus bands (1 and 9) were excluded from this analysis 

because land cover is the focus of this study. The Landsat 8 panchromatic band was not used. 

Image statistics were then computed for the remaining 181 channels of the AVIRIS 

image and PC rotations of all the AVIRIS spectra were computed based on both the image 

covariance and correlation matrices. Eigenvalues were normalized by their sum to compute the 

fraction of variance present in each dimension. The same procedure was repeated for the six 

band Landsat 8 pixels. A Maximum Noise Fraction (MNF) transform (Green et al., 1988) was 

also used for comparison, but yielded similar EMs to the PC-derived feature space. 

For comparison with pure substrate EMs, 161 laboratory spectra of rocks and soils from 

the Johns Hopkins University (JHU) spectral library were used for a PC analysis, as described 

above. For more details on the JHU spectral library, see: 

https://speclib.jpl.nasa.gov/documents/jhu_desc. 
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Results 

Figure 13 shows the low order partition of variance for each of the 5000 × 700 pixel 

AVIRIS subsets (light gray), as well as the full 5000 × 4900 pixel image composite (black). 

While some variability is observed in the partition of variance for individual spatial subsets of 

both the AVIRIS and Landsat datasets, the first three or four dimensions clearly contain nearly 

all of the variance in all cases. Cumulative variance for the first three dimensions of the AVIRIS 

and Landsat composite images is 97% and 99%, respectively. As expected, inset correlation 

matrices illustrate three or four relatively distinct spectral regimes (Visible, NIR, SWIR1, and 

SWIR2). A more complex correlation structure is evident within the AVIRIS NIR spectral 

regime, illustrating the added value of the hyperspectral sensor. 

 

Figure 13. Partition of variance for AVIRIS (left) and Landsat (right). Result are shown for each 

5000 × 700 pixel spatial subset (gray), as well as for the combined dataset (black). While the 

dimensionality of each spatial subset is variable, the combined dataset shows the first three 

dimensions clearly separated from the continuum that follows. Cumulative variance is labeled 

for the first three dimensions, showing that 97% or more of the total variance in contained in the 
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first three dimensions of each dataset. Correlation matrices (inset) clearly show three or four 

distinct spectral regimes which capture the majority of the variance in the dataset. 

Figure 14 shows projections of the first three dimensions of the spectral feature spaces for 

the AVIRIS and Landsat datasets of this study (top) in comparison to the much more extensive 

spatial sampling of previous studies by (Small, 2004; Small and Milesi, 2013; Sousa and Small, 

2017a). The first three dimensions of the AVIRIS and Landsat feature spaces show striking 

similarity to each other, despite the roughly 30x greater spectral sampling of the AVIRIS. Both 

covariance- and correlation-based transforms were performed. Because the resulting feature 

spaces were nearly identical, only the feature space from the covariance-based transform is 

shown here. 
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Figure 14. Low dimensional feature space comparison. Northern CA AVIRIS and Landsat used 

in this study both show similar low-order feature space topology to the much wider range of land 

covers sampled in the global Landsat 7 analysis of Small & Milesi (2013), as well as the Landsat 

7/8 underflight comparison analysis of Sousa & Small (2017). Substrate (S), Vegetation (V), and 

Dark (D) EMs are also broadly consistent across all four studies, in spite of the substantial 

disparities in both spectral resolution and spatial extent. Differences in topology are 

predominantly due to variations in sampling of relatively rare land covers such as evaporites (E) 
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and synthetic materials (Sy). Substrate EMs show the greatest variability, as expected given the 

diversity in the shape of the reflectance continuum of rock and soil.  

In addition, both of the feature spaces of this study are remarkably similar to the global 

Landsat feature spaces. This observation is especially noteworthy given the differences between 

the studies in data preprocessing. Substrate, Vegetation, and Dark EM spectra show comparable 

spectral shapes despite the relatively minimal sampling of crystalline basement or large scale 

sedimentary deposits. 

The most prominent differences between the feature spaces of this study and previous 

studies involve the sampling of evaporites and synthetic materials. This study does not sample 

any large deposits of evaporitic minerals such as Halite or Gypsum. These minerals are 

spectrally distinct from other soil and rock substrates and they plot separately from the main 

point cloud that represents the vast majority of land surface reflectance spectra. This study does, 

however, contain a relatively large fractional area of settlements with synthetic roofs and tarped 

fields. These relatively exotic spectra do not have appreciable global abundance and so are not 

present in the previous studies focusing on terrestrial targets. 

Multispectral green vegetation and dark EMs are generalizable globally with spectral 

shapes consistent with physical and biological properties. However, as has been noted in 

numerous previous studies (e.g., (Boardman and Green, 2000; Gillespie et al., 1990; Price, 

1975)), rock, sediment, and soil substrates demonstrate a diversity of spectral shapes. Local 

substrate EMs are generally used for more accurate spectral unmixing results because they can 

take into account this regional pedologic and geologic diversity. These EMs can be selected 

directly from the spectral feature space. 
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For comparison with pure substrate EMs spanning a wider range of rocks and soils than 

that found in the study area, we rendered a spectral feature space from laboratory spectra of rock 

and soil samples. Using the Johns Hopkins University (JHU) spectral library, we compiled 161 

laboratory rock and soil reflectance spectra. The spectra span a wide range of soil and rock types, 

including 67 igneous rocks, 55 metamorphic rocks, 14 sedimentary rocks, and 25 soils. 

PCA of the JHU substrate spectra reveals the first three dimensions account for 85.8%, 

10.5%, and 2.2%, respectively. The first three dimensions thus account for over 96% of the 

overall variance of this diverse library of substrate spectra. The spectral feature space in Figure 

15 shows that the 25 soils cluster in a relatively confined subset of this substrate space. The soil 

spectra are observed to deviate from each other in much less pronounced ways than rocks vary 

both within and between the igneous, metamorphic, and sedimentary classes. Given the 

dominance of agricultural land cover in our study area, it is this relatively narrow range of soil 

spectra which we would expect to dominate as the substrate EM in our Landsat-AVIRIS 

analysis. 
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Figure 15. Spectral feature space and endmembers for the rock and soil substrate spectra from 

the JHU spectral library. Visible/NIR/SWIR false color composite (top) gives some indication of 
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the spectral diversity in three principal wavebands. Three orthogonal projections of the spectral 

feature space (bottom), along with example endmember spectra from the periphery of the space, 

illustrate the broad diversity of metamorphic spectra compared to the more continuous soil 

spectra. 

The range of substrate EMs actually present in this analysis is shown in Figure 16. In 

order to clearly identify these substrate EMs, the fourth dimension of the spectral feature space is 

used. While accounting for less than 2% of the total variance in either dataset, PC 4 proves to be 

useful in this case for distinguishing between the shapes of soil and rock spectra. 

 

Figure 16. AVIRIS and Landsat substrate EM variability. The PC 1 vs. 4 projection is useful in 

both transforms as a means of discriminating between the spectral shape of substrate EMs. The 

remarkable topological similarity between the AVIRIS and Landsat feature spaces (upper left) 

extends into the fourth dimension. The bright (high PC1) edge of the point cloud splays out in 

both AVIRIS and Landsat to reveal a continuum of rock and soil substrate EM spectra. 
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Multipixel mean spectra for each of these EMs (lower left) are displayed as observed by both 

Landsat and AVIRIS. The locations of the spectra are indicated on the AVIRIS flight lines (right). 

USDA-NCSS soil survey data were used to find the soil type at the location of each EM. The 

order and suborder of each soil are shown on the EM spectra plots. The spectral variability 

captured by the EM continuum corresponds to consistent soil property variations. From EM1 to 

EM6, the soil types are characterized by a tradeoff between decreasing clay content and 

increasing sand content. 

Six substrate EMs are identified from the PC 1 vs. 4 projection of the feature space. The 

clear visual similarity in feature space topologies and EM spectra between the hyperspectral and 

multispectral datasets continues through the fourth dimension. This similarity is unsurprising 

given the dominance of the spectral continuum (rather than narrowband or broadband absorption 

features) in the reflectance spectra of these soil EMs. 

Each EM corresponds to a spatial cluster of points in a bare (or senescent) agricultural 

field or a spatially extensive sedimentary deposit. The locations of the EMs are indicated on both 

the feature space and the false color composite of the flight line subsets. USDA-NCSS soil 

survey data were acquired for the location of each spectral EM using the California Soil 

Resource Lab SoilWeb browser (https://casoilresource.lawr.ucdavis.edu/gmap/). The map unit 

name is given for each EM (e.g., Clear Lake Clay), as well as its order (e.g., Vertisol) and 

suborder (e.g., Aquerts). 

Notably, the spectral properties of the continuum of substrate EMs appear to correspond 

to a continuum of soil grain sizes and textures. The soil at EM 1 is classified as a Clay, with 

surface composition of the dominant series (Clear Lake) of roughly 60% clay and 15% sand. In 

contrast, the soil at EM 6 is classified as a Sand with typical surface composition of its dominant 
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soil series (Delhi) of roughly 4% clay and 95% sand. EM 3 is classified as a Silty Clay Loam, 

and the surface composition of its dominant series (Egbert) lies in between, with 38% clay and 

18% sand fractions. While preliminary, these results suggest that some soil compositional 

properties may be sufficiently spectrally distinct to be mapped using their position in the feature 

space–at least in this study area. 

Figure 17 illustrates the complexity that can be measured by hyperspectral imagery on 

even a relatively small spatial scale. The spatial subset shown in this figure is only 9 × 15 km. 

Even this small spatial area exhibits considerable diversity in vegetation and substrate spectra. 

Substantially more prominent clustering is notable within the AVIRIS feature space than within 

the Landsat feature space, as the subtle spectral differences between fields are better resolved by 

the hyperspectral sensor than the multispectral sensor. The full complexity of these spectra could 

not be captured in any three band false color composite image, or resolved with the six-band 

Landsat or even 11-band Sentinel-2 sensors. Individual pigment and mineral absorptions are 

distinguishable that would be lost completely in multispectral data. Notably, despite the severely 

limited spatial domain of this subset, spectra are identifiable (e.g., 2 and 5) that are again 

remarkably similar to global EMs. 
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Figure 17. Spectral diversity in a 9 × 15 km region of intensive agriculture in the Great Central 

Valley of California. Considerably more spectral diversity is present in this hyperspectral dataset 

than can be adequately represented by any false color composite image Locations of spectra a-h 

are shown on the AVIRIS feature space and on the image. (A). The AVIRIS feature space for this 

spatial subset (B, left column) clearly shows more prominent clustering than the Landsat feature 

space (B, right column). Green fields are characterized by a wide range of red edge and 

absorption properties (C1 and C2). Bare or senescent fields are characterized by an even greater 

range of spectral shapes (C3-C8). This high concentration of spectral diversity is consistent with 

the similarity in dimensionality and feature space topology between the limited area of this study 

and the much more extensive global studies of Small & Milesi (2013) and Sousa & Small (2017). 

Discussion 

This work addresses three questions: 

1. How much of the dimensionality of hyperspectral data is captured in multispectral 

data? 



 70 

  

2. Is the characteristic pyramidal structure of the multispectral feature space also present 

in the low order dimensions of the hyperspectral feature space at comparable spatial scales? 

3. How much variability in Substrate EMs present hyperspectral data is captured by 

multispectral sensors? 

The first question of this study is addressed quantitatively by the hyperspectral and 

multispectral partitions of variance given in Figure 4. It is further addressed qualitatively through 

the topologies of the low-order feature spaces shown in Figures 5 and 6. The spectral feature 

spaces show a striking similarity in the dimensionality, topology, and EM spectra of the 

coincident hyperspectral and multispectral datasets used in this study. This is observed despite a 

factor of 4 difference in the sensor spatial resolution, a factor of 30 difference in the spectral 

resolution, and further differences in atmospheric correction procedures between the products. At 

least 97% of the variance in each dataset is present in the first three dimensions and >99% is 

present in the first four dimensions for both sensors. 

This result is in accord with the multispectral findings of (Small, 2004). It suggests a 

substantially lower dimensionality than the previous hyperspectral studies of (Green and 

Boardman, 2000; C. Small, 2001; Thompson et al., 2017), but this is because our metrics for 

dimensionality differ. A primary purpose of dimensionality estimation by these previous AVIRIS 

studies was to quantify the number of unique materials that the hyperspectral sensor can image 

above noise level. This is not our purpose. Rather, we seek to describe the number of 

independent dimensions in which the majority of the spectra reside when decomposed by 

variance, the number of EMs which bound the space, and the way in which these EMs trade off. 

This is a fundamentally different question and is why we examine the topology of the point cloud 

so closely in addition to the partition of variance. 
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The information content of a dataset is not a trivial quantity to estimate. We are in full 

accord with (Boardman and Green, 2000) in the opinion that “measuring dimensionality in 

multivariate data sets is a slippery slope and an approximation at best.” We also agree with the 

findings of (Thompson et al., 2017), that the overdetermined nature of hyperspectral imaging “is 

highly desirable since it offers numerical leverage while also providing the capability to measure 

unexpected phenomena and falsify modeling assumptions”. It is additionally clear that much of 

the value of hyperspectral data resides in the precise measurement in the location, depth, and 

breadth of absorption features. This analysis shows that these features are not well-represented in 

dimensionality estimates given by the PC transform, nor by deviations in the topology of the 

point cloud, at least in the first four dimensions. Variance is an imperfect metric for information 

content, especially in hyperspectral imagery. 

While difficult to estimate, the question of dimensionality is important because it places 

in context the aggregate landscape-scale measurements of a sensor. The observation of the 

similarity of the multispectral and hyperspectral feature spaces suggests that, even with 

hyperspectral observations, the shape and amplitude of the spectral continuum dominates the 

variance structure of the data, but does not fully determine its information content. It is upon the 

structure of this low-order spectral feature space that the narrowband absorptions and other fine 

spectral features are superposed. Our results suggest that these information-rich fine spectral 

features do not appreciably change the fundamental low-order structure of the feature space. This 

finding has potential implications for the future synergistic use of multispectral and hyperspectral 

data. 

Figure 18 shows an additional way of visualizing information content present in these 

fine spectral features. In this figure, each of the NIR, SWIR 1, and SWIR 2 Landsat bands are 
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shown individually for a single spatial domain. Because there is only one band for each of these 

spectral regimes, the Landsat dimensionality for each spectral subset is 1 and must be shown as a 

grayscale image. However, over 40 AVIRIS channels are present for each of these spectral 

regimes. Adjacent to each Landsat band is a tricolor composite showing the three low order PC 

images for the AVIRIS spectral subset corresponding to each spectral regime. Substantially 

greater information is obviously present in each spectral regime for the hyperspectral cube than 

the multispectral dataset. The dimensionality of AVIRIS is clearly at least two in each of these 

spectral regimes, yielding intraband feature spaces with a considerable structure and physically 

meaningful EMs. 

The results of this study do not imply that the AVIRIS data cube only images three or 

four spectrally distinct quantities, nor that the information contained in the hyperspectral cube 

can be captured by a multispectral instrument. Rather, they demonstrate that, when decomposed 

linearly using the PC transform, the variance of both datasets is partitioned into a nearly identical 

number of fundamental dimensions and the relationship between the spectra follows a similar 

geometric relationship. It might have been expected that substantially different EMs would arise 

from the differences in spatial and spectral resolutions of the sensors. This was not the case. 

Furthermore, it might have been expected that a low-order dimension would emerge in the 

hyperspectral dataset which differed substantially from the multispectral dataset. This was not 

the case either. Rather, despite the significant variations in absorption features–most notably in 

the plane of substrates–the EMs were arranged in a nearly identical configuration. The 

implications of this result for multitemporal analyses are substantial, as they suggest that pixel 

trajectories in multispectral feature space correspond to nearly identical trajectories in low-order 

hyperspectral feature space. 
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Figure 18. Intraband and interband spectral dimensionality of AVIRIS in comparison to 

individual infrared bands of Landsat OLI. OLI is one dimensional in each of the NIR, SWIRl, and 

SWIR2 spectral regimes because the sensor only collects in one band for each. In contrast, 

AVIRIS collects in over 40 channels for each of the three spectral regimes. The spectral 

dimensionality of the hyperspectral imagery is apparent in the color images of the three lowest-

order Principal Components for the channels within each regime, as well as in the structure for 

the corresponding spectral feature spaces. Dark and vegetation EMs are similar for each feature 

space but substrate EMs differ because of distinct absorptions. EM locations are indicated on 

each feature space by colored arrows. 

The second question of this study is addressed quantitatively through the partitions of 

variance in Figure 13 and qualitatively by the feature spaces in Figure 14 and Figure 15. Both the 

hyperspectral and multispectral partitions of variance, feature spaces, and EMs found in this 
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study are remarkably similar to those found in previous analyses of Landsat data sampling much 

more spatially extensive regions. These results suggest that a substantial fraction of global 

multispectral diversity can be sampled in a local spatial extent. Notably, the entire area used in 

this analysis, 9800 km2, is roughly 1/3 of the 34,000 km2 area covered by a single Landsat scene 

and less than 0.01% of the ice-free global land area. Similar EM spectra were even present 

within the very small 180 km2 region of Figure 16. 

Finally, the third question of this study is directly addressed by Figure 15. Not only are 

the relative positions of the substrate EMs nearly identical, a consistent physical relationship is 

also observed between their position in the PC 1 vs. 4 projection of the feature space and the soil 

properties of the locations from which they are derived. This was observed in both the 

hyperspectral and multispectral datasets using independent rotations. While there is clearly more 

information to be gained from hyperspectral imagery than the topology of the point cloud, it is 

important that the multispectral and hyperspectral sensors distinguish between the same broad 

soil features in the same way. The similarity of the spectral feature spaces suggests significant 

potential for inferring properties of full soil reflectance spectra from multispectral observations. 

As indicated by Figure 6, this is not true for rock spectra in general. While soil spectra have 

generally similar shapes, rock spectra often have very distinct narrowband absorptions related to 

the crystal structure of specific minerals not generally preserved in soils. This consistency in the 

structure of the plane of substrates has the potential to substantially inform analyses in studies 

where a temporally or spatially sparse set of hyperspectral observations complement a wealth of 

multispectral observations. 

Variability in grain size and textural properties of the underlying soils is a physically 

plausible explanation for the spectral variability observed in the feature space. The potential for 
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soil-specific information in PC 4 has been previously documented by (Crist and Cicone, 1984), 

but was only briefly mentioned and was not tied directly to specific compositional properties. To 

our knowledge, the question has not yet been further elucidated. Although our results for this 

subject are preliminary, as this was not the primary focus of the study, they are encouraging. One 

critical complicating factor moving forward will be controlling for the presence of non-

photosynthetic vegetation. 

While beyond the scope of this study, further investigation of the relationship between 

soil type and reflectance presents an attractive avenue for future work. In a pedologically diverse 

region such as California with quality soil maps and abundant hyperspectral observations, the 

potential exists to use hyperspectral feature spaces to determine which soil properties can and 

cannot be reliably determined from hyperspectral and multispectral imagery. The range of 

reflectance spectra corresponding to each soil class could be documented and a repeatable, 

systematic classification system (expanding upon the Munsell color chart) could potentially be 

developed on the basis of reflectance spectroscopy. The tools of the visible could be extended 

into the infrared. 

Conclusions 

We analyze the spectral dimensionality of five hyperspectral flight lines and coincident 

multispectral satellite images over a region of considerable pedologic and agricultural diversity. 

The partition of variance, spectral feature spaces, and EM spectra for each dataset bear 

remarkable resemblance to each other. Comparable similarity with earlier global multispectral 

analyses is also observed. These results demonstrate 1) that the multispectral and hyperspectral 

feature spaces share a fundamental low order structure, and 2) that the global multispectral 

feature space can be reasonably represented in a relatively small spatial domain. 
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In addition, a nearly identical continuum of substrate EMs is observed in both the 

multispectral and hyperspectral datasets. Comparison with a soil map shows that variability in 

soil composition strongly covaries with the position of EMs in the feature space. Our (local) 

success in discriminating between soil classes with variable sand vs. clay fractional compositions 

suggests considerable potential for a novel method for improving the mapping of soils with 

optical remote sensing. 
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3. Global cross-calibration of Landsat spectral mixture models  

Abstract 

Data continuity for the Landsat program relies on accurate cross-calibration among 

sensors. The Landsat 8 Operational Land Imager (OLI) has been shown to exhibit superior 

performance to the sensors on Landsats 4-7 with respect to radiometric calibration, signal to 

noise, and geolocation. However, improvements to the positioning of the spectral response 

functions on the OLI have resulted in known biases for commonly used spectral indices because 

the new band responses integrate absorption features differently from previous Landsat sensors.  

The objective of this analysis is to quantify the impact of these changes on linear spectral 

mixture models that use imagery collected by different Landsat sensors.   The 2013 underflight 

of Landsat 7 and Landsat 8 provides an opportunity to cross calibrate the spectral mixing spaces 

of the ETM+ and OLI sensors using near-simultaneous acquisitions of radiance measurements 

from a wide variety of land cover types worldwide.  We use 80,910,343 pairs of OLI and ETM+ 

spectra to characterize the Landsat 8 OLI spectral mixing space and perform a cross-calibration 

with Landsat 7 ETM+. This new global collection of Landsat spectra spans a greater spectral 

diversity than those used in prior studies and the resulting Substrate, Vegetation, and Dark 

(SVD) spectral endmembers (EMs) supplant prior global Landsat EMs. We find only minor (-

0.01 < µ < 0.01) differences between SVD fractions unmixed using sensor-specific endmembers. 

Root mean square (RMS) misfit fractions are also shown to be small (<98% of pixels with 

<5%RMS), in accord with previous studies using standardized global endmembers. Finally, 

vegetation is used as an example to illustrate the empirical and theoretical relationship between 

commonly used spectral indices and subpixel fractions. We include the new global ETM+ and 

OLI EMs as Supplementary Materials. SVD fractions unmixed using global EMs thus provide 
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easily computable, linearly scalable, physically based measures of subpixel land cover area 

which can be compared accurately across the entire Landsat 4-8 archive without introducing any 

additional cross-sensor corrections. 

Introduction 

The Landsat program provides the longest continuous record of satellite imaging of the 

Earth available to the scientific community (Wulder et al., 2016). One great strength of this 

record lies in data continuity provided by the generally excellent cross-calibration between the 

sensors on board the different satellites (Markham and Helder, 2012). To extend this continuity 

into the future, the Operational Land Imager (OLI) onboard Landsat 8 must be intercalibrated 

with the rest of the archive. Over the 3+ years since launch, the OLI has been shown to exhibit 

superior performance to previous Landsat sensors with respect to radiometric calibration  

(Mishra et al., 2016; Morfitt et al., 2015), signal to noise  (Knight et al., n.d.; Morfitt et al., 2015; 

Schott et al., 2016), and geolocation (Storey et al., 2014). 

One of the applications enabled by such a deep archive of high quality Earth observation 

data is multitemporal analysis to study long-baseline changes (Vogelmann et al., 2016). 

However, concern has recently emerged over the direct intermixing of data collected by both the 

OLI and older TM/ETM+ instruments onboard Landsats 4-7 because of the changes in band 

placement introduced with Landsat 8 (Holden and Woodcock, 2016). Statistical corrections and 

corresponding transfer functions have been introduced to correct for these differences (Roy et al., 

2016). Considerable work has been done to examine the effect of these discrepancies and 

corrections in the context of spectral indices. The implications of these changes for spectral 

mixture analysis (SMA) are different than for spectral indices. The implications for multi-sensor 

and multi-temporal SMA have been investigated on the regional scale by (Flood, 2014), but, to 
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our knowledge, no attempt has been made to address these implications for globally standardized 

spectral mixture models. 

The purpose of this study is to characterize the global Landsat 8 OLI spectral mixing 

space and cross-calibrate it with the Landsat 4-7 TM/ETM+ spectral mixing space. Previous 

work has shown the TM and ETM+ sensors to provide globally consistent results for Substrate, 

Vegetation, and Dark (SVD) subpixel fraction estimates using SMA (Small, 2004; Small and 

Milesi, 2013). Extending this cross-calibration to include imagery from the OLI onboard Landsat 

8 could thus extend this consistency across the entire 30+ year archive of Landsat 4-8 imagery. 

In order to develop a cross calibration suitable for multi-sensor SMA, it is necessary to compare 

spectral mixing spaces for both sensors and identify comparable spectral endmembers that span 

both spaces. Under ideal circumstances, this would require spectrally diverse collections of 

TM/ETM+ and OLI spectra where both sensors image the same targets simultaneously. 

Before Landsat 8 was placed into its final orbit, it was maneuvered into underflight 

configuration below Landsat 7 for one day: March 30 (Julian Day 89) 2013. While the two 

satellites were positioned in this way, they imaged a diversity of land cover spanning a wide 

range of spectral reflectance signatures. Each pair of ETM+/OLI images was collected 

approximately 2-5 minutes apart. The short temporal baseline between image pairs minimizes 

changes in solar illumination, surface processes and atmospheric effects.  The underflight 

imagery thus provides a rare, nearly ideal opportunity for cross-calibration of the OLI and ETM+ 

sensors.  

However, while the underflight dataset is nearly ideal for this purpose in many ways, 

there are some caveats. Standard LaSRC surface reflectance is not available for the OLI 

underflight data, so this analysis is limited to exoatmospheric reflectance with no atmospheric 
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correction attempted. Furthermore, this analysis is both retrospective and global in extent, 

limiting the results of this study to that of an intercomparison and cross-calibration, but not a full 

field validation. We suggest that the unique, near-synchronous imaging geometry of the 

underflight data provides valuable information that is worth exploring despite these limitations. 

In this study, we use 80,910,343 unsaturated broadband spectra imaged nearly 

simultaneously by Landsat 7 and Landsat 8 while flown in underflight configuration to address 

the following question: How reliably can subpixel Substrate, Vegetation and Dark (SVD) 

fractions be used interchangeably between ETM+ and OLI?  

We find that the subscenes chosen for this analysis span an even greater range of the 

Landsat spectral mixing space than previous (Small, 2004; Small and Milesi, 2013) studies. We 

suggest that endmembers (EMs) generated for this study can thus effectively replace previous 

global EMs. While the new Dark (D) EM does not differ substantially from previous EMs, small 

differences in the Vegetation (V) EM and larger differences in the Substrate (S) EM are 

apparent. The overall behavior of the model is consistent with the findings of (Flood, 2014). The 

differences in the Vegetation EM are consistent with the findings of (Holden and Woodcock, 

2016; Roy et al., 2016) as being a result of band placement. The differences in the Substrate EM 

are likely due to the wider range of global substrates present in this study than in any previous 

global study and constitute an improvement upon previous global models. 

As a result, we find that subpixel estimates of SVD fractions for Landsat 8 using the old 

and new EMs display strong linear relations, with estimates of subpixel V fraction essentially 

unchanged and with easily correctible biases for S and D. When compared with the new EMs, all 

three SVD fractions scale linearly between the sensors with minimal (µ = -0.01 to 0.01) bias. 
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Root-mean-square (RMS) misfit to the SVD model for both the old and the new EMs is 

generally small, with > 98% of all pixels showing < 5% error. 

Finally, we use vegetation as an example to show the relationship between commonly 

used spectral indices and subpixel EM fractions produced by SMA of Landsat 8. We suggest that 

fractions estimated by SMA from global EMs provide easily computable, linearly scalable, 

physically based measures of subpixel land cover which can be compared accurately across the 

entire Landsat 4-8 archive without introducing any additional cross-sensor corrections. 

Background 

Implications of Spectral Band Positioning 

The spectral response function of a sensor quantitatively defines its sensitivity to different 

wavelengths of light. The radiometric design of the Landsat 8 OLI featured an improvement on 

the previous TM/ETM+ sensors by modifying its spectral response function to narrow and 

slightly relocate several of the spectral bands. This has the effect of reducing the impact of 

common atmospheric absorptions which impede imaging the land surface (Mishra et al., 2016). 

However, it also has the effect of subtly changing the broadband spectrum imaged by OLI for 

any object which is not spectrally flat over the wavelengths for which the spectral response 

function was modified. 

Figure 19 and Figure 20 shows the effect of the different spectral responses of the OLI 

and ETM+ sensors. Four sample green vegetation spectra (column 1) are shown, as well as four 

sample mineral spectra (column 3) from the USGS spectral library. The response functions of the 

two Landsat sensors are plotted as well to demonstrate the portions of the spectrum over which 
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they are sensitive. The narrowing and slight adjustment to the position of the NIR and SWIR 

bands 

  

Figure 19. Illustration of the effect of changes in spectral response functions for Landsat 8 OLI 

and Landsat 7 ETM+. Laboratory spectra from the USGS spectral library for sample vegetation 

(column 1) and minerals (column 3) are convolved with the spectral response functions of OLI 

and ETM+. The simulated reflectance for each sensor is shown in thick lines (L7 = black, L8 = 

magenta). 

(black, cyan, and gold) are evident. Superimposed on each of these spectra are simulated Landsat 

7 and 8 broadband spectra computed by convolving the reflectance spectra with the response 

functions of the sensors as described above.  

Column 2 shows the difference between the OLI and ETM+ reflectances derived from 

the laboratory spectra. The essential shape and fundamental characteristics of the spectra are all 
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very similar, but perceptible differences in the spectra are detectible. While the differences in 

aggregate are generally <0.01 reflectance units (<5%), the differences can approach 0.02 

reflectance units (10%) for individual bands in some cases.  

 

Figure 20. The spectral response functions are generally wider for ETM+ (solid thin lines) than 

OLI (dashed lines). Differences in broadband reflectance as observed by ETM+ and OLI (center) 

depend on both overall albedo and on the depth, width and location of absorptions. While both 

sensors record similar spectra, band-to-band differences can be nearly 0.02 reflectance units, 

sometimes, exceeding 10% of the value of an individual band. 

 

 

 



 84 

  

Spectral Mixture Models and Linear Spectral Unmixing 

At the scale of the 30 m Landsat pixel, most landscapes are spectrally heterogeneous.   As 

a result, most pixels imaged by Landsat sensors are spectral mixtures of different materials (e.g. 

soils, vegetation, water, etc) with varying amounts of subpixel shadow.  The continuum of 

aggregate radiance spectra imaged by a sensor forms a spectral mixing space in which each pixel 

occupies a location determined by the relative abundance of material reflectances imaged in the 

Ground Instantaneous Field Of View (GIFOV) of the pixel.  In situations where multiple 

scattering among subpixel targets is small compared to single scattering from each subpixel 

target to the sensor, the aggregate response of the sensor often varies in proportion to the relative 

abundance of the spectrally distinct materials (Singer and McCord, 1979).   

The topology of the full space of radiance (or equivalently reflectance) spectra reveals the 

linearity of mixing and the composition of the spectral endmembers and mixtures that bound the 

space of all other observed spectral mixtures (Boardman, 1993).  In the case of decameter 

resolution sensors like those on the Landsat satellites, the combination of spatial and spectral 

resolution, and positioning of the spectral bands, resolves characteristics of reflectance spectra 

that distinguish the most spectrally distinct materials commonly found in landscapes. Ice, snow, 

rock and soil substrates, vegetation, and water each represent a general class of reflectance 

spectra that are clearly distinguishable with broadband sensors at decameter spatial scales 

(Small, 2004).  Of these, the aggregate broadband reflectances of most landscapes can be 

represented accurately as linear mixtures of substrate (S), vegetation (V) and dark (D) 

endmembers.  The dark endmember corresponds to either absorptive, transmissive or non-

illuminated surfaces and typically represents either shadow or water.  As a result, linear 
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combinations of these three spectral endmembers can represent the aggregate reflectance of a 

very wide range of landscapes at meter to decameter scales (Small and Milesi, 2013).   

By identifying the SVD endmember spectra that bound the spectral mixing space, it is 

possible to use these endmembers together with a linear spectral mixture model to project the 6D 

feature space of the Landsat sensors onto a simpler 3D mixing space bounded by spectrally and 

functionally distinct components of a wide range of landscapes (Adams et al., 1986).  Inverting a 

simple three endmember linear spectral mixture model using the SVD endmembers yields 

estimates of areal abundance of each endmember for each pixel in an image.  Using standardized 

spectral endmembers that span the global mixing space of spectra allows for intercomparison of 

fraction estimates derived from different sensors across space and time.  Standardized spectral 

endmembers confer all of the benefits of spectral indices, with the added benefit of using all of 

the spectral information available while simultaneously representing multiple spectral 

contributions to the mixed pixel. 

Scientific Context and Limitations of the Study 

The approach taken in this paper is to calibrate global spectral mixture models of Landsat 

ETM+ and OLI imagery using the novel global collection acquired during the Landsat 7 and 8 

underflight. While this has not previously been accomplished, a regional study in Australia 

examining the continuity of ETM+ and OLI performance in a multiple linear regression model, a 

spectral mixture model, and a spectral index was performed by (Flood, 2014). In the analysis of 

(Flood, 2014), the problem is approached in a different way: ETM+ and OLI imagery from 

subsequent overpasses (8 days apart) were bias corrected band-by-band before being input into 

biophysical models. Orthogonal Distance Regression was used to cross-calibrate the imagery, 

which was then used to a) predict overstorey foliage projective cover, (an areal estimate of 
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vegetation), using top of atmosphere (TOA) reflectance; b) predict fractional vegetation cover 

with a linear mixture model of bare soil, photosynthetic, and non-photosynthetic vegetation, 

using modeled surface reflectance; and c) compute NDVI. Large systematic changes were 

reported in the Near Infrared and Shortwave Infrared 2 bands, with surprisingly little change in 

the Shortwave Infrared 1 band. The approach of (Flood, 2014) corrected for these differences 

well, resulting in regression slopes equal to 1.00 and good agreement between ETM+ and OLI 

fractional land cover. 

The collection of Landsat 7/8 underflight data undersamples the surface of the Earth in 

both space and time. Notably, there are unfortunately no cloud-free acquisitions over dense 

tropical forests. The season of the overpass (late March) results in imaging of senescence of 

many high latitude boreal forests. However, this is unlikely to result in appreciable variability in 

either the vegetation or dark EMs because, as shown previously (Small and Milesi, 2013), these 

two EMs show negligible change on a global scale when compared even with the limited global 

subset of (Small, 2004). That the ETM+ vegetation and dark EMs from this study are very 

similar to those found by the two previous studies mentioned here is further evidence that 

undersampling of vegetation and dark EMs is not an appreciable source of uncertainty in this 

analysis.  

However, representation of an unusually diverse subset of the global substrates is a 

strength of this collection. The plane of substrates was shown previously to be spectrally diverse. 

Greater sampling of this portion of the space than was achieved in previous studies further 

supports the linear mixing hypothesis in the substrate-rich (and vegetation-sparse) region of the 

mixing space, and yielded a new global substrate EM which provides the most complete bound 

on the global Landsat mixing space to date. 
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This study is performed with TOA reflectance in order to provide a direct comparison 

with previous studies and to minimize the complexity of the analysis. As mentioned in the 

introduction, standard LaSRC surface reflectance processing is not available for pre-WRS2 

Landsat 8 data (USGS, 2016a), and modeling of surface reflectance was not attempted. 

Furthermore, the retrospective nature of the study precludes true field validation. The global 

extent of the study and the remote location of many of the subscenes precludes precise 

knowledge of atmospheric or BRDF parameters at the time of the overpass. 

The clear atmospheric conditions present in the subscenes we chose for the analysis was 

fortuitous and minimizes the contamination by atmospheric effects that is common in satellite 

imaging. Mixture models cannot correct for most atmospheric contamination problems and 

surface reflectance should be used whenever well constrained atmospheric corrections are 

available. 

The unique nature of the near-simultaneous acquisitions in the underflight dataset greatly 

reduces the problems of imaging geometry and atmospheric change which surface reflectance is 

designed to overcome. The level of mixture model agreement given by TOA reflectance in this 

study allows us to take a conservative stance on the level of data preprocessing. We do this in 

order to avoid introducing unnecessary sources of uncertainty that can result from using an 

unjustifiably complex model. However, a similar analysis characterizing the global Landsat 

mixing space with modeled surface reflectance and field validation would be a valuable line of 

inquiry in the future.  
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Data & Methods 

All data used in this study were acquired from the USGS Earth Resources Observation 

and Science Center at http://glovis.usgs.gov/. Landsat 8 data were acquired from the “Landsat 8 

OLI Pre-WRS 2” collection. Data were processed from DN to radiance (L) using the following 

expression: 

 

Exoatmospheric reflectance (Chander and Markham, 2003) was then computed using the 

following expression: 

 

where ρλ is the reflectance at a given wavelength, d is the earth-sun distance, ESUNλ is 

the solar irradiance, and θ is the sun elevation in degrees. We manually selected a set of 100 30 x 

30 km subscenes from the spatial overlap between the Landsat 7 and 8 acquisitions on the basis 

of maximum spectral diversity. Nearly all of the subscenes were cloud-free, although some 

subscenes which contained land cover with unusually diverse spectral properties were included 

even if minor cloud contamination was present. Both Landsat 7 and 8 analyses were performed 

only on pixels unaffected by the SLC-off gaps. No saturated pixels were used in this analysis. 

Linear spectral unmixing represents each pixel reflectance factor (R) as a linear 

combination of the input spectral EMs (M) weighted by their areal fractions (f) plus misfit (  

as R = fM + . A unit sum constraint is often used, which amounts to adding an additional 

equation that the fraction estimates sum to unity ( f = 1). This set of equations is 

overdetermined and the coefficients for the optimal linear combination of EMs to represent each 

http://glovis.usgs.gov/
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pixel under the L2 norm can be directly computed using Weighted Least Squares, where the 

relative weight of the unit sum constraint is a tunable parameter. All unmixing was performed 

with unit sum constraints with weight = 1. 

Analysis 

Figure 21 shows the locations of the 30 Landsat 7 and 8 scene pairs used in this analysis. 

All scene pairs were collected in underflight configuration. The time difference between Landsat 

7 and 8 overpasses was < 6 minutes for every scene pair. The scenes span a remarkable 

geographic diversity of land cover given the short time in which they were collected. Five 

continents are represented. Although several images were acquired over mainland Europe (Path 

198), unfortunately all except the one covering Ibiza, Spain were too cloudy for the purposes of 

this analysis. 

 

Figure 21. Locations of 30 near-simultaneous Landsat 7/8 scene pairs from which the 100 

subscenes for this analysis were chosen. For every scene pair, Landsat 7 and Landsat 8 overpass 

times were within 6 minutes of each other. All scenes were imaged while Landsat 8 was 

performing its pre-WRS2 underflight of Landsat 7 on March 30 (JD 89), 2013.  
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From these 30 image pairs, 100 subscenes of 1,000,000 spectra each were chosen on the 

basis of spectral diversity (Figure 22). Subscenes are shown both with a common linear stretch 

(TOA reflectance = 0 to 0.7) and subscene specific 2% linear stretches in an attempt to show the 

spectral diversity and complexity included in this sample. Shallow and deep water are each 

represented in both coastal and inland water bodies. Natural and managed vegetation are both 

present over a wide range of climate zones and soil types. Geologic diversity includes both mafic 

and felsic bedrock, Quaternary alluvium, and sand dunes with variable grain size and lithology. 

One large evaporite pan near Kuwala, India was included to demonstrate the performance of 

spectrally complex minerals in the global SVD model. Despite several cloud-free acquisitions at 

high northern latitudes, snow and ice was minimized due to its minor areal coverage within the 

terrestrial ecoregions of the world (Olson et al., 2001) and the fact that a larger sample would be 

required to accurately represent its true spectral diversity. When pixels in the SLC-off gaps of 

Landsat 7 are removed, a total of 80,910,343 coregistered ETM+ and OLI spectra remain.  

 

Figure 22. Comparison of 100 OLI subscenes chosen from the near-simultaneous Landsat 7 and 

Landsat 8 acquisitions from Figure 21. Each 30 x 30 km subscene is shown with both a common 
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linear stretch (reflectance = 0 to 0.7) and subscene-specific 2% linear stretches to illustrate the 

spectral diversity of the scenes chosen. The subscenes sample a range of evergreen and 

deciduous natural vegetation, agriculture, lithologically variable soil, sediment, and rock 

substrates, as well as standing water (both deep and shallow). With the exception of the 

evaporite pan in western India (labeled E), all subscenes are composed of varying mixtures of 

rock and soil substrates, vegetation, water, and shadow. 
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Principal Component (PC) analysis was then performed independently on both the 

Landsat 7 and Landsat 8 subscene mosaics. Landsat 8 Coastal/Aerosol and Cirrus bands were not 

included in the analysis in order to facilitate a direct comparison between the sensors. The 

resulting Landsat 8 spectral mixing space with corresponding single pixel EMs is shown in 

Figure 23. The Landsat 7 mixing space is not shown, as it is visually indistinguishable from the 

Landsat 8 space. As found in previous work, the space is characterized by sharp, clear apexes 

corresponding to Vegetation and Dark EMs, but substantial complexity near the Substrate EM. 

This complexity reflects the diverse range of rocks and soils spanning the plane of substrates. 

Sharp linear edges connecting (D,V) and (D,S) EMs (clearly visible in the projection showing 

PC 1 and PC 3) indicates binary linear mixing. Concavity on the edge connecting (S,V) suggests 

that Substrate and Vegetation rarely trade off completely without any subpixel shadow. The 

elongate cluster of pixels spectrally distinct from the global mixing space corresponds to the 

Evaporite pan (E) in India. The inclusion of these evaporites allows an opportunity to illustrate 

the behavior of the model to materials which are not linear combinations of substrate, vegetation, 

or dark targets in broadband visible-IR spectra. Inclusion of these evaporites in the PC rotation 

does not affect the other fractions because EMs were manually chosen from the other apexes of 

the space. 
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Figure 23. The Landsat 8 OLI spectral mixing space derived from 80,910,343 broadband 

spectra. The Landsat 7 ETM mixing space (not shown) of the near-simultaneous Landsat 7 

acquisitions is visually indistinguishable. EM spectra (lower right) selected from the apexes of 

the scatterplot correspond to the same geographic locations and so represent the same materials 

– within uncertainty in the coregistration of each OLI/ETM+ image pair. The prominent cluster 

with distinct PC 2 values (E) corresponds to an evaporite pan near Kuwala, India.  
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Substrate (red), Vegetation (green) and Dark (blue) global EM spectra are shown in 

Figure 23. The differences between the ETM+ and OLI EM spectra are a result of the changes in 

spectral response functions between the sensors. These pairs of spectra represent identical 

geographical locations imaged at nearly the same time. The Substrate EM corresponds to a field 

of sand dunes in the Libyan Sahara (p184r044), the Vegetation EM corresponds to a 

homogenous agricultural field in central Texas (p029r038), and the Dark EM corresponds to 

deep water off the Atlantic coast of Long Island, New York (p013r032). While the dark EM is 

nearly identical for the two sensors, the Landsat 8 substrate and vegetation EMs are brighter than 

the Landsat 7 EMs in all IR wavelengths, most prominently in the NIR and SWIR 1. Text files 

with EM spectra for both ETM+ and OLI sensors are included as supplementary materials. 

As expected, the geometry of the mixing space shown here, as well as the ETM+ spectra 

of the resulting Vegetation and Dark EMs, are similar to those found by previous studies (RMS 

differences with (Small and Milesi, 2013) of 0.02 and 0.00 for V and D, respectively). However, 

the Substrate EM is substantially brighter across all wavelengths than found previously (RMS 

differences with (Small and Milesi, 2013) of 0.14 for the new OLI EM and 0.10 for the new 

ETM+ EM). The plane of substrates found in this study is inclusive of the spectral range found 

by prior studies, but also contains substantially greater variability in bright sands. This extension 

of the plane of substrates is likely a result of the range of diversity of sands and soils included in 

this analysis. The newly identified substrates represent an improvement over previous models as 

they are more general and inclusive of the range of landscapes present on the surface of the 

Earth.  

The newly identified global EMs were used to unmix the collections of both OLI and 

ETM+ underflight spectra. Figure 24 shows the comparison of SVD fraction estimates from 
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Landsat 8 OLI spectra as unmixed using the previous (Small and Milesi, 2013) global EMs and 

the new underflight OLI EMs. As expected given the new, more reflective substrate EM, 

substrate fractions are substantially lower and dark fractions are substantially higher with the 

new EMs than with the old. Note that the x-axes of the Substrate and Dark plots are truncated at 

upper bounds of 1.2 and lower bounds of -0.2, respectively. A substantial number of pixels have 

substrate fractions as high as 1.4 and dark fractions as low as -0.4 when unmixed with the old 

EMs. This is expected as a result of the significantly higher SWIR reflectance of the new OLI 

substrate EM. The new EMs more effectively span the global mixing space and result in the 

physically plausible bounds of 1.0 and 0.0 for these fractions. By extending the apexes of the 

Substrate and (to a lesser degree) Vegetation EMs, the new OLI & ETM+ mixing spaces 

encompass the earlier mixing spaces bounded by the older EMs. 
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Figure 24. SVD fraction intercomparison for 80,910,343 Landsat 8 spectra by unmixing with old 

(Small & Milesi 2013) global EMs and the new 2016 OLI EMs. OLI fractions unmixed with both 

sets of EMs are strongly linear – even though the EMs were derived from independent global 

collections of spectra. Unmixing with old EMs shows a clear bias toward higher substrate (µ = -

0.11) and lower dark fractions (µ = +0.13) than using the new EMs. Vegetation fraction shows a 

small bias (µ = +0.02). Error fractions are slightly lower for the new EMs than the old EMs, 
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but > 98% of all pixels have error < 5% for both models. The cluster of pixels distinctly plotting 

off the linear S, V, and D relations corresponds to evaporites (E) which are not well represented 

by either simple 3 EM model. Histogram insets show fraction difference (New – Old) between the 

two models.  

The vegetation fractions in Fig. 5 plot close to the 1:1 line, indicating that vegetation 

estimates are essentially unchanged between the old and new sets of EMs. RMS error 

magnitudes are essentially unchanged between the two sets of EMs, with > 98% of all pixels 

showing error < 5%. As expected, the evaporites plot distinctly off the 1:1 line for all fractions, 

showing reduced S, increased V, and reduced D fractions relative to the rest of the global space. 

These values are clearly erroneous and reflect the inability of the SVD model to represent 

evaporite reflectance accurately. The evaporite EM is not included in the SVD model because 

evaporites represent a small fraction of Earth’s surface and lie outside the primary SVD hull that 

represents most landscapes.  However, the quasi-linear binary mixing trend between the 

evaporite and dark EMs suggests that a linear mixture model might be useful for mapping 

variations in moisture content of evaporites. We do not include an evaporite EM here because 

our single acquisition is not necessarily representative of the true diversity of evaporites and 

range of moisture contents. We omit ice and snow EMs for the same reason. 

Figure 25 shows the cross comparison between Landsat 8 underflight fractions unmixed 

using the new OLI global EMs (thick lines from Figure 23) and Landsat 7 underflight fractions 

unmixed using the corresponding new global ETM+ EMs (thin lines from Figure 23). Biases for 

all fractions are small (-0.01 < µ < 0.01) and all fractions cluster tightly around the 1:1 line (σ = 

0.03 for all fractions and σ = 0.00 for error). The small number of pixels plotting substantially off 

the 1:1 line can generally be visually identified as either: 1) movement of macroscale clouds, 2) 
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microscale atmospheric parameters such as aerosol or water vapor content which changed over 

the 1-6 minutes between satellite overpasses or 3) land cover types poorly fit by the global SVD 

model such as snow/ice or shallow/turbid water. The evaporite cluster remains clearly distinct as 

a reminder of the limits of the model. Some of the dispersion about the 1:1 line may also be 

attributed to spatial misregistration between Landsat 7 and 8, although visual comparison shows 

qualitatively excellent coregistration in most cases. This suggests that subpixel displacements 

between the Landsat 7 and Landsat 8 acquisitions may introduce fraction differences of several 

percent in some cases, although the majority of pixels agree to well within 3%. Pixels from the 

evaporite pan are included in the calculation of the descriptive statistics listed here. Exclusion of 

the evaporite pan would result in a minor reduction in the bias, dispersion, and overall RMS 

misfit reported here. We choose to include the evaporites in our statistics in order to provide a 

more conservative estimate of the power of the model on a global scale. The linearity, lack of 

bias, and tight clustering of these scatterplots suggest TM/ETM+ and OLI imagery can be safely 

used interchangeably when unmixed using these global EMs. Although subtraction of the 

fraction bias values given here might improve agreement between TM/ETM+ and OLI fractions, 

the bias in each case is significantly smaller than the 0.03 to 0.07 fraction estimate uncertainty 

found in vicarious validations of Landsat SVD fractions with aggregated SVD fractions from 

near simultaneous WorldView2 acquisitions (Small and Milesi, 2013). 
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Figure 25. Intercomparison of SVD fractions from 80,910,343 near-simultaneous ETM+ and 

OLI spectra using the new underflight ETM+ and OLI EMs. All fraction (including error) show 

minimal bias (≤ 1%). Scatter corresponds to pixels with changing atmosphere in the 1-6 minutes 

between satellite overpasses or subpixel displacements between images. Evaporites (E) are not 

well represented by the SVD model so they also plot off axis. Inset histograms show fraction 

difference distributions. All three SVD fractions show > 95% of all pixels with differences in the 
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range +/- 5%. Error differences show 98% of all pixels have < 1% change across sensors for the 

SVD model. 

As discussed by (Holden and Woodcock, 2016), differences in the OLI and ETM+ 

spectral responses have implications for comparability of spectral indices. Vegetation indices are 

a class of commonly used spectral indices with a direct relationship to one of the land cover 

fractions (i.e. vegetation fraction). While the relationship between indices for Landsat ETM+ has 

already been shown (Small and Milesi, 2013), this relationship may change on the global scale 

for OLI due to changes in NIR band positioning resulting in small changes in the intensity of the 

red edge. To illustrate the new relationship for OLI and the new global EMs from this study, we 

compare three commonly used vegetation indices with vegetation fraction estimates for the 

diversity of Landsat 8 OLI spectra in the underflight collection. Figure 26 shows the relation 

between subpixel vegetation fraction (Fv) as estimated with the new global SVD EMs and three 

commonly used vegetation indices: Normalized Difference Vegetation Index (NDVI, (Rouse et 

al., 1974) ), Enhanced Vegetation Index (EVI, (Huete et al., 2002) ), and Soil Adjusted 

Vegetation Index (SAVI, (Huete, 1988)). 

The equation used for NDVI is: 

 

The equation used for EVI is: 

 

The equation used for SAVI is: 
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The relationship between SAVI and Fv is relatively linear for most pixels with Fv > 0.2, 

although a substantial bias is present and variance is wide at low values. The relationship 

between EVI and Fv is also linear, although with considerable variability and positive offset 

from the 1:1 line. The relationship between NDVI and Fv is substantially more complex and 

shows the well-known saturation effect at high vegetation fractions. 

 

 

Figure 26. Vegetation index intercomparison. NDVI, EVI, and SAVI relative to vegetation 

fraction of the same 80,910,343 OLI spectra. SAVI and EVI are quasi-linear functions of 

vegetation fraction, but with varying dispersion and slope. NDVI shows nonlinear saturation 

above 0.5 with considerable dispersion at all fractions. 
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Discussion 

The complex relationships of the vegetation indices shown in Figure 26 may not be 

intuitive given their arithmetic simplicity. This complexity is not a function of the geographic 

limitation of the study or of the limitations of SMA. Instead, the complexity can be shown to 

have a simple physical explanation. 

To illustrate the basis for the complexity of these relations, we simulate the effects of 

subpixel soil reflectance, shadow and atmospheric scattering on these vegetation indices, 

compared to true vegetation fraction.   Consider a hypothetical 30 x 30 m Landsat pixel filled 

with some amount of green vegetation and some amount of exposed soil and some amount of 

shadow. Based on the solar geometry illuminating the pixel, there will be some variable amount 

of area (viewed from directly above) of subpixel shadow cast by the roughness of the soil and the 

height and geometry of the vegetation.  Areas in deep shadow are illuminated only by diffuse 

scattering with a spectrum dominated by Rayleigh scattering in the atmospheric column between 

the ground and sensor – as illustrated by the Dark EM.  Between deep shadow and illuminated 

substrate and vegetation is a continuous triangular plane of spectral mixtures. This plane includes 

100% illuminated vegetation with no soil or shadow, 100% illuminated soil with no vegetation 

or shadow, and 100% deep shadow (Rayleigh scattering only) – as well as all combinations 

thereof. In the case of single scattering, the sensor essentially integrates these continuous 

endmember spectra as a linear sum into a single 6-element broadband spectrum.  We use the 

atmospherically corrected LEDAPS surface reflectance EMs from (Small and Milesi, 2013) with 

the linear spectral mixture model to simulate all possible integer mixtures of substrate, vegetation 

and shadow, then compute vegetation indices (NDVI and EVI) for each simulated mixed pixel. 



 103 

  

Figure 27 and Figure 28 show the results of a Monte Carlo simulation for every possible 

mixture of vegetation, soil and shadow in 1% increments, resulting in 5050 simulated Landsat 

spectra. This simulation is run for 3 different levels of atmospheric “noise” (in the form of 

adding an increasingly opaque Rayleigh scattering spectrum as the dark EM) based on the 

expected analytical relationship between scattering of light by particles much smaller than the 

wavelength (r α λ-4). The simulation is also run for 3 different background soils (produced by 

varying the amplitude of the soil spectrum as the substrate EM).  A common vegetation spectrum 

was used for all runs and was chosen to represent a sample broadband spectrum of healthy 

photosynthetic vegetation. 

Fv, NDVI and EVI are then computed for all of these simulated mixed pixels. As 

expected, inversion of the linear SVD model yields accurate results for Fv, with minimal bias 

and scatter (in all cases µ < 0.5% and maximum error of any pixel < 2.5%), with nearly uniform 

dispersion across the full range of values. The correlation between “true” input fractional 

vegetative cover and Fv estimated by unmixing using SMA in this model is 0.9999. 

However, the behavior of the vegetation indices is more complex. Varying the amplitude 

of atmospheric noise or the spectrum of the soil substrate can substantially alter the bias and 

curvature of the indices. Over a wide range of soils, EVI exhibits substantial linearity with Fv, 

although it consistently plots above the 1:1 line for all but the brightest soil. EVI is also shown to 

deviate more strongly from linearity with more severe atmosphere, especially at high vegetation 

fractions. NDVI demonstrates its well-known saturation at high values and greatly variable 

nonlinear dependency on the soil spectrum.  

This range of values for spectral indices with small variations in atmospheric and soil 

parameters is a result of the functional form of the equations used in the computation of the 
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indices. NDVI is a simple ratio of the sum and difference of 2 bands. EVI introduces the visible 

blue band in order to account for atmospheric variability, and exhibits substantially enhanced 

stability over a range of conditions as a result. Fv uses the full information content of all 6 bands 

in the spectrum and explicitly accounts for the contributions of both soil and shadow. This results 

in enhanced theoretical stability of fraction estimates over indices based on only 2 or 3 bands – 

stability which also applies to any systematic perturbations which affect all pixels equally that 

may be introduced by the changes in spectral response between ETM+ and OLI. 

To the extent that the perturbations affect the EMs in the same way they would affect any 

other pixel, selection of new EMs will adjust the model and correct the subpixel fraction 

estimates accordingly.  This illustrates two fundamental strengths of the linear mixture model 

relative to indices that use a subset of bands and do not account for other factors contributing to 

the mixed pixel reflectance.  The use of standardized global endmembers extends these benefits 

by making fraction estimates intercomparable across time and space.  We note that the 

availability of standardized global endmembers in no way reduces the utility of locally derived, 

application-specific endmembers.  Given the ease with which fraction estimates are obtained, 

analyses can easily include fractions from both local and global endmembers for comparison.  In 

fact, given the spectral diversity of the plane of substrates, we advocate the use of local substrate 

endmembers which may often be more suitable for substrate-oriented analyses than the very 

bright substrate endmember given here. 

Importantly, we also note that this stability also only extends to systematic perturbations 

which propagate into the EMs. For instance, linear mixture models are not able to correct for 

perturbations to the reflectance spectrum produced by spatially and temporally localized 

atmospheric variability. The global linear mixture model presented here, and indeed no linear 
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mixture model at all, can fully resolve most atmospheric effects – or any similar effects which 

are not systematic perturbations to the spectral mixing space. This is particularly the case when 

the effects are nonlinear.  

 

Figure 27. Calculation of EVI for theoretical pixels containing every possible integer 

combination of subpixel soil, vegetation and shadow. EVI exhibits more linearity over a wider 

range than NDVI. High values of EVI show sensitivity to atmospheric perturbations. 
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 Figure 28. Calculation of NDVI for theoretical pixels containing every possible integer 

combination of subpixel soil, vegetation, and shadow. Slight variations in the amount of 

atmospheric perturbation (simulated as Rayleigh scatter times a small random number) and 

brightness of the soil substrate can yield substantial differences in the value of the index. 
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Conclusions 

Subpixel EM fractions for Landsats 7 and 8 imaged in underflight configuration over a 

wide range of land cover show considerable agreement and can be well-characterized by the 

simple 1:1 relation with minimal bias or scatter. RMS misfit for both sensors using these new 

models remains < 5% for > 98% of the > 80 million pixels, as good or better than the previous 

EMs. It is also notable that no atmospheric correction was attempted for this study (beyond the 

selection of subscenes which appeared to be cloud-free). The increasing availability of 

standardized surface reflectance products should only improve upon this result. The agreement 

found in this study is testament to the work done by those at NASA, the USGS, and all those 

who are responsible for the design and implementation of the radiometric cross-calibration of 

these sensors. 

The results of the EM fraction comparison suggest that the differences in bandpasses 

between the two sensors can effectively be taken into account by the use of new EMs based on 

the near-simultaneous imaging of the same geographical locations by the two sensors – with no 

additional radiometric correction. In addition, these EMs now more fully span the global mixing 

space than previous EMs due to the inclusion of additional bright sands which extend the plane 

of substrates beyond previous studies. We suggest that these new global EMs supplant the EMs 

from previous studies. These EMs are freely available online at: 

www.LDEO.columbia.edu/~small/GlobalLandsat/ and are included here as supplementary 

materials in plain text format. 

However, the behavior of spectral indices, as already noted by others, is substantially 

more complex and may require cross-calibration beyond direct download of L1T imagery from 

http://www.ldeo.columbia.edu/~small/GlobalLandsat/
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the USGS archive if such indices are to be used operationally to compare TM/ETM+ and OLI 

imagery, as discussed by (Holden and Woodcock, 2016) and (Roy et al., 2016). 
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4. Spectral Mixture Analysis as a Unifying Framework for the 

Remote Sensing of Evapotranspiration 

Abstract 

This study illustrates a unified, physically-based framework for mapping landscape 

parameters of evapotranspiration (ET) using spectral mixture analysis (SMA). The framework 

integrates two widely used approaches by relating radiometric surface temperature to subpixel 

fractions of substrate (S), vegetation (V), and dark (D) spectral endmembers (EMs). Spatial and 

temporal variations in these spectral endmember fractions reflect process-driven variations in 

soil moisture, vegetation phenology, and illumination. Using all available Landsat 8 scenes from 

the peak growing season in the agriculturally diverse Sacramento Valley of northern California, 

we characterize the spatiotemporal relationships between each of the S, V, D land cover fractions 

and apparent brightness temperature (T) using bivariate distributions in the ET parameter spaces. 

The dark fraction scales inversely with shortwave broadband albedo (ρ < − 0.98), and show a 

multilinear relationship to T. Substrate fraction estimates show a consistent (ρ ≈ 0.7 to 0.9) linear 

relationship to T. The vegetation fraction showed the expected triangular relationship to T. 

However, the bivariate distribution of V and T shows more distinct clustering than the 

distributions of Normalized Difference Vegetation Index (NDVI)-based proxies and T. Following 

the Triangle Method, the V fraction is used with T to compute the spatial maps of the ET fraction 

(EF; the ratio of the actual total ET to the net radiation) and moisture availability (Mo; the ratio 

of the actual soil surface evaporation to potential ET at the soil surface). EF and Mo estimates 

derived from the V fraction distinguish among rice growth stages, and between rice and non-rice 

agriculture, more clearly than those derived from transformed NDVI proxies. Met station-based 

reference ET & soil temperatures also track vegetation fraction-based estimates of EF & Mo 

more closely than do NDVI-based estimates of EF & Mo. The proposed approach using S, V, D 
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land cover fractions in conjunction with T (SVD+T) provides a physically-based conceptual 

framework that unifies two widely-used approaches by simultaneously mapping the effects of 

albedo and vegetation abundance on the surface temperature field. The additional information 

provided by the third (Substrate) fraction suggests a potential avenue for ET model improvement 

by providing an explicit observational constraint on the exposed soil fraction and its moisture-

modulated brightness. The structures of the T, EF & Mo vs SVD feature spaces are 

complementary and that can be interpreted in the context of physical variables that scale linearly 

and that can be represented directly in process models. Using the structure of the feature spaces 

to represent the spatiotemporal trajectory of crop phenology is possible in agricultural settings, 

because variations in the timing of planting and irrigation result in continuous trajectories in the 

physical parameter spaces that are represented by the feature spaces. The linear scaling 

properties of the SMA fraction estimates from meter to kilometer scales also facilitate the 

vicarious validation of ET estimates using multiple resolutions of imagery. 

Introduction 

Water is critical to life on Earth: metabolic pathways rely on the chemistry of aqueous 

solutions, plant physiology requires cooling through stomatal water loss, and landscape-scale 

patterns in ecological communities often develop around the availability of near-surface water 

(or lack thereof). The movement of water between components of the Earth system therefore 

connects the biosphere with the lithosphere and the atmosphere. Evapotranspiration (ET; the sum 

of evaporation and transpiration) is a central mechanism in this exchange, describing the 

directional transfer of water from the Earth’s surface to its atmosphere. In addition to its 

importance for global biogeochemical cycles, ET also plays a major role in Earth’s surface 

energy balance (SEB). The thermodynamic implications of ET in the SEB result in its 
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fundamental importance in the climate system, where clear global teleconnections are observed 

between ET and phenomena such as the El Niño–Southern Oscillation (Miralles et al., 2013), in 

addition to direct relationships between soil moisture and temperature (Miralles et al., 2012). The 

sheer variety of biogeophysical systems that are impacted by ET demonstrate the importance of 

accurate global distributions of the components of ET (Miralles et al., 2011) and characterization 

of multidecadal trends (Zhang et al., 2016) for our understanding of, and ability to predict 

changes in, fundamental aspects of the Earth system. 

In addition to its importance for understanding fundamental Earth system processes, ET 

also has clear practical applications. ET has long been recognized as a practical indicator of plant 

water stress (Idso et al., 1977; Jackson et al., 1981, 1977). In agricultural settings, ET monitoring 

has been used for water resource regulation and planning in water-limited regions such as the 

western United States (Allen et al., 2005) as well as to improve estimates of irrigation need 

(Bastiaanssen et al., 2005; Farahani et al., 2007). In natural environments, ET has been used for 

global biodiversity assessments (Fisher et al., 2011; Gaston, 2000) as well as to assess regional 

water consumption by invasive species (Shafroth et al., 2010). For recent reviews of the potential 

applications of ET monitoring, as well as outstanding unresolved questions, see (Anderson et al., 

2012).  

Despite its centrality to such a wide range of fundamental Earth systems, accurate and 

consistent estimation of ET remains a challenge. For instance, a recent analysis found that over 

50 models currently exist to compute potential ET, and that model choice can impact flux 

estimates by over 25% (Fisher et al., 2011). Uncertainty in ET estimation has substantial 

implications for our ability to manage agriculture and to monitor wildlands, as well as for our 

understanding of deeper questions about the Earth system, such as the amplitude of global water 
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and energy fluxes. This uncertainty is, at least in part, a result of differences in the data streams, 

underlying assumptions, and conceptual approaches that are used by each model. The more that 

these disparities can be integrated into a single framework, the more that it will be possible to 

reduce the overall uncertainty in ET estimation.  

Algorithms that estimate ET parameters on landscape scales generally rely on 

observations from optical and thermal remote sensing. For ET studies, remote sensing 

observations are most commonly used to provide direct estimates of fractional vegetation cover 

(V), surface temperature (T), and albedo (α). The relationships among these three quantities can 

be understood in the context of their bivariate distributions. The distribution of V vs T gives 

information about plant-based evapotranspirative cooling and is fundamental to the physical 

basis of many popular ET models (e.g., (Allen et al., 2007; Bastiaanssen et al., 1998; Carlson and 

Boland, 1978; Moran et al., 1994)). Leaf area index (LAI) is an additional parameter that has 

been shown to have a significant impact on ET partitioning (Wang et al., 2014), and it is often 

used as an input in ET models. However, remote sensing is generally used to estimate LAI using 

a direct empirical relationship with V. Because of this intrinsic dependence between the remote 

sensing estimates of LAI and V, the LAI vs T and V vs T relationships contain fundamentally 

similar information. The distribution of α vs T has also been long recognized (Menenti et al., 

1989), and provides information about soil moisture ((Ångström, 1925; Idso et al., 1975)) and 

roughness (Matthias et al., 2000). α vs T has been incorporated into a popular ET model by 

(Roerink et al., 2000). Recent work by (Merlin et al., 2014) has developed a model based on 

fusion of both the V vs T and α vs T relationships, with encouraging results.  

For the vast majority of current ET estimation algorithms and associated Surface–

Vegetation–Atmosphere Transfer (SVAT) models, vegetation abundance is computed with a 
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spectral index. The specific index used varies from model to model, but all spectral indices use 

only part of the information present in multispectral imagery. Many models (e.g., (Jiang and 

Islam, 1999; Kustas et al., 2003)) rely directly upon the Normalized Difference Vegetation Index 

(NDVI). NDVI has a number of known flaws, including scaling nonlinearities ((Elmore et al., 

2000; J. C. Price, 1990; Christopher Small, 2001)), sensitivity to both soil background and 

atmospheric effects ((Small and Milesi, 2013; Smith et al., 1990)), and saturation effects over a 

wide range of vegetation fractions (Small and Milesi, 2013). In an attempt to mitigate these 

problems, NDVI is often normalized using linear (e.g., (Choudhury et al., 1994)) or quadratic 

(e.g., (Carlson, 2007; Carlson and Ripley, 1997; Sun, 2016)) transformations. Each spectral 

index, transformed or untransformed, gives different estimates of vegetation abundance, which 

then result in differences in the estimated ET. If these metrics could be improved and 

standardized, ET models could be made more accurate, and cross-model standardization could be 

more effective. One recent study (Li et al., 2018) has recognized the impact of subpixel 

heterogeneity on ET model accuracy and used a spectral mixture model to estimate subpixel 

fractions of different agricultural crops with different ET characteristics. These crop fractions 

were used as inputs to the SEBAL and SEBS models, resulting in improved accuracies of 

between 7% and 18% for different crop types.  

Spectral Mixture Analysis (SMA; (Adams et al., 1986; Gillespie et al., 1990; Smith et al., 

1985)) is a physically-based method that uses the full reflectance spectrum, rather than a subset 

of bands, to estimate V simultaneously with fractions of other spectral endmembers within each 

pixel’s field of view. SMA can explicitly account for illumination effects, as well the reflectance 

of the soil and non-photosynthetic vegetation (NPV) background, substantially improving 

estimates at low vegetation abundance (Smith et al., 1990). Because SMA relies on the area-



 114 

  

weighted linear mixing of radiance from materials within the pixel, V estimates are relatively 

insensitive to sensor spatial resolution, and they have been shown to scale linearly from 2 m to 

30 m (Christopher Small, 2001; Small and Milesi, 2013), as well as from meter-scale field 

measurements (Elmore et al., 2000). This simple linear scaling could be a key advantage for ET 

studies, given the widely recognized scaling nonlinearities of many ET estimates (e.g., 

(Baldocchi et al., 2005; Brunsell and Anderson, 2011; Brunsell and Gillies, 2003b; Ershadi et al., 

2013; McCabe and Wood, 2006; Sharma et al., 2016)). SMA fraction estimates are sensitive to 

the spectra of the endmember (EM) materials, but previous work has characterized the global 

multispectral mixing space and proposed standardized generic EMs, which well-describe the 

majority of the Earth’s land environments, and are calibrated across sensors ((Small, 2004; Small 

and Milesi, 2013; Sousa and Small, 2017a)). 

In addition to providing enhanced estimates of V, SMA simultaneously provides accurate 

estimates of two additional physically meaningful quantities: (1) the subpixel areal abundances 

of soil, rock, and NPV substrates (S), and (2) dark features (D) such as shadow, water, and low-

albedo surfaces. These estimates are made at subpixel resolution and with trivial computational 

cost. Dark fraction estimates represent the effects of albedo (α), illumination geometry (flux 

density), atmospheric opacity, and soil moisture content, thereby modulating the overall 

amplitude of the reflectance signal. Substrate fraction estimates provide information about the 

compositional properties of the soil, and NPV substrate background at each pixel. To our 

knowledge, the simultaneous estimation of vegetation fraction, soil+NPV background, and 

albedo provided by standardized SMA has not yet been incorporated into ET estimation 

approaches. This could represent a missed opportunity. When compared against coincident T 

measurements, SVD fractions can provide a unifying framework which incorporates two major 
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existing approaches to ET estimation (V vs T and α vs T), and also includes a novel, potentially 

useful supplement (S vs T). By estimating S, V, and D fractions simultaneously, SMA 

automatically provides information on their respective contributions to the aggregate reflectance 

spectrum of each pixel. Therefore, multitemporal SVD fractions provide a self-consistent 

measure of the time-varying tradeoff between illuminated vegetation and soil fractions and 

moisture-modulated soil albedo—two of the primary factors determining the combined 

evaporative and transpirative processes that control the surface temperature field. 

The primary purpose of this analysis is to explore the SVD model as a conceptual 

framework for ET estimation. While the V vs T relationship has been long recognized in ET 

studies (Carlson et al., 1994; J. C. Price, 1990), to our knowledge it has been only investigated 

using NDVI and its transformations, not by V as estimated by standardized SMA. Similarly, the α 

vs T relationship has already been explored, but only by estimating α through forward modeling. 

The connection between the α vs T and D vs T relationships has not yet been documented. In 

addition, to our knowledge, the relationships between S, V, D, and the ET Fraction (EF) and 

Moisture Availability (Mo) estimates have not yet been characterized. Finally, we evaluate the 

EF and Mo estimates using weather station data, and discuss the implications of this approach for 

improving the accuracy and consistency of ET estimates, informing flux partitioning, and 

providing an optimized, unifying approach to extract maximum value from coincident 

multispectral and multiresolution optical and thermal imagery. 

ET Model Overview 

Models Relying on V vs T 

The combined use of optical and thermal imagery for ET monitoring has been the focus 

of extensive previous work. A plethora of physical and statistical models have been built to 
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approach the problem. One of the first approaches ((Carlson et al., 1994; J. C. Price, 1990) and 

subsequent publications; reviewed by (Carlson, 2007)) was based on the observed triangular (or 

trapezoidal (Moran et al., 1994)) relationship in the vegetation index vs temperature space for 

many landscapes. The physical basis for this triangular relationship is the evapotranspirative 

cooling that occurs in dense well-watered vegetation, and which may or may not occur in 

unvegetated areas, depending on the moisture availability. 

Other popular approaches, such as the Surface Energy Balance Algorithm for Land 

(SEBAL) (Bastiaanssen et al., 1998) and Mapping EvapoTranspiration at high Resolution with 

Internalized Calibration (METRIC) (Allen et al., 2007), are primarily based on the information 

contained in the spatial variability of the temperature field across a landscape. Another class of 

approaches, most notably the ALEXI/DisALEXI model ((Anderson et al., 2011, 2004, 1997)), 

rely on the time differencing of the thermal field to capture variations in the diurnal temporal 

trajectory of different land covers. Recently, a modification of the Two-Source Energy Balance 

(TSEB) model to include contextual vegetation information has been shown to yield encouraging 

results (Nieto et al., 2018). Despite their different sets of assumptions and governing equations, 

all of these models generally require vegetation abundance estimates in one form or another 

(even if only for initial roughness estimates), and they rely on spectral indices to provide them. 

Models Relying on α vs T 

Early work based in north Africa observed a strong relationship between the overall 

surface reflectance (albedo) and ET (Menenti et al., 1989). This relationship was interpreted in 

the context of the governing equations for surface energy balance. Four models were presented 

that could potentially describe the physical meaning of the relationship. These were later brought 

into a single framework by (Roerink et al., 2000). This model decomposes the α vs T relationship 
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into evaporation-controlled and radiation-controlled regimes. The evaporation-controlled regime 

is active at lower albedos, and is characterized by an increase in T with increasing α, as is 

physically explained by the moisture darkening of soils. Once the soils are sufficiently dry for 

the effects of moisture darkening to become negligible, the sign of the relation reverses, and T 

decreases with increasing α. The physical explanation for this is the decreased absorption of 

incident radiation at higher albedos. Comparative studies of the α and T and V vs T relations 

(e.g., (Galleguillos et al., 2011; Yang and Wang, 2011)) can provide insights into the relative 

strength of the physical processes underlying each conceptual framework. More recently, Ref. 

(Merlin et al., 2014) have developed an integrated approach which unites the V vs T and α vs T 

relations into a single model. 

The above summary of models is not intended to be comprehensive. Rather, it is designed 

to present the reader with a sampling of the range of ET estimation methods that are extant in the 

literature, and to show the ways in which V, α, and T are incorporated into ET estimation 

algorithms. For more comprehensive reviews of these methods (and more), see (Carter and 

Liang, 2018; Kalma et al., 2008; Petropoulos et al., 2009). 

Spectral Mixture Analysis 

Multispectral satellite imaging sensors generally measure reflectance in 4 to 12 optical 

wavelength intervals. Vegetation indices are generally based on only two or three of these 

wavelengths, leveraging the distinctive visible-near infrared (NIR) “red edge” that makes 

vegetation abundance one of the strongest signals that are present in multispectral data. The 

information present in the surface reflectance at other visible and IR wavelengths, unused by 

spectral indices, can provide significantly more information than vegetation abundance alone. 
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SMA (Adams et al., 1986; Gillespie et al., 1990; Smith et al., 1985) is a well-established, 

physically-based way to retrieve this additional information. 

SMA assumes area-weighted linear mixing of upwelling radiance within the 

Instantaneous Field of View (IFOV) of each multispectral pixel. While not always a valid 

assumption, linear mixing has been shown by (Johnson et al., 1983; Singer, 1981; Singer and 

McCord, 1979) to have a solid theoretical and observational basis for practical applications. 

SMA treats each pixel spectrum as a linear combination of pure EM spectra, and inverts a set of 

linear mixing equations to accurately estimate the subpixel abundance of each EM material.  

Theoretically, as many materials could be mapped as wavelengths measured by the 

multispectral imager (4 to 12). In practice, however, 6-band Landsat spectra have been shown to 

essentially represent only three distinct land cover types on ice-free land surfaces ((Kauth and 

Thomas, 1976; Small, 2004)) corresponding to substrate, vegetation, and dark surfaces (S, V, and 

D). Similar EMs emerge from diverse mixing spaces of higher dimensional 12-band Sentinel-2 

imagery (Small, 2018), and 224-band hyperspectral AVIRIS flight line composites (Sousa and 

Small, 2018a). These studies suggest that an approach based on estimation of three materials 

from multispectral imagery is likely to be generally applicable across most terrestrial surfaces 

relevant to ET analysis. 

Reflectance spectra of the three global SVD EMs for Landsat 8 are shown in the lower 

left corner of Figure 29. Substrate fractions represent materials such as soil, rock, and non-

photosynthetic vegetation. Vegetation fractions represent illuminated photosynthetic vegetation. 

Dark fractions can variously represent shadow, water, or low albedo surfaces such as mafic rocks 

and some impervious surfaces. The spectral mixing space spanned by the bounding S, V, and D 

EMs encompasses (nearly) the full global range of multispectral diversity of the Earth surface. 
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Subpixel mixtures of rock and soil substrates, and different classes of vegetation with varying 

structural shadow and illumination conditions, as well as substrate and vegetation types with 

distinct lower amplitude reflectances, all plot as various mixtures of these three generic EMs 

(Small, 2004). Snow, ice, evaporate materials, and shallow marine substrates occupy distinct 

limbs of the global mixing space, and are not well-represented by these three EMs, but they are 

generally not considered in ET studies, and will not be discussed in this analysis. 



 120 

  

 

Figure 29. True color (UL), false color (UR), fraction abundance (LL) and thermal (LR) images 

of a diverse northern CA landscape as imaged by Landsat 8 on June 19, 2013. Green fields are 
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generally distinct from fallow fields and grasslands in the visible, but infrared bands shown in 

the false color composite allow superior discrimination. At this time of year, nearly all flooded 

fields are rice and nearly all green, not flooded fields are row crops & orchards. S, V, D subpixel 

abundances are estimated using a 3 EM spectral mixture model. Visual agreement between the S 

fraction and T images suggests that regions dominated by S fraction are generally hotter than 

regions dominated by V or D fractions. 

Materials and Methods  

Data 

This analysis relies on optical data from the Operational Land Imager (OLI) and thermal 

data from the Thermal Infrared Sensor (TIRS) instruments onboard Landsat 8. Landsat data were 

downloaded free of charge as digital numbers (DNs) from the USGS GloVis download hub 

(http://glovis.usgs.gov) (USGS, 2018). Optical and thermal image data were calibrated to 

exoatmospheric reflectance and apparent brightness temperature, respectively, using the standard 

calibration procedures described in the Landsat Data Users Handbook (USGS, 2016b). All data 

were downloaded with Collection 1 preprocessing, which incorporates the standard correction 

(Gerace and Montanaro, 2017) to the well-known TIRS stray light problem (Montanaro et al., 

2014). Where indicated, 30 m OLI bands were convolved with a 21 × 21 low pass Gaussian 

kernel to simulate the larger 100 m IFOV of the TIRS. 

While optical Landsat 8 OLI imagery is now available on-demand with the standard 

Landsat Surface Reflectance Code (LaSRC) atmospheric correction, standard atmospherically-

corrected thermal Landsat 8 TIRS imagery is not yet available. In order to provide the study with 

maximum generality, we do not apply atmospheric correction to either the optical or thermal 

images used in the study. We also include images with minor atmospheric effects to note their 

http://glovis.usgs.gov/
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potential impact on ET estimation. This allows for more direct comparisons with historical 

studies involving Landsats 4–7, which do not have the benefit of the LaSRC correction, and are 

forced to rely on the less accurate Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) correction. It also allows for the use of global EMs, which are cross-calibrated to 

account for the differences in band positioning between the optical imaging instruments on 

Landsats 7 and 8 (Sousa and Small, 2017a). The study area used has the additional benefit of 

atmospheric dynamics, which are generally favorable for satellite imaging during the primary 

growing season, resulting in a relatively large number of cloud-free images. 

Spectral Mixture Analysis 

All OLI images were unmixed into S, V, and D fraction images using the global S, V and 

D EMs from (Sousa and Small, 2017a). As suggested in (Small, 2004; Small and Milesi, 2013; 

Sousa and Small, 2017a), local SVD EMs were also selected from the apexes of the convex hull 

of the image point cloud in low-order feature space, and compared against the global EMs. The 

local V and D EMs were nearly indistinguishable from the global EMs, but the local substrate 

EM was substantially darker than the global EM, as expected given the difference between the 

soils that are present in the study area and the sand from the Libyan Sahara identified from the 

global analysis. The local S EM was then used in conjunction with the global V and D EMs for 

unmixing. 

Linear spectral unmixing considers the multispectral reflectance of each pixel to be an 

area-weighted linear sum of the constituent EM reflectances. The subpixel areal abundances of 

each EM are estimated through the inversion of a system of linear equations of the form: 

𝑓𝑆𝐸𝑆,𝜆𝑖
+ 𝑓𝑉𝐸𝑉,𝜆𝑖

+ 𝑓𝐷𝐸𝐷,𝜆𝑖
= 𝑅𝜆𝑖
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where fS, fV, fD, are the relative subpixel areal abundances of the S, V, and D EMs; ES,λi, 

EV,λi, ED,λi, are the reflectances of the S, V, and D EMs at each wavelength; and λi ∈ {482 nm; 561 

nm; 655 nm; 865 nm; 1609 nm; 2201 nm}, corresponding to bands 2–7 of Landsat 8 OLI, 

respectively. A unit sum constraint was imposed with weight = 1 on the physical basis that the 

subpixel areal abundances are expected to sum to unity.  

ET Estimation Using the Triangle Method  

Because the primary purpose of this analysis is to illustrate the relationship between S, V, 

D fractions and ET parameters, we chose the simple and popular Triangle Method for ET 

parameter estimation. The Triangle Method fundamentally relies on the bivariate distribution of 

vegetation abundance and temperature. The physical principles underlying the method are: (1) 

soil with a high surface water content exhibits more evaporative cooling than soil with low 

surface water content, and (2) regions with abundant (non-water-stressed) vegetation exhibit 

more evapotranspirative cooling than regions with sparse (and/or water-stressed) vegetation. 

Regions with dense vegetation (V ≈ 1) have a tight distribution of (relatively low) temperatures, 

because cooling is maximal. Unvegetated regions (V ≈ 0) have a broad distribution of 

temperatures, from cool (wet soil, maximal cooling from ET) to hot (dry soil, no cooling from 

ET). This results in a triangular shape of the bivariate distribution of V vs T.  

Following the procedure of (Carlson, 2007), a SVAT model was then used to compute 

expectations of EF and Mo for any arbitrary combination of V and T. EF is defined as: 

𝐸𝐹 =   
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where LE is total actual surface ET (vegetation + soil), and Rn is the surface net radiation. 

Mo is defined as: 

𝑀𝑜 =
𝐿𝐸𝑠

  

where LEs is the total actual soil evaporation, and ETos is the potential ET at the soil 

surface radiant temperature. Mo can alternately be understood as the ratio of soil water content to 

that at field capacity, or the ratio of soil surface resistance to the soil surface plus atmospheric 

resistance. 

EF and Mo are thus both relative measures of ET. EF quantifies spatially explicit 

information about the fraction of net radiation that is used by total surface ET. Mo quantifies 

spatially explicit information about the availability of water near the soil surface to participate in 

the ET energy exchange.  

While a number of SVAT models exist, model-to-model variations generally result in 

only small changes in outputs in V vs T space. Regardless of SVAT model choice, a triangular 

pattern of EF and Mo are generated. For this analysis, we use the generalized Triangle method 

coefficients proposed by (Carlson, 2007) and shown in Table 1. While not specifically tailored to 

the landscape studied here, the general coefficients are expected by (Carlson, 2007) to yield 

satisfactory results in most cases, and are sufficiently accurate for the illustrative purposes of this 

study.  
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Table 1. Generalized Triangle Method coefficients used to estimate EF and Mo. From Carlson 

(2007). 

The triangular shapes of these model outputs are then fit to the observed V vs T 

distribution of each image. This is done by normalizing both the observed T and V values to the 

range 0 to 1. T was normalized (to T*) by using the linear transformation suggested in (Carlson, 

2007): 

𝑇 =
𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
 

(Error! 

No sequence 

specified.) 

The bounding values of Tmin and Tmax used for all scenes were 285 K and 335 K, 

respectively. While ET estimates could be more accurate if scene-to-scene differences in air 

temperature were accounted for by using scene-specific Tmin and Tmax values, we used consistent 

bounding values to facilitate intercomparison between scenes. After normalization, T* values fall 

in the 0 to 1 range that is expected by the SVAT model. 

Theoretically, V estimates should not need normalization, since they directly represent a 

physical quantity that varies from 0 to 1, and that has been shown to scale linearly. SMA-derived 

V estimates are satisfactory in this regard, and they were not further normalized in this analysis. 

These estimates were compared against NDVI computed using the standard relation: 
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NDVI 𝑁𝐷𝑉𝐼
𝑁𝐼𝑅−

𝑁𝐼𝑅+
  

NDVI is well known to frequently both yield negative values and roll off well below the 

value of 1. For this reason, it is recommended to be transformed to fit the 0 to 1 range for the 

purposes of the Triangle Method. We compare two normalizations. The first normalization is 

NDVI*, computed using the linear relation popularized by (Gutman and Ignatov, 1998): 

𝑁𝐷𝑉𝐼 =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
  

The second normalization is NDVI*2, computed using the quadratic transformation 

suggested by (Carlson, 2007): 

𝑁𝐷𝑉𝐼
2

= (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

  

For this analysis, NDVImin and NDVImax values were identified to be 0.15 and 0.85, 

respectively, for all scenes. Finally, albedo calculations were performed using the shortwave 

broadband albedo coefficients from (Liang, 2001).  

Study Area 

The study area used for this analysis is a 120 × 90 km region comprising the Sacramento 

Valley of California and its surrounding foothills. The region hosts a broad diversity of soils and 

vegetation types. The valley is flat and dominated by high intensity agriculture. Rice is 

commonly grown in the clay-rich soils away from the Sacramento and Feather River channels. A 

diverse mix of row crops and orchards is grown in the sandier soils closer to the river channels 

and valley edges. The foothills of the Coast Ranges (west of the valley), Sierra Nevada (east of 

the valley), and Sutter Buttes (center of the valley) rise above the valley floor, and are generally 
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covered with mixed rainfed grasslands, which are predominantly used for grazing. The northeast 

and southwest corners of the scene capture coniferous and deciduous forests, which are common 

at higher elevations surrounding the study area. Spatially extensive human settlements are 

present in the southeast (Sacramento/Davis/Woodland) and central east (Marysville/Yuba City) 

portions of the scene. The deep reservoirs of Lake Berryessa (southwest corner) and Lake 

Oroville (northeast corner) are also present. The climate of the region is classified as Hot 

Summer Mediterranean (Köppen Csa), with hot, dry summers and cool, wet winters. 

Figure 29 shows the region as imaged by Landsat 8 on 19 June 2013. The natural color 

composite image (upper left) allows for broad discrimination between the foothill grasslands, 

valley agriculture, and upland forests. However, substantially more information is provided by 

the infrared bands shown in the false color composite (upper right). Here, broad diversity is 

apparent in soil and NPV background reflectance, as well as enhanced discrimination between 

flooded rice fields (black) and non-flooded row and orchard crops (green/brown/red). The SVD 

fraction image (lower left) shows the subpixel areal abundance of each globally standardized EM 

(inset, from (Sousa and Small, 2017a)), which is estimated from the multispectral reflectance 

data by SMA. Vegetation indices provide an approximation of only the green channel of this 

image. The red channel of this image (S fraction abundance) shows substantial visual similarity 

to the hot (red) values recorded by the thermal image (lower right). The similarity between these 

two spatial patterns provides qualitative visual evidence suggesting a strong S vs T relationship, 

further explored below. 

Results 

The main body of results are presented as bivariate distributions in a series of density-

shaded scatterplots comparing the SVD land cover fractions and transformed vegetation indices 
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with the ET parameters (Mo and EF), and brightness temperature. Because of differences in the 

timing of planting and irrigation of individual fields in the study area, each Landsat acquisition 

captures a wide variety of crops at varying stages of their phenological cycles, in addition to a 

diversity of fallow soils with varying moisture contents and tillage conditions. Therefore, all of the 

images used in this study contain nearly the full range of vegetation abundance, soil exposure, and 

soil moisture contents. The most pronounced differences in the bivariate distributions from date to 

date are related to the phenological progression of the rice crop through the peak growing season, 

varying somewhat from year to year. The trajectories of the clusters within the distributions are 

related to the evolving land cover mosaic and its effect on the surface energy balance that controls 

the structure of the distributions. 

Vegetation Metric Comparison 

We begin our analysis with a comparison of the vegetation metrics because of their 

centrality to ET estimation. The left panel of Figure 30 shows bivariate distributions of NDVI, 

NDVI*, and NDVI*2 against SMA-derived vegetation fraction (V) for the five most informative 

June Landsat 8 images in the archive. Images are arranged from top to bottom by increasing the 

Julian Day irrespective of year to illustrate the general features of the seasonal phenology of the 

region. NDVI shows a nonlinear relationship with V, overestimating at most values and rolling 

off prominently. The roll-off of the top of the distribution begins below 0.5 and truncates near 

0.85, while the roll-off on the bottom appears to be continuous. The consistency of the NDVImax 

and NDVImin values of 0.85 and 0.15 across all 10 images (including five not shown in Figure 30) 

justifies the use of a single set of normalization bounds for all images. The residual values of 

0.15 in the unvegetated areas is largely due to the positive slope between visible red and near 

infrared wavelengths that are generally present in bare soil spectra. NDVI* better fills the 
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physically meaningful 0 to 1 range that is expected of fractional vegetation cover, but it still has 

notable overestimation and roll-off effects. NDVI*2 is even more linear than NDVI*, but the 

distribution is compressed towards smaller values, because squaring numbers that are smaller 

than 1 reduces their value. In addition, a long tail at negative NDVI* values (truncated in Figure 

30) is a result of dark materials having a smaller spectral slope than the NDVImin values that are 

representative of bare soil. When the square transform is applied, these values are projected up 

towards large positive NDVI*2 values, resulting in erroneous estimates of high (sometimes over 

0.5) vegetation abundance in these totally unvegetated areas. Overall, the general effect of these 

rescalings of NDVI appears to be to increase the degree of underestimation at low vegetation 

fractions, while retaining the overestimation at higher vegetation fractions. Notably, the 

saturation at high NDVI values, though reduced by the rescalings, still remains after squaring is 

applied. As a result, a wide range of vegetation fractions are placed near NDVI*2
max. The effects 

described here are consistent for our study area throughout the entire June Landsat 8 archive. 

Bivariate distributions of NDVI*, NDVI*2, and V versus T* are shown in the right panel 

of Figure 30. The density-shaded bivariate distribution for each date is shown in color, 

superimposed on the silhouette of the combined distribution of all dates in black. All three 

metrics show the expected triangular relationship, but considerably more information is evident 

using V than either of the spectral indices, visible in the form of internal clustering. Because 

NDVI* generally overestimates V, a pronounced density of points near the upper bound (“warm 

edge”) of the triangle in NDVI* vs T*  

space is present. NDVI*2 overcompensates for this effect, compressing the vegetation 

abundance distribution toward 0 values, and leaving the upper portion of the space sparsely 

populated, scattered, and concave. In comparison, V retains considerable structure across low, 
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intermediate, and high V values. Physically meaningful clusters are clearly identifiable in the V 

vs T space, which are not distinct in either of the spaces of the spectral indices. One example of 

this is the paddy rice, which plots at low V and T values on the 3 June 2013 image, and then 

progressively migrates toward higher V values in later images, as the crop matures and its canopy 

closes. Note that the rice clusters around the intermediate (0.5–0.7) vegetation fraction at the 

later dates, but near the maximum of the transformed NDVI distributions. Due to its erectophile 

structure, the rice canopy does not attain full closure until the end of its growing cycle, so that a 

substantial fraction of underlying soil or water contributes to the aggregate reflectance. In 

contrast, leafy vegetable crops attain more complete canopy closure at this time, and therefore 

occupy the upper tail of the vegetation fraction distribution.  

Structure (or lack thereof) in the V vs T distribution maps onto the structure in the ET 

parameter space. Figure 31 shows this for the ET fraction (EF) using each of the NDVI*, 

NDVI*2, and V vegetation metrics. Every image examined generally forms a triangular 

distribution in EF vs vegetation space, regardless of the vegetation metric. Pixels with high 

vegetation abundances converge to a single, high EF value, but pixels with low vegetation 

abundances can have either high (flooded fields or lakes) or low (dry soil or impervious surface) 

EF values. However, the amount of structure within the pixel envelope varies considerably from 

metric to metric. The least clustered structure is visible in the NDVI* distribution, and the most 

clustered structure is visible in the V distribution. The compression of NDVI*2 down toward 

small values results in a broad base to the triangular cloud, but sparse and scattered intermediate 

estimates. In contrast, the V vs EF plots show considerable pixel density throughout the range of 

V values, with broad clusters corresponding to physically meaningful land covers. Flooded rice 

paddies are clearly distinct from green (non-rice) agricultural fields, which are clearly distinct 
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from dry soils. These distinctions in the EF vs vegetation space are much more clearly 

represented by V than NDVI* or NDVI*2. 

 

Figure 30. Vegetation metric comparison. L: Raw and transformed Normalized Difference 

Vegetation Index (NDVI, y-axis) vs SMA-derived vegetation fraction (V, x-axis). All three indices 

overestimate V at intermediate values and roll-off at high values. R: Bivariate distributions of 

vegetation metrics vs T* all form triangular distributions. However, considerably more structure 

is evident in the V vs T* distributions than in the index distributions. In early June (top rows), 

flooded, young rice paddies form a cluster in the V vs T* distributions that is not distinguished 

by either index, illustrating the inaccuracy of NDVI for sparse vegetation. 
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Figure 31. Vegetation metrics vs EF. Regions with high vegetation cover collapse into a tight 

range of EF. Regions with low vegetation can have high or low EF. For images earlier in June, 
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the abundance of flooded rice paddies results in a cluster at high EF but low T. This cluster 

migrates to higher V later in June as the rice canopy fills. Again, NDVI* shows the least 

structure, NDVI*2 is intermediate, and V shows the most structure. 
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Figure 32. Vegetation metrics vs Mo. Regions with high vegetation cover converge into a tight 

range of low Mo. Regions with low cover can have high or low Mo. In some scenes, forests at 
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higher elevation in the NE corner of the image are colder than that rest of the image and so 

record anomalously high Mo. With V, the rice paddy cluster is again separate in early June, then 

moves to high V and low Mo values as the canopy fills. This cluster is barely distinguishable, and 

the structure much less clear, using either spectral index. 

The Mo vs vegetation space, shown in Figure 32, can be interpreted similarly. In all 

cases, a clear triangular structure to the space is again evident. All pixels with high vegetation 

abundances are associated with low Mo, but pixels with low V values can be associated with high 

Mo (flooded areas & lakes) or low Mo (dry soil & impervious surface). In some scenes, higher-

elevation forests in the Sierra Nevada form a distinct cluster in V vs Mo space because they are 

substantially colder than the rest of the scene. Again, significant differences in internal structure 

are apparent from metric to metric, with the most complex and informative structures being 

apparent in the V vs Mo space. 

SMA-derived V fraction has long been recognized as a more accurate metric of 

vegetation abundance than spectral indices like NDVI. Taken together, Figure 31 and Figure 32 

demonstrate how the inaccuracies in NDVI propagate through a simple ET model to clearly result 

in substantial information loss in estimates of EF and Mo. Evaluation of NDVI*, NDVI*2, and V-

based estimates of ET parameters using field measurements from agriculturally met stations, 

described in the Discussion, confirms that the greater information content of V-based estimates 

results in improved agreement between satellite and field measurements. While linear and 

quadratic transformations of NDVI do somewhat linearize the distributions and rescale their 

ranges, they cannot recover the structure of the bivariate distribution, which is simply not 

captured by the 2-band normalized difference. When spectral indices are used in more complex 

ET models, the error propagation may be even more severe. 
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Dark Fraction and Albedo 

The D fraction provided by SMA also yields information relevant to ET estimation. 

Bivariate distributions of the D fraction against EF and Mo estimates are shown in the first and 

third columns of Figure 33. D vs EF spaces show similar overall structures from scene to scene, 

with a considerably more complex pixel distribution than that of the V vs EF & Mo spaces. 

Information about the phenological progression of the rice crop is present within this complexity. 

In early June, rice paddies reside in a consistent cluster at high D and high EF. This cluster is 

prominently separated from the remainder of the point cloud. As the growing season progresses, 

D decreases as V increases, and the cluster migrates to join the other green (non-rice) agriculture 

in the upper left corner of the point cloud at high EF values, but at low D fractions. Dry soil and 

NPV occupies the lower curvilinear bound of the space, with variable D fraction corresponding 

to illumination, substrate albedo, roughness, and the fractional cover of the NPV vs soil. 

The overall envelope of the D vs Mo distributions (third column of Figure 33) is more 

triangular than that of the D vs EF distributions. This reflects the propensity for surfaces with 

high D fractions to have high moisture contents (standing water, saturated soil) or deep shadows. 

Rice paddies again reside in a consistently isolated cluster in early June, with high values of both 

D and EF, and migrate toward the remainder of the point cloud as the growing season 

progresses. Non-rice land cover resides in a more amorphous cluster with intermediate dark 

fractions and relatively low Mo. 

The left and center columns of Figure 34 show the bivariate distribution of D vs T* and α 

vs T* for each image, respectively. The two distributions have obvious visual similarity, and they 

give similar information (ρ < −0.98 for all scenes). Clearly, the D fraction well represents 

broadband shortwave albedo in these images. Pixels with high D fractions and low α values 
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generally have low T* values, generally corresponding to standing water. Pixels with 

intermediate D fractions or intermediate α, however, can possess any of the full range of T* 

values. This is because these pixels can correspond to a wide range of land covers, including 

green crops, forests, dry fields, and impervious surfaces. The two subparallel diagonal limbs in 

the D vs T* space correspond to variations in crop canopy structural shadow and plant spacing. 

 



 138 

  

 

 

Figure 33. Dark and Substrate Fractions vs EF and Mo. Corresponding α vs EF and Mo spaces 

are not shown because nearly indistinguishable from the mirror image of the D vs EF and Mo 
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spaces. The rice paddy cluster is present in both D vs EF and D vs Mo spaces, but only weakly in 

S vs Mo. High EF values are partitioned between green (non-rice) agriculture at low D & low S 

values and rice paddies at high D and low S values. D vs Mo distributions generally show 

increasing Mo with increasing D. S vs EF and MO distributions show decreasing EF and MO 

with increasing S. 
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Figure 34. Dark fraction (D), albedo (α), and Substrate (S) vs normalized temperature (T*). The 

D vs T* relation is similar to the α vs T* relation (with a sign flip). In contrast, the S vs T 
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relation is highly linear. Pixels which are cooler than the main S vs T relation are generally 

covered with NPV and pixels hotter generally correspond to low albedo soils. 

Substrate Fraction, Temperature, and ET 

The third complementary piece of information given by the SVD approach is contained 

in the S fraction. The distributions of S versus EF & Mo are examined in the second and fourth 

columns of Figure 33. Again, broad similarities in structure are observed between scenes. EF 

shows a consistent inverse relationship to S, fanning out at higher S values in correspondence to 

the spectral ambiguity between soil and NPV. In contrast, the relationship between S and Mo is 

generally triangular, and it has some visual similarities to the relationship between V and Mo, 

shown in Figure 32. Pixels with high S values uniformly have low Mo values, accurately 

representing the low moisture content of bright, dry soils and NPV. However, pixels with low S 

values can have either high or low Mo values, corresponding to standing water or dense 

vegetation, respectively. In some scenes, the sporadic clouds intentionally carried through the 

analysis distort these relationships by yielding spuriously high S values, low T values, and high 

EF and Mo values. This illustrates the effect that uncorrected atmospheric effects can have on 

both SMA-derived fractions and ET estimates. 

In contrast to the complexity of the V vs T and D vs T distributions, the relationship 

between S and T is remarkably straightforward in this study area, as shown in the right column of 

Figure 34. For all 10 June Landsat 8 images in the archive, S fraction shows a simple linear 

relationship to T. When all the single date spaces are combined into a single multi-date 

composite space, as shown in Figure 35, this relationship is masked because scene-to-scene 

variations in air temperature and illumination geometry result in shifts in absolute position of the 

point cloud in T—but not in its structure. Correlation coefficients for each coincident S vs T 



 142 

  

image pair, also shown in Figure 35, quantify the strength of this relationship in the 0.7 to 0.9 

range, which is substantially stronger than the (negative) relationship between V and T. Because 

the relationship between S and T is so strong, the relationship between S and V is similar to the 

relationship between T and V. The potential implications of this observation could be 

considerable, given that S is quantified using information from the optical bands alone. 

 

 

 

Figure 35. Composite relationship between S and T. Left: A consistent linear relationship 

between S and T is observed for nearly every June scene in the Landsat 8 archive, but the 

composite space of all 10 acquisitions is less obviously linear because significant image-to-

image variability exists in air temperature. Right: Correlation between coincident S, V and T 

images for each date. The observed (+) correlation between S and T is stronger in every case 

than the well-known (-) correlation between V and T. Because the S vs T correlation is so strong, 

the S vs V and T vs V correlations are very similar.  
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Discussion 

Application Examples 

Figure 36 shows an example of ET estimation using the SVD+T approach on an image 

from 14 August 2016 in the study area. This image was acquired relatively late in the growing 

season. In this image, the majority of rice fields have closed canopies, and some are beginning to 

senesce. Orchards are generally in full leaf at this time, and row crops are in various stages of 

growth. Rice fields are easily identifiable from the SVD image (top) on the basis of their high V 

fraction, large field size, and relatively homogenous internal structure. Orchards generally have a 

lower V fraction and higher S fraction, due to the bare soil that is present between rows of trees. 

Native vegetation in the wildlife refuges and grasslands is generally senescent at this time of 

year, resulting in low V fractions and high S fractions. Settlements show considerable 

complexity, generally resulting in high S and D fractions.  

Variations in V and T images are manifest in the EF and Mo images (center and bottom, 

respectively). EF shows the highest values in the rice fields, and the lowest values in the dry 

grasslands and fallow fields, consistent with physical expectations. Wildlife refuges show 

substantial internal structure due to their complex land cover mosaic of water, native plants, and 

managed vegetation. Orchards and row crops show intermediate EF values. In contrast, the Mo 

image reveals different spatial patterns. Considerably more internal structure is evident in the 

rice-growing region in the Mo image than the EF image, consistent with spatial variations in 

field maturity. Rice in the western portion of this scene was planted earlier than in the east, 

resulting in more rapid senescence and reduced Mo in the west relative to the east. The spatial 

structure in the wildlife refuges observed in the EF image is greatly diminished in the Mo image, 

where the region is characterized by relatively homogenous low Mo values. 
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Figure 37 presents in greater spatial detail a 24 × 24 km spatial subset, as indicated by the 

white box in Figure 36. The image shown in Figure 37 was collected earlier in the growing 

season, on 19 June 2013. The false color image (panel A), together with the coincident thermal 

image (panel B), allow for broad discrimination among land cover types. The cold, black-to-

green large rectilinear fields correspond to flooded paddies with early-stage rice growing in 

them. Warmer, brighter areas along the Sacramento River channel correspond to row crops and 

orchards growing in sandier soils. The settlement of Willows, CA is present in the northwest 

corner of the image, with a complex reflectance signature and elevated temperatures relative to 

the surrounding agricultural landscape. A wildlife preserve is also present in the southwest 

corner of the image, characterized by a complex reflectance and temperature mosaic. SVD 

fractions (panel C) quantify this diversity through the amplitude variations of three continuous 

fields. 

NDVI*, NDVI*2, and V are shown in panels D through F. Relative to V, NDVI* 

underestimates the vegetative cover in the settlement and wildlife preservation areas, and 

overestimates it in some areas of rice agriculture. The overestimation in the rice is even more 

severe for NDVI*2, although the underestimation in the wildlife refuge and settlement areas 

appears to be less severe. These differences in estimates of fractional vegetation cover then map 

onto estimates of EF (panels G through I) and Mo (panels J through L) using each metric. The 

overall spatial pattern of EF does not have extreme variations from metric to metric, although 

prominent differences are evident within the region of rice agriculture, as well as in the 

settlement. Mo estimates, on the other hand, are wildly variable. While the spatial pattern of Mo 

estimated using V appears to match the physical properties of the landscape mosaic, Mo 

estimated using the spectral indices does not appear to capture even the prominent differences 



 145 

  

between the dry wildlife refuge and settlement, and the flooded rice paddies. The differences in 

EF and Mo estimates illustrate the potential sensitivity of ET estimation to the vegetation 

metrics, and the opportunity for improvement in current estimates that use the SVD approach. 

While we have used apparent brightness temperature and top of atmosphere reflectance to 

illustrate the effects of air temperature, future applications could make use of atmospherically 

corrected surface reflectance and surface temperature Landsat products provided by the USGS.  
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Figure 36. S, V & D fractions, along with EF & Mo, for a sample 15 × 50 km area imaged on 

August 14, 2016. Flooded paddies have high V and high Mo and EF. Fields in the western half of 
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the image were planted earlier than in the east and have started to senesce, resulting in lower 

Mo. Orchards have low EF and Mo. The wildlife refuge is complex, with both high and low EF 

and Mo. Landsat 8 resolves heterogeneity both within individual fields as well as across the 

valley. The white box shows the spatial subset used for Figure 37. 
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Figure 37. Example ET comparison. Landsat 8 collected coincident optical (A) and thermal (B) 

imagery on June 19, 2013. SVD fraction image (C) reveals substantial spatial heterogeneity in 
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agricultural and preserved lands. NDVI* (D) and NDVI*2 (E) images show substantial 

differences from each other and from V (G). EF estimates using the three vegetation metrics (G-

I) show similar overall patterns, but notable differences within agricultural areas. Differences in 

Mo (J-L) estimates are even more profound. 

Evaluation 

One reason this analysis uses the Triangle Method is because both EF and Mo are relative 

measures of ET, providing information about the spatial distribution of total ET and soil 

moisture, but not absolute estimates of actual ET flux. This aligns with the goal of the study to 

provide a novel conceptual framework, within which ET models can be understood and 

harmonized—rather than proposing a particular predictive model. We principally focus on the 

relative distributions of data and model parameters across images, in order to (1) show the effect 

that differences in vegetation metric can have on even simple ET models, and (2) to show the 

differences and consistencies between S and D fractions, observed T, and estimated EF and Mo. 

Despite these caveats, however, comparison of remotely sensed estimates with ground 

observations of relevant variables can still provide valuable insights. Ideally, direct field 

measures of actual ET from flux towers and/or lysimeters would be available to provide local 

calibration and validation constraints. To our knowledge, no such data are available for our 

region during the 2013–2018 time period that we considered. This unfortunately precludes direct 

validation. 

Agricultural meteorological data do exist in the area, however, in the form of a network 

of standardized weather stations maintained by the California Irrigation Management 

Information System (CIMIS). CIMIS stations measure a wide range of micrometeorological 
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variables, including wind speed and direction, air temperature and humidity, solar radiation, and 

soil temperature. These data are used to provide standardized estimates of ET-relevant derived 

quantities, including reference ET (ETo). Fortunately, four CIMIS stations are situated within our 

study area, and two more (Davis and Woodland) are immediately to the south (Figure 38). 

The plots at the bottom of Figure 38 compare the time series of CIMIS-measured soil 

temperature (green) and air temperature (red) in comparison to Landsat-estimated brightness 

temperature (black) for nine pixels closest to each of the four CIMIS stations located within the 

study area. While some discrepancies do exist, the Landsat temperatures estimates generally 

track the upper bound of the CIMIS air temperature to within 3–5 °C. Differences in the 

accuracy with which Landsat measurements track different stations are likely due to differences 

in the siting of each station, particularly the spatial homogeneity and land cover of the 

surrounding landscape. 

 

Figure 39 illustrates the relative ability of EF and Mo estimates based on V, NDVI*, and 

NDVI*2 to track ground observations. Every available cloud-free Landsat 8 scene in 2017 and 

2018 was processed with the same global NDVImax, NDVImin, Tmax, and Tmin values that were used 

for the rest of the analysis. EF and Mo values for maximally vegetated pixels were then selected 

from the distributions of (V/NDVI*/NDVI*2) vs (EF/Mo) to represent the conditions that are 

present at well-watered, densely vegetated CIMIS stations. EF estimates were compared against 

CIMIS-derived ETo (L) and Mo estimates were compared against (inverted) CIMIS-measured 

soil temperature (R). EF estimates using V track ETo more closely than EF estimates using 

NDVI*. EF estimated using NDVI*2 shows high amplitude peaks and oscillations throughout the 

growing season, which are not present in ground observations. Moderately strong positive 
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correlations (0.7 to 0.9) between EF estimates and individual station ETo records are observed 

for all metrics. While individual correlations are statistically significant (in all cases, p < 0.001 

compared to null hypothesis of 0 correlation), the differences between the correlations are not (p 

> 0.1 in all cases). 

Mo estimates show a similar pattern when compared against ground-based soil T 

measurements. When the SMA-derived V fraction is used, Mo estimates track the seasonal cycle 

of soil T remarkably closely. In contrast, Mo estimates using NDVI* and NDVI*2 overestimate 

Mo at the beginning and end of the growing season. This is in accord with the known superiority 

of V over NDVI in situations with sparse (early season) or senescent (late season) vegetation. 

Again, moderately strong positive correlations are observed between Mo estimates and 

individual station Soil T records for all metrics. Again, individual correlations are statistically 

significant (in all cases, p < 0.001 compared to null hypothesis of 0 correlation) but differences 

between the correlations are not (p > 0.1 in all cases). While admittedly indirect, this comparison 

to the available ground measurements provides additional evidence supporting the improvement, 

using the SMA-derived V fraction over transformed spectral indices like NDVI* and NDVI*2. 
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Figure 38. Four met stations are maintained in the study area by the California Irrigation 

Management Information System (CIMIS). Two more stations exist just to the south of the area. 
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Air temperatures (red) are generally higher and more variable than soil (green). Durham, 

Verona, & Biggs records are generally similar, with Landsat-observed brightness temperatures 

(black) at the warm bound of the envelope of air temperatures. The Williams station (installed 

mid 2016) has substantially lower air, but similar soil and brightness temperatures, to the other 

stations. 

 

 

 

Figure 39. Comparison to ground observations. EF (L) and Mo estimates (R) from maximally-

vegetated pixels from all cloud-free observations from 2017 and 2018 are compared against 

CIMIS data. Strong seasonality is evident in al observations. EF from SMA-derived V fraction 

tracks CIMIS-estimated ETo more accurately than EF from NDVI*. EF from NDVI*2 shows 

pronounced oscillations which are not present in the CIMIS data. Mo from SMA-derived V 

fraction tracks soil T much more accurately than Mo from NDVI* or NDVI*2. Mo estimated 

using the spectral indices does not capture the curvature of the seasonal peak, likely as a result 

of effects of soil background reflectance in pixels with sparse (early season) and senescent (late 

season) vegetation. 
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ET Partitioning 

A recent global analysis has shown the partitioning of ET into its primary subcomponents 

of transpiration (leaf water to air), soil evaporation (soil moisture to air), and interception 

evaporation (plant surface water to air) to vary widely between common ET models (Talsma et 

al., 2018a). Further work (published in this Special Issue) specifically shows NDVI to be the 

input parameter resulting in the greatest sensitivity of total ET estimates generated by the 

Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) ET model, with substantial nonlinearity 

(Talsma et al., 2018b). As mentioned in (Talsma et al., 2018b), nonlinearities in model 

formulation may explain this result. In addition, we suggest that another factor potentially 

contributing to this sensitivity could be the generally nonlinear relationship between the model 

input parameter (NDVI), and the physical quantity that it is intended to represent (fractional 

vegetation abundance). This hypothesis could be easily investigated through trials with the 

simple replacement of NDVI with SMA-estimated V. If the hypothesis is supported and 

improvement is seen, replacement of NDVI with V could offer a straightforward pathway 

towards ET model improvement requiring minimal effort. 

This opportunity is not unique to the PT-JPL model. Many ET model formulations 

assume a simple relationship between a biogeophysical landscape quantity, such as fractional 

vegetation abundance and a spectral index. A robust body of previous work (partially reviewed 

in the Background section above) has shown SMA to outperform spectral indices in a wide range 

of environments and spatial resolutions, especially in the case of broadband multispectral 

imagery. SMA also has the advantage of being grounded in a straightforward physical basis, and 

it accounts for the effects of soil reflectance, moisture content, and shadow explicitly. In general, 

it is reasonable to expect that the relationship between the true subpixel areal abundance of land 
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cover and the estimate given by SMA to be more accurate, and scale more linearly, than the 

estimate that is given by a normalized difference index. Given the ease with which SMA can be 

implemented into multispectral image processing workflows, and the current prevalence of 

spectral vegetation indices in ET models, this presents a substantial opportunity for the 

improvement of remote sensing-based estimation of ET. 

Despite their considerable advantages, the linear scaling properties of SMA-derived land 

cover fractions alone are not likely to resolve all scaling nonlinearities in ET estimation. The 

effects of other nonlinearities in the ET estimation process, such as surface roughness, are 

significant, and they can be observed in cases where vegetation parameters scale accurately. The 

recent work of (Ramírez-Cuesta et al., 2019) observes one such system. Using the METRIC 

model to estimate ET from an open-canopy olive orchard, Ramirez-Cuesta et al. find scaling 

discrepancies in sensible and latent heat fluxes of up to 24% and 15%, respectively. These 

differences could not be attributed to albedo or vegetation parameterization of the METRIC 

model. This work serves to highlight the complexity of the ET estimation problem, and the need 

for further work on characterizing the relationship between the spatial configuration of the 

landscape and the scaling of the ET estimates. 

Thermal EM Selection 

ET estimation methods that rely on the regional V vs T relation are generally sensitive to 

the selection of hot and cold thermal endmembers (Long et al., 2011; Long and Singh, 2013; 

Timmermans et al., 2007). As noted by (Carlson, 2013), the hot & cold EMs fundamentally set 

SVAT model boundary conditions, and thus constrain the distribution of possible ET outcomes. 

Because of this, ET models rooted in the V vs T relation can fundamentally only be as accurate 

and as consistent as the thermal EMs used in their formulation. 
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The SVD approach provides users with additional information about potential thermal 

EMs by providing two additional quantities relating to the land cover of the pixel. This 

information could be especially useful when considering the choice of hot EM, a particularly 

important and sensitive point, as noted by (Timmermans et al., 2007). The two parameters of 

spectral vegetation index and brightness temperature alone are generally insufficient to reliably 

distinguish between such widely variable materials as asphalt (or other low albedo anthropogenic 

surfaces), dry NPV (standing or cut crop litter, senesced grass), dry low albedo soil, and dry high 

albedo soil. However, by adding the S and D fraction information, these materials can be readily 

distinguished using their position in a 4-dimensional parameter space. This enhanced ability to 

discriminate between potential hot EM materials could support attempts to improve the 

consistency and accuracy of thermal EM selection. 

Clustering in Fraction vs ET Parameter Space 

The structure of the SVD fraction vs ET parameter spaces is a key component of this 

analysis. Both broad consistencies and illuminating differences are present between images in 

each space. Clustering in these spaces, indicative of landscape subsets with similar land cover 

and ET combinations, can be useful for mapping distinct land cover types. For example, the 

flooded rice paddies common in the study area are shown in Figures 3–6 as occupying a distinct 

position in each of the S, V, and D vs T, EF and Mo spaces. The position of these paddies relative 

to the other points in the space migrates throughout the growing season, resulting in a set of 

trajectories that are characteristic of rice paddies that are distinct from those of other types of 

crops, grasslands, or non-agricultural vegetation.  

Clustering in the feature space is also the foundation for discrete image classification. By 

contributing an additional (although not independent) set of basis vectors for the multispectral 
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feature space, the ET parameter estimates offer an additional opportunity to help the statistical 

classification algorithms to resolve distinctions between the spectral–thermal properties of 

different land covers. Especially when approached from a multitemporal framework (Sousa and 

Small, 2019), this information could potentially be used to improve image classification 

algorithms used for the mapping and monitoring of both human-modified and wilderness 

landscapes. 

The SVD Approach as a Unifying Framework 

The bivariate parameter spaces shown in Figures 2–7, and the examples shown in Figures 

8 and 9, illustrate the value of SMA with globally standardized SVD EMs as a unifying 

framework for two complementary approaches to ET investigation: the V vs T relationship and 

the α vs T relationship. Figure 30, Figure 31, and Figure 32 illustrate the ET-specific advantages 

of using V over the currently used metrics, such as NDVI* and NDVI*2, on the basis of the 

enhanced clustering and structure in the V vs T, EF, and Mo distributions. These advantages, in 

addition to previously demonstrated scaling and background suppression properties, advocate for 

the use of SMA-derived V fraction in ET studies. 

In addition to V, the SVD+T approach simultaneously retrieves information on two other 

factors influencing ET; fractional soil exposure and soil moisture. The left and center columns of 

Figure 34 show this information from the D fraction to be highly similar to (inverted) broadband 

shortwave albedo (ρ < −0.98 for all scenes). The right column of Figure 34 and Figure 35 show 

that S fractions are strongly linearly related to T, at least in the June imagery in this study area. 

While this relationship does have a strong physical basis, more investigation is warranted, to 

confirm its generality in other environments and seasons. However, the agricultural and soil 

complexity in the Sacramento Valley suggest that the relationship may hold in other agricultural 
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environments. By synthesizing the contributions of both vegetation abundance and albedo, the 

SVD+T approach presents a unified framework for considering two of the main branches of the 

ET literature.  

The focus of this analysis on a single study area may beg the question of the generality of 

the results. While the persistence of the feature space structure over several years is encouraging, 

it does not guarantee that the method will perform as well in other environments. However, the 

global analysis of (Small, 2006) did find a remarkable similarity of structure in the SVD fraction 

vs T spaces of 24 diverse urban-rural gradients spanning a very wide range of environments and 

land cover types. While the abundance of impervious surface in those environments complicates 

interpretation in terms of ET, a simple comparison of the SVD vs T spaces from (Small, 2006) 

with those in this analysis shows obvious similarities. The strong linearity of the S vs T space 

observed in the California study area is not a general feature in the global analysis, although it 

does appear in some examples containing abundant agriculture (e.g., Calgary, Essen & Cairo). 

An intercomparison of a diverse sample of agricultural areas worldwide is the focus of a separate 

study. 

Finally, the clustering that is apparent in the S, V, & D fractions versus T*, Mo, and EF 

spaces suggests that these spaces could provide the basis for either continuous or discrete 

classifications of crop types and growth stages for agricultural monitoring. This approach could 

be particularly effective when combined with spatiotemporal analysis of phenological 

information derived from multitemporal observations, as proposed by (Sousa and Small, 2019). 

In addition, once planned global hyperspectral missions become a reality, the SVD framework 

could also be integrated with targeted narrowband approaches such as that of (Marshall et al., 

2016). 



 159 

  

Conclusions 

The primary purpose of this study is to demonstrate the potential for spectral mixture 

analysis (SMA) based on globally standardized substrate, vegetation, and dark (SVD) 

endmembers (EMs) to provide a comprehensive, integrated framework for ET parameter 

estimation. The SVD approach yields complementary continuous field estimates of the subpixel 

fractional abundance of each EM. V fraction is an accurate, linearly scalable metric for 

vegetation abundance. D fraction is the linear complement to albedo. The linear tradeoff between 

S and D fractions provides information about the soil and NPV exposure, tillage conditions, and 

moisture content. Using the Triangle Method as an example model, the results of this analysis 

show substantially enhanced clustering in both the ET fraction (EF) and moisture availability 

(Mo) estimates, based on the V fraction, compared to the generally used NDVI* or NDVI*2. 

Replacing NDVI-based vegetation metrics with the standardized vegetation fraction eliminates a 

known nonlinearity and allows for pixel-based fractions to be downscaled and vicariously 

validated with higher resolution imagery when available. EF and Mo that are estimated using V 

also track field measurements of reference ET & soil temperature more closely than EF & Mo 

estimated using NDVI* or NDVI*2. Using the coefficients of (Liang, 2001), we show the D vs T 

relationship to be very similar to broadband shortwave albedo (α) vs T. Finally, we show S to 

have a consistent linear relationship with T, at least in this study area during peak growing and 

insolation season. SMA allows globally standardized S, V, and D fractions to be estimated 

simultaneously, with high accuracy and at trivial computational cost. The implications of such a 

unified framework for the standardization and accuracy improvement of ET models could be 

considerable. 
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5. Mapping and Monitoring Rice Agriculture with Multisensor 

Temporal Mixture Models 

Abstract 

Rice is the staple food for more than half of humanity. Accurate prediction of rice 

harvests is therefore of considerable global importance for food security and economic stability, 

especially in the developing world. Landsat sensors have collected coincident thermal and 

optical images for the past 35+ years, and so can provide both retrospective and near-realtime 

constraints on the spatial extent of rice planting and the timing of rice phenology. Thermal and 

optical imaging capture different physical processes, and so provide different types of 

information for phenologic mapping. Most analyses use only one or the other data source, 

omitting potentially useful information. We present a novel approach to the mapping and 

monitoring of rice agriculture which leverages both optical and thermal measurements. The 

approach relies on Temporal Mixture Models (TMMs) derived from parallel Empirical 

Orthogonal Function (EOF) analyses of Landsat image time series. Analysis of each image time 

series is performed in two stages: 1) spatiotemporal characterization, and 2) temporal mixture 

modeling. Characterization evaluates the covariance structure of the data, culminating in the 

selection of temporal endmembers (EMs) representing the most distinct phenological cycles of 

either vegetation abundance or surface temperature. Modeling uses these EMs as the basis for 

linear TMMs which map the spatial distribution of each EM phenological pattern across study 

area. The two metrics we analyze in parallel are 1) fractional vegetation abundance (Fv) derived 

from spectral mixture analysis (SMA) of optical reflectance, and 2) land surface temperature 

(LST) derived from brightness temperature (Tb). These metrics are chosen on the basis of being 

straightforward to compute for any (cloud-free) Landsat 4-8 image in the global archive. We 

demonstrate the method using a 90 × 120 km area in the Sacramento Valley of California. 
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Satellite Tb retrievals are corrected to LST using a standardized atmospheric correction approach 

and pixelwise fractional emissivity estimates derived from SMA. LST and Tb time series are 

compared to field station data in 2016 and 2017. Uncorrected Tb is observed to agree with the 

upper bound of the envelope of air temperature observations to within 3°C on average. As 

expected, LST estimates are 3 to 5°C higher. Soil T, air T, Tb and LST estimates can all be 

represented as linear transformations of the same seasonal cycle. The 3D temporal feature spaces 

of Fv and LST clearly resolve 5 and 7 temporal EM phenologies, respectively, with strong 

clustering distinguishing rice from other vegetation. Results from parallel EOF analyses of 

coincident Fv and LST image time series over the 2016 and 2017 growing seasons suggest that 

TMMs based on single year Fv datasets can provide accurate maps of crop timing, while TMMs 

based on dual year LST datasets can provide comparable maps of year-to-year crop conversion. 

We also test a partial-year model midway through the 2018 growing season to illustrate a 

potential real-time monitoring application. Field validation confirms the monitoring model 

provides an upper bound estimate of spatial extent and relative timing of the rice crop accurate to 

89%, even with an unusually sparse set of usable Landsat images.  

Introduction 

Rice agriculture is critical for global food security. Much of the developing world relies 

on rice production for subsistence and/or commercial purposes. Rice is the largest food source 

for the world’s poor, and more than half of the world’s population relies on rice as its staple food 

(Muthayya et al., 2014). In terms of nutrition, rice provides 21% of global human per capita 

energy and 15% of per capita protein. More land area is used for rice production than any other 

agricultural crop (Global Rice Science Partnership, 2013). Predictability of global and regional 

rice production has obvious and significant implications for the management of both human and 
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natural systems. For these predictions to be accurate, yield models must be provided with inputs 

of abundant, accurate observations in order to constrain fundamental variables such as planted 

area and timing of key phenological transitions (e.g. (Bolton and Friedl, 2013)). Similar 

biogeophysical observations can also address concerns important to commercial growers like 

optimization of the use of water (Anderson et al., 2012) and nutrient additives (Wilcox et al., 

1994); assessment of extent and severity of weeds (Shaw, 2005), pests (Luther et al., 1997), and 

diseases (MacDonald et al., 1972); and independent verification of alternative cropping practices 

(Bricklemyer et al., 2007). 

One cost effective tool to provide these observations is the spatiotemporal analysis of 

satellite imagery. Free global decameter (10 to 100 m) resolution multispectral optical and 

thermal imagery already exists through the Landsat program, with data extending back to the 

early 1980s (Wulder et al., 2012). The Landsat program has been supplemented since 2015 by 

the addition of the optical-only Sentinel-2 constellation (Drusch et al., 2012). Additional 

hectometer (100 to 1000 m) resolution imagery is available through the MODIS, VIIRS, and 

Sentinel-3 programs. The global archive of meter to hectometer resolution optical satellite 

imagery is expected to continue to grow into the future as further missions are planned in both 

the public and private sectors. This rich set of observations—with global coverage—can 

facilitate both retrospective and prospective analyses for a wide range of agricultural 

applications. 

Rigorous characterization of plant life cycles and cropping practices is required in order 

to confidently relate satellite measurements to crop conditions. In recent decades, significant 

effort has been devoted – and much success has been achieved – in studying and improving rice 

agriculture around the world (Khush, 2003). As a result, rice is one of the best-understood crops 
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on Earth from an agronomic perspective. Despite this progress, significantly less work has been 

done to characterize how the biogeophysical progression of the land surface characteristic of rice 

agriculture is recorded by optical and thermal satellite imagery. To date, most applications of 

satellite imagery for rice agriculture have focused on discrete classification and mapping of rice 

extent (e.g. (Gumma et al., 2015; Kontgis et al., 2015; Nguyen et al., 2016; Torbick et al., 2011; 

Wang et al., 2015)), rather than on a physical understanding of how the land surface properties 

and processes that characterize the phenological cycle of rice crops are manifest in satellite 

observations. This physically-based strategy is the approach taken in this study. 

An obvious distinction between rice and most other crops is that rice is often (but not 

always) grown in paddies. In paddy rice, this fundamental difference results in substantial 

evaporative cooling and near-complete absorption in optical infrared wavelengths early in the 

cropping cycle, neither of which are generally present for non-rice crops in the same landscape. 

Imaging by satellites at both optical VSWIR (Visible through Shortwave Infrared, 0.4–2.5 µm) 

and TIR (Thermal Infrared, 8–14 µm) wavelengths results in both 1) lower TIR temperature 

measurements, and 2) lower overall VSWIR albedo relative to non-rice crops. Because the 

biogeophysical signal manifests in both VSWIR and TIR wavelength regimes, the evolution of 

the rice crop throughout a growing season occupies a more unique trajectory in the combined 

geophysical parameter space comprised of both VSWIR and TIR than in the space of either 

parameter alone. This provides an opportunity to improve the accuracy of crop-specific maps of 

rice based on optical imagery alone by supplementing with thermal image time series, illustrating 

the added value of the thermal satellite sensors and the importance of continuity in 

intercalibrated satellite thermal image collection.  
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This analysis presents a straightforward, physically-based approach for the mapping and 

monitoring of rice agriculture. Using the Sacramento Valley of California as our example area, 

we apply the methodology of spatiotemporal characterization and modeling, first described in 

detail by (Small, 2012), to the special case of a parallel analysis of the twin data streams from 

coincident Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) image 

time series. The resulting VSWIR and TIR data spaces each characterize complementary features 

of the biogeophysical evolution of the agricultural landscape. Using endmembers (EMs) that 

represent distinct temporal trajectories, independently derived from each data stream, we 

demonstrate the method by mapping both the timing and presence/absence of rice crops across 2 

years. Finally, we also show the seasonal evolution of the landscape in Temperature vs 

Vegetation (TV) space. This suggests more detailed investigation into the spatiotemporal 

analysis of evapotranspiration (ET) as an attractive avenue for future work, as also proposed by 

(Sousa and Small, 2018b), to potentially directly address several of the outstanding research 

questions identified by the recent NRC Decadal Survey (Fisher et al., 2017). 

While a considerable body of literature exists on mapping rice from optical satellite 

imagery, to our knowledge, previous work has generally focused on applying a variety of 

complex statistical algorithms to VSWIR data, usually without using thermal information. Some 

previous studies have included thermal data into their algorithms, but rarely in a physically-based 

way. The approach presented here explicitly integrates multitemporal thermal and optical 

measurements to discriminate between distinct phenological cycles, resulting in an improved 

quantitative understanding of land surface processes and coincident energy fluxes. Additional 

benefits include relative mathematical simplicity and a direct grounding in biogeophysical 

processes. 



 165 

  

Background – Study Area 

Regional Thermal Setting 

Figure 40 shows the study area in regional context using a tri-temporal thermal composite 

image. The northern portion of the Great Central Valley of California (area within and around 

the white box) is one of the most productive rice growing regions on Earth. Land use in the 

valley is dominated by intensive agricultural production of a wide range of commodity and 

specialty crops. The Sacramento Valley is characterized by Köppen Climate Csa (Hot Summer 

Mediterranean). The vast majority of precipitation is delivered between the late fall and the early 

spring, with summers being characterized by dry, hot days with sparse cloud cover. A wide range 

of soil types exist in California, sometimes distinguishable on the basis of VSWIR reflectance 

(Sousa and Small, 2018a). Clay-rich soils are common in the northern portion of the valley, 

providing a nearly ideal natural substrate to support the standing water commonly used in 

intensive rice agriculture. Water in the region is highly controlled through a network of 

government-run water projects. Effectively all summer agriculture in the Central Valley is 

irrigated using a combination of water captured by reservoirs located in the surrounding foothills 

and pumped from wells. 

The colors on Figure 40 illustrate at a glance the typical thermal evolution of the region 

over the first half of the calendar year. In this figure, the blue, green, and red channels of the 

image represent land surface temperatures (LSTs) in January, May, and August of 2016, 

respectively. No locations are bright blue because the landscape is universally colder in January 

than in May or August. The Mojave Desert appears as yellow (red + green) because its 

temperature (bottom time series) generally mimics the annual cycle of solar insolation. In 

contrast, the Basin and Range takes longer to heat and maps with a more reddish hue. High 
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elevations in the Sierra Nevada and Coast Ranges appear as dark red because seasonal snowpack 

results in low winter temperatures that then rapidly rise once the snowpack melts in late 

spring/early summer. Agriculture in the Central Valley and Snake River Plain appears green 

because surface temperature in the May image is generally elevated due to the low thermal 

inertia of bare, dry fields. Once crops have grown, however, the associated evapotranspiration 

(ET) significantly cools the landscape during the August image. This can be seen explicitly in the 

time series of typical annual thermal phenologies for Central Valley Rice from the MODIS 

sensor. In comparison, fields in the Central Valley left fallow, and the grasslands on the foothills 

of the Sierra Nevada and Coast Ranges, show annual thermal cycles more similar to the desert 

than the adjacent agricultural fields. Coastal areas, dominated by the thermal inertia of the 

Pacific Ocean and inundated in fog for much of the year, have a much lower amplitude annual 

thermal cycle. Inland lakes show somewhat more variability, but still are characterized by 

relatively cool, stable LSTs, therefore appearing dark. 
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Figure 40. Thermal Phenology of the Western United States of America. The Central Valley lies 

between the Pacific Ocean and the hyperarid Basin & Range and Mojave Desert. Arid regions 
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appear red or yellow due to summer heating. Sierra Nevada and Cascades mountains appear 

dark red due to seasonal snowpack. Central Valley agriculture appears green because 

evapotranspiration (ET) of dense summer crops results in substantial August cooling. Example 

time series of annual temperature cycle shown for 6 biogeophysical regions. 

Rice in the Sacramento Valley 

The Great Central Valley of California is comprised of two major units: the northerly 

Sacramento Valley and the southerly San Joaquin Valley. The climate and soil of the Sacramento 

Valley are well suited to rice production: clay-rich soils which are easily able to support paddy 

water dominate much of the valley floor and hot, dry summers provide a supportive growing 

environment for the rice plant with minimal risk of mid- or late-season rains damaging the crop. 

As a result, rice yields in the region are some of the highest in the world, with average yields 

now exceeding 9000 kg/ha (8000 lbs/acre). California is a major rice-growing region, producing 

75% of the medium grain and 98% of the short grain rice grown in the United States. California 

grows more rice than any U.S. state other than Arkansas, which dominates in long grain rice 

production. Of the rice production in California, approximately 95% occurs in the Sacramento 

Valley, mainly in Colusa, Sutter, Butte, and Glenn counties. For a concise yet thorough 

background on the history and current state of rice production in California, see (Geisseler and 

Horwath, 2013). 

Rice fields in the Sacramento Valley are generally arrayed on a rectilinear grid. Most 

exceptions to this layout are commonly due to drainage and water management features such as 

river channels, abandoned creeks, and flood bypasses. Field sizes are variable, and generally laid 

out according to sections (1 × 1 mi; ≈ 1.6 × 1.6 km). Sections are generally subdivided into 

smaller units. Quarter sections (0.5 × 0.5 mi, ≈ 800 × 800 m) are very common, but 1/8 (≈ 400 × 
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800 m) and 1/16 sections (≈ 400 × 400 m) are also common. The smallest rice field we observe 

is 1/32 section (≈ 200 × 400 m). While the size of the largest rice field we observe is 1 section, 

homogenous regions of adjacent fields with similar planting times can span large portions of the 

valley floor, forming regions of nearly uninterrupted rice on the order of 15 × 15 km. 

The same clear, dry summer climate that supports rice production in the Sacramento 

Valley also benefits satellite imaging. This is reflected in the data archive, as over 10 cloud-free 

satellite imaging acquisitions were acquired for every growing season since the launch of 

Landsat 8 in 2013. When present, smoke from summer wildfires hinders satellite imaging. 

However, wildfires in California are most common in late summer, after the rice crop has been 

planted and established, and high frequency imaging is less critical for crop monitoring. These 

factors, combined with the economic productivity of the California rice crop and the abundance 

of ground-based observational data, suggest the Sacramento Valley as a nearly ideal location to 

characterize the evolution of rice agriculture in the geophysical parameter space relevant to 

multitemporal optical and thermal satellite imaging. 

Materials and Methods  

Data Acquisition & Preprocessing 

Landsat data were downloaded using the USGS Global Visualization Viewer (GloVis) 

web tool (http://glovis.usgs.gov/) (USGS, 2018). The Landsat 8 satellite images the Earth 

simultaneously using both the Operational Land Imager (OLI) and the Thermal Infrared Sensor 

(TIRS) instruments. OLI collects data in 9 channels in the 0.4—2.3 µm optical wavelength 

range. The OLI data used in this study are from bands 2 through 7, all collected at 30 m spatial 

resolution. OLI data were calibrated from digital number (DN) to exoatmospheric reflectance 

using the standard calibration procedures described in the Landsat Data Users Handbook (USGS, 
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2016b). Where indicated, 30 m OLI data were subsequently convolved with a 21 × 21 low pass 

Gaussian blurring filter to mimic the coarser spatial resolution of the TIRS sensor. 

The TIRS instrument collects data at 100 m resolution in 2 channels at thermal infrared 

wavelengths (10–13 µm). TIRS data were converted from DN to radiance using the standard 

procedures described in the Landsat Data Users Handbook, then atmospherically corrected using 

the approach described in Section 2.3 below, as proposed by (Barsi et al., 2003). All TIRS data 

used in this study were from Band 10 because standardized atmospheric correction coefficients 

for Band 11 are not yet available using this approach. 

MODIS data used for illustration and comparison were downloaded using the USGS 

EarthExplorer website (http://earthexplorer.usgs.gov/) and the MODIStools R package (Busetto 

and Ranghetti, 2016). Where indicated, the MOD11 LST and Emissivity product was used to 

generate phenology curves for illustration purposes. Meteorological station data were 

downloaded from the California Irrigation Management Information System (CIMIS) website at 

https://cimis.water.ca.gov/. All data used in this analysis are freely available to the public. 

Spectral Mixture Analysis of Optical Data 

Spectral mixture analysis (SMA; (Adams et al., 1986; Gillespie et al., 1990; Smith et al., 

1985)) is a well-established, physically-based image processing technique which represents the 

multispectral reflectance of each pixel as an area-weighted linear sum of endmember (EM) 

reflectance spectra. The technique is based on constrained least squares inversion of a system of 

mixing equations, which can be written in the following form: 

𝐹𝑆𝐸𝑆,𝜆𝑖
+ 𝐹𝑉𝐸𝑉,𝜆𝑖

+ 𝐹𝐷𝐸𝐷,𝜆𝑖
= 𝑅𝜆𝑖

  

https://cimis.water.ca.gov/
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where FS, FV, FD, are the relative subpixel areal abundances of the S, V, and D EMs; ES,λi, 

EV,λi, ED,λi, are the reflectances of the S, V, and D EMs at each wavelength; and λi ∈ {482 nm; 561 

nm; 655 nm; 865 nm; 1609 nm; 2201 nm}, corresponding to the center wavelengths of bands 2–

7 of Landsat 8 OLI, respectively. Often, a unit sum constraint is imposed due to the physically-

based expectation that subpixel areal abundances should sum to unity. In this analysis, this 

constraint was used and given a weight = 1. 

SMA is sensitive to the EMs used, but global analyses of multispectral Landsat (Small, 

2004; Small and Milesi, 2013) and Sentinel-2 (Small, 2018) data, as well as regional analysis of 

a diverse set of hyperspectral AVIRIS flight lines (Sousa and Small, 2018a), show that the 

Earth’s ice-free land surface is generally well represented by 3 generic EMs: Substrate (S; rock 

and soil), Vegetation (V; illuminated photosynthetic foliage), and Dark (D; water and shadow). 

In addition to providing estimates of fractional vegetation cover which are linearly scalable 

(Christopher Small, 2001; Small and Milesi, 2013) and more accurate than vegetation indices 

(Elmore et al., 2000; Smith et al., 1990), SMA based on these globally standardized EMs 

simultaneously provides estimates of the subpixel abundance of S and D materials with root-

mean-square misfits < 0.05 for > 97% of 100,000,000 spectral mixtures from every ice-free 

biome on Earth (Small and Milesi, 2013). 

This study is rooted in the relationships between the annual phenological cycles of the 

rice crop and other vegetation (agricultural and indigenous), seasonal variations in soil moisture 

(from precipitation and irrigation), evaporation and transpiration of water, and the combined 

impact of all these factors on surface temperature. Understanding of these relationships is 

facilitated by conversion of the optical reflectances measured by OLI to fractional abundance of 

the global S, V and D EMs. For each of the 22 Landsat images used in this study, estimates of 
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the areal abundance of S, V, and D materials were derived by SMA based on the standardized 

global EMs of (Sousa and Small, 2017a). The output of this SMA is a set of three 

complementary time series of fraction images. Each fraction image time series shows the 

evolution of the abundance of S, V or D materials over the course of the 22 cloud-free 

overpasses of the study area in 2016 and 2017. In this study, we focus on the vegetation time 

series, but this approach also provides information on soil, water, and shadow, which are 

incorporated in a separate study. 

Emissivity Estimation 

Thermal imaging sensors measure radiance in one or more wavelength ranges, which can 

then be converted to an estimate of the apparent brightness temperature (Tb) of the emitting 

target. However, in order to convert apparent Tb into an estimate of actual LST, the emissivity () 

of the target must be known (or assumed). Global, time-averaged  estimates exist at 100 m 

scales (Hulley et al., 2015), but could introduce obvious errors in the agricultural landscape 

investigated here due to large seasonal variations in land cover. Daily global  estimates are also 

now available at 1 km resolution (Hulley et al., 2014). While some fields in the study area are 

large enough to be oversampled by 1 km emissivity products, many are not. Combining 

temperature and emissivity measurements with an order of magnitude difference in spatial 

resolution would at minimum require accurate linear scaling. While spatial scaling of emissivity 

(and temperature) has been shown using both modeling and microbolometer experiments to be 

linear for small subpixel temperature differences, increasing nonlinearity is expected as subpixel 

temperature differences increase (Heasler et al., 2007; McCabe et al., 2008; Shi, 2011). Subpixel 

temperature differences in the study area used in this analysis (e.g. between adjacent bare vs 

flooded fields on a summer day) can be on the order of 40°C. 
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For these reasons, we generate pixel-specific  estimates using SMA. Because SMA 

estimates the fraction of the area within each pixel covered by each land cover type, and 

representative  values can be associated with each spectral EM material, SVD fraction images 

can be used to generate physically-based pixelwise aggregate emissivity estimates. We estimate 

the emissivity of the land surface at each Landsat pixel assuming the following simple linear 

mixing relation: 

𝜀𝑀𝑖𝑥𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 =  𝑓𝑆𝜀𝑆 + 𝑓𝑉𝜀𝑉 + 𝑓𝐷𝜀𝐷  

where fs, fv, and fd are the fractional areal abundance of substrate, vegetation, and dark 

materials within each pixel; εS, εV, and εD are EM  values for Substrate (dry soil), Vegetation, 

and Dark (water); and εMixed Pixel is the overall emissivity of the mixed pixel. The values used for 

εS, εV, and εD were 0.92, 0.96 and 1.0, respectively, taken from average values of a wide range of 

Earth materials reported in (Rubio et al., n.d.). 

Atmospheric Correction of Thermal Data 

Atmospheric effects can cause particularly pernicious errors in thermal satellite imaging 

because light at thermal wavelengths can be absorbed and re-emitted strongly within the 

atmosphere. Atmospheric correction models attempt to remove the effects of absorption, 

scattering and emission along the two-way path (for VSWIR) or one-way path (for TIR) of 

radiation through the atmosphere. However, atmospheric correction accuracy is dependent upon 

the abundance and quality of ancillary data, as well as the choice of model used. In many rice 

growing regions, field data to constrain atmospheric corrections are sparse or unavailable.  

A recently developed Atmospheric Correction Parameter Calculator webtool provides 

standardized thermal atmospheric correction parameters for Landsat images using commercial 
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MODTRAN software and atmospheric profiles from the National Centers for Environmental 

Prediction (NCEP). Atmospheric correction parameters were computed for the center of the 

study area using this online tool, found at: https://atmcorr.gsfc.nasa.gov/ (accessed 5 December, 

2018). This procedure uses standardized atmospheric profiles derived from National Centers for 

Environmental Prediction (NCEP) reanalysis and commercial Moderate Resolution Atmospheric 

Transmission (MODTRAN) radiative transfer software. This approach has been validated to 

yield a temperature bias of less than 0.5 ± 0.8 °C compared to results from two independent 

Landsat calibration/validation teams at the NASA Jet Propulsion Lab and Rochester Institute of 

Technology (Barsi et al., 2005). This tool has the benefit of providing a globally standardized 

approach to thermal atmospheric correction. This is particularly important for the case of rice 

mapping, where the quality and quantity of ancillary meteorological variable can be highly 

variable from basin to basin. 

As described in (Barsi et al., 2003), space-reaching radiance and surface-leaving radiance 

may be related using the following expression: 

𝐿𝑇𝑂𝐴 =  𝜏𝜀𝐿𝑇 + 𝐿𝑢 + (1 − 𝜀)𝐿𝑑  

where τ is the atmospheric transmission, ε is the emissivity of the land surface, LT is the 

radiance of a blackbody target of kinetic temperature T (i.e. LST), Lu is the upwelling radiance, 

Ld is the downwelling radiance and LTOA is the space-reaching radiance. The web tool gives 

estimates of τ, Lu, and Ld; pixelwise ε was computed using the methodology described in Section 

2.3; and LTOA is the radiance measured by TIRS. This equation can be rearranged to solve for LT: 

𝐿𝑇 =
𝐿𝑇𝑂𝐴 − 𝐿𝑢 − (1 − 𝜀)𝐿𝑑

𝜏𝜀
  

This quantity was then used as the estimate of LST for the remainder of the analysis.  

https://atmcorr.gsfc.nasa.gov/


 175 

  

Effect of emissivity estimation and atmospheric correction 

Figure 41 shows the effect of the atmospheric correction and pixelwise ε estimation on 

two representative scenes: one with a hot, low  atmosphere (top row) and another with a cold, 

high  atmosphere (bottom row). The estimated τ coefficients are 0.79 and 0.96, respectively, the 

most extreme values of the 22 scenes from 2016 and 2017 used in this study. The left column 

shows the effect of applying the atmospheric correction assuming uniform  = 1, and the center 

column shows the effect of applying the atmospheric correction and estimating pixelwise mixed 

 using SMA. Histograms of all three levels of correction for all image pixels in the field area are 

shown in the right column. 

For the hot atmosphere, the effect of the atmospheric correction is essentially to act as a 

multiplicative linear transformation, decreasing the temperature of deep lakes by about 5 °C, 

increasing the temperature of rice paddies by about 2–5 °C and increasing the temperature of 

bare soil by about 5-9 °C. For the cold, high τ atmosphere, the effect is much smaller (less than 

0.5 °C across all land cover types). The image-wide effect of the atmospheric correction is linear 

because the same linear coefficients are applied uniformly across the study area. In contrast, 

using pixelwise mixed  introduces a more dispersive transformation because geographically 

explicit information is introduced. For the hot, low τ atmosphere, the overall amplitude of the 

atmospheric correction with pixelwise emissivity is approximately 10°C for bare soil, 4–6 °C for 

rice paddies, and 2–4 °C for deep lakes. The effects are reduced for the cold atmosphere, with 

temperature estimates for bare soil increasing by 2–5 °C, rice paddies by 0–2 °C, and deep lakes 

by 0–1 °C.  
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Figure 41. Effect of atmospheric correction and emissivity estimation on temperature estimates. 

In the case of a relatively low τ atmosphere and high insolation (top row, τ = 0.79), atmospheric 

correction increases T of rice paddies by about 2 °C and bare field about 4 °C. In the case of a 

high τ atmosphere with low insolation (bottom row, τ = 0.96), atmospheric correction changes T 

estimates by less than 0.5 °C. Using pixelwise ε estimates in the May image results in an 

additional 0.5 °C increase for paddies and a 2 to 3 °C increase for bare soil. In the December 

image, pixelwise ε results in no change in standing water but a 2 to 2.5 °C increase for bare soil. 

Additional insight into the relationship between radiative and kinetic temperature can be 

derived from comparison of satellite-derived LST versus field temperature data. In this study 

area, this can be achieved using measurements from the California Irrigation Management 

Information System (CIMIS). CIMIS maintains an extensive network of field observations of 

meteorological data throughout the agricultural regions of California. Figure 42 shows a map of 
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the 4 station locations within the area of the white box from Figure 40. The stations bound the 

region dominated by rice agriculture (darker green) to the north, south and west. The stations are 

sited in agricultural microenvironments and include a comprehensive suite of air and soil 

temperature, rainfall, and wind measurements. These measurements are expected to be 

representative of the atmospheric and near surface conditions throughout the study area. 

In Figure 42, daily time series of soil temperature (green) and air temperature (red) are 

plotted for the time of the Landsat 8 overpass for each of the stations, along with Landsat-

derived Tb (gray) and LST (black) for each of the 9 pixels in a 3 × 3 box surrounding the station 

location. The variability in agreement between the field and satellite temperatures is likely 

related to variations in microclimate due to differences in the siting of each station. While all 

four stations are immediately surrounded by irrigated pasture, the Durham and Verona pastures 

are situated within a matrix of tree and row crops, while the Williams and Biggs pastures are 

surrounded by rice and/or wetlands. It is possible that the more saturated surface hydrology 

surrounding the Biggs and Williams sensors introduces atmospheric boundary layer effects that 

impact temperature retrievals. These local effects would not be captured by the atmospheric 

correction procedure used in this analysis. 

As expected, in all cases the effect of the atmospheric correction is to increase the 

estimate of LST relative to the uncorrected Tb measurements. The magnitude of the increase is 

between 0.5 and 4°C, depending on atmospheric transmission. Interestingly, while these 

corrections do amount to an overall bias shift of the LST time series 1 to 5 °C, they do not affect 

the relative spatiotemporal structure of time series or appreciably impact the amplitude of the 

annual cycle. 
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Regardless of these complexities, it is clear that the shape and rough amplitude of the 

Landsat LST time series generally agree with the station data, in some cases remarkably closely. 

With the exception of the anomalous 2017 Williams data, the amplitude of the difference 

between the field air temperature measurements and the satellite LST measurements is generally 

much smaller than the amplitude of the seasonal cycle. As expected, the LST is considerably 

higher than the soil T because the latter integrates over a depth of several cm of soil and is much 

less sensitive to the higher skin temperature of the soil surface. In all cases, the timing of the 

annual cycles of soil T, air T, Tb, and LST agree, suggesting that TIRS effectively captures the 

essential features of the thermal phenology. 

Spatiotemporal Analysis and Temporal Mixture Models 

Our approach to the quantitative analysis of satellite image time series is implemented in 

two stages: characterization and modeling. The two stages are summarized briefly below. Each 

stage is also presented separately in the Results section. For detailed background, explanation, 

and examples of implementation of the method, please see (Small, 2012; Sousa and Small, 

2017b). 

Characterization involves Empirical Orthogonal Function (EOF) analysis. EOF analysis 

is a general tool which can be applied to any image time series. For the purposes of this study, 

the time series of interest are sequential maps of fractional vegetation cover, Fv, and LST. EOF 

analysis considers each image time series as a matrix with each geographic pixel occupying a 

row and each time step occupying a column. A satellite image time series therefore contains a 

large (generally > 106) number of rows and a much smaller (generally < 103) number of columns. 

In the case of our study area, the number of rows is 12 × 106 (3000 × 4000 pixels) and the 

number of columns is 22 for the 2016 + 2017 analyses and 11 for the 2016-only analyses. EOF 



 179 

  

analysis is based on the Principal Component (PC) transform (Pearson, 1901) which computes 

the covariance (or correlation) matrix of the data, then decomposes that matrix into its 

corresponding eigenvalue and eigenvector pairs. The eigenvectors show the dominant modes of 

uncorrelated spatial and temporal variance in the dataset, and the eigenvalues quantify the 

fraction of total variance associated with each mode. For more background on EOF analysis, see 

(Bretherton et al., 1992; Menke and Menke, 2016, chap. 8; Preisendorfer, 1988; von_Storch and 

Zwiers, 1999). 

Characterization continues with the examination of the transformed spatiotemporal data 

in this new, optimized space, referred to as the Temporal Feature Space (TFS). The low order 

projections of the TFS are depicted graphically using scatterplots of the spatial PCs in 

conjunction with time series of the corresponding temporal EOFs. The most distinct temporal 

patterns (i.e. phenologies) occupy apexes of the data cluster in the TFS. The temporal patterns of 

the geographic pixels associated with these apexes are identified as temporal endmembers 

(tEMs). In the case of linear mixing, binary mixtures of these patterns occupy sharp edges 

between the apexes. Pixels in the interior of the point cloud can be represented as combinations 

of all the EM time series. 

Once the temporal EMs are selected, the analysis proceeds to the modeling phase. By 

direct analogy to spectral mixture modeling, this analysis uses linear Temporal Mixture Models 

(TMMs, (Lobell and Asner, 2004; Piwowar et al., 1998)) which have the virtue of relative 

mathematical simplicity and straightforward physical interpretation. Linear TMMs model every 

pixel time series as a linear combination of a small number of tEM time series. The tEMs to be 

used are identified during the characterization phase of the analysis. Inversion of the mixture 

model unmixes each pixel time series to yield an estimate of the relative contribution (fraction) 
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Figure 42. The primary rice producing region of California. The annual thermal cycle is 

captured by met stations maintained by the California Irrigation Management Information 

System (CIMIS). Air temperatures (red) are generally higher and more variable than soil (green). 

Durham, Verona, & Biggs records are similar. The Williams station (installed mid 2016) has 

substantially lower air, but similar soil and brightness temperatures, to the other stations. 

Landsat Tb (black) generally records at the warm bound of the envelope of air T. Landsat LST is 

higher than Tb in all cases. 

of each tEM to each pixel time series in the dataset. The result is a set of continuous maps 

showing the relative contribution of each tEM pattern at each point in space. The meaning of the 

model result is therefore straightforward (quantitative description of similarity to each tEM), and 

the model inversion is mathematically transparent (ordinary least squares inversion of an 

overdetermined system of linear equations). This approach also has the benefit of generality, as 

no portion of the analysis imposes assumptions specific to particular geophysical variables or 

sensing modalities. The only implicit assumption is that spatiotemporal variance represents 

potentially useful information. 

While this method has been shown to be effective in analyses using single geophysical 

variables (e.g. (Lobell and Asner, 2004; Piwowar et al., 1998; Small, 2012; Sousa and Small, 

2017b)), to our knowledge it has not yet been applied to coincident observations of reflectance 

and temperature. This study examines the implications and potential utility for parallel 

application of this spatiotemporal analysis methodology to the case of coincident LST and Fv 

image time series for the practical purpose of mapping and monitoring rice agriculture. 
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Results 

The parallel analysis presented here requires additional characterization before the EOF 

analysis to examine and compare the spatiotemporal patterns present in each data stream. 

Sections 3.1 and 3.2 show this initial step. Section 3.3 then presents the characterization as 

described in the Methods section, and Section 3.4 presents the results of the modeling step. 

Finally, Section 3.5 presents a potential application for near-realtime monitoring and results of 

field validation.  

Vegetation Phenology 

Figure 43 demonstrates a representative annual phenological progression of the region 

using a series of land cover fraction (first and third columns) and LST (second and fourth 

columns) images from the calendar year 2016. The subpixel fraction images use the colors Red, 

Green, and Blue to correspond to relative abundance of substrate (soil or non-photosynthetic 

vegetation), photosynthetic vegetation, and dark materials (shadow or water) for a given time. 

These relative abundances are computed using the 3-endmember spectral mixture model 

described in the Methods section. Each image is enhanced identically, so colors are directly 

comparable. Soils generally appear as red, photosynthetic vegetation as bright green, and 

standing water as blue. As vegetation senesces, its reflectance spectrum grades toward that of the 

substrate endmember, resulting in orange and yellow colors on the fraction images. Images are 

only shown from April through November, because winter months are generally covered in 

cloud and rice is not grown at this time. 

Rice is generally grown in the clay rich soils to the east and west of the Sacramento and 

Feather River channels. The rice growing area can be visually identified as the area of standing 
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water (dark blue/black) in the May 26 image. This is due to the rice crop phenology, summarized 

as follows: 

Many, but not all, rice fields are flooded during winter (November through February or 

March) to provide habitat for migrating birds. In April, the flooded fields are drained, and all rice 

fields are plowed in preparation for the rice crop. Rice fields are then generally flooded in May 

and seeded by airplane into standing water. The rice then greens up during the summer months 

and begins to senesce in September, continuing to senesce and being harvested through 

September and October. By November, the harvest is complete. After harvest, some fields are 

left bare and others are flooded for winter bird habitat, and the cycle begins again. For more 

information on the rice cropping calendar in this region, see http://www.rice.ucanr.edu/ or 

http://www.calrice.org/ 

While rice dominates the landscape, other vegetation also exists. The foothills of the 

Sierra Nevada, Coast Ranges, and Sutter Buttes largely host rainfed grasslands used for grazing. 

The phenology of these regions is nearly opposite that of rice agriculture, because the grasslands 

are green during winter and generally senesced during the summer months. In addition, a wide 

range of other row crops and orchards are grown in the valley with a diversity of cropping 

systems and phenologies. Settlements also occupy a small portion of the landscape, hosting an 

even more complex mixture of evergreen and deciduous trees, shrubs, and grasses. 

The time series in the lower right of Figure 43 show typical phenological progressions of 

rice crops (solid) versus native grassland (dashed) in terms of both vegetation abundance (green) 

and temperature (red). As expected from the image time series, the vegetation abundance curves 

for the rice and grassland pixels are nearly 180° out of phase. Rice has a strong peak in 

vegetation abundance during the summer growing season, and also a minor peak during the  

http://www.rice.ucanr.edu/
http://www.calrice.org/
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Figure 43. Multisensor evolution of land cover and temperature. Image time series shows 

Landsat EM fraction abundance (Fs, Fv, and Fd; 1st and 3rd columns) and LST (2nd and 4th 

columns). Fraction images show bare fields (dark red, mixture of Fs and Fd) prepared in Apr, 

flooded (dark blue, high Fd) in May, greening up from Jun to Sep (from dark green to bright 

green, tradeoff between Fd and Fv), senescing and being harvested (orange and yellow, tradeoff 

between Fv and Fs) in Oct and Nov. Thermal images are dominated by the seasonal cycle, with 

amplitude modulated by ET. Dry grasslands and fallow fields can reach summer LST of 20 °C 

greater than flooded rice fields. In winter, differences in LST between land covers are reduced. 

Inset plots show LST (X) vs Fv (Y) for each scene (in color) relative to all 22 scenes from 

2016+2017 (in grayscale). White box on the Apr image indicates the area used for the 

characterization shown in Figure 44 and Figure 45. Inset time series shows comparison between 

Landsat Fv + LST (dots) and MODIS EVI + Land Surface Temperature composites (lines). 

 

winter fallow season, presumably from non-rice vegetation growing in flooded fields. The 

grassland pixels have very low amounts of photosynthetic vegetation during the hot and dry 

summer months because they are rainfed, but reach broad peaks during the winter rainy season 

of comparable but somewhat smaller amplitude than the agriculture. In Figure 43, dots 

correspond to Landsat Fv and LST observations and continuous curves correspond to MODIS 

EVI and LST time series. The benefit of using both MODIS and Landsat for purposes of this 

illustration is evident, in that there were no cloud-free Landsat images available over a 3-month 

period during the wintertime, but sufficient usable MODIS images were acquired to produce 

composites approximating the full annual time series. 
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Thermal Phenology 

The fundamental physical process driving the thermal phenology of the region is the 

sinusoidal seasonal insolation curve, with an annual minimum at the winter solstice. However, 

the biogeophysical properties of the landscape modify this insolation curve in both space and 

time. For instance, grassland achieves a much greater summer temperature than rice because the 

land surface dominated by dry soil and non-photosynthetic vegetation (or absence of vegetation) 

has low thermal inertia, and can support very little evapotranspirative cooling. On the other hand, 

rice agriculture is not only irrigated but grown in standing water for much of the summer, 

resulting in substantial cooling both from evaporation of the paddy water below the canopy and 

transpiration of the respiring and photosynthesizing vegetation. This results in a relatively stable 

LST during the summer months, yielding a flatter top to the temperature curve. 

The phenological progression of the thermal image time series complements that of the 

fraction image time series. In late April, the only prominent spatial patterns in the thermal field 

are due to elevation, rivers and lakes, and transient clouds. However, as the spring progresses 

into summer, clear differences emerge between rice and grassland areas. In the September and 

October images, differences within the region of rice agriculture become apparent, likely on the 

basis of evapotranspiration decreasing at variable rates as some fields senesce sooner than others, 

and some fields are drained before others to prepare for harvest. Once the fields are harvested, 

differences between land cover types are greatly reduced. In fall, the remaining vegetation can be 

somewhat warmer than its dry surroundings due to the greater heat capacity of its leaf water. 

Finally, the scatterplots inset on the thermal images show the relationship between LST 

(x-axis) and Fv (y-axis) for every pixel in the image. These scatterplots are an alternate 

coordinate system with which to understand the dataset. The scatterplots are color-coded so 
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warmer colors represent more pixels and cooler colors represent fewer pixels. The grayscale 

background silhouette of the full multitemporal point cloud shows the composite space of all the 

images together. Because so many pixels in the image correspond to rice agriculture, they 

generally form the largest cluster in Temperature vs Vegetation (TV) space and are represented 

by warmer colors. In April, for instance, rice fields are recently plowed so they are cool and 

unvegetated, and the corresponding warm colored cluster plots at the bottom center of the space. 

In May, the fields are flooded and become even cooler, but remain unvegetated, so the cluster 

moves to the left in TV space. In late June, fields vary widely from just planted (late crop) to 

nearly mature (early crop), resulting in a wide range of Fv. ET cools the crop so its temperature 

does not change appreciably, resulting in a vertically elongated cluster. For the rest of the 

summer, the fields do not change appreciably in vegetation abundance or temperature, so the 

cluster is stable until fields are drained and begin to senesce (September), resulting in the cluster 

elongating toward higher temperatures. Harvest of the rice crop results in a stepwise change of 

the TV properties of a rice field. The separation of the point cloud into two distinct clusters of 

approximately equal size (harvested & unharvested) in the October 1 image agrees with 2016 

USDA estimates that 54% of the California rice crop was harvested by October 9 (Childs, 2016). 

By mid-November, rice harvest is complete, and the landscape shifts into its winter state. 

Interestingly, the few usable winter images that exist plot in a nearly disjoint portion of the 

vegetation temperature space, suggesting that the spatial relationship between vegetation and 

temperature during winter may be dominated by fundamentally different physical processes than 

during summer. 

Characterization – EOF analysis and tEM selection 

The preceding figures can be summarized by the following set of observations: 



 188 

  

1. The thermal phenology of rice agriculture is substantially different in amplitude and 

shape from other land cover types in the region; 

2. The parallel evolution of both thermal and vegetation phenology can be explained in 

terms of the surface hydrologic cycle and growth cycle of the multiple phases of rice 

crops; 

3. The spatiotemporal variations in LST have substantial differences from those of the 

vegetation abundance, despite their interdependence; and 

4. The spatiotemporal variations in both LST and Fv can be explained using fundamental 

physical principles. 

 

Put together, observations 1, 2 and 3 suggest that including Landsat LST in a 

phenological analysis could add information that is not present using vegetation abundance 

alone. Observation 4 suggests that such a phenological analysis could be based on 

straightforward physical principles with a bare minimum of model complexity. 

One potential approach to this mapping problem is the spatiotemporal analysis method of 

(Small, 2012). A primary benefit of this approach is that it imposes no assumptions about the 

functional form of the phenology, but rather characterizes the temporal patterns based on the data 

itself. Other benefits to the method are its simplicity, robustness, and generalizability, as well as 

its ability to generate results with straightforward physical meaning. Because they are based on 

physical principles and easily identified tEMs representing known phenologies, maps derived 

from linear model inversion provide a degree of uniqueness of solution that is almost never 

provided by discrete thematic classifications which are based on ad hoc selection of land cover 

classes and training data. 

In order to use this approach with a dual data stream, two decisions must be made. The 

first decision is whether to incorporate both streams into a single analysis or to analyze each in 

parallel. We present the results of parallel characterization method here because it is 

conceptually simpler and achieves the objectives of the current study. The combined 
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characterization and analysis of thermal and vegetation phenology lends itself naturally to the 

study of ET dynamics, and is the focus of a separate study.  

The second decision is whether to analyze the two years together or separately. Because 

significant benefits can result from either approach, we present results of both in Figure 44 and 

Figure 45, respectively. Because the two single-year characterizations yielded similar results, we 

present only the 2016 results as characteristic of both years of the dataset.  

For each case, we begin by first conducting an EOF analysis of the relevant image time 

series. We choose unnormalized (covariance-based) rotations in each instance. Normalized 

(correlation-based) rotations were also investigated, but the resulting feature spaces were less 

informative. In each case, over 65% of the variance is represented in the first 3 dimensions of the 

data. While this number is low enough to suggest that informative structure may be present in the 

higher dimensions of the dataset, the three low-order dimensions capture the most relevant 

phenological patterns necessary to distinguish rice from other crops and to characterize its 

seasonal and interannual variability. 

Figure 44 and Figure 45 summarize the characterization stage of the parallel analyses for 

single year (2016) and dual year (2016 + 2017) time series, respectively. Characterization is 

based on the 24 × 24 km subset shown in the white box in Figure 43. We use this spatial subset 

because it is dominated by rice agriculture with a wide range of crop timing. In every case, the 

loadings of the first 3 spatial PCs are shown as scatterplots. These scatterplots represent the 

location of each geographic pixel in the image time series in a 3-dimensional space, known as 

the Temporal Feature Space (TFS), in which the axes represent the relative contributions of the 

first 3 EOFs (uncorrelated temporal patterns of maximum variance). Clusters in this space 

correspond to sets of geographic pixels with similar temporal trajectories over the course of the 
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two years of the study. Apexes in the space correspond to temporal endmembers (tEMs), pixels 

with the most distinctive temporal patterns in the image time series. Pixel time series lying inside 

a convex hull connecting the tEMs can be represented as linear combinations of the tEM time 

series.  

Figure 44 shows a comparison of the TFS for image time series of both Fv and LST for 

the year 2016. The TFS of the Fv image time series shows four distinct apexes representing the 

tEMs: Early Rice, Late Rice, Wetlands/Evergreen, and Water/Fallow. Time series of Fv 

corresponding to these tEMs are shown in the lower right. All 4 tEMs are clearly distinct on the 

PC 3 vs 2 scatterplot. The point cloud in this scatterplot forms a cross shape, with the axis 

between tEMs 1 and 2 corresponding to phenological timing and the axis between tEMs 3 and 4 

corresponding to overall vegetation abundance. The Water/Fallow tEM forms the sharpest 

corner, as expected given the small amount of variability expected in the Fv of water bodies and 

fallow fields through time. Early and Late tEMs are less sharp but still clearly defined, indicating 

substantial variability in the timing of the phenological signal. However, the Early and Late 

clusters are also visibly distinct, indicating two clear phenological groups. The Wetlands tEM is 

the most diffuse, as expected given the wide range of vegetation types, hydrological regimes, and 

land management strategies for wetlands in the area. 

The TFS of the LST image time series shows substantially more clustering than that of 

the Fv time series. This indicates that more pixels have more similar LST trajectories than Fv 

trajectories. At least 7 tEMs are identifiable. The most distinct from each other are Water (EM 4; 

blue) and fallow fields (3; gray). Water time series are particularly distinctive as their very low 

PC 2 and very high PC 1 and 3 values position them as disjoint from the remainder of the 

dataset. The remainder of the space partitions into a) differences in timing of rice phenology, and 
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b) differences between rice, non-rice agriculture, and wetlands. Wetlands (EM6) occupy the 

corner of the point cloud closest to water, and also form an axis grading into fallow fields (EM3). 

The Fallow-Wetland axis is nearly orthogonal to the Early-Late axis of rice phenology, most 

clearly seen in the PC 1 vs 3 projection. Non-rice agriculture (EM5) plots on a continuum 

between the Early Rice and Fallow tEMs. Finally, double cropping (D) is clearly identifiable in 

both the Fv and LST feature spaces. Few fields in the spatial subset used for this rotation practice 

double cropping, so this tEM is sparsely populated. 

Figure 45 shows a characterization of the dual year 2016+2017 image time series. In both 

time series, the early/late phase information that dominated the single year time series is 

suppressed (though still present), and the structure of the TFS is dominated by year-to-year 

differences in crop presence or absence. In the Fv space, both Wetlands (EM4; green) and 

Water/Fallow (EM5; blue) are still clear tEMs. The largest cluster, however, is now that of fields 

cropped in both 2016 and 2017 (EM3; red). This cluster is clearly distinct from the small cluster 

of fields cropped in 2017 only (EM2; gray) and the much larger cluster of fields cropped in 2016 

only (EM1; yellow). The fact that the 2016-only cluster is much larger than the 2017-only cluster 

is concordant with official USDA estimates of 42,000 fewer acres of California rice planted in 

2017 than 2016 due to higher prices for competing commodities and severe early season flooding 

(Childs and Skorbiansky, 2017; NASS, 2017). 

The dual year LST space again shows more clustering and overall complexity than the 

corresponding Fv space. At least 6 tEMs are identifiable. Again, the greatest distinction exists 

between water and fields that are fallow in both years (F/F). Water time series are again 

particularly distinctive as their very low PC 1 and PC 3 values position them as disjoint from the 
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remainder of the dataset. The remainder of the space partitions into a) differences in timing of 

phenology for fields under rice cultivation in both years, and b) the presence and absence of a  
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Figure 44. Fv vs LST 2016 temporal feature space (TFS) comparison. Each TFS highlights 

different aspects of the biogeophysical system. Fv discriminates between early and late cropping, 

but cannot distinguish rice from other crops with similar timing. LST clearly distinguishes rice 

from other crops, but misses the late season variability captured by Fv. These differences are 

reflected in EMs. Fv EMs correspond to Early Rice (1), Late Rice (2), Wetlands (3) and Water & 

Fallow (4). EMs of the LST space include Early and Late Rice (3 & 2) and also differentiate 

between water (4) and fallow (1). Non-rice agriculture (5) and wetlands (6) are distinct in LST 

but not Fv. Double cropping (D, Orange, EMs not shown) is also obvious with LST. Overall, the 

LST TFS is more complex and clustered than the Fv TFS. 

 

 



 195 

  

  



 196 

  

Figure 45. Joint 2016 & 2017 Fv vs LST TFS comparison. When both years are analyzed 

together, intra-year signals (time of planting) are nested inside inter-year signals (crop 

conversion). EMs for both Fv & LST clearly differentiate between fields planted only in one year 

vs both years vs neither year. Again, LST shows more clustering than Fv, suggesting that, for rice 

agriculture in this location, a greater number of distinct spatially coherent temporal trajectories 

exist in LST time series than Fv time series. Early and late cropping remain as distinct EMs in 

LST, but do not in Fv. 

rice crop in each year. The axis corresponding to phenology is nearly orthogonal to the axis 

corresponding to presence/absence of crop in each year. The potential utility of this information 

is discussed below. 

While information about the phase of the rice is clearly present in both single year 

datasets, the Fv space tEMs capture more end-of-season variability than the LST tEMs. This 

could be due to gradual browning of the top canopy layer over weeks to months (resulting in 

progressive decline in Fv over the second half of the growing season) being accompanied by 

continual cooling by ET of the green vegetation and paddy water below (resulting in minimal 

change of LST). However, the LST dataset clearly shows enhanced ability to discriminate 

between rice and non-rice crops, likely due to early season paddy water producing a unique 

signature in LST but not Fv. For the dual year characterization, both Fv and LST clearly 

discriminate between areas cropped both years versus each individual year, but again LST shows 

superior ability to discriminate between rice and non-rice crops. Clearly, analyzing both datasets 

in parallel may yield substantial benefit over only using one, especially given that the two are co-

acquired in all standard Landsat image acquisitions. 
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Modeling 

As described in the Methods section, tEMs selected from each TFS were then used as the 

basis for two separate linear temporal mixture models. These models were then inverted to 

produce maps of thermal and vegetation phenology.  Figure 46 shows the result of these 

inversions. In this figure, the saturation of each color corresponds to the similarity of each pixel 

to each of the tEM time series. Greater saturation implies greater similarity to the corresponding 

tEM (or binary mixtures for subtractive colors), while less saturation implies less similarity of 

the corresponding pixel to any of the tEMs. The latter is associated with higher model misfit, and 

is expected for pixels with phenologies not included in the model. Individual fields are clearly 

identifiable as either very early (pure green), very late (pure blue) or a mixture of the two (dark 

cyan). Intrafield heterogeneity in phenology is also clearly present in some cases, showing 

portions of individual fields growing faster than other portions. The potential utility of Landsat’s 

ability to resolve intrafield spatiotemporal variability is discussed below. Overall, RMS misfits 

were comparable but somewhat higher for the Fv ( = 0.15, 90% < 0.25) than the LST ( = 0.07, 

90% < 0.12) models. While these model misfit values are higher than generally observed for 

spectral mixture models, this is expected given the phenological complexity of the landscape and 

the relatively low number of tEMs used. 

The right column shows the result of a 3 tEM temporal mixture model of 2016 + 2017 

thermal phenology showing crops in both years (cyan), only 2016, magenta, or neither (dark 

yellow/orange). The unique temporal signature of rice thermal phenology allows it to be readily 

identified from other types of agriculture, which map as dull colors corresponding to 

combinations of tEMs. Field-to-field variations in the similarity of each pixel time series to the 

tEMs are present, likely due to a combination of soil moisture during the fallow year and/or 
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greenup phase during the cropped year. Some intrafield variability is also present, likely for 

similar reasons.  

While the Fv TMM maps crop timing with high accuracy, it does not explicitly 

distinguish between rice and non-rice agriculture. As a result, non-rice agriculture maps in a 

variety of ways, potentially mimicking rice, depending on its phenological characteristics. 

Fortunately, the thermal image time series can explicitly capture the phenological signature of 

rice by leveraging the large early-season difference between cold, flooded, recently planted rice 

fields and hot, dry, recently planted non-rice fields. Interpreting the two of these phenology maps 

together therefore provides maximum information about both the location and timing of rice 

agriculture. 

Near-Realtime Monitoring & Field Validation 

To illustrate one potential application of this methodology, we present the results of a 

TMM generated in the middle of the current (2018) growing season. 2018 presents an unusually 

challenging case for the model, because only the first part of the growing season is available, 

with only 2/3 as many usable images as the same period in 2016 and 2017. This is due to the 

prevalence of cloud cover in many spring images and smoke plumes from multiple severe wild 

fires in late summer images. Through the end of July, only 4 usable thermal images were 

collected, in comparison to 6 images through the end of July for each of the 2016 and 2017 

growing seasons. 
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 Figure 46. Temporal mixture model comparison. Each pixel time series can be modeled as a 

simple linear mixture of the EM time series derived from each TFS. Resulting EM fraction 

images can then be rendered as maps of temporal patterns. The EMs in the 2016 Fv TFS clearly 
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separate phenologic phase shifts, resulting in a map (L column) of early (green) versus late 

(blue) versus bare/grassland (red) crops for the 2016 growing season. The TMM based on Fv 

cannot distinguish between rice and non-rice crops with the same phenological timing. The EMs 

of the 2016+2017 LST TFS discriminate between rice and non-rice because the flooded rice 

paddies are significantly colder than the bare fields present before non-rice crops are planted. 

The dual-year LST TMM (R column) shows year-to-year crop transitions. Fields planted with 

rice in both years (cyan) are clearly distinct from those planted only in 2016 (magenta), and 

those bare or grassland in both years (orange). The top row shows a regional map, while the 

bottom row shows a 24x24 km spatial subset (area within box) at full pixel resolution. Time 

series of the EMs displayed in each model are inset. 

 

Figure 47 shows false color composite and thermal image time series for these 4 images. 

The false color composite images show a clear difference in crop timing between the rice 

growing areas in the eastern versus western portions of the valley, with the dividing line located 

approximately at the Sacramento River channel in the north and the Sutter Bypass in the south. 

The wide range of planting times in 2018, and the overall unusually late crop, is due to complex 

water management circumstances. Because of the relatively dry winter and associated low 

reservoir levels, uncertainty existed in early spring about expected water allocations. Heavy 

April rains then boosted allocations, but also forced farmers to wait for the clay-rich soils to dry 

before it was possible to bring tractors onto the fields for leveling. The fields which had already 

been prepared could be flooded and planted on time, but those which had not were forced to 

plant significantly later than usual. This is described in brief by (Linquist, 2018), and expected 
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impacts of this situation are broadly described by (Childs and Skorbiansky, 2018). 

 

Figure 47. 2018 stress test. 2018 presents a difficult case for a monitoring model because 

unusually frequent cloud contamination results in only 4 usable images through July. Relatively 

low reservoir levels combined with unusually heavy April rains during the time of field 

preparation resulted in an unusually wide range of planting dates. In the April image, the 

western part of the valley is clearly drier than the eastern part of the valley. This resulted in 

earlier planting & green-up in the east, visible in the June & July images. Some fields were never 

planted at all, resulting in the checkerboard pattern in the July thermal imagery particularly 

prominent north of the Sutter Buttes. 

A TMM condenses the information from these 4 LST images into a single map, shown in 

Figure 48. In this model, red corresponds to grasslands and fallow fields, green corresponds to 

early rice, and blue corresponds to water and non-rice crops. Despite the limited data availability 
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in 2018, and the fact that this map is produced mid-season with no data on senescence or harvest, 

the areas growing rice are clearly identifiable. The broad east-west dichotomy in planting date 

described by (Linquist, 2018) is evident in the discrepancy between bright and dull green map 

color. Field validation with 1650 km of driving transects, 8500 field photos, and 380 field spectra 

verifies that 527 of 592 fields (89%) are correctly mapped as rice. Validation details are given in 

the appendix. 
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Figure 48. Mid-season TMM for 2018. Despite only 4 images from the first half of the 2018 

season, the LST-based TMM discriminates rice from non-rice, as well as between early (bright 

green) and late (dark green) rice crops. Field validation was conducted July 25 - 29, 2018 using 

over 1650 km of driving transects, 8500 field photos, and 380 reflectance spectra. False 

negatives (rice mapped by the model as non-rice) are rare (< 1%), but false positives (non-rice 

mapped as rice) occur at a rate of 11%, generally in field that were fully green and/or heavily 

irrigated at the time when rice paddies are flooded. Labeled white circles (A-I) correspond to 

locations of field spectra in Figure 50. 

Discussion 

The topological structure of the low order temporal feature spaces provides a detailed yet 

intuitive characterization of the thermal and vegetation phenology of the 2016 and 2017 rice 

crops in the Sacramento Valley. The clearly distinct temporal endmembers spanning the feature 

space correspond to distinctive and easily verified land cover phenologies with straightforward 

interpretations in terms of vegetation abundance and LST at decameter scales. The degree of 

separation of the temporal endmembers, and the fact that they bound almost all the pixels in the 

feature spaces, allows them to be used as the basis for useful linear mixture models that can be 

inverted to yield pixel scale similarity metrics for each temporal endmember. The resulting 

endmember fraction maps provide continuous field estimates of both vegetation and thermal 

phenology of multiple rice crops as well as other land cover types. While the continuous field 

maps provide the most information on the spatiotemporal evolution of the rice crops, the clear 

presence of distinct clusters within the temporal feature spaces shows that the continuous field 

maps could be easily discretized into thematic classifications if necessary. The spatiotemporal 

clustering highlights clear distinctions between the multiple phases of rice cropping, as well as 
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from other land cover types with different phenologies. It is important to note that continuous 

fraction land cover models can be used to accurately represent compositionally discrete land 

cover (like agriculture) with no loss of generality, but the converse is not true. Discrete thematic 

classifications cannot accurately represent the far more common diversity of continuously 

varying land cover properties present in most landscapes. 

The ability to rigorously map and monitor the state of rice agriculture with optical 

satellite imagery has a wide range of potential implications: 

Harvest Forecasts 

In many regions of the world, the prediction of rice harvest is hindered by inaccurate 

estimates of basic information. While providing accurate estimates of yield from satellite 

imagery can be difficult because of the range of factors that can contribute to the harvest, it is 

likely that constraints on fundamental variables such as planting date and total area under 

cultivation could be improved with the joint VSWIR+TIR temporal mixture model approach 

presented here. In particular, TMMs based on single-year time series show the potential to map 

crop timing, and dual-year time series show the potential to identify changes in the location and 

overall abundance of planted fields. This could improve one set of inputs to complex yield 

models, which also rely on a significant amount of additional ancillary information, as well as 

work synergistically with other rice crop monitoring systems such as the methodologies 

proposed by (Boschetti et al., 2009; Nelson et al., 2014; Torbick et al., 2011). 

Intra-field Variability: Weed and Nutrient Management 

Examination of decameter image time series from sensors such as Landsat and Sentinel 

reveals considerable intra-field heterogeneity in the time series of green-up and senescence. 
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These within-field variations likely arise as a result of imperfections in field leveling, flooding, 

and drainage; variability in weed and nutrient management; and heterogeneity in planting 

density. The information present in these variations could be leveraged using active management 

strategies for precision agriculture. In conjunction with unmanned autonomous vehicles, 

localized application of fertilizer and herbicide could be targeted to areas of concern with a 

potentially significant reduction in environmental impact and cost to the grower. The growing 

prevalence of VNIR hyperspectral imaging sensors has the potential to contribute significantly to 

these problems by discriminating between individual absorption features, such as those captured 

by the field spectra shown in Figure 50 of the Appendix. 

Pest Management 

Some pests require proximity in order to transmit from one field to another. Large, 

interconnected regions growing similar crops may provide transmission opportunities for these 

pests. Transmission could be minimized by a basin-scale management approach based upon 

strategic disruption of spatial networks of agriculture. Accurate crop-specific maps could provide 

a useful input into a network-based approach to understanding agricultural landscape evolution, 

as explored in (Sousa and Small, 2016). 

Evapotranspiration and Water Use 

ET has been shown to be remarkably consistent for rice fields throughout the growing 

season (Linquist et al., 2015). Indeed, the relative stability of the LST and area of illuminated 

photosynthetic vegetation of rice fields are a part of the reason why the joint VSWIR+TIR 

mapping approach is so well-suited to rice in particular. This is shown explicitly in the 

spatiotemporal composite TV space for all 22 images in the 2016-2017 time series, shown in 



 207 

  

Figure 49. 

 

Figure 49. Relationship between vegetation and soil LST throughout the study period. A clear 

gap is present between the soils during the summer growing season (higher LST) and winter 

fallow season (lower LST). Physical bounds to growing season temperatures are easily 

recognizable, yielding straightforward values for Tmin and Tmax as defined by Carlson et al., 

1994. Schematic rice phenological trajectory shown with white arrows. Rice fields are 

unvegetated and cold in winter (1). In spring, the fields are drained and leveled, remaining 



 208 

  

unvegetated and sometimes reaching high temperatures due to the low heat capacity of dry soil. 

Fields are then flooded and planted (3), after which point the rice plants begin to grow until 

maturity (4). In late summer and early fall, plants senesce and then are harvested in mid-to-late 

fall (5). After harvest, many rice fields are then flooded again, returning them to their winter 

state (1). 

The composite TV space shown in Figure 49 is particularly illuminating when viewed in 

relation to its subsets shown earlier in Figure 43. The wide range of LST values shown at near-

zero Fv is primarily due to the substantial discrepancy between the relatively high heat capacity 

of water and the much lower heat capacity of dry soil (and synthetic surfaces like pavement and 

plastics). In contrast, the much more constrained range of values at high Fv values is likely a 

reflection of the thermal stability of dense, well-watered, respiring vegetation. The warm-colored 

clusters in this space represent groups of geographic pixels with similar TV properties. At low 

values of Fv, these are likely bare fields with similar moisture contents and tilling practices. In 

contrast, the clustering at high Fv values likely corresponds to rice fields imaged at different 

dates, with differences in water temperature resulting from fluctuations in air temperature due to 

changing weather within the growing season. 

At least two additional features of this plot suggest potential avenues for future work 

through application to ET, following the Triangle Method introduced by (J. C. Price, 1990), 

further elaborated by (Carlson et al., 1994), and recently reviewed by (Carlson, 2007) with 

additional useful explanation in (Carlson, 2013). First, the remarkably straight edges suggest the 

Sacramento Valley may be particularly well-suited to this approach to ET mapping. This is likely 

due to a combination of large field sizes, prevalent irrigation, and dominance of agricultural land 

use across the landscape. Second, a clear division between the growing season and the winter is 
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also evident, suggesting the relationship between temperature and vegetation can be described as 

alternating between (at least) two physical regimes over the course of the year. Moving forward, 

the application of the spatiotemporal analysis methods described in this paper to image time 

series of quantities estimated by ET models has the potential to make progress toward all 5 of the 

requirements of the Path Forward outlined by the recent Decadal Survey (Fisher et al., 2017), 

especially viewed under the unifying framework of spectral mixture analysis, as proposed by 

(Sousa and Small, 2018b). Detailed intercomparison of ET estimates from this and other ET 

models presents an attract avenue for future work. 

View Angle and Flooding Presence 

Because rice is an erectophile plant, small differences in off-nadir viewing geometry can 

produce significant differences in its overall bidirectional reflectance distribution function 

(BRDF). Specifically, the background of paddy water or soil is most pronounced when nadir-

looking and rapidly exits the field of view when viewed off-nadir. Sufficient data now exist to 

quantify this effect at various stages throughout the rice life cycle. Understanding the size of this 

effect has the potential to determine at what stages of development the flooding or drying of the 

substrate below the rice can be accurately determined, with potential implications for the 

verification of alternative cropping practices such as alternate flooding and draining of fields. 

Integration of New Data Streams 

Finally, recent missions such as the ECOsystem Spaceborne Thermal Radiometer 

Experiment (ECOSTRESS), as well as the planned launch of hyperspectral missions such as 

NASA’s Surface Biology and Geology (SBG) and DLR’s EnMap, have the potential to 

substantially enhance the ability of the scientific community to map and monitor rice agriculture. 

During crop growth, VSWIR imaging spectroscopy has been shown to provide information 
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about biomass (Gnyp et al., 2014) and foliar chemistry such as nitrogen and cellulose (LaCapra 

et al., 1996), and multispectral thermal measurements are expected to provide improved 

measures of evapotranspiration (Wong et al., 2017). Hyperspectral measurements have also been 

shown to be potentially useful for detecting physiological stress in rice due to soil heavy metal 

content (Liu et al., 2011), fungal infections (Liu et al., 2008), and insect infestations (Yang et al., 

2007). When fields are fallow, hyperspectral measurements are expected to provide improved 

soil characterization (Castaldi et al., 2016; Stoner and Baumgardner, 1981). It is possible that 

when this information is incorporated in temporal mixture models, it could potentially provide 

useful added information about the presence, timing, and spread of pathogens across a landscape; 

the need for fertilizer application; and/or water consumption and stress across rice and non-rice 

agricultural landscapes. 

Conclusions 

The combined spatiotemporal analysis of decameter scale VSWIR and thermal imaging 

shows considerable promise for improvements in the mapping and monitoring of rice agriculture. 

Characterization of single-year time series of the agriculture-dominated Sacramento Valley of 

California readily yields information about early/late crop planting, while dual-year 

characterization provides information about year-to-year crop conversion. Surprisingly, 

considerably more clustering is evident in the LST image time series than in the Fv image time 

series, in both single- and dual-year cases. Investigation of the temporal feature spaces suggests 

that Fv time series data show particular promise for estimating crop timing, while LST appears 

particularly well suited for distinguishing rice from other crops. Example monitoring results 

from the 2018 growing season show considerable promise for near-realtime mapping of rice 

phenology using partial-season TMMs. Field validation based on over 1650 km of driving 
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transects and 8500 field photos confirms that mid-season monitoring models can provide an 

accurate upper bound estimate (< 1% false negatives; 11% false positives) of the spatial extent 

and relative timing of the rice crop, even under conditions of relative data scarcity (only 4 

images total for 2018, with only 1 capturing flooded and unplanted rice paddies). These results 

could have potential implications for food security, precision agriculture, pest management, and 

ET. 
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Appendix: Field Validation 

The TMM for the 2018 growing season shown in Figure 48 is validated with over 1650 

km of field transects collected between July 26 and 29 (white lines), including over 8500 field 

photos and 380 VNIR reflectance spectra. Field spectra are mapped as white dots and will be 

discussed further in Figure 50. Comparison of field photos to map output shows the model to 

produce < 1% false negatives (i.e. fields planted as rice but not captured by the model). 

However, approximately 11% of fields in the model were identified as false positives (i.e. fields 

in which rice was not planted, but mapped by the model as rice). The reason for the prevalence 

of false positives in the 2018 model is straightforward, as only 1 image captures the rice in the 

phase in which it is dominated by standing water. Because the thermal signature of standing 

water can sometimes be similar to that transpiring vegetation and wet soil, the thermal time 

series of any crop which was bare in mid-April but already fully green (or fallow and saturated) 

by June 1 could mimic that of the rice. This thermal mimicking is expected to be less severe in 

years with better data availability, and could also potentially be resolved by building a more 

complex model in which both Fv and LST are used. However, for the purposes of simplicity and 

illustration of the method outlined in this work, we defer a detailed examination of the strengths 

and weaknesses of more complex models to a future study. 

VNIR field spectra were collected with an ASD HandHeld2 field spectrometer on July 

29. Wildfires were active in the Coast Ranges to the west and north of the study area from mid-

July through late August, 2018. As a result, substantial atmospheric contamination was present 

during field spectra collection. These effects are evident in satellite images collected before, 

during, and after the field campaign. When compared to both same-day Sentinel-2 spectra 

(corrected with the ESA Sen2Cor algorithm) and Landsat 8 spectra from August 4, 2018 
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(corrected with the NASA/USGS LaSRC algorithm), the field measurements yielded higher 

reflectance across all wavelengths than the satellite spectra. We interpret this as resulting from 

substantial indirect illumination by haze from the fires, view angle discrepancies due to the field 

spectrometer being held slightly off-nadir, and the unavoidable difference in measurement 

distance between the Spectralon white standard (used for calibration) and the distance from the 

rice canopy necessary to sample a representative mixture of foliage and exposed paddy water (or 

soil). Fortunately, however, the phenological progression can be captured by relative differences 

in reflectance between wavelengths. In order to facilitate comparison of spectral shapes, the 

overall amplitudes of the field spectra were adjusted by simple multiplicative scaling using 

constants in the range 0.5 to 0.8. 

Figure 50 shows the corrected field spectra at full spectral resolution (thin gray) and the 

mean spectrum (thin black) for reference, as well as these spectra convolved with the broadband 

spectral response functions of the VNIR bands of the Landsat 8 OLI sensor (thick blue). These 

are shown in comparison to the actual observed Landsat 8 spectra from the August 4 Landsat 8 

image (thick gold). In some cases (A–C), the agreement between the synthetic and observed 

Landsat spectra is remarkably good, even despite the significant atmospheric problems discussed 

above and the nearly 1 week between field and satellite data collection. In other cases, the 

spectral shape at visible wavelengths is distorted (D–F) or there is an overall loss of contrast (G–

I) in the satellite spectra. These imperfections are likely due a combination of 1) changes in the 

state of the atmosphere in the 10s of seconds between field calibration to white standard and 

collection of reflectance spectra, and 2) the inability of the atmospheric correction model to 

capture the complex scattering and absorption effects of the smoke plumes. 
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In addition to the comparison with broadband observations, field spectra show subtle 

features which are not captured by multispectral instruments. Changes in absorption depth in the 

visible red are likely due to chlorophyll b and other plant pigments. In addition, changes in the 

curvature at the base of the red edge (0.69–0.71 µm), as well as variations in slope at the top of 

the red edge (0.8–0.9 µm) have the potential to be leveraged in future work for investigations 

into nutrient stress and phenological progression of plant functional traits. 

Finally, sample field photos showing rice at a variety of stages are shown in Figure 51. In 

late July, 2018, rice in the Sacramento Valley was observed in a range of maturity stages (photos 

A–C). The prevalence of weeds widely varied among fields (D and E). Abundant waterfowl (F) 

could be observed feeding in the rice fields. Viewed from above, weedy rice fields (G) were 

clearly distinct from weed-free fields (H). Substantial standing water background was observed 

in nadir-looking photos. The importance of view angle can be clearly seen when comparing (H) 

and (I), as rice fields of this age are fully opaque when viewed obliquely but not when viewed 

from nadir. A broad diversity of other agricultural land covers was also present in the valley, 

including sunflowers (J), fruit and nut orchards (K), rice straw (L), bare soil (M), alfalfa (N) and 

tomatoes (O). 
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Figure 50. Comparison of field and satellite spectra. Continuous field spectra (light gray) were 

collected on July 28 and 29 at 9 rice fields, then convolved to bands 2-5 of the Landsat 8 OLI 

sensor (blue). These are then compared with actual Landsat spectra from the same locations 

imaged on August 4 (gold). The Landsat spectra were atmospherically corrected with the 

standard LaSRC atmospheric correction. In some cases (A-C) the synthetic and observed 

Landsat spectra agree remarkably well, especially given the pervasive atmospheric effects due to 

fires present during both the days of field measurement and satellite overpass and the nearly 1 

week of time elapsed. In other cases (D-F), the overall ranges of the spectra are similar but the 

shape in the visible is notably distorted. In yet other cases (G-I), loss of contrast is observed, 

likely due to aerosol contamination incompletely corrected by the LaSRC model. Locations of 

field spectra are shown in Figure 48. 
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Figure 51. Photos from July 2018 field validation campaign. In late July, rice was present in a 

wide range of stages from not yet headded (A) to partially and fully headded (B and C). Weeds 

were visibly present at a range of abundances in some fields (D and E). Waterfowl (F) continue 

to hunt in the rice paddies during the growing season. Viewed from near nadir, weeds (G) and 

standing water below the rice plants (H) are clearly visible. The importance of view angle is 

clearly evident when comparing these photos to side-on photos like I. A wide range of other 

agricultural land covers is present in the valley, including sunflowers (J), fruit and nut orchards 

(K), wheat stubble (L), bare fields (M), alfalfa (N) and heirloom tomatoes (O). 
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6. Spatial Structure and Scaling of Agricultural Networks 

Abstract 

Considering agricultural landscapes as networks can provide information about spatial 

connectivity relevant for a wide range of applications including pollination, pest management, 

and ecology. At global scales, spatial networks of agricultural land use inferred from land cover 

products are well-described by power law rank-size distributions. However, regional analyses of 

agricultural land use typically focus on subsets of the total global network. In this paper, we seek 

to address the following questions: Does the globally observed scale-free property of agricultural 

networks hold over smaller spatial domains? Can similar properties be observed at kilometer to 

meter scales? Does the observed scale-free structure persist as agricultural networks evolve over 

the growing season?   We analyze 9 intensively cultivated Landsat scenes on 5 continents with a 

wide range of vegetation distributions. We find that networks of vegetation fraction within the 

domain of each of these Landsat scenes exhibit substantial variability – but generally still possess 

similar scaling properties to the global distribution of agriculture. We also find similar results 

when comparing Landsat and Sentinel-2 imagery for 3 agricultural regions in Europe, as well as 

in an IKONOS image of an agricultural region of China. To illustrate an application of spatial 

network analysis, we show an example of network disruption. We compare two networks with 

similar rank-size distributions that behave differently when nodes are progressively removed. We 

suggest that treating agricultural land cover as spatial networks can provide a straightforward 

way of characterizing the connectivity and evolution of complex spatial distributions of 

agriculture across a wide range of landscapes and at spatial scales relevant for practical 

agricultural applications. 
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Introduction 

The spatial distribution of agriculture in a landscape can provide information which is 

complementary to the properties of individually treated fields or political units. Pollination, 

insect diversity, and other ecosystem services are reliant on the spatial connectivity of an 

agricultural landscape (Diekötter et al., 2008; Ricketts et al., 2007). Outbreaks of pests and 

pathogens can sometimes be contained by breaking spatial adjacency between cropped areas 

(Gilligan, 2008). The ecology of native species populations can be altered by habitat 

fragmentation of natural landscapes by agriculture (Dixo et al., 2009; Luoto et al., 2003). 

However, the diversity of agricultural landscapes around the globe demands a tool which is 

flexible enough to accommodate a wide range of spatial distributions and connectivity patterns. 

Network theory provides the basis for a conceptually simple model which can represent a variety 

of processes with complex spatial structure.  

Globally, maps of cropland extent have been observed to display an unexpected 

consistency in their size distributions (Small and Sousa, 2016). Despite considerable 

disagreement when compared directly in the same locations, 4 different global agriculture 

products possess the property that the sizes of contiguous patches of agricultural land diminish at 

the same rate that their frequency increases (Figure 52). This property implies (nearly) uniform 

distributions of total agricultural area across a wide range of spatial scales. This implies that the 

sum of the area of the largest segments is equal to the sum of the area of the smallest segments, 

which is equal to the sum of the segments of any arbitrary size interval in between. The 

consistency of this observation across the 4 products is especially surprising given the substantial 

differences in the input data, assumptions, and algorithms used in each of the 4 products. The 
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consistency of the observation at global scales begs the question of whether this pattern can also 

be observed at finer spatial scales. 

The property of diminishing magnitude with increasing number is common in nature and 

is often referred to as a power law relationship. Power law relationships are also a defining 

characteristic of many networks – often referred to as “scale-free” because of the implied self-

similarity and lack of a characteristic scale. Because networks are capable of representing 

processes with complex spatial structure (e.g. as reviewed by (Barthélemy, 2011)), and because 

many networks (such as those in (Barabasi and Albert, 1999)) display similar power law 

relationships to those observed for agriculture on the global scale, we suggest that networks may 

be a useful tool to characterize agricultural landscapes and provide insight into processes reliant 

on agricultural connectivity. 
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Figure 52. Global comparison of agricultural land cover products (top) and corresponding rank 

size distributions of agricultural land area (bottom). Areal fractions of land under cultivation for 

three global products shown as red, green, and blue brightness. Pairwise spatial correlations 

between products shown in lower left corner of the map quantify agreement. Segmenting each 

continuous fraction map at >25% and >50% thresholds produces binary maps. Rank size 

distributions of contiguous areas of agricultural land cover for each product have similar slopes 

over 4 orders of magnitude in size. Power law fits to each rank size distribution yield slopes near 
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-1. Size cutoffs estimate lower bound of power law behavior. Small cutoffs for the IASA-IFPRI 

and MODIS products indicate that the power law fits all but the smallest segments, while the 

larger cutoffs in the HYDE and Earthstat products result from quantization of smaller segments 

due to their coarser 10 x 10 km resolution. Slopes near -1 indicate that areas of agricultural land 

cover diminish in size at the same rate they increase in number. The implication is that the total 

area of agricultural land cover is nearly uniform across a wide range of segment sizes. This 

figure is adapted from Small and Sousa (2016). 

Several remote sensing studies have used power laws to describe fire size distributions. 

For instance, (Hantson et al., 2015) studied the global distribution of fire sizes using a 2° grid 

and found that a power law model successfully fit 93% of grid cells with significant fire activity. 

Similarly, (Malamud et al., 2005) studied wildfires across the conterminous United States and 

found robust power law fits in 18 different ecoregions. (Kumar et al., 2011) use these established 

power law relationships to estimate fire biomass and radiative energy. 

Studies of a wide range of other phenomena in the natural sciences also find power law 

behavior. Desert vegetation in the Kalahari was found by (Scanlon et al., 2007) to follow a 

robust power law distribution across 1.5 orders of magnitude. Horizontal cloud sizes were found 

by (Wood and Field, 2011) to be well represented by power laws from sizes ranging from 0.1 km 

to at least 1500 km. Earthquakes (famously described by (Gutenberg and Richter, 1955)), wind 

profiles (as characterized by (Hsu et al., 1994)), and landslide area (characterized by (Guzzetti et 

al., 2002)) provide but a few of the myriad other cases in which power laws have been used to 

describe Earth processes. Interested readers may find more detailed descriptions of similar 

processes in references such as (Turcotte, 1997) and (Sornette, 2006). 
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The goal of this paper is to investigate the question of whether the globally observed 

scaling property of agricultural land cover holds over smaller areas and at spatial scales relevant 

to the questions of pollination, pathogen transmission, and ecology. Specifically, we seek to 

assess the robustness of the global scaling relationship at the decameter spatial scale for a set of 

diverse agricultural landscapes spanning 5 continents. To our knowledge, the investigation of 

heavy-tailed size distributions of contiguous patches of agriculture has not yet been performed in 

the literature. We ultimately seek to answer the question: Do the size distributions of agricultural 

landscapes already observed at global scales maintain similarity to true power laws at spatial 

scales resolving individual fields?   This question has direct relevance to several agricultural 

applications because of the implications for spatial connectivity of agricultural networks at scales 

where interventions are feasible. 

Background 

Rank-size Plots and Heavy-Tailed Distributions 

Some processes in nature tend to produce objects or events that cluster around one 

characteristic size, with large deviations from this value being relatively infrequent. However, 

other processes produce objects or events that can take on a wide range of sizes – sometimes 

varying over several orders magnitude. When viewed as realizations of random variables, 

distributions which can take on a wide range of values are said to be heavy tailed. In a heavy 

tailed distribution, concepts from Gaussian statistics such as mean and standard deviation have 

little utility since the random variable deviates highly from that of a Gaussian (i.e., extreme 

events are much more common than predicted by a Gaussian distribution). Several types of 

heavy-tailed distribution which have been invoked by different authors to describe natural 

phenomena include the Weibull (e.g. wind speed, (Seguro and Lambert, 2000)), log-normal (e.g. 
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distribution of chemical concentrations, (Limpert et al., 2001)) and power law (e.g. city size, 

(Auerback, 1913; Lotka, 1941; Zipf, 1942)) distributions. 

In the case of phenomena characterized by heavy tailed distributions, rank-size plots can 

be an intuitive tool for displaying both the magnitude and frequency of observations. Because 

such processes often span several orders of magnitude, such plots are typically displayed on 

logarithmic axes. Such a visualization scheme can be desirable because of its conceptual 

simplicity and minimum of assumptions about the form of the data. In the case where a rank-size 

plot is linear on logarithmic axes, the power law distribution is often considered a likely 

candidate for the underlying process. A power law distribution is defined by a constant factor 

and an exponent. If a set of features is distributed according to a power law, the slope of the 

rank-size plot in log-log space is related to the power law exponent α by the following 

expression from (Li, 2002): 

 

Nonparametric statistical methods have been developed to determine the power law of 

best fit, the portion of the distribution most likely to be power law, and confidence intervals 

using Monte Carlo and the Kolmogorov-Smirnoff goodness-of-fit statistic. For an excellent 

description of these tools and their application to a wide range of datasets, see Clauset et al. 

(2009).  When observations are binned logarithmically, a rank-size distribution with a slope of -1 

(corresponding to a power law exponent of -2) corresponds to a uniform distribution across 

scales (Small et al., 2011). 

Importantly, linearity of the rank-size plot alone does not rule out the possibility of other 

similar heavy tailed distributions describing the data equally well – or even better (Clauset et al., 
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2009). For this reason, in this paper we only use power law fitting as a convenient way to 

quantify the degree of linearity and slope of the rank-size plots. We remain noncommittal about 

the ultimate form of the underlying probability density function and suggest more rigorous 

analysis as a direction for future work on this topic. 

Scale-Free Networks and Constrained Networks 

The most basic pieces of networks are nodes and links. Nodes are connected to each other 

by links. Depending on the network, some nodes may be linked to many other nodes, some may 

be linked to only a few, and some nodes may not linked to any other nodes at all. Each set of 

interconnected nodes is called a component. Within each component, all nodes are connected to 

each other either directly or indirectly (i.e. through other nodes within the same component). No 

node within one component can be linked to a node within another component. A network is a 

set of components.  In many networks, all nodes are linked to each other (directly or indirectly) 

to form a single “giant” component (Newman, 2010). Other networks have many components. 

In a network, each node has a certain number of links. The frequency distribution of the 

number of links per node is called the degree distribution of the network. In some networks, the 

degree distribution can be well-characterized by a power law. These networks are called scale-

free networks. For these networks, when the distribution of degree sizes versus rank (ordinal 

number: 1 = largest, 2 = second largest, 3 = third largest, …) is plotted on logarithmic axes, the 

result is linear. The slope of this line can vary substantially for different networks (Barabasi and 

Albert, 1999; Clauset et al., 2009). The wide range of degrees necessary for a power law 

distribution is possible in some cases because many networks have no limit (or some very large 

limit) to the number of links that each node can have. Networks are already used in the field of 

landscape ecology under the term graph theory (Cantwell and Forman, 1993; Gardner et al., 
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1992; McIntyre et al., 2014; Urban and Keitt, 2001). For a general review of network theory, see 

(Albert and Barabási, 2002; Newman, 2010). 

In this paper we treat landscapes as networks of land cover. The spatial domain of interest 

determines the total possible spatial extent of the network it contains. As the network grows 

within the rectangular grid of the domain, each pixel is treated as a potential node.  In this paper, 

a pixel becomes a node of a spatial network if it satisfies a single criterion: subpixel vegetation 

abundance above the threshold of analysis. We consider two pixels to be directly linked if they 

are spatially adjacent to each other. For this reason, nodes in land cover networks on a regular 

rectangular grid (as is the case in this study) have a maximum number of direct links 

(Steinwender, 2002). Because we use the Queen’s case for connectivity (all immediate neighbors 

including diagonals), this number is 8. In this case, the parameter of interest is not the degree 

distribution but the component size distribution, as the sizes of each component (spatially 

contiguous patch of agricultural land) can possess a wide range of values. The rank-size plots 

used in this paper show the distribution of component sizes in a single network. We refer to the 

particular type of spatial network defined in this way as a bounded spatial network (Small and 

Sousa, 2015). 

(Small and Sousa, 2016) show that four land cover products which seek to map 

agricultural land use at the global scale exhibit empirical component size distributions 

characterized by linearity in logarithmic space and slope of -1, despite differences in spatial 

patterns (Figure 52, from (Small and Sousa, 2016)). This result holds across a wide range of 

analysis thresholds (described in more detail below). This suggests that agriculture may be well 

characterized as a scale-free spatial network on the global scale. Other types of land cover 
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products have also been found to exhibit similar properties on the global scale (Small and Sousa, 

2015). 

Scale-free networks have been shown to result from two simple conditions: network 

growth and preferential attachment (Barabasi and Albert, 1999). Preferential attachment is 

sometimes described as “rich get richer”– i.e., new nodes to attach more frequently to existing 

nodes with greater numbers of links, or to components with a greater number of nodes, than to 

their less connected counterparts. The networks we consider fill space on a surface. This 

generates a mechanism for preferential attachment because the surface has finite area and larger 

components naturally have larger perimeters to which new nodes can link. If new nodes are 

generated randomly in space, components with larger perimeters will exhibit preferential 

attachment – without the need for a situation-specific mechanism for preference. To the extent 

that components with larger sizes (i.e. areas) also have larger perimeters, a mechanism for 

preferential attachment is inherent to bounded spatial networks on a surface. For more detailed 

background and mechanism, see (Small and Sousa, 2015). 

Data & Methods 

To quantify the scaling properties of different agricultural landscapes, we choose images 

that are dominated by agricultural land cover and then use the following procedure. Beginning 

with raw Landsat data, we first calibrate from DN to radiance to exoatmospheric reflectance. We 

then estimate vegetation fraction (Fv) at each pixel using the standardized global endmembers 

from (Small and Milesi, 2013), generating a continuous field of sub-pixel vegetation abundance. 

Sentinel data are processed by first resampling all 12 bands to 10 m resolution and then 

unmixing into Substrate, Vegetation, and Dark components. Subpixel vegetation fraction from 
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this unmixing is then used for subsequent network analysis. Sentinel-2 spectral unmixing is 

performed using local SVD endmembers since global Sentinel-2 endmembers are not currently 

available. As noted previously (Small and Milesi, 2013), local substrate EMs can differ 

substantially from the global EMs and produce systematic differences in fraction estimates 

between global and local EMs. These differences are most prominent in substrate fraction 

estimates. 

We then segment the Fv images at several different fraction thresholds with the ENVI 

segmentation algorithm, using the Queen’s case of 8 neighbors including diagonals. The ENVI 

segmentation algorithm finds spatially contiguous groups of pixels which all obey the rule used 

for segmentation. In this case, the rule used is Fv above a given threshold. All spatially adjacent 

pixels with Fv above this threshold are labeled with the same segment number. We use the 

Queen’s case as our metric for spatial adjacency in order to provide the most liberal estimate of 

connectivity. We use a minimum segment size of 8100 m2 (9 Landsat pixels or 81 Sentinel-2 

pixels) to account for spatial autocorrelation of the input imagery and avoid large numbers of 

spurious detections. Allowing smaller segments in Sentinel imagery has the effect of resolving 

the characteristic field size of the landscape and is discussed in (Small and Sousa, 2016). The 

segmentation algorithm produces a map of segments corresponding to spatially contiguous 

patches of vegetation (for each threshold). The agricultural network is thus composed of all 

pixels in the image for which the following two conditions are true: (1) Fv of the pixel is above 

the given threshold and (2) the pixel is spatially adjacent (directly or indirectly) to at least 8 other 

pixels which also have Fv above the given threshold. 

Next, we calculate the total area of each segment (for each threshold).  The resulting 

segment size maps (for each threshold) provide both the size distributions and a depiction of the 
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spatial network structure. Segment areas are then sorted into a descending list and plotted against 

ordinal number (i.e. rank) on logarithmic axes. 

A wide range of thresholds was applied in each case and results were compared. Figure 

53 shows the typical progression of a rank-size distribution at full resolution for an example 

region in northern California. Images of the spatial structure of the network are shown for several 

different thresholds, with inset size distributions. Segment sizes are color coded on both the 

image and the rank-size plot. At a threshold of  100% subpixel vegetation abundance, all pixels 

fall below the threshold and there is no network. As the threshold is lowered, more pixels are 

included in the network and form components (contiguous patches). At this phase the 

components correspond to individual fields or groups of closely spaced fields with high Fv. 

Continuing to lower the threshold eventually results in connection of more and more components 

into larger contiguous areas as pixels with lower Fv are added to the network. Eventually enough 

pixels become part of the network that components begin connecting to form much larger 

components.  Eventually the larger components superconnect and form one massive unit. If the 

threshold continues to be lowered to negligible Fv, the entire spatial domain of the image 

becomes part of the network. For more detail on the general methodology used to segment 

continuous fields, see (Small et al., 2011; Small and Sousa, 2015).  
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Figure 53. Illustration of network progression with threshold. This 1000 x 1000 pixel subscene of 

Landsat vegetation fraction was thresholded at successive values (upper left of each image). 

Insets show size distributions for each threshold. At threshold of Fv > 0.8, only a few fields 

emerge as part of the network and the size distribution is nearly flat. As the threshold decreases, 

more fields are included and adjacent fields connect. The size distribution steepens and loses its 

curvature. This continues until the size distribution becomes straight (near Fv > 0.3 in this case). 

After this point, further lowering of the threshold results in a majority of segments 

superconnecting into a small number of very large segments. This progression is typical of the 

other vegetation fraction images in this paper. 

Disruption of agricultural networks was performed by sequential erosion using a 

morphological operator. For each iteration of the analysis, segment area maps were converted 

into binary maps indicating presence or absence of agriculture. These binary maps were then 

convolved with a 3 x 3 pixel Gaussian filter. Any pixel with a full set of 8 agricultural neighbors 

was unchanged, but any pixel with one or more non-agricultural neighbor decreased in value. A 
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threshold of 1 was then applied and segment areas were recaluclated. This produced the effect of 

removing every pixel in the image on the boundary of the network. The output of one erosional 

step was then used as the input for the next step. 

Power law exponents were fit using the statistically robust algorithm described by 

(Clauset et al., 2009) and converted to slopes of the size distributions using the relation given in 

Eq. 1. Power law fits are also characterized by size cutoffs describing how far the power law 

properties plausibly extend down the lower tail of the distribution. Cutoffs were determined 

using the same algorithm by choosing the minimum of the Kolmogorov-Smirnoff (KS) statistic 

for sets of points extending sequentially farther into the lower tail of the distribution. 

Significance was estimated using a Monte Carlo approach to generate 1000 synthetic datasets 

and calculating the KS goodness-of-fit for each. Using this approach, large p values represent 

plausible power law fits. We use the suggestion of (Clauset et al., 2009) in presenting significant 

power law fits as those with p > 0.1, which is a stricter test than accepting as plausible 

distributions with p > 0.05. 

While significant p values indicate that a power law distribution cannot be ruled out, they 

do not decisively show it to be a better fit than other heavy tailed distributions such as log-

normal. Comparison of power law versus log-normal and Weibull distributions was performed 

by computing the Likelihood Ratio for each fit to each distribution. In all 27 cases, the power 

law gave a better fit (i.e. yielded a higher Likelihood value) than either the log-normal or 

Weibull distributions. However, despite outperforming both of the other two heavy tailed 

distributions, we remain non-committal about the true form of the underlying distributions being 

a strict power law. More information would be required to substantiate this claim than is 

available at the present time, and rigorous statistical testing of the power law hypothesis could be 
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a useful avenue for future work. In this paper, we simply use the power law as a convenient 

metric of linearity of the rank-size distributions in logarithmic space. 

The data used in this study were (1) Landsat TM/ETM+/OLI scenes selected from 

diverse agricultural regions across 5 continents, (2) Sentinel-2 scenes selected from 3 agricultural 

regions in Europe, and (3) one IKONOS scene of an intensively cultivated region in Anhui, 

China. All Landsat scenes were acquired from the USGS Earth Resources Observation and 

Science Center (www.glovis.usgs.gov). All Sentinel scenes were acquired from the ESA SciHub 

web portal (www.scihub.copernicus.eu). For Landsat and IKONOS data, we use UTM equal area 

projections at the native resolution of the sensor. For Sentinel-2 data, we resample all 12 bands to 

the 10 m resolution native to the Sentinel-2 VNIR sensor in UTM equal area projection. Landsat 

scenes in this analysis are referred to by their WRS-2 path and row identifiers: i.e. scene 

p029r030 corresponds to Path 29, Row 30 (South Dakota). 

The scenes were chosen to represent a diverse set of landscapes dominated by extensive 

agriculture, spanning a range of field sizes, climate zones, phenologies, and land management 

practices. A wide range of crops are represented, including regions dominated by one or two 

grains (e.g. rice and/or wheat) as well as regions producing a balance of both commodity and 

specialty crops. The 9 Landsat scenes used in this study were selected quasi-randomly from the 

Landsat archive to meet the criteria of: lack of cloud cover, diversity of agricultural practices, 

and range of hydrologic and climatic milieu. They were selected quasi-randomly in time to 

represent a range of stages of the phenologic cycle. We do not claim that these 9 scenes fully 

sample the global distribution, but rather suggest that their results represent a diverse set of 

potential endmembers of the global distribution of agricultural landscapes.  

http://www.glovis.usgs.gov/
http://www.scihub.copernicus.eu/
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Figure 54 shows false color composites of the 9 Landsat scenes used for this analysis. 

Spatial configuration of agriculture across scenes varies widely from nearly wall-to-wall 

coverage (e.g. South Dakota and North China) to regions strongly limited in spatial extent by 

irrigation (e.g. Salton Trough and Indus). A range in extent of sectioning of the landscape by 

roads and rivers is apparent. Field size varies widely both across scenes and within scenes. 

Scenes were chosen at varying stages of the annual cycle, from soon after planting to maximum 

greenness. All scenes contain some non-agricultural vegetation ranging from tropical forest to 

desert shrubs – but all are dominated by agriculture.  The Bavaria scene contains several forest 

patches, but all are managed forests so are effectively part of the agriculture/silviculture mosaic. 

The spatial extent and abundance of non-agricultural vegetation varies from scene to 

scene. While the presence of some non-cultivated vegetation violates the assumption made in the 

analysis that networks of vegetation fraction strictly represent networks of agricultural activity, 

we have attempted to choose regions dominated by extensive cropland. We also suggest that, for 

some applications such as species migration and pollination, vegetation networks may be closer 

to the phenomenon of interest than strict definitions of cropland. Further, while considerable 

uncertainty exists as to the definition of cropland in global agriculture maps (reviewed in (Small 

and Sousa, 2016)), subpixel vegetation abundance represents a physically meaningful quantity 

which can be directly compared across widely varying landscapes. While using Fv as a general 

proxy for agriculture would not be valid in many landscapes, we hold that its properties of 

simplicity and consistency justify its use in the examples chosen in the context of this analysis. 
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Analysis 

Landsat 

Figure 55 shows Rank-Size plots for 3 different thresholds for each of the 9 Landsat 

scenes from Figure 54. Fv distribution for each scene is inset with the three thresholds indicated 

using vertical arrows. Histograms vary widely from scene to scene in central tendency, 

dispersion, and number of modes, reflecting differences between the landscapes described above. 

Thresholds are adjusted accordingly from scene to scene to capture similar positions in the 

distribution. Horizontal arrows on the rank-size plots indicate the cutoff for power law fit that 

maximized the goodness-of-fit criterion. Italicized thresholds and slopes have p values > 0.1, 

indicating a statistically plausible power law fit.  The statistical significance of the fit is not 

critical for the purposes of this analysis because we use the power law exponent as a tool to 

quantify the slope of the rank-size plot, not as an assertion of the generating process itself.  We 

include the goodness-of-fit result for the benefit of readers inclined to favor the power law 

mechanism. 

Figure 56 shows Rank-Size slope estimates for several thresholds for each of the 9 

Landsat scenes. Error bars indicate 95% confidence. As the threshold is successively lowered, 

rank-size slopes generally increase toward more negative values. This corresponds to an increase 

in overall network size and in the size of individual components, consistent with the network 

growth mechanism proposed in (Small and Sousa, 2015). Prominent exceptions to this rule 

correspond to cases of severe non-Gaussianity of the vegetation histogram, e.g. bimodality in the 

Mato Grosso and North China Landsat scenes and a broad, asymmetric shoulder in the South 

Dakota scene. Slopes near -1 indicate that segments decrease in size at roughly the same rate that 

they increase in frequency. Slopes pass through a value of -1 for 8 of the 9 scenes considered 
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here. The two scenes with slopes consistently shallower than -1, Indus and Salton Trough, are 

characterized by exponential-like Fv histograms with a mode of Fv ≈ 0. 

 

Figure 54. Agricultural landscapes used for scaling analysis. Scenes were chosen to represent a 

diverse set of landscapes characterized by agricultural extensification and intensification. A 

range of field sizes, competing land uses, climate zones, and land management practices is 

depicted. 
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Figure 55. Rank-Size distributions for vegetation fraction from the 9 Landsat scenes shown in 

Figure 54. Inset shows vegetation fraction histogram for each Landsat scene, with arrows 

indicating the segmentation thresholds. Rank-Size distributions for each scene illustrate the 

sensitivity of the network structure to threshold. Distributions of vegetation fraction are different 

for each landscape but most scenes have linear rank size distributions with slopes near -1 and 

giant components forming as thresholds approach the median vegetation fraction. 
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Figure 56. Slope of Rank-Size distribution versus threshold for the nine Landsat scenes used in 

Figure 54 and Figure 55. Local landscape properties vary from scene to scene, resulting in a 

wide range of vegetation fraction distributions. These distributions control the progression of 

slope of the size distributions. 
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Sentinel-2 

Figures 39-41 show network structure intercomparisons between Landsat and Sentinel-2 

for three 30 km x 30 km agricultural landscapes in Europe. In Figure 57, we examine an 

agricultural basin in Abbruzzo, Italy imaged on successive days in December, 2015. The 

segment size image of the agricultural network (middle row) reveals a range of spatial patterns of 

contiguous photosynthetic agriculture, from isolated small fields to clusters of closely spaced 

fields with separators which are not resolved by either 30 m Landsat or 10 m Sentinel-2 sensors. 

However, close visual inspection reveals several cases where fields grouped together in Landsat 

imagery are broken apart in Sentinel imagery – and vice versa. This is possible because 

increasing spatial resolution can have (at least) two processes working in opposite directions: 

ability to resolve narrow connectors which do not emerge above threshold in coarse resolution 

imagery (enhancing connectivity) and ability to resolve narrow separators which are presented in 

coarse resolution imagery as a mixed pixel above threshold (reducing connectivity). Which of 

these processes dominates varies based on the local geometry of the segment at play. 

In Figure 58, we examine a subset of the agriculture/silviculture mosaic in Bavaria used 

in the global analysis of Figures 36-38. In this case, we examine the agricultural network over a 

range of nearly 25 years and 17 days offset in the phenological cycle. As a result, the overall 

greenness of the landscape is notably different, although the spatial arrangement of fields is 

generally stable. The segment size images reveal the breakup and connection of segments as a 

result of interannual, phenological, and resolution-based differences in the images. In spite of 

these differences, the rank-size distributions of segment areas remain remarkably consistent. 

 Figure 59 shows a region in Centre-Val de Loire, France 1 year and 14 days apart. In 

both cases, the agricultural network is dominated by large segments, identifiable both by visual 



 238 

  

inspection of the segment area images and by rank-size slopes steeper than -1. Loci of closely 

spaced fields which dominate the landscape appear to be generally stable in their position, but 

the connectivity between them varies. While the spatial positions of the largest components shift 

due to this variation in connectivity, the rank-size plots again remain remarkably stable. 
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Figure 57. Comparison of Landsat- and Sentinel-derived networks from a 30 km x 30 km 

agricultural region in Abbruzzo, Italy. 1:1 lines shown on the rank-size curves in black. Inset 

histograms show vegetation fraction (lower left) and total area by segment size (upper right) 

distributions. 
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Figure 58. Same as Figure 57, but for a 30 km x 30 km agricultural region in Bavaria, Germany. 



 241 

  

 

 Figure 59. Same as Figure 57 and Figure 58, but for a 30 km x 30 km agricultural region in 

Centre-Val de Loire, France. 
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IKONOS 

Figure 60 shows the procedure of successive thresholding when repeated for a ~39 km2 

IKONOS image in Anhui, China. The 4-band image was unmixed into SVD fractions using local 

endmembers. Successive thresholding was then applied to the Fv image. Segment area maps for 

four representative thresholds demonstrating the progression of the network are shown in the top 

4 panels. The progression of the IKONOS size distributions with changing threshold (bottom 

right panel) is similar to that of the Landsat scene shown in Figure 53. At high thresholds 

IKONOS size distributions have high curvature and shallow slopes. The slope of the size 

distribution steepens as the threshold is reduced and the lower-tail power law cutoff gradually 

moves up the distribution. Curvature is even more pronounced than for Landsat at this phase. 

Once a threshold near 0.3 is reached, however, the size distribution loses most of its curvature 

and becomes linear. The slope of the size distribution crosses -1 at this point and the lower-tail 

cutoff rapidly moves deep into the lower tail of the distribution. As the threshold is decreased 

below this level, the network superconnects into a few giant components. The total number of 

segments (i.e. maximum rank) begins to decrease and the bottom of size distribution moves to 

the left. These properties are all similar to those observed for the Landsat and Sentinel scenes in 

previous figures.  
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Figure 60. Successive thresholding of vegetation fraction for a 39 km2 IKONOS image of Anhui, 

China. Rank-Size plots show a similar succession to those from Landsat in previous figures. 
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Practical Example – Disruption by Node Removal 

Figure 61 shows how two agricultural networks can respond differently to disruption by 

sequentially reducing the area of each component. In each iteration of this process, all segments 

in the image are simultaneously reduced in size by removing one pixel width from around the 

boundary. We refer to this type of disruption as “erosion”. This process has the potential to 

remove segments from the network by shrinking them below the 9 pixel threshold. It also has the 

potential to break a small number of large segments into a large number of smaller segments (i.e. 

making little pieces out of big pieces) by separating dense intra-segment clusters which are only 

connected by narrow “bridges”. 

We disrupt two agricultural networks in this way: one in the Salton Trough (p039r037) 

and one in South Dakota (p029r030). The upper tails of the rank-size distributions are shown in 

detail for successive numbers of erosional steps. The Salton Trough network (top) maintains the 

structure of its rank-size distribution through 7 erosional iterations, while the largest segments in 

the South Dakota network (bottom) rapidly dissociate into components with area approximately 

2 orders of magnitude smaller, resulting in a drastic shallowing of the slope of the size 

distribution. This is a consequence of the differences in spatial structure and fractal dimension of 

the two networks. 
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Figure 61. Disruption of agricultural networks by erosion. Images show a 1000 x 1000 pixel 

subset of segment area maps derived from full Landsat scenes. In each step, all boundary pixels 

are removed from the network, akin to removing rings of an onion. Regular rectilinear patterns 

correspond to real features of the landscape (i.e. roads) which often serve to guide the erosion 

process. As pixels are removed, the upper tail of the size distribution may maintain a slope near -

1 (top) or flatten considerably (bottom), depending on the spatial structure of the network. 

Networks with size distributions which maintain their slope in the face of erosional perturbations 

may be more robust to disruption. Whether this form of network stability is desirable or 

undesirable depends on the application. 

Discussion 

Considerable range exists in the slope and curvature of the size distributions shown in 

Figure 55 – but the similarities are much more surprising than the differences. Indeed, we find it 

remarkable that there is any similarity at all given the diversity of landscapes (Figure 54) and of 



 246 

  

vegetation abundance distributions (histogram insets of Figure 55) from which they are derived. 

While it is clear that none of the 9 size distributions here exactly resembles the global size 

distribution in Figure 52, it is similarly clear that none of the 9 landscapes used in this study 

comes close to fully sampling the diversity or scope of agriculture at global scales. Furthermore, 

because the differences between size distributions emerge from the differences in landscapes, 

these differences can be diagnostic in characterizing the variability in spatial distributions of 

agriculture across widely variable landscapes. From a network perspective, a diversity of size 

distributions implies a diversity of network structures. 

Several potential explanations exist for the differences in rank-size distributions shown in 

Figure 55. Some Landsat scenes, such as the Salton Trough and Indus scenes, feature heavily 

irrigated agricultural landscapes in which cropland is tightly clustered around the hydrologic 

distribution network. This clustering impacts the rank size distribution and corresponding power 

law fit. All scenes feature some variable amount of human settlement, and some scenes such as 

North China, Delhi, and South Dakota feature spatially extensive conurbations which visibly 

disrupt the agricultural landscape. The extent to which these populated areas influence the spatial 

pattern of the agricultural land in the scene impacts the rank-size distribution of agricultural land. 

Furthermore, the scenes range widely in levels of agricultural development, from 

smallholder farms (e.g. G-B Delta and Delhi), to industrial scale production (e.g. Salton Trough 

and South Dakota). While our analysis captures clusters of agriculture rather than individual 

fields, the distribution of field sizes contributes to the size of these clusters and thus the rank-size 

distribution. Major non-agricultural curvilinear and rectilinear features (e.g. rivers and roads) 

also cross-cut all of the scenes, providing a plethora of subscene background geometries which 

break apart some contiguous segments and encourage others to grow together. Finally, a wide 
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range of climate zones from tropical (G-B Delta and Mato Grosso) to hyperarid (Salton Trough 

and Indus) impact the background landscape mosaic within which the contiguous agricultural 

land for each scene is embedded. A detailed investigation of the way in which these (and other) 

factors generate the differences in rank-size distributions could provide a rich subject for future 

work. 

Some of the size distributions in Figure 55 cannot plausibly be described as power laws. 

Some exhibit power law behavior that truncates in the middle of the distribution. Others show 

statistically plausible power law behavior extending deep into the lower tail of the distribution. 

We suggest that the important characteristic of the size distributions is not presence or absence of 

statistically defensible power law behavior, but rather that every distribution shown here is 

similarly heavy tailed. Every size distribution shows many more small patches than large 

patches, and nearly all distributions show that when ordered by area patches become smaller and 

more frequent at similar rates – implying the total area sum of patches at any size is nearly equal 

to the total sum at any other size. This property corresponds to a slope near -1 on the plots in 

Figure 55. Further, Figure 56 shows that many of the distributions vary with threshold in a 

predictable way: starting at high threshold (right side of the plots), the size distribution increases 

in slope as the threshold drops and the components grow (moving right to left on the plot) until 

reaching linearity near -1. At this point, a giant component emerges and dominates the network. 

As the threshold is dropped even further, more and more of the remaining patches 

become connected into the giant component, reducing the total number of segments until every 

pixel in the entire domain is superconnected. The variations in progression of network structure 

with threshold are related to the fraction distributions, but the gross structure described above 

occurs in a consistent way across a wide range of conditions. A similar progression is also shown 
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for the IKONOS image (Figure 60) over a much smaller spatial domain. Similar progressions 

have even been observed in some random spatial networks and a general mechanism for the 

process been proposed (Small and Sousa, 2015). Despite this observed commonality, some of the 

distributions shown here vary with changing threshold in a more complex way than described 

above. This discrepancy often corresponds to severe non-Gaussianity in the Fv histogram. 

Detailed analysis of this complexity will be the subject of further study. 

Landsat – Sentinel-2 intercomparisons provide an opportunity to make note of several 

important limitations of spatial network analysis for agricultural landscapes. A primary 

challenge, long recognized, is in the definition of “agriculture” as observed by remote sensing. In 

this study we use vegetation fraction because it is a physically meaningful quantity which has 

been shown to be consistent across sensors and scalable across spatial resolution. However, it 

cannot distinguish between anthropogenically-driven vegetation (i.e. agriculture, including 

silviculture) and natural vegetation. When scenes are pre-selected to be dominated by 

agriculture, as they have been in this study, this problem is minimized – but not completely 

eliminated. Inspection of the hillslopes around the agriculturally-dominated caldera in the 

Abbruzzo scene provides one example of this scenario. 

Phenology provides another challenge which can be highly complex in agricultural 

landscapes. Network analysis of any single image provides a single snapshot of that landscape in 

time. As is apparent from Figure 55 and Figure 56, temporal variability on the order of weeks 

can substantially alter the spatial connectivity of an agricultural landscape. Complete network-

based analyses intended for practical applications must account for the phenology of the 

landscapes which they observe, as spatially-dependent processes are often temporally-dependent 

as well. As quantified by single-image vegetation fraction, landscapes possess a temporal 
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progression of connectivity structures – of which the power law phase may be short-lived. We 

find it remarkable that so many agricultural networks, even when undersampled so extensively in 

both time and space, still display this unique structure which is so similar to that of the global 

network. 

Analysis of two seemingly similar agricultural landscapes by network erosion shown in 

Figure 61 demonstrates one potential application of the concepts presented in this paper. In one 

case (Salton Trough), power law behavior with slope near -1 is persistent even after removal of 

many pixels and considerable reduction of the total size of the network. In another case (South 

Dakota), the power law behavior of the network is much less robust. Removal of only a few 

pixels drastically reduces the sizes of the largest components (by a factor of ~100), rapidly 

breaking apart the largest segments of the network into much smaller disconnected components. 

This is clearly a result of the sectioning of the landscape by the regular grid of the road network.  

One could imagine a landscape which is more sensitive to small perturbations as being more 

easily disruptable – either a dangerous characteristic (as in the case of pollinator pathways) or a 

desirable one (as in the case of quarantining disease outbreaks). Understanding the robustness of 

the structure of an agricultural network to disruption could provide application-specific insight 

into practical methods for disrupting (or preventing disruption of) connectivity across an 

agricultural landscape. 

Another possible application, not shown in this analysis, is to use multitemporal 

observations to constrain the growth and attenuation of agricultural networks in a landscape 

throughout the complete phenological cycle. As the agricultural mosaic evolves through time, 

different crops are planted, green up, senesce, and are harvested at different times of year. Taken 

together, the combination of the spatial distribution of these crops and their corresponding 
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phenology time series govern the complete spatiotemporal agricultural network of a landscape. 

The diagnostic property of an agricultural landscape may be not just the network as observed at 

any one time but rather the robustness of the network properties throughout the course of the 

year. For instance, effective pollination may require an agricultural network to remain in a 

particularly interconnected state for a certain length of time. Crops may be particularly 

susceptible to disease outbreaks at one particular time of year. Native species may be more 

sensitive to disruptions of habitat in migration season than at other times of year. Furthermore, 

network adaptation to catastrophic environmental stresses such as drought or widespread disease 

outbreaks may be easily characterized. Finally, multitemporal network studies – like all of the 

analyses performed in this paper – have the added benefit of being easily performed nearly 

anywhere on Earth using simple methodologies and freely available remotely sensed 

observations.  
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Conclusion 

This thesis begins with a consideration of the microscale physics of the evaporation of 

water from porous media. Chapter 1 presents laboratory experiments documenting the joint 

optical and thermal evolution of drying sands. As expected, all of the samples demonstrated the 

same overall stages of drying, regardless of composition or grain size. However, systematic 

variations were also observed among the drying trajectories that were consistent with systematic 

variations in the physical properties of the samples. The effect of reflectance and emissivity due 

to variations in composition was observed to be 2-5x greater than the effect of grain size. Run-to-

run variability was greater for the thermal measurements than the optical measurements, but 

compositional and grain size effects exceeded run-to-run variability in nearly every case. The 

results of this chapter suggest that for the drying of sands, reflectance-based differences in 

heating may dominate grain-sized based differences in hydrologic properties (e.g. capillarity, 

conductivity), at least in the 125-1000 m grain size range. A set of hypotheses is developed 

addressing the potential to leverage differences in optical and thermal skin depths to infer the 

slope of the vertical water gradient at a particular stage in the drying process. If these hypotheses 

are validated by future experimental studies, a new method of characterizing near-surface 

hydrological properties of porous media using only remotely sensed measurements could be 

developed. 

Chapter 2 then addresses the question of information loss between narrowband 

hyperspectral reflectance measurements (like those made in Chapter 1), and broadband 

multispectral measurements (like those used throughout Chapters 3-6). Satellite-based 

multispectral sensors like Landsat comprise the current and historical multispectral archive, but 

several future hyperspectral satellite missions are currently under development. Potential 
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differences between multispectral and hyperspectral observations of substrates (soil, rock, and 

non-photosynthetic vegetation) are of particular relevance to this thesis. A comparative analysis 

of coincident hyperspectral AVIRIS and multispectral Landsat image pairs is presented. The 

information content of the two datasets is compared using the dimensionality and topology of the 

spectral feature spaces. The results indicate that a surprising fraction of the information content 

of the hyperspectral dataset is carried over into the multispectral dataset, at least when quantified 

using variance as the metric for information content. This is consistent with the hypothesis that 

the dominant absorption features common to substrate materials are sufficiently broad to be 

effectively captured by multispectral sensors. The results of Chapter 2 suggest that the much of 

the signal present in the narrowband laboratory reflectance measurements made in Chapter 1 can 

be reasonably expected to extend into the broadband domain for applications such as those 

presented in Chapters 3 through 6 – an encouraging finding for the remote sensing of ET. 

Spectral mixture analysis is used as the tool of choice for inferring land surface properties 

from optical satellite imagery. However, in order for this approach to be used to mix data 

collected by the current Landsat 8 sensor and the older sensors onboard Landsat 4-7, the global 

spectral mixture model must first be cross-calibrated. Chapter 3 presents this cross-calibration, 

allowing data to be used interchangeably throughout the entire Landsat 4-8 archive. In addition, a 

potential theoretical explanation is advanced to explain the observed superior scaling properties 

of fractional vegetation abundance derived from this method relative to spectral indices. The 

results of Chapter 3 provide practical tools which can be used as the basis for future ET 

applications, such as those presented in Chapters 4 through 6.  

Chapter 4 presents a framework for applying SMA to ET studies based on satellite 

imaging. Each of the Substrate, Vegetation and Dark (SVD) endmembers is examined relative to 



 253 

  

the parameters of Moisture Availability and ET Fraction, as estimated by the Triangle Method. 

As expected, SMA-estimated vegetation fraction is observed to possess superior scaling 

properties to spectral vegetation indices. Perhaps the most interesting of the results is the 

apparently robust linear relation observed between the S fraction and EF, with clear potential 

connection to the laboratory results of Chapter 1. 

Chapter 5 examines the relative utility of optical and thermal Landsat image time series 

for the mapping and monitoring of rice agriculture. SMA-derived vegetation fraction was used as 

the optical metric, based on the endmembers developed in Chapter 3, and surface temperature 

was used as the thermal metric. The information content of each dataset was visually explored 

using the temporal feature space, and parallel temporal mixture models were used to map the 

extent of rice agriculture. Thermal-based models were observed to outperform optical-based 

models in mapping rice presence/absence, but optical-based models outperformed thermal-based 

models in mapping the timing of rice phenology. 

Chapter 6 is broadest in scope, focusing on the spatial structure of networks of 

agricultural land cover. A consistent scaling relationship is observed for nine widely varying 

agricultural landscapes at 30 m resolution. This relationship was observed to be remarkably 

similar to that observed at kilometer resolution in a previous global study of forests, agriculture, 

and human settlements. Potential implications of the spatial structure of seasonally evolving 

networks of agricultural land cover were discussed. 

The results of this thesis are particularly relevant given that they come at a time of rapidly 

increasing data availability. Open access to the entire Landsat archive, along with rigorous 

intercalibration, enables 35+ year retrospective studies. The ongoing integration of the combined 

Landsat + Sentinel constellation is currently reducing the nominal revisit time of decameter 
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optical imaging from 16 to 5 days. An increasing wealth of airborne hyperspectral data is 

available online, and several hyperspectral satellite missions are expected to be operationalized 

in the near future.  

This increase in observational capacity suggests that the implications of this thesis are 

likely to increase in scope in the coming years. At laboratory scales, a promising path forward is 

identified which may result in a new metric to quantify near-surface hydrological properties of 

porous media from optical and thermal remote sensing. At landscape scales, the steps made 

toward more accurate ET estimation may become increasingly relevant as the new intercalibrated 

Harmonized Landsat Sentinel (HLS) product is developed, allowing for seamless intermixing of 

these two data streams. For agricultural and environmental applications, temporal mixture 

models offer increasing promise as revisit time is reduced and temporal aliasing becomes less 

severe. Finally, the agricultural network analysis offers perhaps the most novel path forward, 

with potentially far-reaching implications for scaling constraints on ET estimation based on a 

new approach to the geophysical analysis of land cover.   
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