38,309 research outputs found

    Multi-task Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs

    Full text link
    Many popular knowledge graphs such as Freebase, YAGO or DBPedia maintain a list of non-discrete attributes for each entity. Intuitively, these attributes such as height, price or population count are able to richly characterize entities in knowledge graphs. This additional source of information may help to alleviate the inherent sparsity and incompleteness problem that are prevalent in knowledge graphs. Unfortunately, many state-of-the-art relational learning models ignore this information due to the challenging nature of dealing with non-discrete data types in the inherently binary-natured knowledge graphs. In this paper, we propose a novel multi-task neural network approach for both encoding and prediction of non-discrete attribute information in a relational setting. Specifically, we train a neural network for triplet prediction along with a separate network for attribute value regression. Via multi-task learning, we are able to learn representations of entities, relations and attributes that encode information about both tasks. Moreover, such attributes are not only central to many predictive tasks as an information source but also as a prediction target. Therefore, models that are able to encode, incorporate and predict such information in a relational learning context are highly attractive as well. We show that our approach outperforms many state-of-the-art methods for the tasks of relational triplet classification and attribute value prediction.Comment: Accepted at CIKM 201

    Compositional Vector Space Models for Knowledge Base Completion

    Full text link
    Knowledge base (KB) completion adds new facts to a KB by making inferences from existing facts, for example by inferring with high likelihood nationality(X,Y) from bornIn(X,Y). Most previous methods infer simple one-hop relational synonyms like this, or use as evidence a multi-hop relational path treated as an atomic feature, like bornIn(X,Z) -> containedIn(Z,Y). This paper presents an approach that reasons about conjunctions of multi-hop relations non-atomically, composing the implications of a path using a recursive neural network (RNN) that takes as inputs vector embeddings of the binary relation in the path. Not only does this allow us to generalize to paths unseen at training time, but also, with a single high-capacity RNN, to predict new relation types not seen when the compositional model was trained (zero-shot learning). We assemble a new dataset of over 52M relational triples, and show that our method improves over a traditional classifier by 11%, and a method leveraging pre-trained embeddings by 7%.Comment: The 53rd Annual Meeting of the Association for Computational Linguistics and The 7th International Joint Conference of the Asian Federation of Natural Language Processing, 201

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm
    • …
    corecore