20 research outputs found

    On Graph Refutation for Relational Inclusions

    Full text link
    We introduce a graphical refutation calculus for relational inclusions: it reduces establishing a relational inclusion to establishing that a graph constructed from it has empty extension. This sound and complete calculus is conceptually simpler and easier to use than the usual ones.Comment: In Proceedings LSFA 2011, arXiv:1203.542

    An algebraic generalization of Kripke structures

    Full text link
    The Kripke semantics of classical propositional normal modal logic is made algebraic via an embedding of Kripke structures into the larger class of pointed stably supported quantales. This algebraic semantics subsumes the traditional algebraic semantics based on lattices with unary operators, and it suggests natural interpretations of modal logic, of possible interest in the applications, in structures that arise in geometry and analysis, such as foliated manifolds and operator algebras, via topological groupoids and inverse semigroups. We study completeness properties of the quantale based semantics for the systems K, T, K4, S4, and S5, in particular obtaining an axiomatization for S5 which does not use negation or the modal necessity operator. As additional examples we describe intuitionistic propositional modal logic, the logic of programs PDL, and the ramified temporal logic CTL.Comment: 39 page

    Monoids with tests and the algebra of possibly non-halting programs

    Get PDF
    We study the algebraic theory of computable functions, which can be viewed as arising from possibly non-halting computer programs or algorithms, acting on some state space, equipped with operations of composition, if-then-else and while-do defined in terms of a Boolean algebra of conditions. It has previously been shown that there is no finite axiomatisation of algebras of partial functions under these operations alone, and this holds even if one restricts attention to transformations (representing halting programs) rather than partial functions, and omits while-do from the signature. In the halting case, there is a natural “fix”, which is to allow composition of halting programs with conditions, and then the resulting algebras admit a finite axiomatisation. In the current setting such compositions are not possible, but by extending the notion of if-then-else, we are able to give finite axiomatisations of the resulting algebras of (partial) functions, with while-do in the signature if the state space is assumed finite. The axiomatisations are extended to consider the partial predicate of equality. All algebras considered turn out to be enrichments of the notion of a (one-sided) restriction semigrou

    Logic Programming in Tabular Allegories

    Get PDF
    We develop a compilation scheme and categorical abstract machine for execution of logic programs based on allegories, the categorical version of the calculus of relations. Operational and denotational semantics are developed using the same formalism, and query execution is performed using algebraic reasoning. Our work serves two purposes: achieving a formal model of a logic programming compiler and efficient runtime; building the base for incorporating features typical of functional programming in a declarative way, while maintaining 100% compatibility with existing Prolog programs

    Nondeterministic Relational Semantics of a while Program

    Get PDF
    A relational semantics is a mapping of programs to relations. We consider that the input-output semantics of a program is given by a relation on its set of states; in a nondeterministic context, this relation is calculated by considering the worst behavior of the program (demonic relational semantics). In this paper, we concentrate on while loops. Calculating the relational abstraction (semantics) of a loop is difficult, but showing the correctness of any candidate abstraction is much easier. For functional programs, Mills has described a checking method known as the while statement verification rule. A programming theorem for iterative constructs is proposed, proved, demonstrated and applied for an example. This theorem can be considered as a generalization of the while statement verification to nondeterministic loops.&nbsp

    Terminological representation, natural language & relation algebra

    No full text
    In this paper I establish a link between {\sc kl-one}-based knowledge representation concerned with {\em terminological representation} and the work of P. Suppes (1976,1979,1981) and M. B\"ottner (1985,1989) in computational linguistics. I show how this link can be utilised for the problem of finding adequate terminological representations for given information formulated in ordinary English

    A graphical approach to relational reasoning

    Get PDF
    Relational reasoning is concerned with relations over an unspecified domain of discourse. Two limitations to which it is customarily subject are: only dyadic relations are taken into account; all formulas are equations, having the same expressive power as first-order sentences in three variables. The relational formalism inherits from the Peirce-SchrĂśder tradition, through contributions of Tarski and many others. Algebraic manipulation of relational expressions (equations in particular) is much less natural than developing inferences in first-order logic; it may in fact appear to be overly machine-oriented for direct hand-based exploitation. The situation radically changes when one resorts to a convenient representation of relations based on labeled graphs. The paper provides details of this representation, which abstracts w.r.t. inessential features of expressions. Formal techniques illustrating three uses of the graph representation of relations are discussed: one technique deals with translating first-order specifications into the calculus of relations; another one, with inferring equalities within this calculus with the aid of convenient diagram-rewriting rules; a third one with checking, in the specialized framework of set theory, the definability of particular set operations. Examples of use of these techniques are produced; moreover, a promising approach to mechanization of graphical relational reasoning is outlined

    Denotation by Transformation: Towards Obtaining a Denotational Semantics by Transformation to Point-free Style

    Get PDF
    It has often been observed that a point-free style of programming provides a more abstract view on programs. We aim to use the gain in abstraction to obtain a denotational semantics for functional logic languages in a straightforward way. Here we propose a set of basic operations based on which arbitrary functional logic programs can be transformed to point-free programs. The resulting programs are strict but, nevertheless, the semantics of the original program is preserved. There is a one-to-one mapping from the primitives introduced by the transformation to operations in relation algebra. This mapping can be extended to obtain a relation algebraic model for the whole program. This yields a denotational semantics which is on one hand closely related to point-free functional logic programs and on the other hand connects to the well developed field of algebraic logic including automatic proving
    corecore