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Abtract 

 A relational semantics is a mapping of programs to relations. We consider that the input-output semantics of a program is 
given by a relation on its set of states; in a nondeterministic context, this relation is calculated by considering the worst 
behavior of the program (demonic relational semantics). In this paper, we concentrate on while loops. Calculating the 
relational abstraction (semantics) of a loop is difficult, but showing the correctness of any candidate abstraction is much 
easier. For functional programs, Mills has described a checking method known as the while statement verification rule. A 
programming theorem for iterative constructs is proposed, proved, demonstrated and applied for an example. This 
theorem can be considered as a generalization of the while statement verification to nondeterministic loops.  
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1  Introduction 

We use relations to define the input-output semantics of nondeterministic programs. The relational operators   and ; 
have been used for many years to define the so-called  angelic semantics, which assumes that a program goes right when 

there is a possibility to go right. On the other hand, the demonic operators   and   (to be introduced below) do the 
opposite: if there is a possibility to go wrong, a program whose semantics is given by these operators goes wrong. 

The semantics of a while loop is given as a fixed point of a monotonic function involving the demonic operators. While 
there is no systematic way to calculate the relational abstraction of a while loop directly from the definition, it is possible to 
check the correctness of any candidate abstraction. For functional programs, Mills [23, 24] has described a checking 
method known as the  while statement verification rule. We generalize this rule to nondeterministic loops. 

The rest of the paper is organized as follows. In Section 2, we present our mathematical tool, namely relation algebra [10, 
29, 31]. First, we recall the basic laws (Subsection 2.1), then we present notions related to infinite looping (Subsection 2.3) 
followed by a description of our refinement ordering (Subsection 2.5). In Section 3, we present a generalization of this 
theorem with an example; we note here that half of the generalized theorem is demonstrated by Sekerinski [30], who uses 
an approach based on predicative programming [17]. We conclude in Section 5 with prospects for future research. 

2  Relation algebras 

2.1  Definition and basic laws  

Our mathematical tool is abstract relation algebra [10, 29, 31], which we now introduce. 

(1) Definition.  A  (homogeneous) relation algebra is a structure );,,,,,( R ),,  over a non-empty set R  of 

elements, called  relations. The following conditions are satisfied.   

    • ),,,( R )  is a complete atomic Boolean algebra, with  zero element Ø ,  universal element L  and 

ordering  .  

    •  Composition, denoted by );( , is associative and has an identity element, denoted by I . 

    • The Schröder rule is satisfied: PQRQRPRPQ 


;; . 

    • Ø=;;  RLLRL  (Tarski rule).  

The relation R


is called the  converse of R . The standard model of the above axioms is the set )( SS   of all subsets 

of SS  . In this model, 
 ,, are the usual  union, intersection and  complement, respectively; the relation Ø  is the 

empty relation, the universal relation is SSL =  and the identity relation is }=|),{(= ssssI  . Converse and 

composition are defined by  

}.),(),(:|),{(=;}),(|),{(= RssQsssssRQandRssssR 


 

The precedence of the relational operators from highest to lowest is the following:   and


 bind equally, followed by ; , 

then by  , and finally by  . From now on, the composition operator symbol ;  will be omitted (that is, we write QR  for 

RQ; ). From Definition 1, the usual rules of the calculus of relations can be derived (see, e.g., [8, 10, 29]). We assume 

these rules to be known and simply recall a few of them.  

(2) Theorem.   Let RQP ,,  be relations. Then, 
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 We now give a definition of various properties of relations.     

 (3) Definition.  A relation R  is  functional iff IRR 


. A relation v  is a  vector [29] iff = Lv v .   

In the standard model, a relation R  on a set S  is functional iff ssRssRss  =),(),( . A vector 

is a relation of the form ST  , where ST  . A vector can also be viewed as a point set or a predicate. For example, if 

{0,1,2}=S  and {0,1}=T , then (1,2)}(1,1),(1,0),(0,2),(0,1),{(0,0),=: STt   is a vector that 

corresponds to the point set T . For any relation R , the relation RL  is a vector that characterizes the domain of R . For 

instance, with (2,1)}(0,2),{(0,1),:R  (on set {0,1,2}=S ), we obtain ,(0,1){(0,0),=RL (2,0) (0,2),,  

(2,2)}(2,1), ; this vector indeed characterizes the domain of R , which is {0,2}. 

2.2  Relative implication 

In our work we need to define an operator called  relative implication. In previous work, we used the monotype and 
residual operators see [35, 33, 34] 

(4) Definition.  A binary operator  , called  relative implication [36], is defined as follows :  

 .:= RQRQ  

This operator has a dual operator (2.2),  , given by :  

 .:= RQRQ  

  The most interesting case is when the right argument is a vector RL , in other words RLQ . If Rx.  denotes the set 

of the images of x  by R , then x  dom( RLQ )  Qx.  dom( R ). 

The operators   and   bind equally but less than (; )  and more than   and  . In the next lemma we give 

some interesting properties verified by the operator  . The properties of   can be obtained by dualization of those of the 

operator   [36]. 

(5) Lemma.   Let P , Q  and R  be relations and v  a vector.   

    •  RQRQ = , 

    •  RQRQ = ,  

    •  )(= RQPRPQP   , 

    •  RQPRQRP  )(=  , 

    •  )(= RQPRPQ  ,  

    •  RPRQPRPPQ   )(= ,  
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    •  PLPQQP  ,  

    •  RPRQQP   ,  

    •  QRPRQP      

 We note that the properties (2.2) and (2.2) are similar to those of the logical operators  ,   and  . For example, the 

property (2.2) corresponds to ))(()( RQPRQP  .   

Proof. The properties (2.2) and (2.2) are directly deduced from a Boolean law on the complementation. The property (2.2) 

is deduced from the laws 2.1(2.1,2.1,2.1, 2.1). In the following we give the proofs of the other properties.      

    

 

 

 

   (i) Can be proved in a similar way.  

Let f  be a monotonic function with respect to  . The least fixed point of f  is }=)(|{ XXfX . Similarly, 

}=)(|{ XXfX  is the greatest fixed point of f . Because we assume our relation algebra to be complete 

(Definition 1), least and greatest fixed points of monotonic functions exist. We will denote the least fixed point of the 

function )(:=)( xEXf , where E  is some relational expression, by f  or by ))(:( XEX , when it is desired not 

to introduce a function name. Similarly, fv  and ( : ( ))X E Xv  denote the greatest fixed point of f . The following 

properties of fixed points are used below :  

(6) ( ) = { | ( ) = } = { | ( ) },

( ) = { | ( ) = } = { | ( )},

( ) ,

( ) ( ) ,

( ) ( ) .

a f X f X X X f X X

b f X f X X X X f X

c f f

d f Y Y f Y

e Y f Y Y f













  

  

 
 v

v

v
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(7) Theorem.  ( Knaster-Tarski) Every monotonic endofunction on a complete lattice has a least fixed point, which is 

equal to its least prefixpoint.   

          The comparison of fixed points is sometimes very useful to compare the program semantics. The next proposition 
will present some results in this meaning. 

(8) Proposition.   Let ),( X  be an ordered set and f  and g  endofunctions. Let also the relation =  on the set of 

endofunctions on X , defined as follows :  

 )).()(::( xgxfXxxgf =  

We have the following properties (  is a monotonic binary operation on X ) :  

 
)).((=)(=)(

),()()(

hgfghfglawfusiond

gfgfmonotonica







=
 

Another operation that occurs in the definition of the while program semantics is the  

(9) = ( ).R X I RX   
 

the Knaster-Tarski Theorem (2.2) this operation is well defined and it verifies, 

* * *(10) = = .R I RR I R R         

The unitary operators  *


and 
—

 bin equally.  We can also, define, a similar operation to   Called transitive closure, 

denoted     , and defined for every relation R by : 

* * *

*

(11) ( ) = = = ,

( ) = .

a R R R RR R RR

b R I R








                                                                                                      (4) 

The opertions * and + bind equally. The operation *  satisfies also 

*

0(12) = ,i

iR R

 

Where IR 0
 and 

ii RRR 1
 

       We give some properties of the operation  . The properties of the operation + are easily deduced from the equations 

11 and of the properties of  . 

(13) = ( ).R Q X Q RX   

(14)  Proposition. If *,*)( PQPPQPQPQPif   

Proof. 

   

It is easy to verify that 
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We need also the notion of dual function. 

(15) Definition. Let f be an endofunction on a Boolean lattice. The dual function of f is  
# ( ).f f x  

The next Lemma investigates the relationship between the fixed points of a function on a Boolean lattice and those of its 
dual function. 

(16) Lemma. Let f be an endofunction on a Boolean lattice and 
#f  its dual function. If x is a fixed point of f , then 

              

2.3 The initial part of a relation 

In the following, we describe notions that are useful for the description of the set of initial states of a program for which 
termination is guaranteed. These notions are the  initial part of a relation and  progressive finiteness. The  initial part of a 

relation R , denoted )(RL , is the vector characterizing the set of points 0s  such that there is no infinite chain 

,,, 210 sss , with Rss ii  ),( 1 , for all 0i . The algebraic definition is 

(17) Definition. [29] The initial part of a relation R , denoted )(RL , is given by :  

 },=|{:=)( xxRxRL   

where x  takes its value in the set of the vectors (by Theorem 2.1(2.1), )(RL  is a vector).   

(see [28, 29]); in other words, )(RL  is the least fixed point of the  -monotonic function ( ) :g x R x  , where x  is a 

vector (the least fixed point of g  exists since the set of vectors is also a complete lattice [29]). A relation R  is said to be  

progressively finite iff LRL =)( , in other words if there is no infinite path by R . Progressive finiteness of a relation R  

is the same as well-foundedness of R


. 

(Mnemonics : L  for  loop because, in the program semantics, )(RL  represents the set of states from which no infinite 

loop is possible.) 

We find in [36], an equivalent definition of )(RL  on the set of relations instead of vectors. This definition is given in the 

next proposition 

(18) Proposition.  Let R  be a relation.    

 

)(=

}=|{=

}|{=

}=|{=)()(

XRX

XXRX

XXRX

XXRXRLa














 

and   
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).(=

}|{=

}=|{=)()(

RXX

RXXX

RXXXRLb







  

These results can be easily deduced from the Equations 1, 2.3(a), of the definition of   and certain Boolean laws. 

Let us give the formal definition of a progressively finite relation.      

(19) Definition. A relation R  is said  progressively finite [29] iff LRL =)( . 

By using the results of the Proposition 2.3, we have : 

 ).Ø=:(Ø=)( XRXXXRLfiniteelyprogressivisR    

The next proposition presents some properties of the initial part of a relation [36]. The properties (a), (b) and (c) can be 
found also in [29]. The proofs (a) and (c) are different from those given in [29]. 

(21) Proposition.  Let Q  and R  be relations. 

    •  RLRRL *)(  , 

    •  )()( QLRLRQ  , 

    •  )(=)( RLRLR  (equivalent to )(=)( RLRLR ), 

    •  )(=)( RLRL , 

    •  )(=)(=)(* RLRLRRLR  
 (equivalent to ))(=)(=)(* RLRLRRLR 

, 

    •  Q  progressively finite   RQ  progressively finite, 

    •  )(RLR  is progressively finite.   

 Proof.     

 

  

By Proposition 18(a), )(RL  is the least relation X  verifying XXR =  and, by complementation, we find the other 

expression. 
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The other expression can be easily found by complementation. 

 

 

 The next theorem involves the function PXQXf :)( , which is closely related to the description of iterations. The 

theorem highlights the importance of progressive finiteness in the simplification of fixed point-related properties. 

(22) Theorem. [5] Let PXQXf :=)(  be a function. If P  is progressively finite, the function f  has a unique 

fixed point which means that QPff *=)(=)(  .   

Proof.  Since the function f  is monotonic and that the algebra is complete, by Knaster-Tarski theorem (7), f  has a 

least and a greatest fixed point. Whence, we deduce that if f  has a unique fixed point, then the least and the greatest 

fixed point coincide. By Equation13, the least fixed point of f  is QP*
. So, It’s suffisant to prove that if P  is 

progressively finite, the greatest fixed point of f  is also equal to QP*
; Let X  be a fixed point of f  ; We will prove 

QPX * , which is equivalent to Ø=*QPX   : 
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We proved )( ** QPXPQPX   and , as the relation P  is progressively finite, by the Equation 7 we have 

Ø=*QPX  , then the result.   

Because YL  is a vector characterizing the domain of relation Y , the following theorem qualifies the range of domains of 

fixed points of d . This range is fully determined by the vectors ),( QPA  and )(PL . We note that in the case when the 

relation P  is progressively finite ( LPL =)( ), we find the results of Theorem 2.3. 

 (23) Theorem.  Every fixed point Y  of PXQXf :=)(  verifies  

 )(** PLQPYQP   

and QP*
 and )(* PLQP   are respectively the least and the greatest fixed point of the function f . 

Proof.  By Equation 13, QP*
 is the least fixed point of f  ; then YQP *

. Let us prove the second inclusion. First, we 

show that )(* PLQP   is a fixed point of f . 

  

Now, we prove that every fixed point Y  of f  verifies )(* PLQPY     

                 

By using the result, we have   
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 The next corollary is about the fixed points of the function XPQXg :=)( . 

(24) Corollary.  Every fixed point Y  of XPQXg :=)(  verifies  

 QPYPLQP  ** )(   

)(* PLQP   and QP *
 are respectively the least and the greatest fixed points of the function g . 

Proof.  It is easy to verify that g  is the dual function (Definition 15) of PXQXf :=)( . By Lemma 2.2, Y  is a fixed 

point of f . By Theorem 2.3, Y  verifies 

 .)(** PLQPYQP   

By applying DeMorgan Laws, this is equivalent to  

 .)( ** QPYPLQP   

Finaly, by Definition 4, 

 .)( ** QPYPLQP    

We note that, if the relation P  is progressively finite, the function g  has a unique fixed point which is QP *
. 

We introduce the next Abbreviations :      

(25) Abbreviation. Let P  and Q  be relations. The Abbreviations d , Ld  and ),( QPA  are defined as follows (

x  is a vector) :  

 

).(),(:=

)(:=),(

,)(:=)(

,)(:=)(

*

*

PLQPAQPS

QLPLPQPA

xPQLPLxd

XLPPXQXd

L















 

  (Mnemonics : the subscript L  refers to the fact that Ld  is obtained from d  by composition with L ; A  stands for  

abnormal, since it represents states from which abnormal termination is not possible; finally, S  stands for  semantics, 

since it represents states from which no infinite loop is possible. 

2.4  Intuition 

    • The function d  can be considered as a generalization of the semantic function of the while loop 

odQPdo   but with the hypothesis QLPL  is not necessarly empty.  
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    • In a nondeterministic while loop while P do Q, P  is iteratively applied to a state s  until Q  is verified. As, P  is 

nondeterministic s  can have many outputs If it exists among these outputs a state which can lead outside the 

domain of P  or whose of Q , so this state is exculded (abnormal termination of the loop) . So, ),( QPA  

represents the states from which no abnormal termination is possible.  

    • We note that S  is an intersection of three terms; QP*
, ),( QPA  and )(PL  . By taking in consideration the 

intuition behind these terms, it is easy to see that the relation S  represents the set of states from which the 

termination is guaranteed because all the states from which there is a possibility of nontermination (abortion or 

infinite loop) they are excluded by the terms ),( QPA  and )(PL .  

The following lemma presents the relationship between the fixed points of the functions d  and Ld  (Abbreviation 2.3).      

(26) Lemma.  If Y  is a fixed point of d  then YL  is a fixed point of Ld . 

Proof.  Suppose that YYd =)( .  

           

In the following we give the bounds of the fixed points of Ld  and we show that, these bounds are also fixed points of Ld .      

(27) Theorem.  If Y  is a fixed point of d , then   

    1.  ),,()(),( QPAYLPLQPA    

    2.   )(),( PLQPA   and ),( QPA  are fixed points of Ld .  

Proof.    

 1.  By Lemma 26, YL  is a fixed point of Ld . By taking QLPLQ :=  in the Corrolary 24, we   find, 

 );()()( ** QLPLPYLPLQLPLP    

by using Abbreviation 25, we find  

 ).,()(),( QPAYLPLQPA   

 2.  By Corollary 24, we deduce that )(),( PLQPA   and ),( QPA  are fixed points of Ld .    

The next theorem characterizes the domain of S  (25). This domain is the set of points for which normal termination is 

guaranteed (no possibility of abnormal termination or infinite loop). 

 (28) Theorem.  Let S  given by the Abbreviation 25. We have  

 ).(),(= PLQPASL   

 Proof.   



ISSN 2347-1921 
 

253 | P a g e                              O c t  3 1 ,  2 0 1 3  
 

                

2.5  A demonic refinement ordering 

We now define the refinement ordering we will be using in the sequel. This ordering induces a complete join semilattice, 

called a  demonic semilattice. The associated operations are demonic join ( ), demonic meet ( ) and demonic 
composition ( ). We give the definitions and needed properties of these operations. For more details on relational 
demonic semantics and demonic operators, see [4, 8, 6, 7, 12, 13, 36]. 

(29) Definition. We say that a relation Q  refines a relation R  [22], denoted by RQ , iff  

 .QLRLRRLQ    

(30) Proposition.  The greatest lower bound (wrt  ) of relations Q  and R  is  

 .)(= RLQLRQRQ   

If Q  and R  satisfy the condition LRQRLQL )(=  , their least upper bound is  

 ,)(= RLQRQLRQRQ   

otherwise, the least upper bound does not exist.    

Proof.  See [9, 13].   

Secondly, demonic meet: The existence condition simply means that on the intersection of their domains, Q  and R  have 

to agree for at least one value. In the following, we will show that S  (Abbreviation 25) is the greatest fixed point with 

respect to   of d  (Abbreviation 25). In other words we want to prove 

(31) Proposition.      

 

Proof.  It is easy to verify the condition about the domains ( LRPLSQ )()(  ). 
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For the other condition we have,  

               

In the following we will introduce some operation, related to the usual relational composition, the so-called  demonic 
composition. Its definition is      

 (32) Definition. : .Q R QR Q RL     

  A pair ),( ts  belongs to Q R  if and only if it belongs to QR  and there is no possibility of reaching, from s , 

by Q , an element u  that does not belong to the domain of R . For example, if (1,2)}(0,1),{(0,0),=Q  and 

(2,3)}{(0,0),=R , one finds that ={(1,3)}Q R ; the pair (0,0) , which belongs to QR , does not belong to 

Q R , since Q(0,1)  and 1 is not in the domain of R . Note that we assign to   the same binding power as 

that of . 

The next proposition demonstrates a number of additional properties. Of particular interest is item (c), which shows that 
demonic composition distributes on the right over intersection when one of the intersected entities is a vector. 

(33) Lemma.  Let RQ,  be relations and u ,v  vectors. We have, 

   

In what follows, we will present some inetresting properties verified by S and relations that have the same domain as S . 

(34) Lemma.  Let R  be a relation and S  given by Abbreviation 25. The next equation is satisfied    

       

 Proof.     
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In the following theorem, we will show that S is a fixed point of d (Abbreviation 25). 

(35) ( ) =d X Q P XL P X                                                                                    

Faire le lien ici avec les travaux anterieurs. 

(35) Theorem.   

S  (Abbreviation 25) is a fixed point of d . 

 Proof.    

 

3  A programming theorem 

The following theorem is a generalization to a nondeterministic context of the  while statement verification rule of Mills [23, 

24]. It shows that the greatest fixed point W  of d  (Abbreviation 25) is uniquely characterized by conditions (a) and (b), 

that is, by the fact that W  is a fixed point of d  and by the fact that no infinite loop is possible when the execution is 

started in a state that belongs to the domain of W . Half of this theorem (the   direction) is also proved by Sekerinski 

(the  main iteration theorem [30]) in a predicative programming set-up. 

(37) Theorem.W is the least fixed point wrt   of d  (Abbreviation 25) ( )(= dW  ) iff 

 
).()(

),(=)(

PLWLb

WdWa
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Proof.  

)( : As W  is the least fixed point of d  then, (a) is evident. Since SdW )(=  , then SLLdWL )(=  , by 

using Theorem 28, We have )(PLWL . 

)( : By Hypothesis (a), W  is a fixed point of d . Then, by Theorem 27, ),()(),( QPAWLPLQPA  . But, 

by using Hypothesis (b), )(PLWL , then )(),(= PLQPAWL  . 

 

Then W  is a fixed point of the function XPLQPAPPLQPAQXg ))(),(()(),(:=)(  . 

Since, by Proposition 21(g,f), )(),( PLQPAP   is progressively finite. Invoking Theorem 22 shows that g  has a 

unique fixed point which is the least fixed point )(d . We conclude that )(= dW  .    

The next theorem shows that S  is the least fixed point of d  wrt   ( )(= dS  ). 

(38) Theorem.  S  is the least fixed point of d  wrt   ( )(= dS  ). 

 Proof. It suffices to prove that S  verifies the conditions of the Theorem 37. By Theorem 36, S  is a fixed point of d . 

So, the condition (a) is satisfied. By Theorem 28, )(),(= PLQPASL  . So, the condition (b) is easily verified. 

4  Application 

In Mills approach, the semantics W  of a deterministic loop odBgdo   is given as the least fixed point (wrt  ) of 

the function  

 ,:=)( gBXgXwa :
  

 where the partial identity g  is the semantics of the loop condition g  and the relation B  is the semantics of the loop 

body B . The loop odBgdo   is deterministic if B  is deterministic. As we consider a complete relation algebra 

(see the section 2) and as the function aw  is monotonic (wrt  ), by Theorem 7 the least fixed point W  of aw  exists 

and 
:ggBW *)(= . Calculating the relational abstraction (semantics) of a loop is difficult, but showing the correctness of 

any candidate abstraction is much easier. For functional programs, Mills  [23, 24] has described a checking method known 
as the  while statement verification rule. In a nondeterministic context, the abstraction is calculated by considering the 
worst behavior of the program ( demonic semantics) [36]. Given a loop condition and a loop body, theorem 37 can be 

used to verify if a relation W  is indeed the semantics of the loop as it will be shown in the next example 41. 

By using a similar intuition as in the deterministic case, we have to prove the next equation 

(40) }.)(|{= XgBgXXW 
   

To solve this equation we will use Theorem  3, where gBP :=  and 
gQ := . Notice that Ø=QLPL . 

The following example is an application of this theorem. It is rather contrived, but it is simple and fully illustrate the various 

cases that may happen. Consider the following loop, where the unique variable n  ranges over the set Z  of integers  

[13] : 
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(41) Example. 

 

    Notice 0>n  such that 1=4modn  may lead to termination with a final value 3= n , but may lead to an infinite 

loop over the value 1=n  these initial values of n  do not belong to the domain of the relation giving the semantics of the 

loop. Note also that all 0>n  such that 3=4modn  may lead to termination with a final value 1= n , but may also 

lead to avalue 2=n , for which the loop body is not defined (by the semantics of   if  fi; these n  do not belong to the 

domain of W . Because they also lead to 2=n , all 0>n  such that 2=4modn  do not belong to the domain of W . 

The semantics of the loop condition is given by:  

(42) }).=0{=(}=0>{= nnngnnng  
 (11) 

 The boody of the loop is :  

(43)  

4}.={ }=4{ 

1})={2}=({}=3={ 

3})={1}=({}=1={  =







nnnnn

nnnnn

nnnnnB













 (12) 

This expression can be simplified as follows :  

(44) 

4}).= 4{ 

1})=3={2}=3=({ 

3})=1={1}=1=({  =







nnn

nnnn

nnnnB







 (13) 

 Also, by using 31(a,b), it is easy to see that = =g B gB B . Let’s now show that  

(45) 0}=0=40>=0{:= nmodnnnnnW    

 is the abstraction (semantics) of the loop. By 31(e), W  is equal to :  

 0}.=0=40>{}=0{= nmodnnnnnW    

We have to verify the conditions (a) and (b) of Theorem 37,  i.e WWd =)(  and )(gBLWL . 

Notice that,  

(46) 0}.=0=40>{= nmodnngW    

 So, to show (a), it is suffisant to prove  

(47) ={ > 0 4 = 0 = 0},B W n n mod n    

as,                  

             

Let’s prove the Equation 47.  
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This shows part (a) of the theorem. Part (b) can be established informally by noting that the domain of W  is  

 0},=40{ modnn    

 and that there is no infinite sequence by gB  for any n  in the domain of the relation W ;  in other words, )(gBLWL  

      A more satisfying way to show )(gBLWL  is to calculate )(gBL . However, because )(gBL  characterizes the 

domain of guaranteed termination of the associated loop, there is no systematic way to compute it (this would solve the 

halting problem). To demonstrate termination of the loop from every state in the domain of W , classical proofs based on 

variant functions or well-founded sets could be given. But formal arguments based on the definition of initial part (Definition 
17) can be also used. 

We sketch one such argument. 

For 0k , let 0}=440{:= modnknnvk  . Also, let XgBXh :=)( . 

It is easy to show by induction that the domain of W  (Equation 48) is equal to kk
v 0

. 

By using the laws of the lattice theory [11], we have :  
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In this example, Theorem 3, was used to verify that the guessed semantics W of the loop L  was correct, given the 

semantics c  of the loop condition and b  of the loop body. The theorem can be used in the other direction. If we are given 

a specification W , we can guess c  and b , and then apply Theorem 3 to verify the correctness of the guess. If it is 

correct, then a loop of the form  do pc  od, where p  is an implementation of b , is correct with respect to W . But in 

the context of program construction, the theorem is more useful in the other direction: given a specification (relation) W of 

a loop, one can guess the abstractions t  and B  of the loop condition and loop body, respectively, and use Theorem 3 to 

verify that the guess is correct. 

5  Conclusion 

We presented a theorem that can be also used to find the fixed points of functions of the form 

XLPPXQXf  )(:=)(  (no restriction on the domains of P  and Q ). This theorem can be applied also to the 

program verification and construction (as in the precedent example). Half of this theorem (the   direction) is also proved 

by Sekerinski (the  main iteration theorem [30]) in a predicative programming set-up. Our theorem is more general 

because there is no restriction on the domains of the relations P  and Q . 

The approach to demonic input-output relation presented here is not the only possible one. In [18, 19, 20], the infinite 

looping has been treated by adding to the state space a fictitious state   to denote nontermination. In [8, 15, 21, 27], the 
demonic input-output relation is given as a pair (relation,set). The relation describes the input-output behavior of the 
program, whereas the set component represents the domain of guaranteed termination. 

We note that the preponderant formalism employed until now for the description of demonic input-output relation is the wp-
calculus. For more details see [1, 3, 14]. 
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