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Abstract
We develop a compilation scheme and categorical abstract machine for execution of logic pro-
grams based on allegories, the categorical version of the calculus of relations. Operational and
denotational semantics are developed using the same formalism, and query execution is performed
using algebraic reasoning. Our work serves two purposes: achieving a formal model of a logic
programming compiler and efficient runtime; building the base for incorporating features typi-
cal of functional programming in a declarative way, while maintaining 100% compatibility with
existing Prolog programs.
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1 Introduction

Relational algebras have a broad spectrum of applications in both theoretical and practical
computer science. In particular, the calculus of binary relations [37], whose main operations
are intersection (∪), union (∩), relative complement \, inversion (_)o and relation composition
(;) was shown by Tarski and Givant [40] to be a complete and adequate model for capturing all
first-order logic and set theory. The intuition is that conjunction is modeled by ∩, disjunction
by ∪ and existential quantification by composition.

This correspondence is very useful for modeling logic programming. Logic programs are
naturally interpreted by binary relations and relation algebra is a suitable framework for
algebraic reasoning over them, including execution of queries.

Previous versions of this work [24, 32, 9, 22], developed operational and denotational
semantics for constraint logic programming using distributive relational algebra with a
quasi-projection operator. In this approach, all relations range over a unique domain or
carrier: the set of hereditary sequences of terms generated by the signature of the program.
For instance, the identity relation can be used to relate sequences of terms of an unbounded
size.

Execution is performed using a rewriting system, but making it efficient is difficult given
that untyped relations don’t capture the exact number of logical variables in use. When a
predicate call happens, the constraint store is duplicated, with one belonging to the caller
environment and one used by the called predicate. At return time, the constraint stores are
merged. The propagation of constraints posted inside a procedure call is delayed.
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We propose to remedy this shortcoming by using typed relations. The theory of alle-
gories [21], provides a categorical setting for distributive relational algebras. In this setting,
relations are typed and the semantics for our relations becomes sequences of fixed-length.
Now, the notion of categorical product and its associated projections interpret in an adequate
way the shared context required to have an efficient execution model.

The most important concepts in our work are the notion of strictly associative product
and tabular relation. Given types A, B (or objects in categorical language), we write A×B
for their cartesian product. As usual A × (B × C) is isomorphic (≈) to (A × B) × C.
We say our products are strictly associative if the isomorphism is an equality. That is,
(A×B)×C = A× (B ×C). We are thus allowed to write A×B ×C. This is a crucial fact
for our machine, since if we interpret a chosen type H as a memory cell, then a memory
region of size n is interpreted as Hn.

Second, we say a relation R : A ↔ B is tabulated by an injective (monic) function
(arrow) f : C → A × B if every pair of the relation is in its image. We may split f into
its components f ;π1 : C → A and f ;π2 : C → B, and state that the pair (f ;π1, f ;π2)
tabulates R. Such a concept is fundamental for two reasons: the types of the tabulations
carry important information about the memory use of the machine. The domain of the
tabulations corresponds to global storage or heap and the co-domain represents the number
of registers our machine is using at a given state.

The execution mechanism is entirely based on the composition of tabular relations, an
operation fully characterized by the pullback of its tabulations. Relation composition models
unification, parameter passing, renaming apart, allocation of new temporary variables and
garbage collection.

The first important benefit of our use of categorical concepts is the small gap from the
categorical specification to the actual machine and proposed implementation. This allows
us to reason using a very convenient algebraic style, immediately witnessing the impact of
such reasoning on the machine itself. Our philosophy is that in an fully algebraic framework,
efficient execution should belong to regular reasoning. Real world implementations usually
depart from this view in the name of efficiency, and one key objective of this work is to
achieve efficiency without abandoning the algebraic approach. It is also worth noting that in
our framework, we replace all the custom theory and meta-theory used in logic programming
with category theory. The precise statement is that a Σ-allegory captures all the needed
theory and meta-theory for a Logic Program with signature Σ, from set-theoretical semantics
down to efficient execution.

The second — and in our opinion, most innovative benefit — is the possibility of seamlessly
extending Prolog using constructions typical of functional programming in a fully declarative
way. In [23], we sketch some of these extensions, adding algebraic data types, constraints,
functions and monads to Prolog, all of it without losing source code compatibility with
existing programs.

2 Logic Programming

Assume a permutative convention on symbols, i.e., unless otherwise stated explicitly, distinct
names f, g stand for different entities (e.g. function symbols) and the same with distinct
names i, j, for indices. A first-order language consists of a signature Σ = 〈CΣ,FΣ〉, given
by CΣ, the set of constant symbols, and FΣ, the set of term formers or function symbols.
P will denote the set of predicate symbols. Function α : P ∪ FΣ → N returns the arity of
its predicate argument. We assume a set X of so-called logic variables whose members are
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denoted xi. We write TΣ for the set of closed terms over Σ. We write TΣ(X ) for the set of
open terms (in the variables in X ) over Σ. We drop Σ when understood from context. We
write sequences of terms using vector notation: ~t = t1, . . . , tn. The length of such a sequence
is written |~t| = n. We assume standard definitions for atoms, predicates, programs, clauses,
and SLD resolution. For more details see [33].

3 Category Theory

A category C = 〈O,A〉 consists of a collection of objects O and typed arrows A. For every
object A ∈ O, there is an identity arrow idA : A → A ∈ A. Given arrows f : A → B and
g : B → C, its composition f ; g : A→ C is defined. For f : A→ B, we call A the domain
of f and B its codomain. Composition is associative and idA; f = f ; idB = f . We assume
knowledge of the concepts of commutative diagram, product, equalizer, pullback, monic arrow
and subobject [6, 5, 30].

For a product A×B, we will write πA×B
1 : A×B → A and πA×B

2 : A×B → B for the
projections. For arrows f : C → A, g : C → B we write 〈f, g〉 for the unique product former.
Several definitions exist for Regular Categories [11, 6, 27, 21]; we use the latter presentation.

I Definition 1 (Regular Category). A category C is a Regular Category if it has products,
equalizers, images and pullback transfer covers. A Regular Category can be used to generate
a tabular allegory. Indeed, Regular Categories give rise to categories of relations.

3.1 Categorical Relations
I Definition 2 (Monic Pair). f : C → A and g : C → B is a monic pair iff 〈f, g〉 : C 7→ A×B
is monic. A monic pair is a subobject of A×B, thus we can see it as a relation from A to B:

C

A
�

f

B

g
-

I Definition 3 (Composition of Relations). The composition (u, v) of a relation (f, g) with
(h, i) is defined by the diagram on the left in Fig. 1. Note that the purpose of the cover in
that diagram is to ensure that the resulting relation remains a monic pair. The right diagram
shows the already composed relation.

I Definition 4 (Categories of Relations). For a regular category C, the category Rel(C) of
relations has the same objects as C, arrows A→ B are monic pairs (f : C → A, g : C → B)
and composition is defined as above. C is a sub-category of Rel(C). The inclusion functor
sends an arrow f : A→ B to the pair (id, f). If a morphism of Rel(C) is in C, we call it a
map.

Given a relation (f, g), its inverse, or reciprocal is (g, f). The natural order-isomorphism
Sub(A×B) ≈ Rel(A,B) yields a semi-lattice structure on Rel(A,B).

3.2 Lawvere Categories
A Lawvere category is a category C with a denumerable set N of distinct objects, where each
object N is the n-th power of the object 1. 0 is the terminal object. We write !A : A→ 0
for the terminal arrow. The product of Tm × Tn is Tm+n. Products are strictly associative
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Figure 1 Composition of Relations.

since addition is associative, thus ((1 × 1) × 1) = (1 × 2) = 3. Note that this means
(id2 × id) : 2× 1→ 2× 1 = id3 : 3→ 3, or for f : 2→ 2, (f × id2) = 〈f ;π1, f ;π2, id1, id1〉,
etc. . .

For a given signature Σ of a logic program, we build the corresponding (free or syntactic)
Lawvere Category CΣ as follows:

For every constant a ∈ TΣ, we freely adjoin an arrow a : 0→ 1.
For every function symbol f ∈ TΣ with arity α(f) = N , we freely adjoin an arrow
f : N → 1.

A model of a Lawvere Category C is a functor F : C → Set which preserves finite products
and pullbacks. A homomorphism of C-models is a natural transformation. The category of
models Mod(C, Set) for C is the usual functor category.

Lawvere Categories are a natural framework for categorically representing algebraic
theories. Examples of such categories C may be seen in [31], and some good treatments are
in [6, 26].

3.3 Allegories
I Definition 5 (Allegory). An allegory R = {O,A} is an enriched category, with objects
O and relations A. We write R;S : A → C for composition of relations R : A → B and
S : B → C. When there is no confusion possible we may also write RS for R;S. We add
two new operations:

For every relation R : A→ B and S : A→ B, (R ∩ S) : A→ B is a relation.
For every relation R : A→ B, R◦ : B → A is a relation.

We write R ⊆ S for R ∩ S = R. The new operations obey the following laws:

R ∩R = R R ∩ S = S ∩R
R ∩ (S ∩ T ) = (R ∩ S) ∩ T R◦◦ = R

(RS)◦ = S◦;R◦ (R ∩ S)◦ = (R◦ ∩ S◦)
R; (S ∩ T ) ⊆ (R;S ∩R;T ) (R;S ∩ T ) ⊆ (R ∩ T ;S◦);S

A map is a relation such that R◦;R ⊆ id and id ⊆ R;R◦. We use capital letters for relations
and small letters for maps. A relation R is coreflexive iff R ⊆ id. For an allegory R, we shall
denote its subcategory of maps by Map(R). A pair of maps f, g tabulates a relation R iff
f◦; g = R and f ; f◦ ∩ g; g◦ = 1. The latter condition is equivalent to stating that f, g form
a monic pair.
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It is easy to prove that a tabulation is unique up to isomorphism. A coreflexive relation
R ⊆ id is tabulated by a pair of the form (f, f). If R = f◦; g, then R◦ = g◦; f .

An allegory is a tabular allegory iff every relation has a tabulation. For an allegory R,
Map(R) is a regular category. The following lemma tells us that a tabular allegory really is
the relational extension generated by its maps and that the concepts of regular category and
tabular allegory intimately connected:

I Lemma 6. If R is a tabular allegory then R ≈ Rel(Map(R)). If C is a regular category
then C ≈Map(Rel(C)). If R ≈ Rel(C) then Map(R) ≈ C.

Proof. See [21] 2.147 and 2.148, 2.154. J

Composition of relations in a tabular allegory is thus defined in the same way as for categories
of relations arising from a regular category, see Def. 3.

A distributive allegory is an allegory with a new relation denoted 0AB for every object A,
B, and given relations R, S with the same type, R ∪ S is an arrow. They obey the following
laws:

R ∪R = R R ∪ S = S ∪R
R ∪ (S ∪ T ) = (R ∪ S) ∪ T 0 ∪ S = S

R ∪ (R ∩ S) = R R; 0 = 0
R(S ∪ T ) = RS ∪RT R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∪ T )

4 Regular Lawvere Categories and Σ-Allegories

The key idea is to use Lem. 6 to build an allegory from a Lawvere category. In order to do
that, we need to define the concept of Regular Lawvere Category (RLC) C first. Then Rel(C)
generates a pre-Σ-allegory. However, this category is not distributive, so we ∪-complete it in
order to obtain what we call a Σ-allegory.

I Definition 7 (Regular Lawvere Category). Given a Lawvere Category C, we build its regular
completion Ĉ by adjoining an initial object ⊥, the corresponding initial arrows ?A : ⊥ → A

for every object A and applying the quotient ?A; f =?B for any arrow f : A→ B.

This completion effectively replaces the Lawvere Category concept of existence of an equalizer
by the question: What is the domain of the equalizing arrow? Arrows not having an equalizer
in C are equalized by ⊥ in Ĉ.

I Definition 8 (Initial Model). Given a choice 〈,〉 of product in Set, and a choice of symbols
for the signature Σ generating the Regular Lawvere Category C and set TΣ, the initial model
of a Regular Lawvere Category C — that is to say, the initial object in Mod(C, Set) — is the
functor JK, with object and arrow components (JKO, JKA):
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J⊥KO = ∅ J0KO = {•} JNKO = T N
Σ N > 0

J?N KA = ∅ ∅−→ JNKO

J!N KA = λx. •
Jc : 0→ 1KA = λ • . c
Jf : N → 1KA = λ(n1, . . . , nN ). f(n1, . . . , nN )
Jπi : N → 1KA = λ(n1, . . . , nN ). ni

J〈t1, . . . , tN 〉 : M → NKA = λn.〈JnKA; Jt1KA, . . . , JnKA; JtN KA〉

I Lemma 9. The regular completion of a Lawvere Category is a regular category.

4.1 Σ-Allegories
A RLC cannot model disjunctive clauses in logic programs, as it doesn’t tabulate distributive
allegories, which are tabulated by a Pre-Logos [21]: regular categories whose subobjects form
a complete lattice, not just a semi-lattice.

I Definition 10 (Σ-Allegory). Given a Regular Lawvere Category C, we define a Σ-allegory
R∪ as the distributive allegory generated from the allegory R ≈ Rel(C) by freely adding
all union arrows and taking the quotient by the distributive laws. An inclusion functor
F : R → R∪ exists, and it is easy to see that all the relations in R∪ that possess a union-free
representation are tabular.

5 Translation of the Program

The translation procedure is almost identical to the one defined in [22]. A predicate is
translated to a coreflexive relation. We use two helper relations, a partial identity I, is
meant to create and destroy local (or existentially quantified) variables, and a permutation
W , which puts the arguments in the right order for relation composition.

IDefinition 11 (I Relation). The relation IMN , withM < N is tabulated by (〈π1, . . . , πM 〉, idN ).

This relation formalizes the intuition that the reciprocal of a projection creates a new variable,
indeed I12 = π◦1 .

I Definition 12 (W Relation). For a projection w : N →M , with N ≥M and K = N −M ,
we denote by w′ : N → N any of its extensions to a permutation such that the following
equations are satisfied: {w′(K) = w−1(1), . . . , w′(K +M) = w−1(M)}. For a given w′, W is
tabulated by (N, 〈πw′(1), . . . , πw′(N)〉).

First, we complete every predicate in a similar way to Clark’s [15]. The set of n variables
occurring in the terms is renamed from y1 to yn. Then, every term ti occurring as an
argument in the head and tail is replaced by a fresh variable xi, and the equation xi = ti is
added to the clause. After that process, clauses are of the form:

p(~x′)← ~x = ~t(~y), p1(~x1), . . . , pn(~xn).

~x′ a prefix of ~x, ~xi a selection of variables in ~x and ~t a sequence of terms using variables in ~y.
We replace ~xi for projections wi(~x) such wi(~x) = ~xi. Clauses are now of the form:

p(~x′)← ~x = ~t(~y), p1(w1(~x)), . . . , pn(wn(~x)).
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Now we are ready to transform the clause into a relational term. The equation ~x = ~t(~y)
is translated to a coreflexive relation between sequences of terms K(~t), of type |~t| → |~t|,
tabulated by an arrow |~y| → |~t|.

I Definition 13 (Term Translation). The translation function K takes a sequence of terms
~t, using ~y ≡ [y1, . . . , y|~y|] variables and returns a coreflexive tabular relation K(~t) : |~t| → |~t|
with tabulation f : |~y| → |~t|.

K(~t[~y]) = 〈K~y(t1), . . . ,K~y(tn)〉◦; 〈K~y(t1), . . . ,K~y(tn)〉
where
K~y(a) = !|~y|; a : |~y| → 1
K~y(yi) = πi : |~y| → 1
K~y(f(t1, . . . , tn)) = 〈K~y(t1), . . . ,K~y(tn)〉; f : α(~y)→ 1

The tabulation could be seen as a constructor for ~t from a supply of fresh variables ~y. We must
wrap the predicates with the relational projection Wi generated from wi, let Ai = N −α(pi):

K(~t);W1; (idA1 × p1);W ◦1 ; . . . ;Wn; (idAn
× pn);W ◦n

Note that we have replaced ∪ by composition. This is possible thanks to the fact that the
relation (idA1 × p1) is coreflexive, thus the equation A ∩ B = A;B holds. Note that the
presented arrow has type N = |vt|, while the arrow for the predicate should have a type of
M . We use the IMN : M → N to fix this and we obtain the final form. The final translation
for the clause is:

IMN ; (K(~t);W1; (idA1 × p1);W ◦1 ; . . . ;Wn; (idAn
× pn);W ◦n); I◦MN

A predicate p consisting of several clauses is then translated using ∪:

p(~x)← cl1 ∨ · · · ∨ clm →
p = C1 ∪ · · · ∪ Cm

where Ci is the arrow corresponding to the translation of the clause cli.

I Theorem 14 (Adequacy of the Translation). Given a predicate p of arity N translated to
the arrow p : N → N , the initial model maps p to the subobject JpKA7−−−→ T N

Σ such that its image
is precisely the set of ground terms making p true.

6 Specification of The Machine

We abuse notation to profit from the fact that a coreflexive relation is uniquely tabulated by
a monic f◦; f to write f for f◦; f when it can be deduced from the context.

We define the categorical machine as a set of transition rules over relations. We write
(f | g) for tabular relations. Then, (f | g); (f ′ | g′) is rewrote to (h; f | h′; g′) using the
pullback (h, h′) of g, f ′. This corresponds to a substitution, where the arrow h : M → N

takes a current state of the machine using N variables to a state using M variables, and
h′ : M ′ → N ′ does the same, usually instantiating the translations of a clause to the right
variables. This mechanism is also used for variable creation/destruction. The pair of arrows
(h, h′) above the transition arrow denotes the result of the pullback.

A union R1 ∪ · · · ∪Rn is used to represent disjunctive search, while predicate calls are
represented as (f | 〈g, [R]〉), where R is the relation pertaining to the call in-progress. Note
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that g and the left tabulation of R share the same domain, allowing the propagation of
substitutions resulting from reducing R to the outer context.

(f | g); (f ′ | g′) (h,h′)===⇒ (h; f | h′; g′)
(f | 〈gK , gN 〉); (idK × pN ) =⇒ (f | 〈gK , [(gN | gN ); p1]〉) ∪

... ∪
(f | 〈gK , [(gN | gN ); pn〉])

(f | 〈g, [(g′ | g′)]〉) =⇒ (f | 〈g, g〉)
(f | 〈g, [E]〉) =⇒ (h; f | 〈h; g, [E′]〉) iff E =⇒ E′

R ∪ S =⇒ R′ ∪ S iff R =⇒ R′

0 ∪ S =⇒ S

The first rule represents composition of tabular relations. The second one represents predicate
call. First, disjunctive predicates are unfolded using the rule f ; (R ∪ S) = f ;R ∪ f ;S.
Computing the predicate call is performed by the relation (gN | gN ); p1. The third rule deals
with return. The three last rules encode the search strategy of the machine. We include an
example in Appendix A.

I Theorem 15 (Operational equivalence). 〈p1(~u1), . . . , pn(~un)〉 → · · · → � is the SLD
derivation with substitution σ iff

K(~u);W1; p1;W ◦1 ; . . . ;Wn; pn;W ◦n ⇒ K(σ(~u)) ∪R

7 The Pullback Algorithm

The core of the machine is pullback calculation. We present a pullback calculation algorithm
for an arbitrary Regular Lawvere Category C generated from a signature Σ. The equational
theory of C is the basis for the algorithm.

To improve the presentation, we reduce the pullback problem to its equivalent equalizer
formulation. We start with a non commutative diagram and rewrite it until we reach
a commutative one, which is an equalizer, and thus we obtain a pullback. The notion of
substitution is an arrow composition followed by normalization modulo the product equational
theory.

I Definition 16 (Pullback Problem). A pullback problem is given by two arrows f : N →M

and g : N ′ →M .

I Definition 17 (Arrow Normalization). We write →!
R for the associated normalizing relation

based on →R:

h; 〈f, g〉 →R 〈h; f, h; g〉 〈f, g〉;π1 →R f

〈f, g〉;π2 →R g f ; !N →R !M f : M → N

I Definition 18 (Starting Diagram). For a pullback problem, its pre-starting diagram P is:

N ×N ′
π1; f-

π2; g
- M

Products are strictly associative, so π2 is a renaming, for instance if f = 〈π1〉 and g =
〈〈π1, π2〉; f〉, then π2 : 3 → 2 is equal to 〈π2, π3〉, and π2; g = 〈〈π2, π3〉; f〉. If π1; f →!

R f ′

ICLP’12
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and π2; g →!
R g′, the starting diagram P is:

N +N ′
id = 〈π1, . . . , πN+N ′〉- N +N ′

f ′ -

g′
- M

N +N ′ is the type of the pullback problem.

I Definition 19 (Algorithm State). For a pullback problem of type N , the algorithm state
is (S | h), h : N → N an arrow and S an ordered set of equations f ≈ g between arrows
f, g : N → 1.

I Definition 20 (Auxiliary Substitution). The helper substitution function is S(i, f : N →
1, h : N → N) = h′, where 〈π1, . . . , πi−1, f, πi+1, . . . , πN 〉;h →!

R h′. This function replaces
any πi in h for f .

I Definition 21 (Pullback Calculation Algorithm). The input of the algorithm is two arrows
f0 : N →M and g0 : N ′ →M . First, build the starting diagram P, which produces arrows
f ′0 and g′0, and a type of the problem N +N ′ = NT . f ′0 and g′0 are of the form 〈f1, . . . , fM 〉,
〈g1, . . . , gM 〉, then build the initial set S = {f1 ≈ g1, . . . , fM ≈ gM}. The initial state is
(S | 〈π1, . . . , πN+N ′〉). The algorithm proceeds to transform the state (S | h) iteratively until
S = ∅ using the following rules

Pick an equation from S such that S = {f ≈ g}∪S′. Compute h; f →!
R f ′ and h; g →!

R g′.
Then, do case analysis on f ′ ≈ g′:

!M ; a ≈ !M ; b ⇒ Fail πi ≈ πj ⇒ (S′ | S(j, πi, h))
!M ; a ≈ h; f ⇒ Fail πi ≈ g; f ⇒ (S′ | S(i, g; f, h))
g; f ≈ g′; f ′ ⇒ Fail !M ; a ≈ πi ⇒ (S′ | S(i, !M ; a, h))
!M ; a ≈ !M ; a ⇒ (S′ | h) g; f ≈ g′; f ⇒ ({g1 ≈ g′1} ∪ . . .

{gn ≈ g′n} ∪ S′ | h)

When S = ∅, our diagram is commutative but may not be an equalizer due to having an
incorrect domain. We create a new arrow from h such that it is a monic. Discarding the K
unused elements of M — is enough. Compose h : M →M with any extension of idM−K to
M to obtain h′ : (M −K)→M . This process is similar to garbage collection and memory
de-fragmentation. If the algorithm fails, the equalizer is the initial arrow. Like many actual
Prolog implementations, we don’t implement occur-check. To get full soundness we would
need to implement the occurs check in rule 7.

8 Implementation Discussion

We briefly present the most important points about the efficient implementation of the machine
presented in Sec. 6 and Sec. 7. An implementation should be based on the interpretation of
projections as pointers, with any πi appearing inside a term being a pointer to a cell i.

The codomain of the tabulations may be seen as a set of registers, thus, for a pullback
between 〈!1; f, π1〉 and 〈a, b〉, we may assume that the registers are X1 =!1; f and X2 = π1
and emit instructions testc a, X1 and testc b, X2.

Note that the model presented here forces garbage collection and compaction. Every
unused slot is eliminated by the pullback algorithm. We may fix our model by creating N
copies of the object T with their corresponding products. Then, the Ti object becomes a
representative of the memory cell i, and the denotational model captures the instantiation of
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a variable as the variation of the tabulation domain from (T1 × T2 × T3) to (T1 × T3). This
yields a memory behavior close to a standard WAM without garbage collection.

In order for the code to look reasonable we need to implement two optimizer engines.
The first one is an algebraic one and perform tasks like statically computing the tabulation
of IMN ;K(~t). The second one is a peephole optimizer.

9 Related Work

Algebraic approaches to logic programming have been tried in [29, 3, 20, 2, 16, 4]. The most
important difference with our work is that all of them are based on the notion of indexed
category and don’t make a proposal for a concrete implementation. As in our proposal, the
use of pullbacks is key point.

A different line of work is interpretation of logic programming as functional programs. The
most representative works are [39, 41, 8, 36]. In [7], the authors study relational semantics for
lazy functional logic programming language, modeling adequately the interactions between
function call and non-determinism. In [10] the authors propose a diagram-based semantics
for Logic Programming. An very interesting related work is [34]. This is the only proposal
that we know of for the use of tabular allegories in programming. Unfortunately, McPhee’s
work does not develop an executable model. The use of category theory as a foundational
tool for a machine is not new, the best known work is [17].

Several approaches to virtual machine generation [35, 18] and compiler verification [38] for
Prolog exist. Several relation-based programming languages exist [19, 14, 13, 12, 25]. In [42],
a similar effort to our semantics is developed, but the framework chosen is Tarski’s cylindrical
algebras instead Freyd’s allegories. The author doesn’t consider the implementation and
efficiency of his approach.

In [1], the authors propose a first-order encoding for allegories. This is related our previous
relation rewriting approach and indeed we consider their work very useful for mechanizing our
theory. An encoding of allegories in a dependently-typed programming language is presented
in [28]. We think Kahl’s approach may help us to certify our compiler.

10 Conclusions and Future Work

We have presented an algebraic approach to Logic Programming, from the semantic base of
category and allegory theory down to an actual machine based on which can be efficiently
implemented. Our approach is new and has important advantages. First, as the algebraic
connection between the different layers of the machine is not lost, reasoning in a layer is
immediately reflected by the others. Additions on the semantics foster modifications to
the algorithm as can be seen in [23]. In the other direction, a good example is the effect
that memory layout has on incorporating Ti objects representing memory cells. Second,
the correctness of the machine is easy to check. Composition of relations together with the
equation R; (S ∪ T ) = R;S ∪R;T ) capture in a simple way the operational semantics and
memory layout of Prolog. Our framework is well suited to prove semantic properties, given
that our semantics are compositional and use the well established frameworks of category
theory and relation algebra. Third, the use of such frameworks favors the reuse of existing
technologies in other areas of programming.

We are actively working on an definitive instruction set. We don’t want it to be specific to
an operational choice like SLD, given that our approach is well suited to accommodate other
strategies like breadth-first search. On the other hand, we are already developing extensions
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to Prolog in [23], and some of them, such as higher-order types may require that we add
second primitive of reduction to our machine.

In the future, we will mechanize all the theory presented here, and indeed we hope that
effort will bring us close to the goal of having a fully verified implementation. We are working
in extending Regular Lawvere Categories to Pre-Logos.

A An Example

We use as example the classical add predicate implementing Peano addition:
add(o,X,X).
add(s(X), Y, s(Z)) :- add(X, Y, Z).

A.1 Translation
We perform the renaming procedure similar to Clark’s completion:
add(X1 ,X2 ,X3) :- X1 = o, X2 = Y1 , X3 = Y1.
add(X1 ,X2 ,X3) :- X1 = s(Y1), X2 = Y2 , X3 = s(Y3), X4 = Y1 , X5 = Y3 ,

add(X4 , X2 , X5).

Note that we have two kinds of variables, the ones starting by X which may only appear as
arguments to predicates and the Y variables, which represent the “real” variables used inside
the predicate. Externally, add only uses three X variables, but internally it needs two more.
In our relational translation, we will capture this fact by using a relation I35 : 3→ 5 that
takes care of creating X4 and X5. Recall that 〈f, g〉 is the categorical product constructor.
Then, storing all our X variables in such a product, we may try to express add in a relational
pseudo-notation:

add = 〈o, Y 1, Y 1〉
∪ I35; (〈s(Y 1), Y 2, s(Y 3), Y 1, Y 3〉 ∩ (id2 × add)); I◦35

the recursive call to add is wrapped into a vector of size 5, but we are calling it with the
wrong parameters! The above expression is equivalent to add(X3, X4, X5). We need to call
it with the right parameters, so we compose the call with a permutation of the vector. We
replace Y variables by categorical projections and the actual translation is:

add = 〈o, π1, π1〉◦; 〈o, π1, π1〉
∪ I35; 〈π1s, π2, π3s, π1, π3〉◦; 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35

where I35 : 3→ 5 = 〈π1, π2, π3〉◦ and W : 5→ 5 = 〈π1, π3, π4, π2, π5〉. In order to save space
we will abuse notation and will write f for a coreflexive relation f◦; f . With this abuse in
mind, the tabulation of 〈π1s, π2, π3s, π1, π3〉 is:

3

5 �
〈π1s, π2, π3s, π1, π3〉 -�〈π

1s
, π

2,
π3s
, π

1,
π3〉

5

〈π1 s, π2 , π3 s, π1 , π3 〉-

The reader can see how domain of the tabulations reflects the number of free variables in use
by the machine, information which is usually associated to global storage. The codomain of
the tabulations — the actual domain of the relations — should be interpreted as the number
or working “temporal registers” that are used for parameter passing and unification.
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A.2 Execution
A query add(s(X), Y, Z) is translated to 〈π1s, π2, π3〉; add and its execution trace is:

〈π1s, π2, π3〉; add ⇒
(〈π1s, π2, π3〉; 〈o, π1, π1〉) ∪ . . . ⇒
0 ∪ 〈π1s, π2, π3〉; I35; 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35 ⇒
〈π1s, π2, π3〉; I35; 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3〉 | 〈π1s, π2, π3, π4, π5〉); 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3s〉 | 〈π1s, π2, π3s, π1, π3〉);W ; (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3s〉 | 〈π1s, π3s, π1, π2, π3〉); (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3s〉 | 〈π1s, π3s, [〈π1, π2, π3〉; 〈o, π1, π1〉]〉;W ◦; I◦35 ∪ . . . ⇒
(〈os, π1, π1s〉 | 〈os, π1s, [〈o, π1, π1〉]〉;W ◦; I◦35 ∪ . . . ⇒
(〈os, π1, π1s〉 | 〈os, π1s, o, π1, π1〉);W ◦; I◦35 ∪ . . . ⇒
(〈os, π1, π1s〉 | 〈os, π1, π1s, o, π1〉); I◦35 ∪ . . . ⇒
〈os, π1, π1s〉 ∪ . . .

then 〈os, π1, π1s〉 is translated back to the answer X = o, Z = s(Y ).
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