View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Research Commons@Waikato

1408.4498v1 [math.LO] 19 Aug 2014

arXiv

MONOIDS WITH TESTS AND THE ALGEBRA OF POSSIBLY
NON-HALTING PROGRAMS.

MARCEL JACKSON AND TIM STOKES

ABSTRACT. We study the algebraic theory of computable functions, which can
be viewed as arising from possibly non-halting computer programs or algo-
rithms, acting on some state space, equipped with operations of composition,
if-then-else and while-do defined in terms of a Boolean algebra of conditions.
It has previously been shown that there is no finite axiomatisation of algebras
of partial functions under these operations alone, and this holds even if one
restricts attention to transformations (representing halting programs) rather
than partial functions, and omits while-do from the signature. In the halting
case, there is a natural “fix”, which is to allow composition of halting programs
with conditions, and then the resulting algebras admit a finite axiomatisation.
In the current setting such compositions are not possible, but by extending the
notion of if-then-else, we are able to give finite axiomatisations of the resulting
algebras of (partial) functions, with while-do in the signature if the state space
is assumed finite. The axiomatisations are extended to consider the partial
predicate of equality. All algebras considered turn out to be enrichments of
the notion of a (one-sided) restriction semigroup.

1. MOTIVATION AND DEFINITIONS

1.1. Some terminology. Let X,Y be sets. A function X — Y is a partial map
from a subset of X into Y, and the set of all such is denoted P(X,Y). If Y = X
this is denoted P(X), a semigroup under composition (read left to right, so that
(fg)(z) = g(f(x)) for all f,g € P(X) and z € X), and an element of P(X) is
called a function on X. Because X is usually some fixed “global domain”, we use
the name domain of f (written dom(f)) to denote the subset of points at which f
is actually defined. The identity map 1x on X is the total function on X that fixes
every x € X, and the null map Ox is the function on X with empty domain; they are
respectively identity and zero elements in the semigroup P(X). The subscript X
will be omitted where the choice is clear. A transformation on X is an everywhere-
defined function in P(X) (that is, having domain all of X); the set of all such is
T(X), a submonoid of P(X). Transformations are also known as total functions.

A predicate on X is an everywhere-defined function X — {7, F}; the set of
all such is 2%, a Boolean algebra under the usual logical connectives. Denote by
I(X) the monoid of restrictions of the identity function under composition; it is
isomorphic to the semilattice (2%, N).

Key words and phrases. computable partial functions, algebraic models of computation, de-
terministic programs, domain, restriction semigroup, if-then-else.

The first author was supported by ARC Future Fellowship FT120100666 and ARC Discovery
Project DP1094578.

https://core.ac.uk/display/29202862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://de.arxiv.org/abs/1408.4498v1

2 MARCEL JACKSON AND TIM STOKES

1.2. Computable functions. Many authors have investigated algebraic founda-
tions for facets of the theory of computer programs: amongst others we have in
mind are sum-ordered (partial) semirings (Manes and Benson [29]), dynamic alge-
bras (Pratt and others, see [34]), Kleene algebras with tests (KAT) (Kozen [25]),
Kleene algebra with domain (KAD; Desharnais, Moller and Struth [9]; see also
Hirsch and Mikulds [I8] and Desharnais, Jipsen and Struth [§]), modal semirings
(Moller and Struth [32]), refinement algebras (von Wright [40]), correctness algebras
(Guttmann [16]), as well as the authors’ own contributions such as modal restric-
tion semigroups [22]. Approaches based on the full Tarski algebra of relations are
detailed in Maddux [27].

These algebraic approaches have substantial connections with classical program
logics, such as Hoare logic and various propositional dynamic logics, enabling
straightforward algebraic equational reasoning to supplant the conventional logi-
cal approach. Indeed, with the exception of KAT (which does not allow for domain
information), the algebraic systems mentioned are designed to interpret at least
the modal logic part of dynamic logic. However the family of computable (that
is, partial recursive) functions on a set X is not typically a model of any of these
algebraic systems.

First, in all but the case of modal restriction semigroups, these algebraic systems
allow for union and usually reflexive transitive closure, reflecting the expressiveness
of the associated logical systems. This effectively forces a relational semantics rather
than a functional one. However, if one sticks to the basic if-then-else and while-do
constructs, there is no need to use a relational semantics: partial functions suffice.

Additionally, many of these systems admit a notion of domain complementation,
which is not compatible with the computability assumption. More specifically, in
dynamic logic, the proposition [f]false (“necessarily false” as determined by f as a
modal relation) holds exactly on the points at which the program f fails to halt, and
in general this is clearly not computable. Moreover, in the algebraic formulations
mentioned (as well as in dynamic logic itself), these propositions may themselves
then become test conditions within other programs. Thus constructions such as
“while program f does not halt do program ¢g” can be expressed, and indeed give
rise to their own nonhalting proposition and so on.

Test conditions arising in actual programs are typically Boolean combinations
of basic tests, and certainly not statements on halting conditions. The goal of the
present article is to present algebraic systems that are rich enough to express stan-
dard deterministic programming connectives, such as if-then-else, as well as tests
for equality and non-equality of variable values, yet does not permit the leaching of
statements on halting into the test type. The set of all partial recursive functions
on N will provide a model, in contrast to the more common approach in which bi-
nary relations model programs. (There are of course other approaches to program
algebra, such as predicate transformer semantics, but these work at a lower level in
which assignments are modelled for example.)

The main results consist of finite axiomatisations for these systems, which we are
able to show are complete (for the full first order theory, not just the equational frag-
ment) with respect to suitable functional semantics. Operations modelling looping
are also considered, but for these we are unable to obtain finite axiomatizations, in-
stead making do with axioms at least guaranteeing that certain desirable properties
are satisfied, including completeness for finite (and even periodic) algebras.

MONOIDS WITH TESTS 3

The basic approach shares features of both the KAT approach of [25] and the
modal restriction semigroups with preferential join approach of [22]. Our algebraic
systems consist of a semigroup of functions with an embedded sort B of “tests”,
which will form a Boolean algebra in which the meet operation is just the underlying
multiplication of the semigroup (so that the tests will form a subsemilattice: an
idempotent and commutative subsemigroup), and with a Boolean complementation
operation (which is not defined outside of the test sort).

So far this is identical to the union- and star-free fragment of the algebraic
systems considered in KAT. However, we also consider unary operations modelling
domain (as in KAD, or modal restriction semigroups and its predecessors [19]) as
well as various equality test, if-then-else and while-do constructions. All elements of
the test sort B are fixed by domain, but in general domain elements form a strictly
larger subsemilattice than B. This reflects the fact that for us, tests are to be viewed
as conditions in programs (and indeed as special types of programs themselves)
rather than as assertions: we have no need to generate weakest preconditions for
example, hence no need to view general domain elements as tests, and indeed no
need for domain complement (antidomain) at all.

Another significant difference with KAT and KAD is that we use partial functions
as our semantics of programs rather than binary relations. This relates to the fact
that we seek to model programs themselves rather than assertions about programs:
we have no need of union or Kleene closure, which feature in dynamic logic for
example, so we do not need binary relations either. (Binary relations are of course
closed under both operations, while partial functions are closed under neither.)

The computable functions on a set X will form a model of each of the systems
we consider, with B modelling a Boolean algebra of identity maps with recursive
domains, and with general domain elements corresponding to the identity map on
recursively enumerable subsets of X (which are exactly the domains of computable
functions).

For the remainder of this section we further motivate and then carefully define
the additional operations used to model if-then-else and other constructions.

1.3. Extending if-then-else. Operations modelling the if-then-else command of
imperative programming languages have been modelled algebraically by a number
of authors. The idea is to model programs as functions X — Y, (or even binary
relations in X x Y, though we do not consider these here), and then to define, for
any f,g € P(X,Y), and any predicate a € 2%,

f(z) if z satisfies o,

(1)

for all x € X. Then «[f,g] € P(X,Y) equals f(z) when a(x) is true, and is g(z)
otherwise. Of course this operation is motivated by the if-then-else connective of
computer programs.

The case in which Y = X is the one of chief interest to us here, although the
more general setting saw much early work; see McCarthy [30], Bergman [4], Manes
[28], as well as the related work of Bloom and Tindell [6], Meklar and Nelson [31],
and Guessarian and Meseguer [14].

Approaches based on a relational semantics for programs, but in which Y = X
so that composition is available as an operation, often make use of test semirings;
see [25], which may be viewed as “Kleene algebras with tests” that lack the Kleene

o (if a then f else g)(z) = alf, g](x) := {

g(x) otherwise,

4 MARCEL JACKSON AND TIM STOKES

closure operation. They model composition and union of programs (themselves
modelled as binary relations on some space), each equipped with a sub-Boolean
algebra of “tests” (which are viewed as programs induced by Boolean tests that fix
every element of their domains). Then for programs f, g and a test «, it is possible
to write

e alfgl=afudy, (2)

where o is the “complement” of the test a.

In [21], a functional semantics for halting programs was considered, where struc-
tures (S, B) of the following form featured: S is a semigroup of functions on some
set X (a subsemigroup of P(X)), B is some Boolean algebra of predicates on X (a
subalgebra of 2%), and S is also closed under the if-then-else operations associated
with the elements of B. Based on an idea developed for [23], it was shown that the
class of such two-sorted algebras was not finitely axiomatizable, but that adding the
following two-sorted operation to the signature gives finitely axiomatized structures
in the case of transformations (total functions): - : S x B — B such that s- « is the
functional composite of s, a. This mixed operation is well-motivated since it gives
rise to a “computable condition”: is « true after s is executed? This composite
s - « is analogous to the “Piercean operator” of Boolean modules, in the sense of
Brink [5]. A complete axiomatization in terms of finitely many equations is given
n [2I]. Also axiomatized is the predicate of equality of transformations.

The signature used in [21] to yield a finite axiomatization for transformations
cannot be used for partial functions, because the function-predicate composition
operation - : S X B — B is not defined: s -« will not be a predicate. However,
it will be a partial or “possibly non-halting” predicate. As mentioned, such “non-
halting tests” are considered by Manes in [28]. This suggests the possibility of
generalising the algebra of tests to admit the possibility that they do not halt, as
n [28], where the Boolean algebra is replaced by a “C-algebra” in which a third
alternative “does not halt” is added to “true” and “false”.

However, we show here that in a setting in which composition is present, it is not
necessary to introduce non-halting tests as separate entities: instead we retain only
Boolean conditions, modelling elementary tests, and we generalise the if-then-else
operations themselves, by defining the mixed quaternary operation S x B x.Sx S —
S of extended if-then-else, given by:

3)

_)g(x) if f(z) satisfies a,
o (f, a)[g7h]($) = {h(x) if f(z) satisfies o/,

for all f,g,h € S and a € B. Note that if « is outside of the domain of f (that is, f
does not halt when executed at x), then the test (f, a)[g, h] is also undefined. For
transformations (where f is defined everywhere), this yields (f - a)[g, h] as in [21].
In the present article we will obtain a finite axiomatization of the resulting algebras,
which properly generalises the axiomatizations provided in [2I]. Our approach is
based on first axiomatizing restriction semigroups equipped with a sub-Boolean
algebra of “tests elements”.

Also considered in [2]] is a predicate-valued operation of transformation equality,
x:8 xS — B, with (f xg)(x) true if and only if f(z) = g(z) and false otherwise.
Again, for partial functions the operation will not give a predicate in general since
it is undefined at = € X if either function is undefined at x. In the present article,

MONOIDS WITH TESTS 5

we are still able to axiomatize the quaternary operation $* — S, which we call
weak comparison, given by

hx) if fz) = g(x),
k(z) if fz) # g(x).

Note that for f(x) # g(x) to be true, we require that both f and g are defined at
x, but return different values: if one or both of f and g are undefined at x, then
so is (f = g)[h,k]. For transformations (where f and g are always defined), this
coincides with (f x g)[h, k] considered in [2I]. We axiomatize weak comparison in
monoids of functions with zero, both in the presence of the extended if-then-else
operations just defined but also on its own, along the way axiomatizing some less
rich (hence more general) structures.

From this point, it is possible to define “non-halting conditions” in terms of the
new quaternary operations, and then to define logical connectives on them, giving
a C-algebra as in [28] into which the given Boolean algebra B embeds. These
induced connectives are natural in the setting of actual programming languages, as
is discussed at length in [28].

o (f=9)hkl(z):= { (4)

¢

1.4. Looping, skip, abort and tests. To model looping using halting conditions,
given f € P(X) and a € 2%, we define (o : f) = (while a do f) to be, for any
re X,

(@) if f™(z) satisfies o for all 0 < m < n but
o (a:f)(x):= f™(x) does not,
undefined if f™(z) satisfies « for all n > 0,

(5)

where we deine f(x) =z for all x € X. So (a : f) acts by repeatedly iterating f
until the result no longer satisfies «; if it always does, the loop does not halt and
there is no output.

We do not consider while-do in detail here, although it is the natural source of
non-halting. Moreover, the functions 1 (the identity) and 0 (the empty function)
are easily motivated in terms of the programs skip and abort respectively, which for
example arise as (while false do P) for any program P, and (while true do skip),
respectively.

The presence of if-then-else, skip and abort now forces a copy of the conditions
in B into the program type P, via the correspondences:

a <+ afl,0], o < al0,1].

In this way, each condition @ € B is manifest as a function which is a restriction
of the identity 1x to the truth set of «, which we call a test. It is easy to see
that conjunction of conditions arises as composition of their corresponding tests,
and it only remains to view complementation as an operation on restrictions of the
identity, an operation we call test complement.

This embedding is not possible in the case of halting programs considered in [21],
where only everywhere-defined transformations are considered, although it is stan-
dard in the test semiring approaches of Kozen and others. These approaches involve
use of the “Kleene closure” or “asterate” operation (modelling reflexive transitive
closure of binary relations) to model iteration. Objects called ‘Kleene algebras with

6 MARCEL JACKSON AND TIM STOKES

tests” are used—these are Kleene algebras which are simultaneously test semirings;
see [25] for example. In these, one may define

(a:f) = (af) .

When applied to the Kleene algebra with tests of binary relations on a set, this
formula agrees with ours if f is a function.

1.5. Extended while-do. We may extend while-do in the same way we have ex-
tended if-then-else. By direct analogy, we define extended while-do on P(X) as
follows: given f,g € P(X) and a € 2%, we define, for any » € X,

" (z) if f(g™(x)) satisfies a for all0 < m < n
o ((f,a):9)(z):= g but f(¢g™(z)) does not, (6)
undefined if f(¢g"(z)) satisfies « for all n > 0.

This says “keep applying g as long as the result satisfies @ when f is applied to it”.
So if f = 1, we recover (« : g). Note that (1, a)[b,c] equals the usual if-then-else
operation a[b, c] as defined previously. It would be possible to define a form of
extended while-do that makes reference to the equality predicate, but we do not
pursue this here.

1.6. Domain. In P(X), the derived unary operation D : S — S is a very natural
one. For partial functions in P(X), its formal definition is as follows:

o D(f):={(z,z)]| (z,y) € f for some y € X}, (7)

the restriction of the identity function to the domain of f. In extended if-then-else
algebras, it is given by D(f) = (f, 1)[1, 1]. Conversely, for functions we have that

o (f,a)lg,h] = D(fa)g U D(fa')h. (8)

Note also that D(f) = (f = f)[1,0], so domain is again a derived operation in the
presence of weak comparison. Domain is also natural in the setting of the dynamic
algebras of [33], and the domain semirings and Kleene algebras with domain as
in [9], and the modal semirings of [32]. In most of this work, which has a relational
semantics for programs, domain complement is an allowable construct (although
this is not the case in [§] for example, where one has a distributive lattice of tests).
Our approach will be to first axiomatize domain (but not domain complement)
in the presence of tests, then to add axioms for extended if-then-else and weak
comparison.

The domain operation D has been considered by many authors in the setting
of both partial transformations and binary relations. In the functional case, the
associated class of unary semigroups has a finite axiomatization (given below), and
is now often called the class of (left) restriction semigroups. The D operation
was considered by Trokhimenko [39], who axiomatized a multiplace version in the
functional case; the same characterization (at least for single place functions) can
be obtained by adapting the earlier work of Schweizer and Sklar [37], and has
been rediscovered in various guises by subsequent authors, including the present
authors [I9] (where they arise as twisted left closure semigroups) and Manes [2§]
(where they arise as guarded semigroups). Restriction semigroups are closely related
to weakly right ample semigroups (see [I2] and Fountain [II] for example). See
also [7], where a category theoretic version is considered, and [13], where Gould
and Hollings present a variant of the ESN theorem of inverse semigroup theory [26]

MONOIDS WITH TESTS 7

applying to left restriction semigroups. (These last two sources use the “restriction”
epithet we use here, which is becoming standard in the literature.)

Restriction semigroups in which there is a notion of complementation of domain
elements are considered in [22]. As already discussed, domain complement is not
in general a computable function and so is not in the signature of the algebras
considered here. However, the main results in [22] may be considered consequences
of results in the current article, applying to the case in which the set of test elements
coincides with the image of D (every domain element is a test), a point to which
we return below.

The operations of composition and domain for binary relations on a set are con-
sidered by Moller and Struth in [32], in the setting of modal semirings, where an
operation modelling relational union is also present. Such algebras are test semir-
ings and so permit expression of if-then-else. Kleene algebras with tests also possess
a Kleene (reflexive transitive) closure unary operation (for modelling program it-
eration). These systems have finite axiomatisations that are complete with respect
to equational properties (holding in the relational semantics), but not with respect
to wider properties. With reflexive transitive closure, an incompleteness theorem
is known: the quasi-equational theory of relational models is ITi-complete (Hardin
and Kozen [IT]) and so no recursive axiomatisation can exist. Even without the
reflexive transitive closure operation, these systems are very unlikely to have finite
complete axiomatisations (with respect to relational semantics); see [I 2] [3].

2. AXIOMATIZATIONS

2.1. Axioms for extended if-then-else. As discussed, we might as well assume
from the beginning that the unary operation D is present in our signature, since it
is expressible in terms of both extended if-then-else and weak comparison, and has
in any case formed the basis of various algebraic approaches based on a relational
semantics. In fact, extended if-then-else may be completely specified in the presence
of D by the following laws:

e D(sa)((s,a)[t,u]) = D(sa)t (9)
o D(sd)((s,a)[t,u]) = D(sa/)u (10)
e D((s,a)[t,u]) < D(s) (11)

That is, if an algebra is isomorphic to an algebra in P(X) under composition and
D and with its Boolean algebra of tests correctly represented as well, and if has
a quaternary operation satisfying the above, that quaternary operation must be
extended if-then-else. To see this, first notice that these two laws hold for extended
if-then-else. The first asserts that if one restricts (s, a)[t,u] to values z € X for
which s(z) € «, the result is the same as if ¢ is so restricted. The second asserts the
analogous fact for the case of restricting to = for which s(z) is not in . The third
asserts that the domain of (s, a)[t, u] is no bigger than that of s. All of these laws
certainly hold for extended if-then-else. Conversely however, only one function
satisfies these three conditions: if v is a function satisfying D(sa) - v = D(sa)t,
D(sa/) - v = D(s&/)u and D(v) < D(s), this guarantees that v is nothing but
(s,)[t,u]. The reason is that the first two equations specify v on D(s) (to agree
with either ¢ or u), and the third says that it is not defined elsewhere, and precisely
one function satisfies these constraints.

8 MARCEL JACKSON AND TIM STOKES

So it only remains to correctly axiomatize restriction semigroups of functions
having a distinguished Boolean algebra of tests B:— addition of the above laws for
extended if-then-else will then correctly axiomatize the richer structures.

Notation 2.1. We use the symbols e, f, g, h (sometimes with numerical subscripts)
to denote generic domain elements: elements of the form D(z) for some x. Generic
elements from the test sort B will typically be a special kind of domain element,
and we use lower case Greek letters «, 8,6 (sometimes with subscripts) for these.

Let (S, B) be such that S is a monoid with zero, having B as a commutative,
idempotent submonoid with zero that is equipped with a complementation oper-
ation making it a Boolean algebra (with the semigroup multiplication treated as
Boolean meet so that the bottom element is 0 and the top element is 1). Then we
say (S, B) is a monoid with tests. A submonoid with tests (S1, By) of the monoid
with tests (S, B) has S; as a submonoid with zero of S, and B as a sub-Boolean
algebra of B; so (S1, By) is itself a monoid with tests. Note that in this definition
there is no requirement that elements of S1\B; must lie in S\B. Let I(X) denote
the subset of P(X) consisting of all restrictions of the identity map. This is a
Boolean algebra with respect to the meet operation of composition (which agrees
with intersection) and an obvious Boolean complementation: taking o € I(X) to
the identity on the complement of the domain of a. Then (P(X), (X)) is a monoid
with tests and hence so is any submonoid with tests; we call any such functional.

Remark 2.2. An embedding of a monoid with tests (S, B) into (P(X),1(X)) will
be a semigroup embedding ¢ of the semigroup S into P(X) (with respect to composi-
tion of functions) such that the identity of S is mapped by ¢ to the identity function
of P(X), and such that ¢(B) C I(X), with ¢(a’) = ¢(a)’. This is equivalent to
(S, B) being isomorphic to a submonoid with tests under our definition (namely,
the monoid ¢(S) with tests from the Boolean subalgebra ¢p(B) of 1(X)).

Suppose that the monoid with tests (S, B) is such that S is equipped with a
unary operation D which satisfies, for all s,t,u € S and «, 3 € B:

e D(s)s=s (12)
e D(st) = D(s)D(st) (13)
e D(s)D(t) = D(t)D(s) (14)
e D(D(s)) = D(s) (15)
e sD(t) = D(st)s (16)
e D(a)=a (17)
e D(sB)t=D(sp)u & D(sB')t =D(sB)u = D(s)t = D(s)u. (18)

Then we call (S, B) a restriction monoid with tests. In terms of programs, these
equations are mostly obviously satisfied: for example, the first says that first apply-
ing the program which acts like skip whenever s halts and does not halt otherwise,
followed by s, gives the same as applying s itself: the two programs halt for the
same inputs and give the same answers in such cases. Law (8] is not obvious, but
reflects a general property of partial functions not shared by relations. The final
one results from the fact that for a given (everywhere-defined) test 3, the result of
a computation that halts must satisfy either 3 or its complement.

MONOIDS WITH TESTS 9

The abstract class of unary semigroups satisfying only (I2]) to (I8) is the class
of restriction semigroups. Note that if B = {0,1}, then laws (1) and (I8) are
trivially satisfied and so contribute nothing; so restriction monoids with tests are
generalisations of restriction monoids with zero.

In [19], other useful laws are shown to follow: for example D(st) = D(sD(t)), as
well as D(s)? = D(s) and D(D(s)D(t)) = D(s)D(t), these two implying that the
subset

D(S)={ec S| D(e)=e} ={D(s) | s S}

is a subsemigroup of S which is a semilattice, the elements of which model restric-
tions of the identity function. We view D(S) as a partially ordered set by defining
e < f if e = ef, which allows viewing multiplication in D(S) as meet.

We also view S itself as partially ordered, under its natural order given by s <
t & s = D(s)t. Note that any function semigroup is fundamentally ordered in the
sense of Schein [35] (see page 38). For functions, f < g if and ouly if f C ¢g when
viewed as graphs (sets of ordered pairs). An important property of the fundamental
order is that it is stable:

o 51 < 11,50 <9 = 5152 < Pt (19)

The fundamental order is expressible in the language of restriction semigroups, via
the natural order, and so (I9) will hold automatically.

Note that (P(X), (X)) is a restriction monoid with tests, and hence so is any
submonoid with tests which is closed under D; we call any such functional. The
comments in Remark apply with obvious modification.

In the proofs to follow, we give many results in the “test-free” restriction semi-
group setting first, if it is possible to do so with no additional effort. For S a
restriction semigroup, let F' C D(S) be a filter (closed under multiplication and
such that e € D(S) and e = ef implies f € F).

Lemma 2.3. Let S be a restriction semigroup, with F' a proper filter of D(S) and
h e D(S)\F. Then

Fo={f € D(S)[f>gh,g € F}
is a filter of D(S) containing h and hence properly containing F.

Proof. Clearly F;, contains both h and F. If f; > g1h, fo > g2h where g1,92 € F,
then fifo > gh where g = g1g2 € I, while if f > f; then f > g1h also. So Fj, is a
filter. O

Let S be a restriction semigroup. Suppose a,b € S are such that a £ b. We say
the filter F' of D(S) is (a,b)-separating if (i) D(a) € F, and (ii) there is no e € F'
for which ea = eb.

The filter of D(S) generated by D(a) (consisting of all e € D(S) for which
D(a) < e) of course contains D(a). Suppose it contains e € D(S) for which ea = eb.
Then a = D(a)a = D(a)ea = D(a)eb = D(a)b, and so a < b, a contradiction. So
no such e € D(S) exists. So the ordered set of (a,b)-separating filters in D(S) is
non-empty.

For a,b € S with a £ b, the filter F' is mazimally (a,b)-separating if it is maximal
amongst all (a, b)-separating filters in D(S). Any chain of (a, b)-separating filters in
D(S) is contained in its union, itself an (a, b)-separating filter, and Zorn’s Lemma
then gives us the following.

10 MARCEL JACKSON AND TIM STOKES

Lemma 2.4. Let S be a a restriction semigroup, with a,b € S satisfying a £ b.
Then there is a maximally (a,b)-separating filter in D(S).

We use a “determinative pairs” approach; the reader is referred to [36] for a
detailed introduction to this representation technique, though the current presen-
tation is self contained aside from very routine details. The determinative pairs
technique requires the construction of a right congruence € of S (that is, an equiva-
lence relation on S that is stable under multiplication on the right) having a block
that is a right ideal (that is, is fixed under multiplication on the right). Our con-
struction of € will be determined by the restriction semigroup structure. We use
the same definition throughout.

Definition 2.5. Let S be a restriction semigroup, and F a proper filter of D(S).
Define Wp = {a € S| D(a) € F}, a right ideal of S. Define a binary relation ep
on S by setting

a€p b ea=ceb for someec F.

It is routine to verify that ep is a right congruence on S: for all a,b,c € S, a €p b
implies ac ep be. Moreover, S\Wp is a union of ep-classes since if © ¢ Wp and
(x,y) € €p, then ex = ey for some e € F, so D(y) > eD(y) = D(ey) = D(ex) =
eD(xz) € F, soy & W also. Hence e together with Wg constitute a determinative
pair in the sense of Schein [36].

Let Sp = (S\{Wr})/er. Now for any s € S, define /I’ € P(SF) by setting

¢ (%) =75 for all € Sp for which zs ¢ W,

and undefined otherwise, where we are writing for the ep-class containing = €
S\Wg. The general theory of determinative pairs implies that 1" is well-defined,
and that the mapping

Or : S — P(Sr), given by 0p(s) = ¢ forall s € S

is a semigroup homomorphism mapping any identity element to the identity func-
tion and any zero element to the empty function.

Thinking in terms of programs, two programs are equivalent “modulo the filter
F” essentially says that the programs act identically on some “large”’ subset of the
state space (in a sense determined by the filter F') on which both are assumed to
act. A program is in Wy if its domain is not such a large subset: it does not even
halt on a large subset.

We now let Sy be the union |JSr over all maximally (a,b)-separating filters F
of D(9), ranging over all a,b for which a £ b. Define

0: S — P(Sp) to be| JOp,

the union of the various 8 as F ranges over all maximally (a, b)-separating filters
of D(S). It follows that § = |J@F is also a semigroup homomorphism since all
compositions in P(|J Sr) are calculated independently on each Sp.

The next result implies that every restriction semigroup is functional, which is
well-known and which can be proved using a much simpler representation technique.
But in order to represent tests and other operations correctly, the approach used
here proves necessary.

Lemma 2.6. The mapping 0 just defined is a restriction semigroup embedding.

MONOIDS WITH TESTS 11

Proof. Fix a maximally (a,b)-separating filter F' and define 8 as above. Note
that 1/Jg(a) (z) = zD(a), which is defined if and only if D(zD(a)) = D(za) € F,
which is the same as saying that ¢! (Z) is defined. But then since D(za)xrD(a) =
D(xzD(a))xD(a) = zD(a) = D(za)x with D(za) € F, it follows that xD(a) = Z,
and so ¢g(a)(55) = 2D(a) = Z. So wg(a) is indeed represented by 6p as the
restriction of the identity function to the domain of ¥!":- 0r(D(a)) = D(0F(a)).
So fF is a restriction semigroup homomorphism. It follows that § = |J0F is a
restriction semigroup homomorphism since, like composition, D on P(|JSF) is
calculated independently on each Sp. It remains to show that 6 is injective.
Suppose a £ b. If F is a maximally (a,b)-separating filter, then using that F' to
define the ¢ we see that ¢)F(D(a)) = D(a)a = a is defined since D(a) € F. If
D(b) € F, then also ¢} (D(a)) = D(a)b is defined since D(D(a)b) = D(a)D(b) € F,
but @ # D(a)b since if it was, then there would be e € F' for which eD(a)a = ea =
eD(a)b, and eD(a) € F, contradicting the fact that there is no e € F' for which

ea = eb. If D(b) ¢ F, then ¢/ (D(a)) = D(a)b is not even defined. In either case,
it must be that ¥ Z L. So 0(a) Z 6(b). O

Theorem 2.7. FEvery restriction monoid with tests is isomorphic to a functional
one.

Proof. Now assume S is a restriction monoid with tests in the above construction.
It remains to show that 6 correctly represents complementation on B (noting that
meet is already represented since B C D(S)).

Now for a € B, first note that (¢ o L) (z) is undefined since xa/a = 0 and
D(0) € F, so ©F, is the restriction of the identity function to at least some subset
of the complement of the domain of %

Conversely, suppose for contradiction that Z € Sp is in the domain of neither 1%
nor ¥F,. So D(z) € F but D(za) € F and D(za’) € F. For any h € D(S)\F, F, as
in Lemma[23]is a filter of D(S) which properly contains F. So there is f € F}, such
that fa = fb (since F}, obviously contains D(a) and F is already maximally (a,b)-
separating). So letting h = D(za), D(za’) in turn, we see there are f; > g1 D(za)
and fy > goD(xa/) (for some g1,ge € F) such that fia = f1b and foa = fob. Then,
setting g = gi1g2 € F, we see that D(gra)a = gD(za)a = gD(za)b = D(gra)b
and similarly that D(gza’)a = D(gza’)b. Then law ([I8)) gives D(gx)a = D(gx)b.
However, D(gz) = gD(x) € F because both g and D(z) lie in F. This contradicts
the choice of F as an (a, b)-separating filter. So the union of the domains of %
and 1/15, is all of Sg, as required. (I

An extended if-then-else monoid is a restriction monoid with tests (S, B) having
extended if-then-else operation S x B x S x S — S satisfying the laws (@), (I0) and
(I above. (P(X),I(X)) is an example, as is any subalgebra of it; we call these
functional.

Corollary 2.8. Fvery extended if-then-else monoid is up to isomorphism func-
tional.

Proof. From Theorem 2.7, the restriction monoid with tests reduct of any extended
if-then-else monoid is functional. But the laws (@), (I0) and (1) completely spec-
ify extended if-then-else in functional restriction monoids with tests, as discussed
earlier. O

12 MARCEL JACKSON AND TIM STOKES

It follows easily that the law D(s) = (s,1)[1,1] holds in all extended if-then-else
monoids (since this holds in all functional examples), and so D can be entirely elim-
inated from the signature and hence the axioms for extended if-then-else monoids.
It is also worth noting that the quasi-equational axiom for restriction monoids with
tests may be replaced by two equations.

Proposition 2.9. In an extended if-then-else monoid, aziom (I8) is equivalent to
the following equational laws:

o D(s)t=(s,a)t,t], (20)
o (s,a)t,u] = (s,a)[D(sa)t, D(sa)ul. (21)
Proof. If D(sB)t = D(sf)u, then
D(s)t = (s,P)[t,t]

(s, 8)[D(sB)t, D(sp)1]
= (s,8)[D(sB)u, D(sB)u],
which by symmetry is D(s)u. The converse follows from the fact that the above
laws all hold in functional cases. O

Many further laws now follow easily, for example
S (’U, O[)[t, u] = (va O[)[St, Su]a

the v = 1 case of which is one of the defining laws for the B-semigroups considered
in [21].

Without the introduction of extended if-then-else, the law (I8)) is inherently im-
plicational: it cannot be replaced by one or more equational axioms. We postpone
the proof of this claim until the next section (see Example 2.1H).

2.2. Axioms for intersection. If s,t € P(X), their intersection sNt is in P(X)
too. In terms of programs, if s,t are computable, it is clear that so is s N¢: for
any input at which both s,t halt, one can create a program that gives the common
answer provided by both if they agree and does not halt otherwise. In terms of
weak comparison, s x ¢t := (s = t)[1,0] is the restriction of the identity to those
x € X for which s(x),t(z) are both defined and agree, so s *t = D(sNt), and
sNt = (sx*t)s. Moreover D(s) = s *s. We first axiomatize x (equivalently
intersection) in functional monoids with tests.

Semigroups of functions equipped with both D and N were characterized in-
dependently in both [I0] and [20]. In the latter case, the operation * was used
throughout; here are the laws in terms of it.

o (sxs)s=s (

o sxt=txs (23

o (sxt)s=(sxt)t (

o (uxv)sxt=(sxt)(ux*v) (

o wu(sxt) = (us*ut)u (26
Any semigroup with a binary operation * satisfying these laws is called twisted
agreeable in [20]. It is straightforward to show directly (and in any case it follows

from the axioms) that setting D(s) := s % s makes a twisted agreeable semigroup
into a restriction semigroup (in which st = D(s % t)).

MONOIDS WITH TESTS 13

The following is Theorem 5.1 of [20], noting also that the “normality” condition
considered there is easily seen to be satisfied in the twisted agreeable case.

Lemma 2.10. In a twisted agreeable semigroup S, for all x,y € S, x *y is the
largest e € D(S) such that e < D(x)D(y) and ex = ey.

This allows us to prove the following lemma (where ep and Wy are defined in
Definition 2.5]).

Lemma 2.11. Suppose S is a twisted agreeable semigroup (hence an enriched re-
striction semigroup with D(s) := sx s for all s € S). For any filter F' of D(S) and
x,y €S, it is the case that v,y € S\Wr and (x,y) € er if and only if x xy € F.

Proof. If x,y € S\Wr and (z,y) € e then D(z), D(y) € F, and ax = ay for some
a € F,sof =aD(x)D(y) € F satisfies Sz = fy. But 8 < D(x)D(y), so 8 < z xy,
and so xxy € F.

Conversely, if x xy € F, then D(z),D(y) € F, and so z,y € S\Wp, and since
(z xy)x = (x *y)y, we have (z,y) € €. O

Lemma 2.12. If S is a twisted agreeable semigroup, the mapping 6 correctly rep-
resents *.

Proof. For each filter F', we shall show that ¢, = oI xF". Of course this implies
that both sides are restrictions of the identity (since a x b = D(a * b) and D is
correctly represented by Lemma 26]), so it is only necessary to show that their

domains are equal.
Now for x € S\Wg, & € dom(yL,,) if and only if

axb
(xa * xb) = (D(x)za x xb) = (xa * 2b)D(x) = D((za x xb)x) = D(x(a xb)) € F,

which by the previous lemma is equivalent to za,zb € S\Wr and Ta = xb, or in
other words, ¥ (z) = [(z), as required. O

We want to get tests into the picture. We call a monoid with tests (S, B) which
is also a twisted agreeable semigroup in which B C D(S) a twisted agreeable monoid
with tests. As usual, (P(X),I(X)) is an example, as is any subalgebra of it; we call
such examples functional.

In the presence of *, the additional quasi-equation for D may be replaced by
an apparently less burdensome one involving only domain elements (recall Nota-

tion 21]).
Proposition 2.13. In twisted agreeable monoids with tests, law ([I8) is equivalent
to the following law:
o D(sB)<e D(sB)<e= D(s)<e. (27)

Proof. Suppose ([27)) holds but not necessarily (I8]). Suppose b, c € S are such that
D(af)b = D(apf)c and D(af')b = D(af’)c. Then also,

D(aB)D(B)D(c)b = D(aB)D(b)D(c)e
and

D(af8")D(b)D(c)b = D(af')D(b)D(c)c,
and so

D(aB)D(b)D(c) < bxc, D(aB)D(b)D(c) <bxc,

14 MARCEL JACKSON AND TIM STOKES

S0
D(D(b)D(c)af) < bxc, D(D(b)D(c)ap’) < bxc,
so D(D(b)D(c)a) < bxc (by 1)), giving D(a)D(b)D(c) < bx*c.
But also, D(D(af)b) = D(D(aB)c), so D(af)D(b) = D(aB)D(c), and simi-
larly D(a8)D(b) = D(a#)D(c). so D(@)D(b) = D(a)D(e). and s0 D(a)D(b) =
D(a)D(c) = D(a)D(b)D(c). Hence

D(a)b = D(a)D(b)b = D(a)D(b)D(c)b = D(a)D(b)D(c)(b * c)b,
which by symmetry and the fact that (bxc)b = (bx*c)cis D(a)c also. So (I8)) holds.
For the converse, if (I8) holds and D(sf) < e and D(sf’) < e then D(sf)e =
D(sB)1 and D(sp')e = D(sf’)1, so D(s)e = D(s)1, that is, D(s) < e, so [27)
holds.

From Lemma [2.12] and earlier results we immediately obtain the following.

Corollary 2.14. Fvery twisted agreeable monoid with tests is isomorphic to a
functional one.

We now demonstrate that no system of equational axioms can replace law (I8) in
either the definition of twisted agreeable monoids with tests, or restriction monoids
with tests. The arguments are slightly complicated by the fact that the systems we
are considering are two-sorted, with the test sort embedded as a subset of the other
elements. Nevertheless it is clear that equational properties (where some variables
may be pre-specified to take values in the test sort) will be preserved under taking a
suitable notion of quotient, namely one where the test sort in the quotient consists
of classes all of whose elements are congruent to a test element of A. We present a
quotient of a twisted agreeable monoid with tests that fails the implication (IJ]).

Example 2.15. The following system of partial maps on the set {0,1,2,...,6,7}
forms a twisted agreeable monoid with tests, but has a quotient that fails law (IJ]),
so is not representable even as a restriction monoid with tests.

e The empty map & and the identity map id.

e The map s with domain {0,1,2,3} defined by x — x + 4.

e The test 8 on the set {0,1,2,3,4,5} and its complement test 8’ on {6,7}.
As partial maps, these are restrictions of the identity map to their sets of
definition.

The function D(s), the identity on restricted domain {0,1,2,3}.

The functions s and sf', with domains {0,1} and {2, 3} respectively.

A restriction of the identity e, on the set {0,1,2}.

The restrictions of the identity corresponding to D(s8), with domain {0,1}
and D(sf'), with domain {2,3}. We denote D(sf3) by g and D(sB') by f.
The product of ef is the restriction of the identity to the set {2}.

o The function efs, with domain 2 and 2 — 6.

Proof. That the described functions determine a functional twisted agreeable monoid
with tests is routine: the system is closed under composition, domain and intersec-
tions of functions. The tests are {&, 8, #’,id}, and the domain elements are these
along with {e,f, g, ef}.

Now consider the equivalence relation # identifying ef with f and efs with fs,
and no other unequal pairs. We show that 6 is a congruence (no test elements
are identified with non-test elements, so the requirement specified above is trivially

MONOIDS WITH TESTS 15

satisfied). First observe that the unary operation D is preserved because D(efs) =
D(ef) = ef 0 f = D(f) = D(fs). Next we verify preservation of intersection.
Consider the nontrivial block {f, ef}, and observe that relative to the order induced
by A (or D), we have f > ef > 0 and that the downset of f is {f, ef,0}. Thus 6 could
only fail to be a congruence at this block if there was an x such that x Aef =0 and
x ANf e {f ef}. But no such x exists, because any element with z A ef = 0 either
fixes no points, or has domain omitting both 2 and 3. The argument for the block
{fs, efs} is almost identical.

To complete the verification that 6 is a congruence, we now apply a similar
argument for composition. Let x be any element of our model, and observe (by
consulting the list of elements) that if af # xef then of = f and xef = ef. Similarly
if zfs # wxefs, then zfs = fs and xefs = efs. Thus if the congruence property is
to fail, it must fail at a right translation by some x. However if fx # efz, then
either fz = f and efz = ef (when z € {f, D(s), 3,id}) or = € {s,s8’} and we have
frx = fs 0 efs = efzx (note that fsf’ = fs and efs3’ = efs). The argument that
fsz 0 efsx is very similar. Thus 6 is stable under D, A,-. Moreover, no non-test
elements are identified with test elements in B, so that the test sort of the quotient
is simply the set B/ (itself essentially identical to B).

However the quotient by 6, considered either as a restriction monoid with tests
or an agreeable monoid with tests, is not itself representable as functions because
the law ([I}) fails: D(sfB)e = D(sB) and D(sf')e =fe 6 f = D(sf’), but D(s)e = e,
which is not congruent to D(s). O

2.3. Axioms for weak comparison. Note that in P(X), (f # g) := (f = ¢)[0,1]
restricts the identity to where f, g disagree (but are both defined). On the other
hand, for functions f, g, h, k we may write

(f =g)h, k] = (fxg)h U (f # g)k.

We next axiomatize *,# in semigroups of functions and hence functional monoids
with tests, which easily leads to axioms for weak comparison itself.

Call a twisted agreeable semigroup on which there is a binary operation # sat-
isfying the laws below a disagreeable semigroup.

o D(s#t)=(s#1) (28)
o s(t#u)=(st#su)s (29)
o (sxt)(s#t)=0 (30)
o e(u#v)=(eu#ev) (31)
o (sxt)<e,(s#t)<e = D(s)D(t) <e (32)
It is routine to verify that (P(X), (X)) is an example (only law 29)) requiring

any real checking), as is any subalgebra, and we call these subalgebras functional
(see Remark [2.2]).

Lemma 2.16. If S is a twisted agreeable semigroup with a,b € S satisfying a £ b,
and F is a filter, the following are equivalent.

(1) F is mazimally (a,b)-separating.
(2) F is mazimal with respect to: D(a) € F but axb & F.

16 MARCEL JACKSON AND TIM STOKES

Proof. (=). If F is maximally (a,b)-separating, then obviously D(a) € F and
axb & F. Let the filter G properly contain F. Then there is e € G such that
ea =eb, and D(a) € G. So

D(b) > eD(b) = D(eb) = D(ea) = eD(a) € G,

and so D(b) € G; hence a b > eD(a)D(b) € G by Lemma Hence F' is also
maximal with respect to D(a) € F and axb & F.

(«<). Suppose F is maximal with respect to D(a) € F but axb € F. So any filter
properly containing it must contain D(a) and a * b, hence is not (a, b)-separating,
so F' is maximally (a, b)-separating. O

A twisted agreeable monoid with tests which is a disagreeable semigroup is a
disagreeable monoid with tests.

Theorem 2.17. Every disagreeable semigroup is functional.

Proof. Again, we want to show that each 6p represents # correctly, which means
showing that for a given F' which maximally separates a,b € S for which a £ b, we
have that (v # 1) = @[’f;&d for all e,d € S.

Again, both are restrictions of the identity (by law (28])), so we must show their
domains coincide. Now for z € dom(d)f#d), we have that 1/115;(1(3_:) = z(c # d),
where (zc # zd) = D((zc # zd)x) = D(z(c # d)) € F. On the other hand,
VF(z) # () says that T¢ # xd (but that D(zc), D(zd) € F). So by Lemma
211l we want to show that (zc* zd) € F if and only if (zc # zd) € F.

Now (xzc* xzd)(xc # xd) = 0 ¢ F, so not both can be in F. So (zc # zd) € F
implies (zc * xd) ¢ F. Conversely, suppose that (xc * zd) ¢ F, and to obtain
a contradiction, that (xc # xd) € F also. So Fycszqd as in Lemma properly
contains F, and so by Lemma 216 a*b € Fycszd, and so axb > (zexxd)gy for some
g1 € F. Similarly, since (z¢c # xd) ¢ F, we can conclude that a x b > (zc # zd)ga
for some go € F.

Letting g = gi1g2 € F, we have a x b > g(xc x xd) = (gze * gad) by ([25),
and similarly a * b > (gzc # gad) by @I, so by B2), a *xb > D(gzc)D(gxd) =
gD(zc)D(zd) € F since each of the three terms in the product is in F', and so
axb € F, so F fails to separate a,b, a contradiction. So (zc # xd) € F as
required. ([

Corollary 2.18. FEvery disagreeable monoid with tests is functional.

The following example demonstrates that without weak comparison, the impli-
cation ([B2) cannot be replaced by equational laws in the definition of a disagreeable
monoid with tests.

Example 2.19. Consider the following system of partial maps on the set {0,...,9}.
s, with domain {0,1,2,3,4} and x — x + 5.

t, with domain {0,1,2,3,4} and with0—5,1—7,2—6,3+—9,4— 8.
s At with domain {0} and 0 — 5.

D(s) = D(t), the identity on {0,1,2,3,4}.

f, the identity on {0}. Note that f = s*xt = D(s At).

g, the identity on {1,2,3,4}. Note that g = (s # t).

e, the restriction of the identity to {0,1,2}.

eg, the identity on {1,2}.

MONOIDS WITH TESTS 17

e es, et, fs, gs, gt, egs, egt. Note that fs =ft as f = sx*t.
e The two tests & and id.

These form a disagreeable monoid with tests, but there is a quotient failing law (32]).

Proof. Let 6 be the equivalence identifying the three nontrivial pairs (g, eg), (gs, egs)
and (gt, egt). We first show that 0 is a congruence. Throughout the following, let
(x,y) be one of the three (up to symmetry) nontrivial pairs in 6.

For stability under -, begin by observing that the domain of any element in
one of the three non-trivial pairs is either {1,2,3,4} (for g,gs,gt) or {1,2} (for
eg,egs, egt). If the range of an element z does not overlap with at least one of these
sets, then zx = 0 = zy. But the only elements z whose range nontrivially intersects
either of these sets are g and eg (and the trivial case of id), which are restrictions of
the identity and lead to zx 8 8 y 6 zy in all cases. For right multiplication by an
element z, we obtain (zz,yz) € {(g,eg), (gs, egs), (gt,egt)} when (z,y) = (g, eg),
and (x,y) € {(gs,egs), (gt,egt)} when (z,y) € {(gs,egs), (gt,egt)}. These are
subsets of 0 so that preservation of € by - is verified.

Next we consider % and #. As the domains of x and y are either {1,2} or
{1,2,3,4} it follows that for any element z we have z x z,2z x y € {0,g,eg} and
z # x,2 £y € {0,g,eg}. However a quick examination of the elements of our
example reveals that if z agrees (or disagrees) with one of x or y on {1,2} then it
agrees (or disagrees) with both x and y on {1,2}. So in fact either {zx*x, zxy} = {0}
or {zxx,z*xy} = {g,eg}, and similarly for {z # x,z # y}. As these are blocks of
0, it follows that 6 is preserved by % and #. Thus 0 is a congruence; there is no
identification of non-test elements with test elements, so that in the quotient, the
test sort unambiguously consists of the two singleton classes {@} and {id}.

Now we demonstrate that law (B2]) fails in the quotient by 6. Now (sx*t) < e and
(s#t) =gbeg<e, and law ([B2) would require D(s)D(t) < e modulo §. However
this fails, so that the quotient is not representable as functions. ([

A weak comparison monoid is a monoid S with zero 0 equipped with a weak
comparison operation S x S x S x S — S which is such that s *¢ := (s = t)[1,0]
and s # ¢ := (s = t)[0, 1] define a disagreeable monoid on (5, B), also satisfying the
following three laws.

o (sxt)-(s=t)|u,v]=(sxt)u (33)
o (s#8)-(s=Du,v]=(s#t) (34)
e D((s = Ofu,v)) < D(s)D(1) (35)

A weak comparison monoid with tests is a monoid with tests (5, B) such that S
is a weak comparison monoid. (P(X),I(X)) is an example of a weak comparison
monoid and indeed a weak comparison monoid with tests, as is any subalgebra of
it; as in previous cases, we call these functional.

Corollary 2.20. Fvery weak comparison monoid (possibly with tests) is up to
isomorphism functional.

Proof. Lemma2.I2and Theorem 217 imply that the disagreeable monoid reduct of
any weak comparison monoid is functional; now note that laws [B3]), (34)) and (B3]
completely specify weak comparison in functional disagreeable semigroups. The
extension to the case with tests is immediate. (|

18 MARCEL JACKSON AND TIM STOKES

Analogous to Proposition 2.9 the quasi-equational axiom for #, namely (B32),
can be expressed equationally in the presence of weak comparison.

Proposition 2.21. Within weak comparison monoids, quasi-equational law (32)
for disagreeable monoids is equivalent to the following equational laws:

o (s=t)u,ul = D(s)D(t)u (36)
o (s=t)u,v]=(s=1t)[(s*t)u, (s # t)v] (37)
Proof. If the above two laws hold and (s xt) < e, (s # t) < e, then
D(s)D(t)e = (s=t)[ee

= (s=1)l(sxt)e, (s # t)e]

= (s=0[(sx1),(s #1)]

= (S =81, 1]

D),

so D(s)D(t) < e. Conversely, the above two laws clearly hold in functional cases.
(]

T(X) is closed under weak comparison, where the operation is called compari-
son in [38], following Kennison [24]. Algebras of transformations under composition
and comparison are axiomatized in [38] in a test-free setting. An axiomatization
for partial functions is also given [38], but with a different “non-computable” in-
terpretation of the comparison operation in which agreement includes places where
both functions are undefined, an interpretation suited to obtaining a rich algebra
of partial transformations but not relevant for current purposes where the goal is
to model possibly non-halting computable functions. For this reason we have used
the phrase “weak comparison” here, to distinguish it from this previously used
definition for partial functions.

3. SOME SPECIAL CASES

3.1. B = D(S) and modal restriction semigroups. The largest B can be is all
of D(S). In that case, the operations considered here reduce to those axiomatized
n [22]. Specifically, the operations P,>1 and U discussed in [22] are defined on
P(X) as follows:

e P(s) is the restriction of the identity function to the complement of the
domain of s; that is, P(s) := D(s)’;

o (sxt):= (sxt)UD(s)D(t), the restriction of the identity function to
those z € X where s,t do not disagree;

e sUt:= D(s)[s,t], which is s where it is defined together with ¢ when s is
not defined (and undefined otherwise).

Conversely we may write:
sxt:=(sxt)D(s)D(t);
s#£t:=(sxt);

(s,a)[t,u] :== D(sa)t U D(sa Yu;
(s =t)[u,v] := (s xt)ull (s # t)v;
eUf:=eVfforefeD(S)=B.

MONOIDS WITH TESTS 19

3.2. The test-free algebra of non-halting programs. At the other end of the
spectrum, the smallest B can be in a restriction monoid with tests is {0,1}. This
case has some interest in terms of modelling the test-free algebra of computable
functions. The extended if-then-else operations are of no interest, but the disagree-
able operation and weak comparison still make sense. Indeed, many of our earlier
results were proved at this level of generality, specifically Theorem 217 and Corol-
lary 2220t neither the disagreeable operation nor weak comparison had previously
been axiomatized in any function semigroup setting, as far as we know.

3.3. Relation to B-semigroups. In [21], the class of B-semigroups (S, B) is
shown to (finitely) axiomatize the class of transformation semigroups equipped
with if-then-else operations indexed by a Boolean algebra. These arise as the sub-
algebras of reducts of extended if-then-else-monoids consisting of all elements s
satisfying D(s) = 1, in which the test elements are assumed to be part of a distinct
sort and closed under the mapping a — D(sa) for all s € S.

4. EXTENSIONS, ENRICHMENTS AND SOME OPEN PROBLEMS

4.1. Tentative axioms for extended while-do. It would be remiss to say noth-
ing further about looping here, since this is the obvious source of the non-halting of
programs currently being modelled! Axiomatizing the while-do command is a very
difficult problem, even when only halting tests are considered, and it is unlikely that
a finite axiomatization exists, at least if completeness with respect to functionally
valid implications is desired. However, with relatively little effort, we can obtain a
reasonable first approximation. In [22], (« : s) is defined and crudely axiomatized
for the case in which B = D(S), and we adopt a similar approach here.

We say the extended if-then-else monoid (S, B) is a W-monoid if it is equipped
with a set of mixed ternary operations S x B x S — S obeying the following law:

o ((tya):8)=(t,a)[s((t,) : 8),1]. (38)

So (P(X),I(X)) is a W-monoid if we define ((f,) : g) to be extended while-do as
discussed earlier. Another way to state (3]) is as the two separate laws:

e D(ta)((t,a) : s) = D(ta)s((t,a) : s), (39)

e D(td)((t,a) : s) = D(td). (40)

Lemma 4.1. In the restriction semigroup S, if e,f € D(S) and s,t € S satisfy
est = et and ft =1, then (es)"f <t for all n > 0.

Proof. We use induction on n. Now ft = f implies that f < ¢, giving the n = 0 case.
Assuming the n = k case, we have

(es)FT1f = (es)(es)f <est =et <t
by the stability property, and the result follows. ([

Lemma [Tl shows that any element ¢ in a W-monoid satisfying both D(ta)su =
D(ta)u and D(te/)u = D(ta/) will necessarily be at least as big as each element
(D(ta)s)"D(ta’) for n a natural number; in particular, this is true of ((¢,«) : s).
With the help of some additional laws, we can do better.

We say the W-monoid S is Kleenean if for all s, ¢, u, a:

o ((t,a):s)D(td) = ((t,«) : s) and
o D(ta)su <u = ((t,@):s)u < u.

20 MARCEL JACKSON AND TIM STOKES

The second rule above is analogous to a rule for Kleene algebras (possibly without
tests), namely su <u = s*u < u.

The structure (P(X), I(X)) is Kleenean, and ((¢,) : s) is the smallest element at
least as big as (D(ta)s)™ D(ta/) for all n > 0 (indeed it is their disjoint union), hence
must also be the smallest element u amongst those satisfying D(ta)su = D(ta)u
and D(ta/)u = D(ta’). In general we have the following.

Proposition 4.2. Let S be a functional Kleenean restriction W-monoid with tests.
Then for all s,t,a, ((t,c) : s) is the smallest u for which D(ta)su = D(ta)s and
D(ta’)u = D(to).

Proof. If w is one such, then D(ta)su < u and so ((¢, @) : s)u < u, so that
((t,) : 8) = ((t,) :) D(ta’) = ((t,) : s)D(ta)u = ((¢,) : s)u < u.
Conversely, ((t,a) : s) is one such u, as we have seen. O

Proposition shows that in any representation v of a functional Kleenean re-
striction W-monoid with tests, the representation of ((¢,a) : s) is correct relative
to the image of 1. Something analogous happens with the Kleene closure of an ele-
ment in a Kleene algebra (with or without tests): 7* is the least “reflexive transitive
element” in the algebra containing r, and any representation in terms of relations
will represent it as the least reflexive transitive relation containing r amongst those
relations in the algebra.

Recall that a semigroup is periodic if for every element x, there are positive
integers 7 and p such that x* = 2P, The following result is essentially a corollary
of Lemma [£.1] and Proposition

Theorem 4.3. Let S be a functional restriction monoid with tests also carry-
ing extended if-then-else operation satisfying laws @) - and extended while-do
operations satisfying the Kleenean W-monoid axioms. If S is periodic, then any
functional representation as a monoid with tests, correctly represents both extended
if-then-else and extended while-do.

Proof. Assume S has been represented over some set X by a restriction monoid
with tests representation #. Correct representability of extended if-then-else is ob-
served in Corollary [l (it follows because of the observation that properties (@)—(I)
define extended if-then-else in terms of composition, tests and domain). Correct
representability of extended while-do will follow because in the periodic case, an
extended while-do can be written as a finite number of nested extended if-then-else
statements, and such an element is correctly represented.

To make this intuitive idea rigorous, observe that for any ¢,«,s the correct
functional representation of ((¢t?,a?) : %) is e, ((D(ta)s)iD(to/))e but with
the assumption of periodicity, this infinite union coincides with the finite union
Ui<n ((D(ta)s) D(ta)) ? for some n. We will give an explicit description of a nested
series of extended if-then-else statements v in S, which will be represented as the
function |, ., ((D(ta)s)iD(to/))e. This will be sufficient to show that v = ((¢, &) :
s) (and therefore that ((t,a) : 5)? = ((t?,a?) : s?) as required), because v satisfies
(D(ta)s)?v? = (D(ta)s)? and (D(ta'))?v? = (D(ta'))? so has v > ((t,a) : s)
by Proposition (and the fact that @ is a faithful restriction monoid with tests
representation). But also v < ((¢,) : s) because ((D(ta)s)iD(to/))e C((t,a):s)?
for every i by Lemma (1]

MONOIDS WITH TESTS 21

We now inductively define the nested if-then-else statement v. Let vg denote the
element (D(ta)s)"D(ta’). Now assume that we have defined vy for some 0 < k <
n — 1 and that

= (Dra)s)' D))’ (41)
n—k<i<n
Define
Vps1 = ((D(ta)s)"~* D¢ a) vy, (D(ta)s)"~F) D(ta)]
The definition of extended if-then-else shows (for k& > 0) that v¢ 41 is equal to the
union of the representation of D((D(ta)s)"~*+Dta)v, with the representation of

D((D(ta)s)"~*Vta’) (D(ta)s) ni(kH)D(tO/). (42)

As D((D(ta)s)"~k+Dta/) = D((D(ta)s)"~**+D D(ta’)), the expression ([@2) sim-
ply reduces to (D(ta)s)”~*+1) D(ta/). Similarly,

D((D(ta)s)"~**+Yta) = D((D(ta)s)"~*+1) D(ta)),

so that the induction hypothesis @) gives D((D(ta)s)”~*+Dta)v, = vp. Thus
vY,, is the union of v with ((D(ta)s)"~**VD(ta’))?, showing that the induc-

tion hypothesis is preserved. In particular this shows that v,, is the desired union
0

Ui<n ((D(ta)s)'D(ta’)) " O

If S is finite, then it is periodic, and moreover the representation method used
above represents S as functions on a finite set. So a corollary to the above is that
for finite S, the Kleenean restriction W-monoid with if-then-else axioms are sound
and complete for functional models on finite sets.

There is also the possibility of defining extended while-do operations in terms
of the equality (partial) predicate: one could define one or both of ((f = g) : h)
and ((f # g) : h), and easy analogs of the above definitions and results may be
obtained.

Problem 4.4. Is there a finite axiomatisation that is complete for equational prop-
erties of restriction semigroups of functions equipped with extended while-do and
extended if-then-else? Is there a finite complete axiomatization for the quasiequa-
tional theory? Is there even a recursively enumerable and complete axiomatizatio
for the quasiequational theory?

4.2. Non-halting tests. Non-halting tests were considered by Manes in [28], where
if-then-else algebras over Boolean algebras, C-algebras and ADAs were considered,
in the absence of composition. Here, C-algebras and ADAs are algebras of non-
halting conditions, generalising Boolean algebras. In the current setting, our tests
are assumed to form a Boolean algebra, although it turns out that we can construct
an algebra of “non-halting tests” from these Boolean tests together with some of
our operations.

First note that the structure of the Boolean algebra B is faithfully captured by
its induced if-then-else action: «ofz,y] = B[z, y] for all z,y € S if and only if « =
(as follows on setting 2 = 1,y = 0 and then 2 = 0,y = 1). However, this reflects
the fact that we choose to distinguish elements of B based only on their effect in
if-then-else statements.

1Some authors prefer to include “recursively enumerable” as part of the definition of “axioma-
tisation”, in which case we are asking whether or not there is a complete axiomatisation.

22 MARCEL JACKSON AND TIM STOKES

Similarly, letting P[z,y], Q[z,y] be induced binary operations of the form (a =
b)[z,y] or (a,a)[x,y], or indeed afz,y] (letting a = 1 in the previous case), we can
recursively generate new operators by setting

o (PAQ)x,y] = PQ[z,y],y] (43)
o (PVQ)z,y]:=Plz,Q[z,y] (44)
i (ﬁp)[x,y] = P[y,:v] (45)

for all z,y € S. Identifying each such P with its functional effect by setting P = @
if and only if Plz,y] = Q[xz,y] for all z,y € S, we see that the above recursive
scheme generates an algebra of “generalised predicates” B* under A, V, -, in which
B is embedded as a subalgebra.

It is easily checked that these induced logical operations on B* have the following
interpretations in functional cases:

e PAQ is true if both P, Q are; false if P is false, or if P is defined and @ is
false; and undefined otherwise.

e PV Q is trueif P is true, or if P is defined and @ is true; false if both P, @
are false; and undefined otherwise.

e — P is trueif and only if P is false, and vice versa, and is undefined if P is.

In [28], Manes considers exactly these connectives on “non-halting” conditions, and
justifies them in terms of the way actual programming languages work. It follows
that (B*,A,V,—,0,1) is a C-algebra in the sense of [28], where ITE-algebras over
C-algebras are studied.

In [28], the C-algebras of non-halting tests were assumed to have some prior
independent existence (satisfying various laws generalising Boolean algebra), and
indeed the above three connective definitions @3] to (@) were assumed to hold
as laws for the ITE-algebras considered in [28]. In the current setting too, an
alternative approach would be to begin with an abstract collection of non-halting
conditions as in [28], rather than deriving them from a given Boolean algebra of
“elementary” halting conditions via extended if-then-else.

Problem 4.5. Characterise the algebras of computable functions associated with
an abstract C-algebra of non-halting tests.

4.3. Complexity and decidability. Hardin and Kozen [17] showed that the im-
plicational theory of relational models of KAT is IIj-complete: so no complete
recursive axiomatisation is possible. However, the equational theory is well known
to be only PSPACE. Goldblatt and the first author [15] showed that deciding func-
tional validity for propositions in strict fragments of deterministic PDL is I1}-hard,
which can be translated to the algebraic approach taken here in the form of the
IT3-hardness of the equational theory of functionally representable algebras in the
language containing composition, antidomain, intersection and while. The argu-
ment in [I5] makes intrinsic use of the ability to nest halting statements as test
conditions for other halting statements (which is enabled by antidomain, or equiv-
alently, the modal necessity operator of PDL). Such nesting is impossible in the
signatures considered in the present article.

Problem 4.6. What is the complezity of the equational theory of representable al-
gebras in the various signatures considered here, when while is included. In particu-
lar, is it possible that the equational theory is decidable for the class of functionally

MONOIDS WITH TESTS 23

representable Kleenean restriction W-monoids with tests? Under what construc-
tions does the implicational theory of while achieve high undecidability (such as
13 -hardness)?

(1]

(10]

11]
(12]

(13]
(14]
(15]

[16]

(17)
(18]
19]

20]
(21]

(22]
23]
[24]
[25]
[26]

27]

REFERENCES

H. Andréka, On the representation problem of distributive semilattice-ordered semigroups.
Technical report, Mathematical Institute of the Hungarian Academy of Sciences (1988). Ab-
stracted in Abstracts of the American Mathematical Society, 10(2):174, March 1989.

H. Andréka, Representation of distributive lattice-ordered semigroups with binary relations,
Algebra Universalis 28 (1991), 12-25.

H. Andréka and Sz. Mikulds, Axiomatizability of positive fragments of relation algebra, Al-
gebra Universalis 66 (2011), 7-34.

G.M. Bergman, Actions of Boolean rings on sets, Algebra Univers. 28 (1991), 153-187.

C. Brink, Boolean modules, J. Algebra 71 (1981), 291-313.

S.L. Bloom and R. Tindell, Varieties of “if-then-else”, STAM J. Comput. 12 (1983), 677-707.
J.R.B. Cockett and S. Lack, Restriction categories. I. Categories of partial maps, Theoret.
Comput. Sci. 270 (2002), 223-259.

J. Desharnais, P. Jipsen and G. Struth, Domain and antidomain semigroups, in R. Bergham-
mer et al. (eds.), Relations and Kleene Algebra in Computer Science, pp. 73-87, Springer-
Verlag, 2009.

J. Desharnais, B. Moller and G. Struth, Kleene algebra with domain, ACM Trans. Comput.
Log. 7 (2006), 798-833.

W. Dudek and V. Trokhimenko, Functional Menger P-algebras, Comm. Algebra 30 (2002),
5921-5931.

J. Fountain, Free right type A semigroups, Glasgow Math. J. 33 (1991), 135-148.

G.M.S. Gomes and V. Gould, Proper weakly left ample semigroups, Internat. J. Algebra
Comput. 9 (1999), 721-739.

V. Gould and C. Hollings, Restriction semigroups and inductive constellations, Comm. Al-
gebra 38 (2009), 261-287.

I. Guessarian and J. Meseguer, On the axiomatization of “if-then-else”, STAM J. Comput. 16
(1987), 332-357.

R. Goldblatt and M. Jackson, Well-structured program equivalence is highly undecidable,
ACM Trans. Comput. Log. 13(3):26 (2012).

W. Guttmann, General correctness algebra, in R. Berghammer, A. M. Jaoua, and B. Mdller
(eds.), Relations and Kleene Algebra in Computer Science, Lecture Notes in Computer Sci-
ence, Vol. 5827, 2009, pp. 150-165.

C. Hardin and D. Kozen, On the complexity of the Horn theory of REL. Technical Report
TR2003-1896, Computer Science Department, Cornell University, May 2003.

R. Hirsch and Sz. Mikulds, Axiomatizability of representable domain algebras, J. Log. Algebr.
Program. 80 (2011), 75-91.

M. Jackson and T. Stokes, An invitation to C-semigroups, Semigroup Forum 62 (2001),
279-310.

M. Jackson and T. Stokes, Agreeable semigroups, J. Algebra 266 (2003), 393-417.

M. Jackson and T. Stokes, Semigroups with if-then-else and halting programs, Internat. J.
Algebra Comput. 19 (2009), 937-961.

M. Jackson and T. Stokes, Modal restriction semigroups: towards an algebra of functions,
Internat. J. Algebra Comput. 21 (2011), 1053-1095.

M. Jackson and T. Stokes, On representing semigroups with subsemilattices, J. Algebra 376
(2013), 228-260.

J.F. Kennison, Triples and compact sheaf representation. J. Pure Appl. Algebra 20 (1981),
13-38.

D.C. Kozen, On Hoare Logic and Kleene algebra with Tests, ACM Trans. Comput. Logic 1
(2000), 60-76.

M.V. Lawson, Semigroups and Ordered Categories I: The Reduced Case, J. Algebra 141
(1991), 422-462.

R.D. Maddux, Relation-algebraic semantics, Theor. Comput. Sci. 160 (1996), 1-85.

24

MARCEL JACKSON AND TIM STOKES

[28] E.G. Manes, Adas and the equational theory of if-then-else, Algebra Univers. 30 (1993),

373-394.

[29] E.G. Manes and D.B. Benson, The inverse semigroup of a sum-ordered semiring, Semigroup

Forum 39 (1985), 129-152.

[30] J. McCarthy, A basis for a mathematical theory of computation, in P. Braffort and D.

Hirschberg (eds.), Computer Programming and Formal Systems. North-Holland (1963), 33—
70.

[31] A.H. Meklar and E.M. Nelson, Equational bases for if-then-else, STAM J. Comput. 16 (1987),

465-485.

[32] B. Moller and G. Struth, Algebras of modal operators and partial correctness, Theor. Comp.

Sci. 351 (2006), 221-239.

[33] V.R. Pratt, Dynamic algebra and the nature of induction, Proceedings of the twelfth an-

nual ACM symposium on Theory of Computing, p.22-28, April 28-30, 1980, Los Angeles,
California, United States.

[34] V.R. Pratt, Dynamic algebras as a well behaved fragment of relation algebra, in Algebraic

Logic and Universal Algebra in Computer Science Lecture Notes in Computer Science, Vol.
425, 1990, pp. 77-110.

[35] B.M. Schein, Relation algebras and function semigroups, Semigroup Forum 1 (1970), 1-62.
[36] B.M. Schein, Lectures on semigroups of transformations, Amer. Math. Soc. Translat. Ser. 2.

113 (1979) 123-181.

[37] B. Schweizer and A. Sklar, Function systems, Math. Annalen 172 (1967), 1-16.
[38] T.E. Stokes, Comparison semigroups and algebras of transformations, Semigroup Forum 81

(2010), 325-334.

[39] V.S. Trokhimenko, Menger’s function systems, Izv. Vyss. Ucebn. Zaved. Matematika 11(138)

(1973), 71-78 (Russian).

[40] J. von Wright, Towards a refinement algebra, Sci. Comput. Program. 51 (2004), 23-45.

DEPARTMENT OF MATHEMATICS AND STATISTICS, LA TROBE UNIVERSITY, VICTORIA, AUSTRALIA
E-mail address: m.g.jackson@latrobe.edu.au

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WAIKATO, NEW ZEALAND
E-mail address: stokes@math.waikato.ac.nz

	1. Motivation and definitions
	1.1. Some terminology
	1.2. Computable functions
	1.3. Extending if-then-else
	1.4. Looping, skip, abort and tests
	1.5. Extended while-do
	1.6. Domain

	2. Axiomatizations
	2.1. Axioms for extended if-then-else
	2.2. Axioms for intersection
	2.3. Axioms for weak comparison

	3. Some special cases
	3.1. B=D(S) and modal restriction semigroups
	3.2. The test-free algebra of non-halting programs
	3.3. Relation to B-semigroups

	4. Extensions, enrichments and some open problems
	4.1. Tentative axioms for extended while-do
	4.2. Non-halting tests
	4.3. Complexity and decidability

	References

