4,610 research outputs found

    Radar polarimetry and interferometry for remote sensing of boreal forest

    Get PDF
    Forest biomass is a key parameter of the global biosphere which is linked to many fields of research. Modeling addressing climate, ecology, and economics as well as many other prediction frameworks require an accurate assessment of global forest biomass. Methods for producing forest information are rapidly developing and traditional forest inventory by visual estimation has been gradually replaced by the use of airborne and spaceborne instruments. Nevertheless, the estimation of biomass on a global basis including boreal, temperate, and tropical forests, is still a major challenge. Among other spaceborne sensors, synthetic aperture radar (SAR) is one of the most suitable tools for large scale mapping and it has also been often used for forest mapping. However, commonly used backscattering intensity based methods do not provide a satisfactory accuracy for biomass estimation; hence, the scientific radar community has been developing more accurate means based on advanced SAR imaging and analyzing techniques, such as SAR polarimetry and interferometry. The work within this thesis contributes to this effort specifically in the field of remote sensing with the emphasis on SAR polarimetry and interferometry for boreal forest applications. The study concentrates on three main topics: polarimetric SAR image analysis, retrieval of forest height by means of SAR interferometry, and modeling of radar backscattering from trees. The main contributions of this work include a new effective approach in polarimetric target decomposition, novel polarimetric visualization schemes, an improved interferometric tree height estimation method suitable for boreal forest, interferometric tree height estimation capability demonstration for X-band, a novel method for relating SAR measurements to single tree scattering modeling, and taking the scattering modeling from a pine tree to the single needle level with accurate field models. Furthermore, the forest height estimation scheme proposed in this work potentially enables tree height estimation with existing spaceborne interferometric X-band SAR systems. The proposed method uses an interferometric coherence model and a ground elevation model to produce accurate tree height maps from single polarization interferometric SAR data. The method is demonstrated with airborne SAR measurements and will be tested in the near future with satellite data. Since tree height is related to forest biomass through tree allometry, tree height measurements from space would enable more accurate global forest biomass maps

    Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    Get PDF
    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations

    Retrieval of forest stem volume using VHF SAR

    Get PDF
    The ability to retrieve forest stem volume using CARABAS (coherent all radio band sensing) SAR images (28–60 MHz) has been investigated. The test site is a deciduous mixed forest on the island of Öland in southern Sweden. The images have been radiometrically calibrated using an array of horizontal dipoles. The images exhibit a clear discrimination between the forest and open fields. The results show that the dynamic range of the backscattering coefficient among the forest stands is higher than what has been found with conventional SAR using microwave frequencies. The backscatter increases with increasing radar frequency. This work shows an advantage compared to higher frequencies for stem volume estimation in dense forests

    Extrapolation of Airborne Polarimetric and Interferometric SAR Data for Validation of Bio-Geo-Retrieval Algorithms for Future Spaceborne SAR Missions

    Get PDF
    Spaceborne SAR system concepts and mission design is often based on algorithms developed and the experience gathered from airborne SAR experiments and associated dedicated campaigns. However, airborne SAR systems have better performance parameters than their future space-borne counterparts as their design is not impacted by mass, power, and storage constraints. This paper describes a methodology to extrapolate spaceborne quality SAR image products from long wavelength airborne polarimetric SAR data which were acquired especially for the development and validation of bio/geo-retrieval algorithms in forested regions. For this purpose not only system (sensor) related parameters are altered, but also those relating to the propagation path (ionosphere) and to temporal decorrelation

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches

    Get PDF
    Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity conservation and agricultural management. For regions with persistent cloud cover the use of multi-temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date inventories of grasslands. This is even more appealing considering the data that will be available from upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively underused Extremely Randomised Trees (ERT) is evaluated for discriminating between grassland types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to classify different types of grasslands. Overall accuracies ≥ 88.7% (with kappa coefficient of 0.87) were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier outperforms SVM and RF

    EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest

    Get PDF
    EAGLE2006 - an intensive field campaign - was carried out in the Netherlands from the 8th until the 18th of June 2006. Several airborne sensors - an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were used and extensive ground measurements were conducted over one grassland (Cabauw) site and two forest sites (Loobos & Speulderbos) in the central part of the Netherlands, in addition to the acquisition of multi-angle and multi-sensor satellite data. The data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative surface parameter estimation and process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation and originated from the combination of a number of initiatives coming under different funding. The objectives of the EAGLE2006 campaign were closely related to the objectives of other ESA Campaigns (SPARC2004, Sen2Flex2005 and especially AGRISAR2006). However, one important objective of the campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired over vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as Sentinels and for satellite validations for MERIS, MODIS as well as AATSR and ASTER thermal data validation, with activities also related to the ASAR sensor on board ESA’s Envisat platform and those on EPS/MetOp and SMOS. Most of the activities in the campaign are highly relevant for the EU GEMS EAGLE project, but also issues related to retrieval of biophysical parameters from MERIS and MODIS as well as AATSR and ASTER data were of particular relevance to the NWO-SRON EcoRTM project, while scaling issues and complementary between these (covering only local sites) and global sensors such as MERIS/SEVIRI, EPS/MetOP and SMOS were also key elements for the SMOS cal/val project and the ESA-MOST DRAGON programme. This contribution describes the mission objectives and provides an overview of the airborne and field campaigns

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information
    corecore