5,906 research outputs found

    Matrix Adhesion Polarizes Heart Progenitor Induction In The Invertebrate Chordate Ciona Intestinalis

    Get PDF
    Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification

    Current perspectives of the signaling pathways directing neural crest induction.

    Get PDF
    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse

    T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1

    Get PDF
    T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when overexpressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/-adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e.The secondary hair germ) and in the stem cell niche (i.e.The bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative-differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/-and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/-mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KC

    Regulation of Apoptosis during Environmental Skin Tumor Initiation

    Get PDF
    Skin cancer is more prevalent than any other cancer in the United States. Nonmelanoma skin cancers are the more common forms of skin cancer that affect individuals. The development of squamous cell carcinoma, the second most common type of skin cancer, can be stimulated by exposure of environmental carcinogens, such as chemical toxicants or UVB. It is developed by three distinct stages: initiation, promotion, and progression. During the initiation, the fate of DNA-damaged skin cells is determined by the homeostatic regulation of pro-apoptotic and antiapoptotic signaling pathways. The imbalance or disruption of either signaling will lead to the survival of initiated cells, resulting in the development of skin cancer. In this chapter, we will discuss signaling pathways that regulate apoptosis and the impact of their dysfunction during skin tumor initiation

    Regulation of Apoptosis during Environmental Skin Tumor Initiation

    Get PDF
    Skin cancer is more prevalent than any other cancer in the United States. Nonmelanoma skin cancers are the more common forms of skin cancer that affect individuals. The development of squamous cell carcinoma, the second most common type of skin cancer, can be stimulated by exposure of environmental carcinogens, such as chemical toxicants or UVB. It is developed by three distinct stages: initiation, promotion, and progression. During the initiation, the fate of DNA-damaged skin cells is determined by the homeostatic regulation of pro-apoptotic and antiapoptotic signaling pathways. The imbalance or disruption of either signaling will lead to the survival of initiated cells, resulting in the development of skin cancer. In this chapter, we will discuss signaling pathways that regulate apoptosis and the impact of their dysfunction during skin tumor initiation

    Loss of protein kinase calpha expression may enhance the tumorigenic potential of Gli1 in basal cell carcinoma

    Get PDF
    Gli1 has now been implicated in switching between motility and static cell replication. Part of a series of papers, this study tracted PKCalpha expression in relation to Gli1 in various static and motile cell areas of the hair sheath and BCC

    The calcium-sensing receptor as a regulator of cellular fate in normal and pathological conditions

    Get PDF
    The calcium-sensing receptor (CaSR) belongs to the evolutionarily conserved family of plasma membrane G protein-coupled receptors (GPCRs). Early studies identified an essential role for the CaSR in systemic calcium homeostasis through its ability to sense small changes in circulating calcium concentration and to couple this information to intracellular signaling pathways that influence parathyroid hormone secretion. However, the presence of CaSR protein in tissues is not directly involved in regulating mineral ion homeostasis points to a role for the CaSR in other cellular functions including the control of cellular proliferation, differentiation and apoptosis. This position at the crossroads of cellular fate designates the CaSR as an interesting study subject is likely to be involved in a variety of previously unconsidered human pathologies, including cancer, atherosclerosis and Alzheimer's disease. Here, we will review the recent discoveries regarding the relevance of CaSR signaling in development and disease. Furthermore, we will discuss the rational for developing and using CaSR-based therapeutics

    Erk1/2 MAP kinases are required for epidermal G2/M progression

    Get PDF
    Erk1/2 mitogen-activated protein kinases (MAPKs) are often hyperactivated in human cancers, where they affect multiple processes, including proliferation. However, the effects of Erk1/2 loss in normal epithelial tissue, the setting of most extracellular signal-regulated kinase (Erk)–associated neoplasms, are unknown. In epidermis, loss of Erk1 or Erk2 individually has no effect, whereas simultaneous Erk1/2 depletion inhibits cell division, demonstrating that these MAPKs are necessary for normal tissue self-renewal. Growth inhibition caused by Erk1/2 loss is rescued by reintroducing Erk2, but not by activating Erk effectors that promote G1 cell cycle progression. Unlike fibroblasts, in which Erk1/2 loss decreases cyclin D1 expression and induces G1/S arrest, Erk1/2 loss in epithelial cells reduces cyclin B1 and c-Fos expression and induces G2/M arrest while disrupting a gene regulatory network centered on cyclin B1–Cdc2. Thus, the cell cycle stages at which Erk1/2 activity is required vary by cell type, with Erk1/2 functioning in epithelial cells to enable progression through G2/M
    corecore