50 research outputs found

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)

    Reachability Problem for Weak Multi-Pushdown Automata

    Full text link

    Bisimilarity of Pushdown Systems is Nonelementary

    Full text link
    Given two pushdown systems, the bisimilarity problem asks whether they are bisimilar. While this problem is known to be decidable our main result states that it is nonelementary, improving EXPTIME-hardness, which was the previously best known lower bound for this problem. Our lower bound result holds for normed pushdown systems as well

    On Bisimilarity of Higher-Order Pushdown Automata: Undecidability at Order Two

    Get PDF
    We show that bisimulation equivalence of order-two pushdown automata is undecidable. Moreover, we study the lower order problem of higher-order pushdown automata, which asks, given an order-k pushdown automaton and some k\u27= 2 even when the input k-PDA is deterministic and real-time

    Bisimulation equivalence and regularity for real-time one-counter automata

    Get PDF
    A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε -transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACEPSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACEPSPACE-hardness [25]. The second main result shows NLNL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACEPSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove PP-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NLNL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular.Web of Science80474372

    Towards weak bisimilarity on a class of parallel processes.

    Get PDF
    A directed labelled graph may be used, at a certain abstraction, to represent a system's behaviour. Its nodes, the possible states the system can be in; its arrows labelled by the actions required to move from one state to another. Processes are, for our purposes, synonymous with these labelled transition systems. With this view a well-studied notion of behavioural equivalence is bisimilarity, where processes are bisimilar when whatever one can do, the other can match, while maintaining bisimilarity. Weak bisimilarity accommodates a notion of silent or internal action. A natural class of labelled transition systems is given by considering the derivations of commutative context-free grammars in Greibach Normal Form: the Basic Parallel Processes (BPP), introduced by Christensen in his PhD thesis. They represent a simple model of communication-free parallel computation, and for them bisimilarity is PSPACE-complete. Weak bisimilarity is believed to be decidable, but only partial results exist. Non-bisimilarity is trivially semidecidable on BPP (each process has finitely many next states, so the state space can be explored until a mis-match is found); the research effort in proving it fully decidable centred on semideciding the positive case. Conversely, weak bisimilarity has been known to be semidecidable for a decade, but no method for semideciding inequivalence has yet been found - the presence of silent actions allows a process to have infinitely many possible successor states, so simple exploration is no longer possible. Weak bisimilarity is defined coinductively, but may be approached, and even reached, by its inductively defined approximants. Game theoretically, these change the Defender's winning condition from survival for infinitely many turns to survival for K turns, for an ordinal k, creating a hierarchy of relations successively closer to full weak bisimilarity. It can be seen that on any set of processes this approximant hierarchy collapses: there will always exist some K such that the kth approximant coincides with weak bisimilarity. One avenue towards the semidecidability of non- weak bisimilarity is the decidability of its approximants. It is a long-standing conjecture that on BPP the weak approximant hierarchy collapses at o x 2. If true, in order to semidecide inequivalence it would suffice to be able to decide the o + n approximants. Again, there exist only limited results: the finite approximants are known to be decidable, but no progress has been made on the wth approximant, and thus far the best proven lower-bound of collapse is w1CK (the least non-recursive ordinal number). We significantly improve this bound to okx2(for a k-variable BPP); a key part of the proof being a novel constructive version of Dickson's Lemma. The distances-to-disablings or DD functions were invented by Jancar in order to prove the PSPACE-completeness of bisimilarity on BPP. At the end of his paper is a conjecture that weak bisimilarity might be amenable to the theory; a suggestion we have taken up. We generalise and extend the DD functions, widening the subset of BPP on which weak bisimilarity is known to be computable, and creating a new means for testing inequivalence. The thesis ends with two conjectures. The first, that our extended DD functions in fact capture weak bisimilarity on full BPP (a corollary of which would be to take the lower bound of approximant collapse to and second, that they are computable, which would enable us to semidecide inequivalence, and hence give us the decidability of weak bisimilarity

    Bisimulation Equivalence of First-Order Grammars is ACKERMANN-Complete

    Full text link
    Checking whether two pushdown automata with restricted silent actions are weakly bisimilar was shown decidable by S\'enizergues (1998, 2005). We provide the first known complexity upper bound for this famous problem, in the equivalent setting of first-order grammars. This ACKERMANN upper bound is optimal, and we also show that strong bisimilarity is primitive-recursive when the number of states of the automata is fixed

    On the complexity of checking semantic equivalences between pushdown processes and finite-state processes

    Get PDF
    AbstractSimulation preorder/equivalence and bisimulation equivalence are the most commonly used equivalences in concurrency theory. Their standard definitions are often called strong simulation/bisimulation, while weak simulation/bisimulation abstracts from internal τ-actions.We study the computational complexity of checking these strong and weak semantic preorders/equivalences between pushdown processes and finite-state processes.We present a complete picture of the computational complexity of these problems and also study fixed-parameter tractability in two important input parameters: x, the size of the finite control of the pushdown process, and y, the size of the finite-state process.All simulation problems are generally EXPTIME-complete and only become polynomial if both parameters x and y are fixed.Weak bisimulation equivalence is PSPACE-complete, but becomes polynomial if and only if parameter x is fixed.Strong bisimulation equivalence is PSPACE-complete, but becomes polynomial if either parameter x or y is fixed
    corecore